

A variably imprinted epiallele impacts seed development

2

Daniela Pignatta^{1¶,#}, Katherine Novitzky^{1¶}, P.R. V. Satyaki¹, Mary Gehring^{1,2*}

4

¹Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America

6

²Dept of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
of America

8

*Corresponding author

Email: mgehring@wi.mit.edu (MG)

10

¶ These authors contributed equally to this work.

12

Current Address: Indigo Agriculture, Charlestown, MA

16 **Abstract**

The contribution of epigenetic variation to phenotypic variation is unclear. Imprinted
18 genes, because of their strong association with epigenetic modifications, represent an
 opportunity for the discovery of such phenomena. In mammals and flowering plants, a
20 subset of genes are expressed from only one parental allele in a process called gene
 imprinting. Imprinting is associated with differential DNA methylation and chromatin
22 modifications between parental alleles. In flowering plants imprinting occurs in a seed
 tissue – endosperm. Proper endosperm development is essential for the production of
24 viable seeds. We previously showed that in *Arabidopsis thaliana* intraspecific imprinting
 variation is correlated with naturally occurring DNA methylation polymorphisms. Here,
26 we investigated the mechanisms and function of allele-specific imprinting of the class IV
 homeodomain-Leucine zipper (HD-ZIP) transcription factor *HDG3*. In imprinted strains,
28 *HDG3* is expressed primarily from the methylated paternally inherited allele. We
 manipulated the methylation state of endogenous *HDG3* in a non-imprinted strain and
30 demonstrated that methylation of a proximal transposable element is sufficient to
 promote *HDG3* expression and imprinting. Gain of *HDG3* imprinting was associated with
32 earlier endosperm cellularization and changes in seed weight. These results indicate
 that epigenetic variation alone is sufficient to explain imprinting variation and
34 demonstrate that epialleles can underlie variation in seed development phenotypes.

36

38 **Author Summary**

The contribution of genetic variation to phenotypic variation is well-established. By
40 contrast, it is unknown how frequently epigenetic variation causes differences in
organismal phenotypes. Epigenetic information is closely associated with but not
42 encoded in the DNA sequence. In practice, it is challenging to disentangle genetic
variation from epigenetic variation, as what appears to be epigenetic variation might
44 have an underlying genetic basis. DNA methylation is one form of epigenetic
information. *HDG3* encodes an endosperm specific transcription factor that exists in two
46 states in *A. thaliana* natural populations: methylated and expressed and hypomethylated
and repressed. We show that pure epigenetic variation is sufficient to explain expression
48 variation of *HDG3* – a naturally lowly expressed allele can be switched to a higher
expressed state by adding DNA methylation. We also show that expression of *HDG3* in
50 strains where it is normally hypomethylated and relatively repressed causes a seed
development phenotype. These data indicate that naturally circulating epialleles have
52 consequences for seed phenotypic variation.

54

Introduction

56 DNA methylation is a heritable epigenetic mark that can, on occasion, effect
gene transcription and influence development. DNA methylation is a particularly
58 influential regulator of gene expression in endosperm, a triploid extraembryonic seed
tissue that supports embryo development. In endosperm, developmentally programmed
60 DNA demethylation causes maternally inherited endosperm genomes to be
hypomethylated compared to the paternally inherited endosperm genome (1-3).
62 Methylation differences between maternal and paternal alleles identify their parent-of-
origin and establish imprinting, an epigenetic phenomenon in which a gene is expressed
64 primarily from one parental allele (4). Imprinting is theorized to have evolved over conflict
between maternally and paternally inherited alleles in offspring over the extent of
66 maternal investment (5,6). Under the kinship theory, silencing of the maternally inherited
allele and expression of the paternally inherited allele is predicted to ultimately result for
68 genes where the paternally inherited allele's optimum expression level in offspring is
higher than the maternally inherited allele's, (7). Comparison of imprinting between
70 species in the *Arabidopsis* genus has provided empirical support for this hypothesis
(8,9).

72 Recent genomic approaches have revealed extensive natural DNA methylation
variation within *Arabidopsis thaliana* (10,11). Whereas the contribution of genetic
74 variation to phenotypic diversity is well-established, the impact of epigenetic variation, or
epialleles, on phenotype is only beginning to be understood (12,13). Processes affected
76 by epialleles include patterns of floral development, sex determination, fruit ripening and
nutritional content, and senescence, among others (14-19). We previously demonstrated
78 that natural variation in DNA methylation is associated with imprinting variation, with as
many as 10% of imprinted genes estimated to be variably imprinted within *A. thaliana*

80 and maize (20,21). Seed development varies extensively among *Arabidopsis* accessions
82 and has previously been shown to be influenced by parent-of-origin effects (20,22), thus
raising the possibility that variation in imprinting could influence seed phenotypes. One
84 of these variably imprinted genes, *HOMEDOMAIN GLABROUS3* (*HDG3*), is a member
86 of the class IV homedomain-Leucine zipper transcription factor (HD-ZIP) family, which
regulates diverse aspects of plant patterning and development (23,24). Studies on the
88 function of class IV HD-ZIP genes in trichome differentiation, sepal giant cell formation,
and suppression of somatic embryogenesis, among others, have led to the conclusion
90 that class IV HD-ZIP family genes promote endoreduplication and cell differentiation (24-
27). Several members of the class IV HD-ZIPs are primarily expressed in endosperm
92 and exhibit imprinted expression patterns, including *FWA/HDG6*, *HDG8*, *HDG9* and
HDG3 (2,23,28). *FWA*, *HDG8*, and *HDG9* are maternally expressed imprinted genes
94 (MEGs), whereas *HDG3* is a paternally expressed imprinted gene (PEG) (2,28). The
function of the imprinted class IV HD-ZIP genes during seed development, if any, is
unknown.

96 The activity of *HDG3* alleles is correlated with DNA methylation. In endosperm of
imprinted strains, the highly expressed paternal *HDG3* allele is methylated and the lowly
98 expressed maternal allele is hypomethylated over a Helitron TE sequence 5' of the
transcriptional start site (2). Maternally inherited endosperm alleles are demethylated by
the 5-methylcytosine DNA glycosylase gene *DME*; in *dme* mutants, maternal alleles
100 retain their methylation and are also expressed (2,29). Of 927 *Arabidopsis* accessions
with sufficient methylation data (11), 32 (3.5%) have no methylation in the *HDG3* 5'
102 region and 871 (94%) have greater than 50% methylation. When strains where *HDG3*
methylation is low, such as *Cvi* or *Kz_9*, are the paternal parent in crosses with *Col*,
104 there is no methylation difference between maternal and paternal alleles in endosperm
and *HDG3* is biallelically expressed (20). Together, these data suggest that (1) DNA

106 demethylation promotes repression of the maternally-inherited *HDG3* allele whereas
108 DNA methylation promotes expression (or inhibits repression) of the paternal *HDG3*
allele and that (2) imprinting variation is due to *cis* epigenetic variation at *HDG3* (20).
However, a *cis* or *trans* genetic contribution to imprinting variation cannot be excluded
110 because of DNA sequence polymorphisms between the strains and alleles that do and
do not exhibit imprinting.

112 Here, we show that a naturally occurring epiallele can contribute to variation in
seed phenotypes in *Arabidopsis*. We tested whether *cis* epigenetic variation is sufficient
114 to explain imprinting variation by generating a methylated *HDG3* Cvi allele that mimicked
a methylated *HDG3* Col allele. We found that the *HDG3* Cvi allele switched from a
116 hypomethylated, non-imprinted, repressed state to an imprinted, paternally biased,
expressed state. Additionally, gain of *HDG3* imprinting altered endosperm development
118 and final seed size. These data indicate that naturally occurring epialleles can have
phenotypic consequences in endosperm, a tissue where methylation is dynamic as a
120 programmed part of development.

122 **Results**

124 **Natural variation in *HDG3* imprinting is associated with gene expression differences**

We previously showed that several genes that are imprinted in endosperm when
126 Col is the paternal parent are not imprinted when Cvi is the paternal parent (20). To
further examine naturally occurring endosperm gene expression variation, we
128 sequenced the transcriptomes of endosperm from Col x Col and Col x Cvi F₁ seeds.
Comparison of these transcriptomes identified 957 genes that were expressed two-fold
130 or higher in Col x Col and 1187 that were expressed two-fold or higher in Col x Cvi

endosperm (Fig 1A; S1 Table). The gene with the lowest expression in Col x Cvi relative

132 to Col is *HDG3*, which is expressed 64-fold lower in Col x Cvi endosperm (Fig 1A).

We previously reported that *HDG3* is a PEG in Cvi x Col crosses but is

134 biallelically expressed in Col x Cvi (20). To further explore the expression variation of

HDG3, we performed *in situ* hybridization on developing seeds (Fig 1B-C; S1 Fig). In Col

136 x Col seeds, *HDG3* is expressed specifically in the micropylar, peripheral, and chalazal

endosperm, with the highest expression at the heart stage of development (Fig 1C). The

138 same pattern was observed in Cvi x Col (Fig 1C). Whereas *HDG3* expression was

detected by *in situ* hybridization in F₁ endosperm when Col was the paternal parent, it

140 was not detected in endosperm when Cvi was the paternal parent (Fig 1C). Additionally,

we performed RT-qPCR on biological triplicates of Col, Cvi, and Col-Cvi F₁ endosperm.

142 Expression in Col x Col and Cvi x Col was approximately 10-fold higher than in Cvi x Cvi

or Col x Cvi, indicating that *HDG3* expression is higher when it is imprinted (Fig 1D),

144 consistent with the mRNA-seq (Fig 1A) and *in situ* data (Fig 1C). Thus, although

expression is from both maternally and paternally inherited alleles in Col x Cvi crosses

146 (and presumably Cvi x Cvi crosses) as detected by mRNA-seq (20), the total expression

in those crosses is lower than when *HDG3* is imprinted. As we previously showed that

148 the Cvi allele is naturally hypomethylated (20), together these results suggest that DNA

methylation of the *HDG3* 5' region promotes *HDG3* expression (Fig 1E).

150 There is also evidence for imprinting variation of *HDG3* in other species. In

Arabidopsis lyrata, expression of *HDG3* is also specific to the endosperm but levels

152 differ between two accessions, MN47 and Kar, and their reciprocal crosses (S2 Fig). In

endosperm with high *HDG3* expression (Kar x MN47), expression is strongly paternally

154 biased (76% paternal instead of the expected 33%), whereas in the reciprocal cross

expression of *HDG3* is much lower and more reflective of the 2:1 maternal:paternal ratio

156 in the endosperm (79% maternal) (S2 Fig) (8). The correlation between high expression
158 of *HDG3* and paternal allele bias in *A. lyrata* thus mirrors *A. thaliana*.

158

Reduced *HDG3* expression affects seed development

160 To examine if *HDG3* influenced endosperm development, we compared seeds
from *hdg3* mutant plants and segregating wild-type siblings in the Col background. We
162 confirmed predominantly paternal expression of *HDG3* (2,20) by reciprocal crosses
between wild type and *hdg3-1* mutants (Fig 2A). When *hdg3* was crossed as a female to
164 a wild-type sibling male, expression of *HDG3* was detected in endosperm in a similar
manner as in Col x Col (Fig 2A). In contrast, when wild-type females were crossed to
166 *hdg3-1* mutant males, the accumulation of *HDG3* transcript in endosperm was
dramatically affected, with no transcript detected in most cases, despite the presence of
168 a wild-type maternally inherited allele (Fig 2A). We assessed embryo stage and the
extent of endosperm cellularization for sectioned wild-type and *hdg3* seeds at 5 days
170 after pollination. Embryo development was more variable in *hdg3*, although this
difference was not statistically significant, but endosperm cellularization was significantly
172 delayed compared to wild-type seeds (Fig 2B, S2 and S3 Table). Reciprocal crosses
between wild-type and *hdg3* mutant plants indicated that the endosperm cellularization
174 phenotype was dependent on paternal genotype, consistent with *HDG3* function being
primarily supplied from the paternally-inherited allele (S2 and S3 Table). Additionally,
176 the weight and area of *hdg3* seeds was slightly reduced compared to Col, suggesting
that in the Col background *HDG3* promotes seed growth or filling (Fig 2C-D). Several
178 PEGs have been shown to influence seed abortion phenotypes in interploidy crosses
(30,31), but we found no effect of *hdg3* on this process (S3 Fig). To understand the
180 potential molecular consequences of the loss of *hdg3*, we profiled endosperm gene
expression in wild-type Col and *hdg3-1* by RNA-seq at 7 days after pollination (DAP)

182 (Fig 3). 150 genes had at least two-fold higher expression upon loss of *hdg3*, while 238
184 genes had at least two-fold lower expression in *hdg3* mutant endosperm (Fig 3, S4
Table). Differentially expressed genes included developmental regulators such as
186 *Homeobox 3 (WOX9)* and gibberellin oxidases, which effect the level of a key
phytohormone necessary for typical seed development (32) (Fig 3). The loss of *hdg3*
also impacted the expression of ten imprinted genes, including the MEG *HDG9* (Fig 3).
188 We hypothesized that the endosperm gene expression phenotypes associated with low
expression of *HDG3* from Cvi paternal alleles might in some respects mimic *hdg3*
190 mutants. Indeed, of the 238 genes that are down-regulated in *hdg3* mutants, 100 are
also down regulated in Col x Cvi crosses, where *HDG3* expression is also low (Fig 3).
192 This is a highly significant overlap (hypergeometric test in R, p = 6.079e-69) (Fig 3).
These data suggest that the Cvi *HDG3* allele, in its hypomethylated and relatively
194 transcriptionally repressed state, could be important for some of the accession-specific
developmental traits imparted by Cvi (20,22,33). Thus, to test both the imprinting
196 mechanism and function of *HDG3* further, we introduced methylation at the *HDG3* locus
in Cvi.

198

An inverted repeat induces methylation in the region 5' of *HDG3* in Cvi

200 To distinguish the importance of genetic variation from epigenetic variation for
202 *HDG3* expression and imprinting, we generated transgenic lines in which the
endogenous *HDG3* Cvi allele gained methylation in the same region that is methylated in
204 Col. Cvi was transformed with a transgene consisting of an inverted repeat (*HDG3* IR) of
the 450 bp *HDG3* 5' region from Cvi under the control of the constitutive 35S promoter.
Processing of the expressed hairpin RNA into small RNAs is expected to direct
206 methylation to the endogenous *HDG3* Cvi locus. We identified multiple independent
transgenic lines in which the *HDG3* 5' region gained methylation in leaves (S4 Fig). DNA

208 methylation was present in the same region as in Col, although non-CG methylation was
considerably higher (S4 Fig).

210 To determine whether the Cvi allele remained methylated when paternally
inherited in endosperm, Cvi *HDG3* IR plants from three independent transgenic lines
212 were crossed as males to wild type Col females and DNA methylation was evaluated in
F₁ endosperm by locus-specific bisulfite-PCR. Although the 35S promoter has been
214 reported to have no activity in syncytial endosperm (34), we detected transcripts from
the hairpin RNA in endosperm at 7 DAP (S5 Fig). Bisulfite sequencing showed that the
216 paternally inherited *HDG3* Cvi allele from the IR line was hypermethylated relative to the
paternally inherited *HDG3* Cvi allele in Col x Cvi endosperm (Fig 4; S6 Fig). The *HDG3*
218 Cvi allele from Col x Cvi *HDG3* IR endosperm was methylated in both CG and non-CG
contexts, indicative of RNA-directed DNA methylation, although at a lower level than in
220 leaves or in F₁ embryos (S6 Fig). Examination of the bisulfite clones indicated some
variation in paternal allele methylation, with clones with 0% methylation detected, unlike
222 naturally methylated paternal alleles from Cvi x Col crosses (S6 Fig). This could be due
to stochastic silencing of the IR transgene in individual siliques/seeds or ineffective RNA-
224 directed DNA methylation. The maternally inherited Col allele was unaffected in Col x
Cvi *HDG3* IR endosperm, remaining hypomethylated like in Col x Cvi endosperm. Thus,
226 we successfully established an alternate epigenetic state specifically for the Cvi *HDG3*
allele in endosperm.

228

**230 Methylation of the *HDG3* 5' region is sufficient to promote expression and
imprinting**

Having established a methylated Cvi *HDG3* allele, we tested whether paternal allele
232 methylation was sufficient to switch *HDG3* from a non-imprinted, repressed state to an

imprinted, more active state. In two independent lines, *in situ* hybridization of F₁ seeds

234 from Col x Cvi *HDG3* IR crosses indicated the presence of *HDG3* transcript in

endosperm, in contrast to Col x Cvi endosperm (Fig 5A). Hybridization signal was

236 primarily detected in uncellularized endosperm on the chalazal side of the peripheral

endosperm (Fig 5A). However, the penetrance of Cvi *HDG3* expression was variable,

238 with about half of the seeds exhibiting *HDG3* expression detectable by *in situ* (Fig 5A).

This might be related to the variation in methylation of the *HDG3* Cvi allele in Col x Cvi

240 *HDG3* IR seeds (S6 Fig). Analysis of total *HDG3* transcript abundance by RT-qPCR at

6-7 days after pollination showed that *HDG3* expression was 2-3-fold higher in Col x Cvi

242 *HDG3* IR endosperm compared to Col x Cvi endosperm (Fig 5B). Higher expression of

HDG3 in Col x Cvi *HDG3* IR endosperm is consistent with *HDG3* being more highly

244 expressed when imprinted (Fig 1). Thus, to measure allele-specific expression of *HDG3*,

Col and Cvi alleles were distinguished using TaqMan probes in an RT-qPCR assay. In

246 crosses between Col females and three independent Cvi *HDG3* IR lines, the fraction of

transcript derived from the Cvi allele increased compared to control crosses between Col

248 females and Cvi males. In Col x Cvi, the Cvi allele accounts for 23% of the transcripts by

this assay, in good agreement with prior allele-specific mRNA-seq results (20). In Col x

250 Cvi *HDG3* IR lines, the Cvi fraction was between 50-60%, indicating paternal allele bias

(the expectation for non-imprinted genes is 33% paternal) (Fig 5C). This is slightly less

252 than the fraction of paternal allele expression in Cvi x Col crosses by mRNA-seq (79%)

(20). Together, these data indicate that the naturally occurring methylation variation at

254 *HDG3* is sufficient to explain imprinting variation. We conclude that the methylated Cvi

HDG3 allele in Cvi *HDG3* IR plants is active and the gene is imprinted.

256

Expression of *HDG3* in Cvi promotes endosperm cellularization

258 Does the change of *HDG3* expression and imprinting in *Cvi* affect seed
development? To test the phenotypic consequences of expressing *HDG3* from
260 previously repressed *Cvi* alleles, we compared the phenotypes of seeds from *Col* x *Cvi*
(low *HDG3* expression) and *Col* x *Cvi* *HDG3* IR (2-4-fold increased *HDG3* expression)
262 seeds by sectioning and staining (Fig 6). In crosses with the *HDG3* IR lines, endosperm
cellularization occurred at a significantly earlier stage of embryo development, where it
264 was observed as early as the globular stage of embryogenesis (Fig 6A-B, S2 and S3
Table). Whereas endosperm development appeared accelerated, embryo development
266 was significantly delayed (Fig 6B, S2 and S3 Table). The effect on endosperm
cellularization was also observed in *Cvi* x *Cvi* *HDG3* IR F_1 seeds, although to a lesser
268 extent (S2, S3 Table). Mature selfed seeds from *Cvi* *HDG3* IR plants weighed
significantly less than selfed seeds from *Cvi* and had reduced area (Fig 6C-D). This is
270 consistent with known correlations between early endosperm cellularization and the
production of smaller seeds (35-37). These observations support the hypothesis that
272 hypomethylation and repression of the *Cvi* *HDG3* allele is important for *Cvi*-directed
developmental programs and that epiallelic variation contributes to the natural variation
274 in seed development in *Arabidopsis*.

276 **Discussion**

The establishment, maintenance, and inheritance of DNA methylation are fairly
278 well understood processes. Disruption of methylation patterns by mutations in DNA
methyltransferase enzymes have clear gene expression consequences. However,
280 whether or not methylation is regulatory during development – meaning that dynamic
loss or gain of methylation is a normal aspect of gene regulation – is less well
282 understood. An exception to this is in the endosperm, where active DNA demethylation

in the female gamete before fertilization establishes differential DNA methylation after
284 fertilization, a step that is essential for normal seed development (38). We thus
hypothesized that the phenotypic impact of naturally occurring epialleles might be
286 particularly evident in the endosperm, because the differential methylation between
maternal and paternal alleles that is required for gene imprinting could be variable
288 across accessions (20). We have shown that *HDG3* represents a case study of this
proposed phenomenon. By placing a methylation trigger in Cvi (the *HDG3* IR transgene),
290 we were able to convert the Cvi *HDG3* allele from a hypomethylated to a methylated
state. This switch in methylation was sufficient to promote expression of the paternally
292 inherited Cvi *HDG3* allele in endosperm to 3-fold higher levels. Because we altered
methylation at the endogenous *HDG3* Cvi locus, which retains all DNA sequence
294 polymorphisms, we have shown that methylation variation alone is sufficient to cause
expression, and thus imprinting, variation. However, our results also show that it is
296 unlikely that methylation of the proximal TE accounts for all of the expression differences
between paternal Col and Cvi *HDG3* alleles in endosperm. The paternally inherited
298 methylated Cvi allele, while more highly expressed than paternally inherited naturally
hypomethylated Cvi allele, was not as highly expressed as paternally inherited
300 methylated Col alleles in endosperm (Figs 1 and 5). Additional *cis* genetic or *trans*
genetic or epigenetic variation likely also affects *HDG3* expression levels. Finally, it is
302 not possible to determine from the experiments presented here whether the original
difference in methylation between naturally methylated and non-methylated alleles lacks
304 any genetic basis. Cvi lacks the small RNAs associated with the 5' TE that are found in
many other accessions, but the ultimate cause of this difference remains unknown (S4
306 Fig).

Our experiments also shed light on the relative receptiveness of maternal and
308 paternal endosperm genomes to *de novo* methylation. The *HDG3* inverted repeat

transgene should create endosperm small RNAs that are homologous to both Col and
310 Cvi alleles (there are only 4 SNPs and a 3 bp indel between Col and Cvi in the IR target
region). Yet, in endosperm from Col x Cvi *HDG3* IR crosses, the paternally inherited Cvi
312 allele had high levels of non-CG methylation, whereas the maternally inherited Col
alleles remained hypomethylated despite the presence of the IR transcript (Fig 4, S5 Fig,
314 S6 Fig). In contrast, F₁ embryos from the same crosses were indeed more highly
methylated in the non-CG context on maternal Col alleles compared to maternal Col
316 alleles from Col x Cvi crosses (S6 Fig). Thus, maternally inherited *HDG3* alleles in
endosperm are refractory to *de novo* methylation even when a methylation trigger is
318 present, in contrast to maternally inherited *HDG3* alleles in embryos. These results
further support findings that once a region is actively demethylated on the maternally
320 inherited endosperm genome, it is “protected” from *de novo* methylation even when
triggering small RNAs are present (31).

322 Finally, although the direct targets of the *HDG3* transcription factor are still
unknown, we have shown that natural variation in *HDG3* expression (expressed in Col,
324 low expression in Cvi) has consequences for seed gene expression programs and
development (Figs 2, 3, 6 and 7). Expression of *HDG3* in seeds fathered by Cvi caused
326 dramatically early endosperm cellularization and the seeds were smaller and lighter at
maturity (Fig 6). These findings are consistent with class IV HD-ZIP genes inhibiting the
328 cell cycle and promoting cellular differentiation (24,27). However, mutation of *hdg3* in
Col, while displaying the predicted opposite effect on endosperm cellularization timing,
330 also resulted in smaller seeds weighing slightly less than wild-type (Figs 2, 6 and 7).
Although the effects on final seed size are seemingly contradictory and the physiological
332 basis remains incompletely understood, these results are predicted under the aegis of
the kinship theory (7). The theory predicts that PEGs promote maternal investment in
334 offspring, which is consistent with the effects of the *hdg3* mutation in Col (i.e. less

maternal investment results in smaller seeds). Our results suggest that this effect is
336 specific to a Col seed developmental program. In Cvi endosperm, expression of *HDG3* is
seemingly maladaptive, leading to the production of smaller seeds. Cvi naturally
338 produces much larger seeds than Col or Ler, although fewer in number (20,22,33) (Figs
2 and 6). Our results suggest that the loss of *HDG3* expression in Cvi was an important
340 part of the process that resulted in these phenotypic differences.

In summary, we have demonstrated that seed phenotypic differences can be
342 caused by methylation differences at single genes. This study provides further evidence
that epigenetic differences underlie developmental adaptations in plants. We have
344 previously shown that the imprinting status of many genes varies between accessions;
our current study argues that intraspecific variation in imprinting is an important
346 determinant of seed developmental variation.

348 **Materials and Methods**

Plant material

350 The SALK insertion mutant was obtained from the Arabidopsis Biological Resource
Center (39). *hdg3-1* (SALK_033462) was backcrossed to Col-0 three times before
352 experimentation. For experiments comparing or crossing wild-type and *hdg3* mutant
plants, plants were F₃ segregants from selfed progeny of *HDG3*/*hdg3-1*. Plants were
354 grown in a growth chamber or greenhouse with 16-hour days at 22° C. For crosses,
flowers were emasculated and then pollinated after 2 days.

356

***In situ* hybridization**

358 Controlled floral pollinations were performed for each specified cross. At least two
independent *in situ* experiments were performed for each genotype. Siliques were

360 harvested 5 or 6 days after pollination (DAP) and fixed in FAA overnight at 4°C.
Following dehydration and clearing (HistoClear, National Diagnostics), samples were
362 embedded in Paraplast Plus (McCormick Scientific), and sectioned at 9 µM (Leica RM
2065 rotary microtome). Ribbons were mounted with DEPC water on ProbeOn Plus
364 slides (Fisher) at 42°C and dried overnight at 37°C. For probes, a 278 bp region of
HDG3 (S5 Table) and previously published 602 bp probe for *PDF1* (40) were amplified
366 from endosperm cDNA and cloned into P-GEM T vectors (Promega). Plasmids
containing sense and antisense oriented fragments were identified and linear templates
368 were amplified using M13 forward and reverse primers for probe synthesis. Antisense
and sense RNA probes were synthesized in vitro with digoxigenin-UTPs using T7 or SP6
370 polymerase (DIG RNA labeling kit, Roche/Sigma Aldrich). Probes were subsequently
hydrolyzed and dot blots were performed to estimate probe concentration. Pre-
372 hybridization steps were preformed according to (41) except Pronase digestion occurred
for 15 minutes at 37°C. Hybridization and post-hybridizations were performed according
374 to (42), with minor modifications. For higher confidence in directly comparing expression
patterns, slides corresponding to the cross and its reciprocal were processed face to
376 face in the same pairs for hybridization, antibody, and detection steps. Negative controls
consisted of hybridizing sense probes to wild-type tissue and antisense probes to *hdg3*
378 tissue. The sense probe lacked signal (S1 Fig). A probe to *PDF1*, which is expressed in
the L1 embryo layer (43), served as a positive control for successful *in situ* hybridization
380 (S1 Fig). Hybridization was performed overnight at 55°C, slides were then washed twice
in 0.2X SSC for 60 mins each at 55°C, then twice in NTE for 5 min at 37°C and RNaseA
382 treated for 20 min at 37°C, followed by two more 5 min NTE washes. Slides were
incubated at room temperature for 1 hour with Anti-DIG antibody (Roche/Sigma Aldrich)
384 diluted 1:1250 in buffer A (42). Slides were then washed four times for 20 min each at
room temperature with buffer A and once for 5 min with detection buffer (42).

386 Colorimetric detections were performed using NBT/BCIP Ready-To-Use Tablets
(Roche/Sigma Aldrich) dissolved in water. Slides were allowed to develop 16-24 hours
388 before stopping. Slides were dehydrated, mounted in Permount (Electron Microscopy
Sciences) and imaged using a Zeiss Axio Imager M2. Minor level adjustments and smart
390 sharpen were applied to images to compensate for image transfer from live to digital
(Adobe Photoshop).

392

Seed staining

394 Plant material was fixed and embedded as previously described and sectioned at 9 μ m.
Slides were dewaxed twice in xylenes for 5 minutes, rehydrated through a graded
396 ethanol/0.85% salt series from 100%-30%, 1 minute each, stained in 0.6% Safranin O
Solution (Cat# 2016-03, Sigma Aldrich) for 5 minutes, washed with water, stained with a
398 saturated 2.5% Aniline blue (Harleco-EMD Millipore, #128-12) in 2% glacial acetic acid
aqueous solution for 3 minutes, washed with water, rapidly dehydrated through graded
400 ethanol/salt series to 100%, 5 seconds for each step, and then twice in xylenes for 5
minutes each. Slides were briefly drained, cover slipped and mounted with CytosealTM
402 60 (Thermo Scientific) and imaged using a Zeiss Axio Imager M2.

404 **Seed phenotypic analysis**

Previously processed slides from double staining and *in situ* hybridization experiments
406 were re-examined and used for embryo and endosperm developmental analyses. Using
previously published endosperm cellularization and embryogenesis stages (34,44),
408 individual seeds at 5 DAP were scored first for embryo stage and then for respective
endosperm stage. Endosperm stage was given a numerical score (-3 to +5) depending
410 on the relative stage of endosperm cellularization compared to the expected endosperm
cellularization stage given the embryo stage. Individual seeds with matching

412 embryogenesis and endosperm cellularization stages were scored “normal” and ranged
413 from 0-1; seeds that were scored “early” were defined as being +1.5 to +5 stages further
414 along in the cellularization process compared to normal. Seeds that were scored
415 “delayed” were defined as being -1 to -3 stages behind in the cellularization process
416 compared to normal. To determine whether any developmental differences in
417 endosperm cellularization or embryogenesis were statistically significant, we
418 implemented the asymptotic generalized Pearson chi-squared test from the coin
419 package (45) in R with default scoring weights. Developmental stage was treated as an
420 ordinal variable, while cross genotype was treated as a non-ordinal, nominal variable.
421 Pairwise comparisons were carried out with the R function pairwiseOrdinalIndependence
422 from the rcompanion package. For all tests, embryo development data was collapsed
423 into three categories young (pre-globular to globular), middle (late globular to early
424 heart), and older (heart to torpedo) and detailed endosperm cellularization data was
425 collapsed into the categories delayed, normal, and early.

426

Inverted repeat transgene

427 The 450 bp sequence 5' of *HDG3* corresponding to a fragment of AT2TE60490 from
428 Chr2: 13740010-13740460 was amplified from Cvi (S5 Table) and cloned into the
429 directional entry vector pENTR-TOPO-D (Invitrogen). The sequence was then inserted
430 twice in an inverted repeat conformation into the vector pFGCGW (46) with a LR clonase
431 reaction (Invitrogen). Cvi plants were transformed with the inverted repeat transgene by
432 floral dipping and T₁ lines were screened for DNA methylation using bisulfite sequencing.
433 T₃ plants homozygous for the IR transgene and with a methylated *HDG3* 5' region in
434 leaves, or their T₄ progeny, were identified and used for subsequent experiments.

435

Quantitative RT-PCR

438 RNA was isolated from endosperm dissected from seeds at 6 or 7 DAP as described
(47) using RNAqueous Micro Kit (Ambion, Life Technologies Corporation). DNase I-
440 treated RNA (Invitrogen, Life Technologies Corporation) was used for cDNA synthesis
with oligo-dT primer using Superscript II reverse transcriptase (Invitrogen) according to
442 manufacturers' instructions. Quantitative RT-PCR (RT-qPCR) was performed using Fast
Sybr-Green mix or TaqMan Mastermix (Applied Biosystems). All reactions were
444 performed in three or four technical replicates using a StepOne Plus Real-Time PCR
system (Applied Biosystems). For Sybr-Green based assays, relative expression was
446 calculated using the ddCt method as described (48). The reference gene was
AT1G58050 (49). For allele-specific expression in Col-Cvi crosses, a multiplex TaqMan
448 assay was developed by designing primers and PrimeTime® Double-quenched Custom
Probes with online tool <http://www.idtdna.com/pages/products/gene-expression/custom-qpcr-probes>. Cycling conditions were 15 cycles: 95 °C for 15 seconds, 63 °C for 30
450 seconds, 72 °C for 30 seconds followed by 25 cycles: 95 °C for 15 seconds, 63 °C for 30
seconds, 72 °C for 30 seconds with touchdown 0.05°C/cycle, and 72 °C for 30 seconds. The relative
452 expression of each allele within each genotype was calculated using a standard curve
454 (R^2 value >0.99) as reference. Primer and probe sequences are available in S5Table.

456 **Bisulfite sequencing**

Genomic DNA was isolated from leaves, endosperm, and embryo at 6 or 7 days after
458 pollination using a CTAB procedure. Bisulfite treatment was performed using the
MethylCode Bisulfite Conversion Kit (Invitrogen, Life Technologies Corporation) or
460 BisulFlash DNA Bisulfite Conversion Easy Kit (Epigentek Group Inc.) following the
manufacturer's protocols. 2 μ l bisulfite treated DNA was used in PCR reactions with 2.5
462 U ExTaq DNA polymerase (Takara) and 0.4 μ M primers using the following cycling
conditions (95 °C 3 minutes, 40 cycles of [95 °C for 15 seconds, 50 °C for 30 seconds,

464 72 °C for 45 seconds], 72 °C for 5 minutes). PCR products were gel purified, cloned
465 using a TOPO-TA (Invitrogen) or CloneJet (Life Technologies) PCR cloning kit and
466 individual colonies were sequenced. Sequences were aligned using SeqMan and
467 methylation was quantified using CyMate (50).

468

mRNA-seq

470 RNA was isolated from endosperm of Col-0, *hdg3-1* and Col-0 x Cvi seeds at 7 DAP as
471 described above. Three replicates for each cross were obtained. DNase treated RNA
472 was used as input for the SmartSeq Clontech Ultralow RNA-Seq kit. Libraries were
473 constructed by the Genome Technology Core at Whitehead Institute. Six libraries were
474 multiplexed per lane in a Hi-Seq 2500 Standard mode, 40 base, single read run. Each
475 replicate was sequenced to a depth of between 33 and 41 million reads. Reads were
476 processed with Trim_galore using the command “*trim_galore -q 25 --phred64 --fastqc*
477 *--stringency 5 --length 18*”. Processed reads were aligned to the TAIR10 genome with
478 Tophat2 (51) using the command “*tophat -i 30 -I 3000 --b2-very-sensitive --solexa1.3-*
479 *quals -p 5 --segment-mismatches 1 --segment-length 18*”. Differential gene expression
480 was detected with Cuffdiff2 (52) and the ARAPORT11 annotation (S1 and S2 Tables).
481 Reads are deposited in GEO GSE118371.

482

Acknowledgements

484 We thank R. Jaenisch and P. Reddien for sharing equipment for *in situ* hybridization, B.
485 Williams for comments on the manuscript, and R. Povilus for assistance with statistical
486 analysis.

488 **Author Contributions**

Conceptualization: MG and DP. Investigation: KN, DP, PRVS, and MG. Writing –

490 Original Draft and Preparation: MG and PRVS. Writing – Reviewing and Editing: KN, DP,
PRVS, MG. Funding Acquisition: MG.

492 **References**

- 494 1. Gehring M, Huh JH, Hsieh T-F, Penterman J, Choi Y, Harada JJ, et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. *Cell*. 2006; 124(3):495–506.
- 496 2. Gehring M, Bubb KL, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. *Science*. 2009; 498 324(5933):1447–51.
- 500 3. Hsieh T-F, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, et al. 502 Genome-wide demethylation of *Arabidopsis* endosperm. *Science*. 2009; 324(5933):1451–4.
- 504 4. Satyaki PRV, Gehring M. DNA methylation and imprinting in plants: machinery 506 and mechanisms. *Crit Rev Biochem Mol Biol*. 2017; 52(2):163–75.
- 508 5. Haig D. The kinship theory of genomic imprinting. *Annu Rev Ecol Syst*. 2000; 31: 510 9–32.
- 512 6. Haig D. Kin conflict in seed development: an interdependent but fractious 514 collective. *Annu Rev Cell Dev Biol*. 2013; 29:189–211.
- 516 7. Patten MM, Ross L, Curley JP, Queller DC, Bonduriansky R, Wolf JB. The 518 evolution of genomic imprinting: theories, predictions and empirical tests. *Heredity*. 2014; 113(2):119–28.
- 520 8. Klosinska M, Picard CL, Gehring M. Conserved imprinting associated with unique 522 epigenetic signatures in the *Arabidopsis* genus. *Nat Plants*. 2016; 2(10):16145.
- 524 9. Patten MM. Epigenetics: Imprinting evolution in *Arabidopsis*. *Nat Plants*. 2016; 526 2(10):16152.
- 528 10. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, et al. 530 Patterns of population epigenomic diversity. *Nature*. 2013; 495(7440):193–8.
- 532 11. Kawakatsu T, Huang S-SC, Jupe F, Sasaki E, Schmitz RJ, Urich MA, et al. 534 Epigenomic Diversity in a Global Collection of *Arabidopsis thaliana* Accessions. *Cell*. 2016; 166(2):492–505.
- 536 12. Weigel D, Colot V. Epialleles in plant evolution. *Genome Biol*. 2012; 13(10):249.
- 538 13. Aller EST, Jagd LM, Kliebenstein DJ, Burow M. Comparison of the Relative 540 Potential for Epigenetic and Genetic Variation To Contribute to Trait Stability. *G3 (Bethesda)*. 2018; 8(5):1733–46.

524 14. Durand S, Bouché N, Perez Strand E, Loudet O, Camilleri C. Rapid Establishment
526 of Genetic Incompatibility through Natural Epigenetic Variation. *Current Biology*.
2012; 22(4):326–31.

528 15. Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural
variation in floral symmetry. *Nature*. 1999; 401(6749):157–61.

530 16. He L, Wu W, Zinta G, Yang L, Wang D, Liu R, et al. A naturally occurring epiallele
associates with leaf senescence and local climate adaptation in *Arabidopsis*
accessions. *Nat Comms*. 2018; 9(1):460.

532 17. Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, et al. A
534 transposon-induced epigenetic change leads to sex determination in melon.
Nature. 2009; 461(7267):1135–8.

536 18. Quadrana L, Almeida J, Asís R, Duffy T, Dominguez PG, Bermúdez L, et al.
Natural occurring epialleles determine vitamin E accumulation in tomato fruits. *Nat
Comms*. 2014; 5:3027–7.

538 19. Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, et al. A naturally
540 occurring epigenetic mutation in a gene encoding an SBP-box transcription factor
inhibits tomato fruit ripening. *Nat Genet*. 2006; 38(8):948–52.

542 20. Pignatta D, Erdmann RM, Scheer E, Picard CL, Bell GW, Gehring M. Natural
epigenetic polymorphisms lead to intraspecific variation in *Arabidopsis* gene
imprinting. *Elife*. 2014; 3:e03198.

544 21. Waters AJ, Bilinski P, Eichten SR, Vaughn MW, Ross-Ibarra J, Gehring M, et al.
546 Comprehensive analysis of imprinted genes in maize reveals allelic variation for
imprinting and limited conservation with other species. *Proc Natl Acad Sci USA*.
2013; 110(48):19639–44.

548 22. Alonso-Blanco C, Blankestijn-De Vries H, Hanhart CJ, Koornneef M. Natural
550 allelic variation at seed size loci in relation to other life history traits of *Arabidopsis*
thaliana. *Proc Natl Acad Sci USA*. 1999; 96(8):4710–7.

552 23. Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto KT, et al.
Characterization of the class IV homeodomain-Leucine Zipper gene family in
Arabidopsis. *Plant Physiol*. 2006; 141(4):1363–75.

554 24. Robinson DO, Roeder AHK. Themes and variations in cell type patterning in the
plant epidermis. *Current Opinion in Genetics & Development*. 2015; 32:55–65.

556 25. Abe M, Katsumata H, Komeda Y, Takahashi T. Regulation of shoot epidermal cell
558 differentiation by a pair of homeodomain proteins in *Arabidopsis*. *Development*.
2003; 130(4):635–43.

560 26. Roeder AHK, Cunha A, Ohno CK, Meyerowitz EM. Cell cycle regulates cell type in
the *Arabidopsis* sepal. *Development*. 2012; 139(23):4416–27.

562 27. Horstman A, Fukuoka H, Muino JM, Nitsch L, Guo C, Passarinho P, et al. AIL and
562 HDG proteins act antagonistically to control cell proliferation. *Development*. 2015;
142(3):454–64.

564 28. Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, et al. One-Way
566 Control of FWA Imprinting in *Arabidopsis* Endosperm by DNA Methylation.
Science. 2004; 303(5657):521–3.

568 29. Hsieh T-F, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, et al. Regulation of
568 imprinted gene expression in *Arabidopsis* endosperm. *Proc Natl Acad Sci USA*.
2011; 108(5):1755–62.

570 30. Wolff P, Jiang H, Wang G, Santos-González J, Köhler C. Paternally expressed
572 imprinted genes establish postzygotic hybridization barriers in *Arabidopsis*
thaliana. *Elife*. 2015; 4:e10074.

574 31. Erdmann RM, Satyaki PRV, Kłosinska M, Gehring M. A Small RNA Pathway
574 Mediates Allelic Dosage in Endosperm. *Cell Rep*. 2017; 21(12):3364–72.

576 32. Singh DP, Jermakow AM, Swain SM. Gibberellins are required for seed
576 development and pollen tube growth in *Arabidopsis*. *Plant Cell*. 2002;
14(12):3133–47.

578 33. Herridge RP, Day RC, Baldwin S, Macknight RC. Rapid analysis of seed size in
578 *Arabidopsis* for mutant and QTL discovery. *Plant Methods*. 2011; 7(1):3.

580 34. Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel
582 E, et al. Dynamic analyses of the expression of the HISTONE::YFP fusion protein
in *arabidopsis* show that syncytial endosperm is divided in mitotic domains. *Plant
Cell*. 2001; 13(3):495–509.

584 35. Scott RJ, Spielman M, Bailey J, Dickinson HG. Parent-of-origin effects on seed
584 development in *Arabidopsis thaliana*. *Development*. 1998; 125(17):3329–41.

586 36. Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F. *Arabidopsis*
588 *haiku* mutants reveal new controls of seed size by endosperm. *Plant Physiol*.
2003; 131(4):1661–70.

590 37. Hehenberger E, Kradolfer D, Kohler C. Endosperm cellularization defines an
590 important developmental transition for embryo development. *Development*. 2012;
139(11):2031–9.

592 38. Gehring M, Satyaki PR. Endosperm and Imprinting, Inextricably Linked. *Plant
Physiol*. 2017; 173(1):143–54.

594 39. Alonso JM, Steanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. Genome-
596 wide insertional mutagenesis of *Arabidopsis thaliana*. *Science*. 2003;
301(5633):653–7.

598 40. Kunieda T, Mitsuda N, Ohme-Takagi M, Takeda S, Aida M, Tasaka M, et al. NAC
family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate
embryogenesis in *Arabidopsis*. *Plant Cell*. 2008; 20(10):2631–42.

600 41. JACKSON D. *In situ hybridization in plants. Molecular plant pathology: a practical approach*. Oxford University Press; 1991.

602 42. Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S. *ramosa2*
604 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. *Plant Cell*. 2006; 18(3):574–85.

606 43. Tanaka H, Watanabe M, Sasabe M, Hiroe T, Tanaka T, Tsukaya H, et al. Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in *Arabidopsis*. *Development*. 2007; 134(9):1643–52.

608 44. Berger F. Endosperm: the crossroad of seed development. *Current Opinion in Plant Biology*. 2003; 6(1):42–50.

610 45. Hothorn T, Hornik K, van de Wiel MA, Zeileis A. A Lego System for Conditional Inference. *The American Statistician*. 2012; 60(3):257–63.

612 46. Zhang C, Galbraith DW. RNA interference-mediated gene knockdown within specific cell types. *Plant Molecular Biology*. 2012; 80(2):169–76.

614 47. Gehring M, Missirian V, Henikoff S. Genomic Analysis of Parent-of-Origin Allelic Expression in *Arabidopsis thaliana* Seeds. *PLoS ONE*. 2011; 6(8):e23687.

616 48. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*. 2001; 618 25(4):402–8.

620 49. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R. Genome-wide identification and testing of superior reference genes for transcript normalization in *Arabidopsis*. *Plant Physiol*. 2005; 139(1):5–17.

622 50. Hetzl J, Foerster AM, Raidl G, Mittelsten Scheid O. CyMATE: a new tool for 624 methylation analysis of plant genomic DNA after bisulphite sequencing. *Plant J*. 2007; 51(3):526–36.

626 51. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biol*. 2013; 14(4):R36.

628 52. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. 630 Differential analysis of gene regulation at transcript resolution with RNA-seq. *Nat Biotechnol*. 2013; 31(1):46–53.

Supporting Information

634 **S1 Fig. Negative and positive controls for *in situ* hybridization.**

636 **S2 Fig. *HDG3* expression in *A. lyrata*.**

638 **S3 Fig. Tetraploid *hdg3-1* does not rescue interploidy seed lethality caused by paternal genomic excess.**

640 **S4 Fig. Gain of *HDG3* methylation in Cvi *HDG3* IR lines.**

642 **S5 Fig. Accumulation of inverted repeat RNA in Col x Cvi *HDG3* IR endosperm.**

644 **S6 Fig. Bisulfite-PCR analysis of *HDG3* methylation in seeds.**

646 **S1 Table. Gene expression difference in Col x Cvi endosperm vs. Col endosperm at 7 DAP determined using CuffDiff.**

648 **S2 Table. Endosperm cellularization timing and embryogenesis stages at 5 DAP.**

650 **S3 Table. Tests for statistical significance for pairwise comparisons of differences in endosperm or embryo development.**

652 **S4 Table. Gene expression differences in *hdg3-1* endosperm vs. Col endosperm at 7 DAP determined using CuffDiff.**

654 **S5 Table. Oligos used in this study.**

650 Figure Legends

652 **Fig 1. Natural variation in imprinting is associated with differences in *HDG3* expression levels.**

654 (A) *HDG3* expression is decreased in Col x Cvi endosperm compared to Col, as determined by mRNA-seq. (B) Schematic of the *HDG3* locus. DMR, differentially methylated region. (C) *In situ* hybridization of *HDG3* (purple) in F₁ seeds from the indicated crosses. Female parent written first. In crosses where Col is the male parent, *HDG3* is detected in the micropylar (MCE), peripheral (PEN), and chalazal (CZE)

658 endosperm. Arrowheads indicate nuclear-cytoplasmic domains. Number of seeds with
shown pattern out of total seeds assayed is in corner of each image. Scale bars, 50 μ m.
660 (D) RT-qPCR analysis of relative *HDG3* transcript abundance in F_1 endosperm. Values
are the average of 3 biological replicates, bars represent upper and lower range. (E)
662 Schematic representation of relationship between *HDG3* methylation, expression, and
imprinting in endosperm. Thickness of arrows denotes relative expression level.
664 Lollipops represent methylated (filled) and unmethylated (open) cytosines.

666 **Fig 2. Phenotypic effects of mutation of *HDG3* in Col.**
668 (A) *In situ* hybridization of *HDG3* (purple) in seeds from the indicated crosses. Scale
bars, 50 μ m. (B) Endosperm cellularization is slightly delayed in *hdg3* compared to wild-
type at 5 DAP. For each seed the embryo stage was determined and then the stage of
670 endosperm cellularization was defined as normal, early, or delayed given that embryo
stage. (C) Seed weight of wild-type and *hdg3* seeds. Individual data points and mean +/-
672 SD shown. P-value from unpaired two-tailed t-test. (D) Seed area is significantly reduced
in *hdg3* seed (n=275) compared to wild-type siblings (n=376) (p=8.51e-11 by Welch's
674 two tailed t-test). Seeds were quantified with ImageJ.

676 **Fig 3. Transcriptional effects associated with low *HDG3* expression.**
678 (left panel) Genes downregulated in *hdg3* mutant endosperm also have reduced
expression in Col x Cvi endosperm compared to Col. The plot shows the expression
profile of genes with significantly altered expression in *hdg3-1* endosperm ($p < 0.05$).
680 Genes were hierarchically clustered by Euclidean distance and complete linkage using
Gene-E. (right panel) A subset of putative developmental regulators with reduced
682 expression in *hdg3* and Col x Cvi endosperm.

684 **Fig 4. Gain of Cvi *HDG3* paternal allele methylation in endosperm.**

Total methylcytosine 5' of *HDG3* in F₁ endosperm, determined by bisulfite-PCR.

686 Maternally inherited Col allele in orange, paternally inherited Cvi allele in blue. Scale to
100%, tick marks below line indicate unmethylated cytosines. Col x Cvi data published in
688 Pignatta et al., *eLife* 2014.

690 **Fig 5. *HDG3* is imprinted in Cvi *HDG3* IR lines.**

692 *HDG3* *in situ* for indicated genotypes. Arrowheads indicate regions of *in situ* signal. Right
panels shows magnification of chalazal region. Scale bars, 50 μ m. (B) RT-qPCR of
relative *HDG3* transcript abundance in F₁ endosperm at 6-7 DAP. Dashed line separates
694 experiments done at different times. Left, avg of 3 technical replicates. Right, avg of
biological duplicates. Bars show upper and lower range. (C) % of *HDG3* from Cvi allele
696 in endosperm by TaqMan RT-qPCR assay.

698 **Fig 6. Effects of *HDG3* imprinting on Cvi seed development.**

700 (A) Aniline blue and safranin O staining of seed sections at 5 DAP from the indicated F₁
seeds. Scale bars, 50 μ m. (B) Phenotypic characterization of sectioned seeds, assaying
degree of endosperm cellularization relative to embryo stage. (C) Seed weight in selfed
702 Cvi and Cvi *HDG3* IR plants. Individual data points and mean +/- SD shown. P-value
from unpaired two tailed t-test. (D) Seed area for self-fertilized Cvi (n=287 seeds), Cvi
704 *HDG3* IR 2-5 (n=496) and Cvi *HDG3* IR 3-4 (n=386). Differences between IR seeds and
Cvi are significant at p < 2.2e-16 as determined by Welch's two-tailed t-test.

706

Fig 7. Schematic summary of relative seed development at 5 DAP. Shapes

708 represent phenotypic space occupied by the indicated genotypes.

710

712

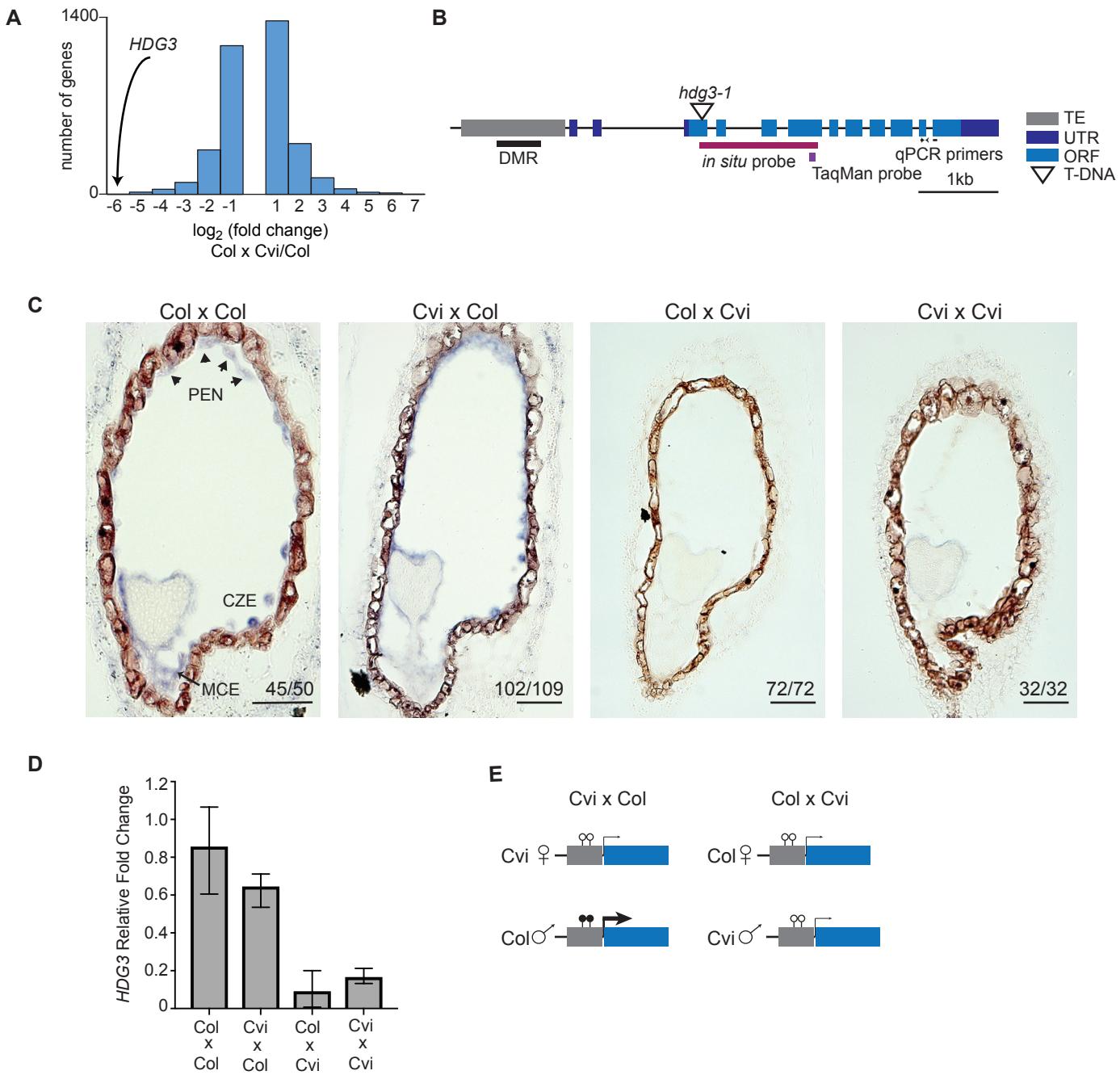


Fig 1.

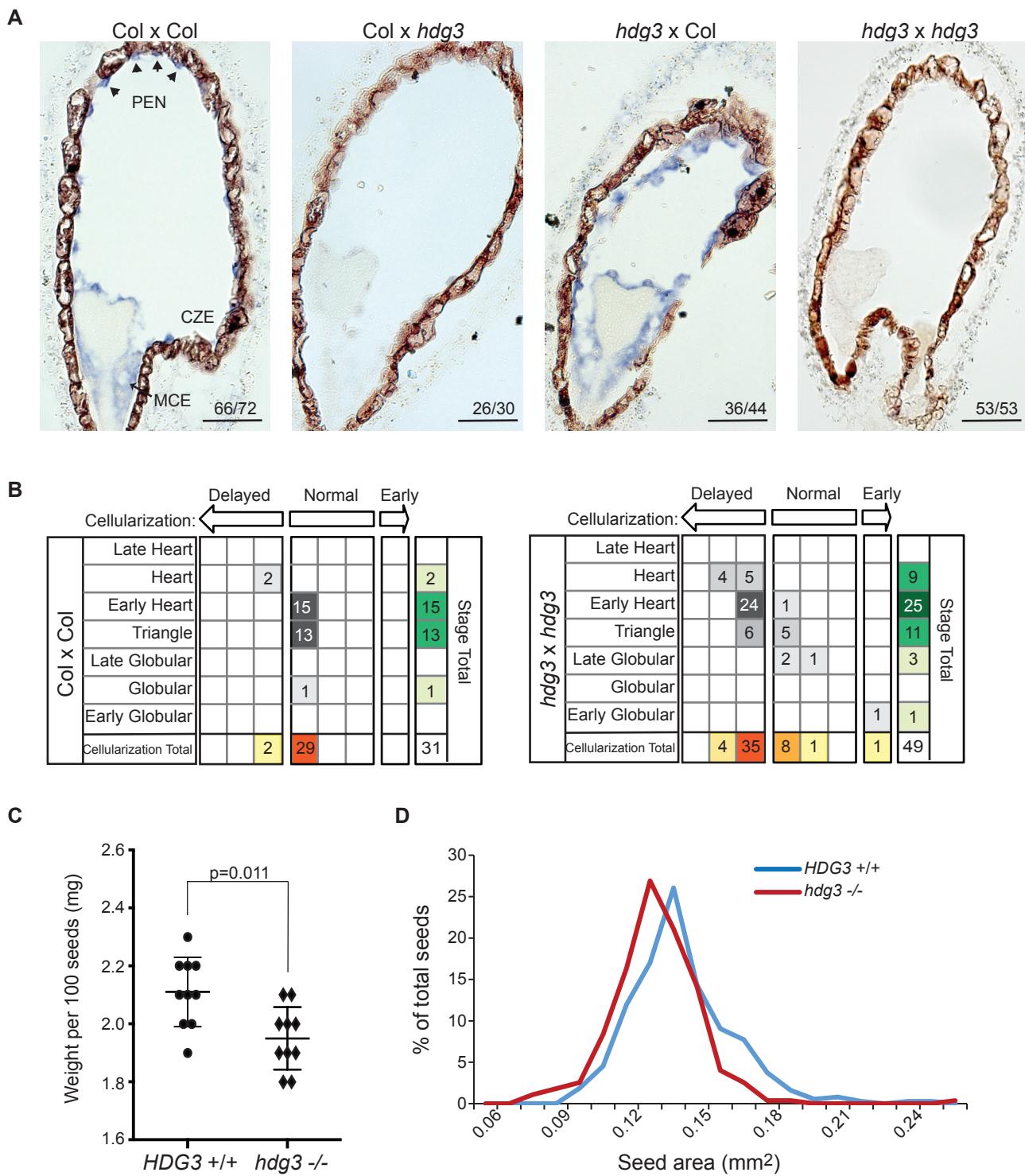


Fig 2.

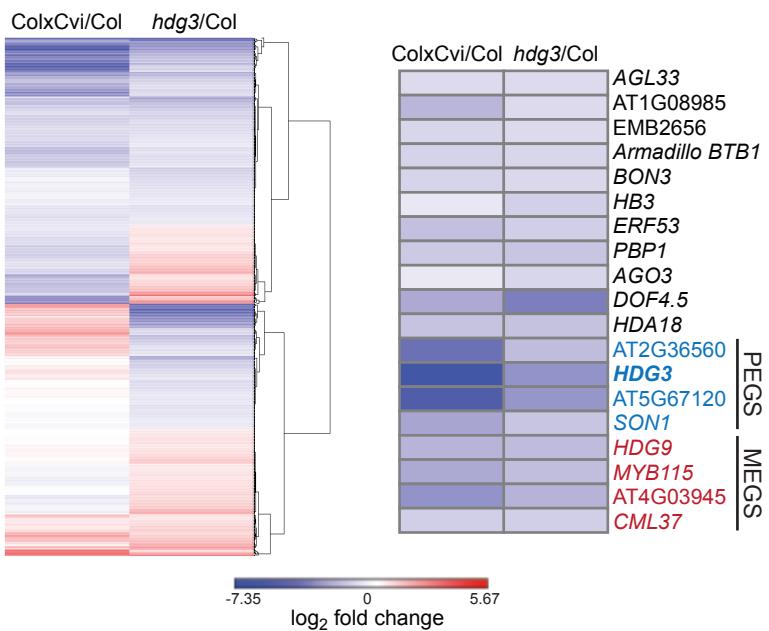


Fig 3.

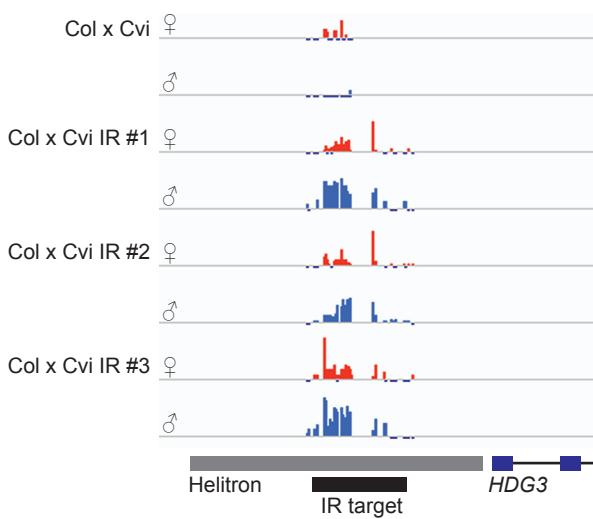


Fig 4.

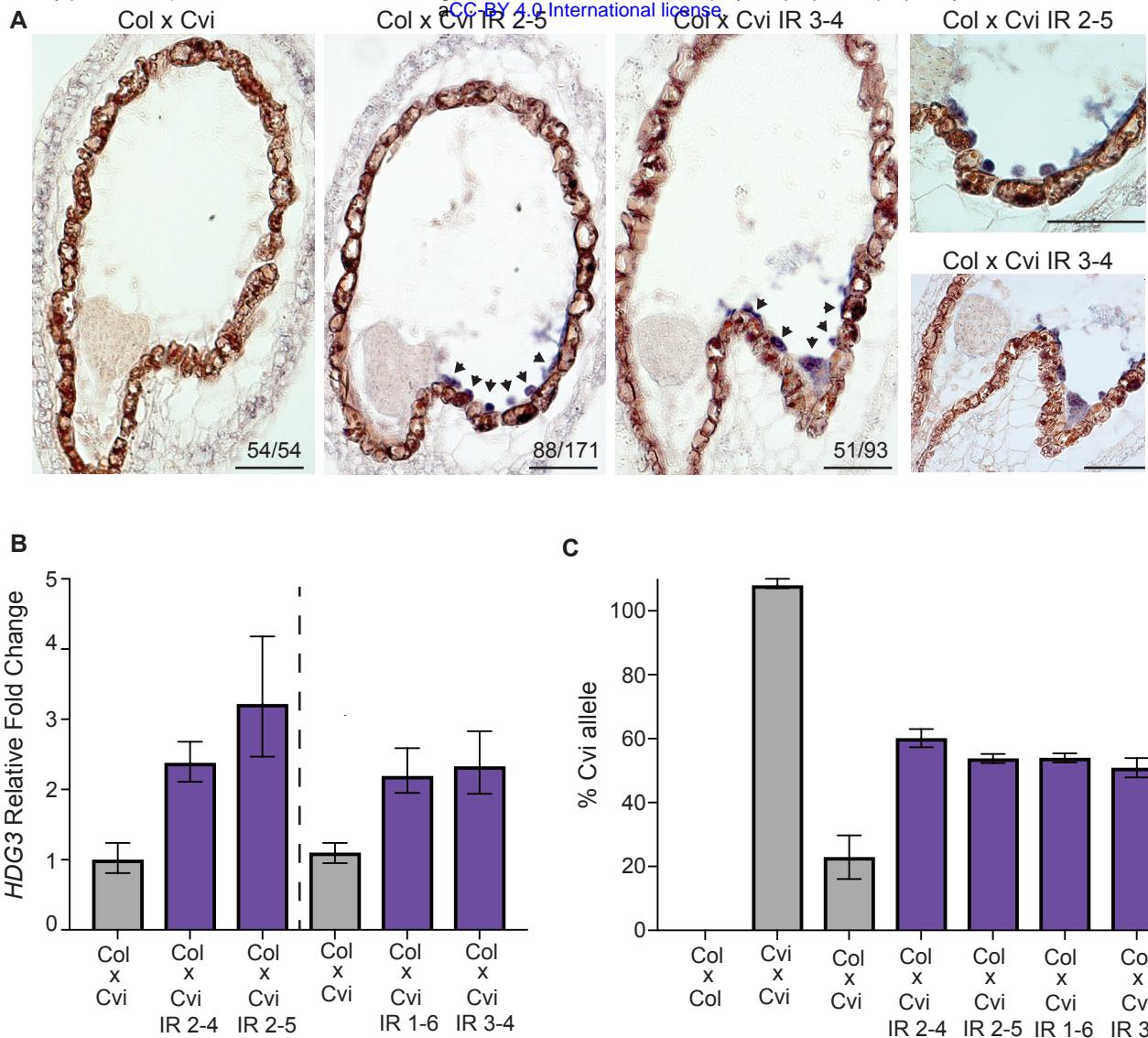
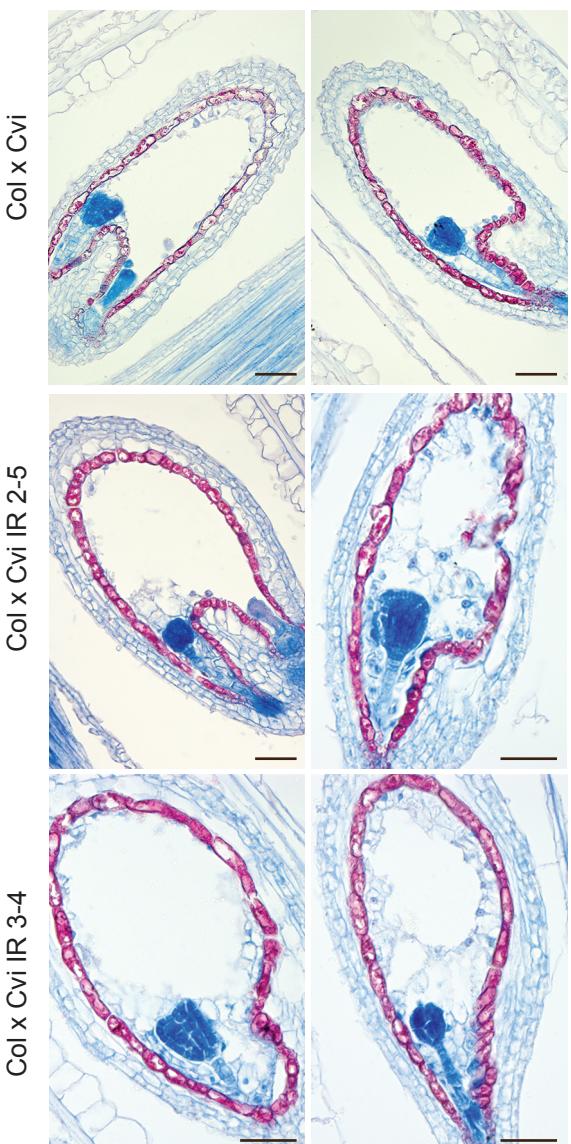
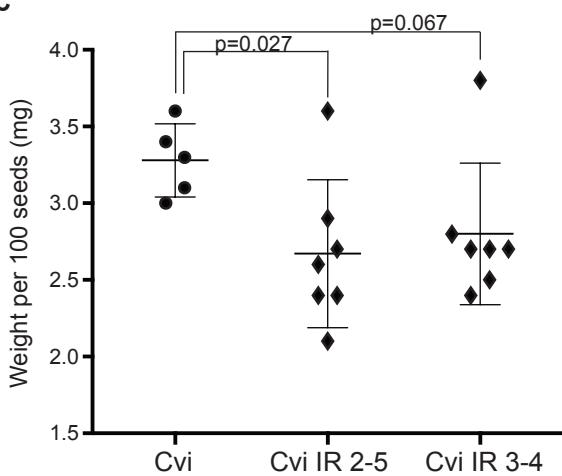



Fig 5.

A

B

Cellularization:	Normal		Early		Stage Total
	Late Heart	Heart	9	2	
Col x Cvi	22	5	3	39	39
Late Heart	2	2		4	4
Heart	1			1	1
Early Heart	3	1		5	5
Triangle				2	2
Late Globular				1	1
Globular				1	1
Early Globular				1	1
Pre-Globular				2	2
Cellularization Total	29	8	5	9	53



Cellularization:	Normal		Early		Stage Total
	Late Heart	Heart	3	2	
Col x Cvi IR 2-5	2	2	2	2	11
Late Heart	1			1	1
Heart	2	2	2	2	11
Early Heart	2	2	2	2	11
Triangle				1	1
Late Globular				1	1
Globular				5	5
Early Globular				2	2
Pre-Globular				3	3
Cellularization Total	7	7	5	12	43

Cellularization:	Normal		Early		Stage Total
	Late Heart	Heart	1	1	
Col x Cvi IR 3-4	4	3	1	1	15
Late Heart	1		1	1	5
Heart	1	1	1	1	6
Early Heart	1	1	1	1	1
Triangle			3	1	1
Late Globular				1	1
Globular			1	2	8
Early Globular			4	1	1
Pre-Globular			1	1	1
Cellularization Total	6	2	3	11	40

C

D

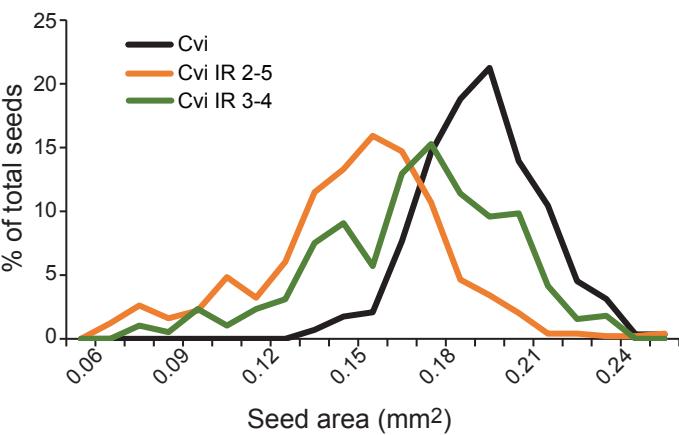
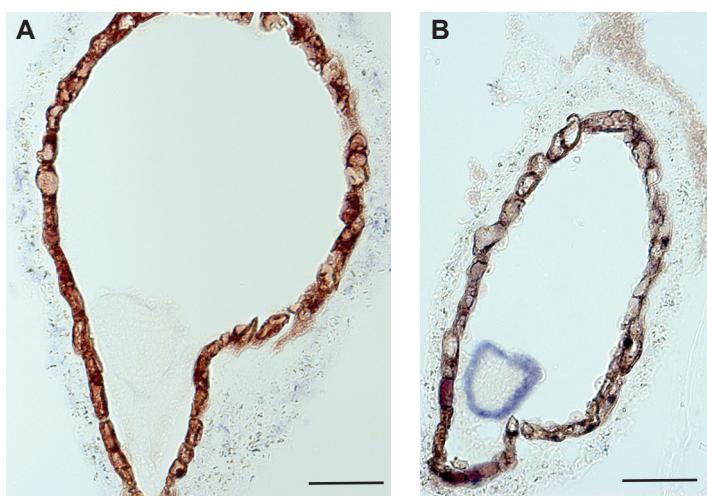
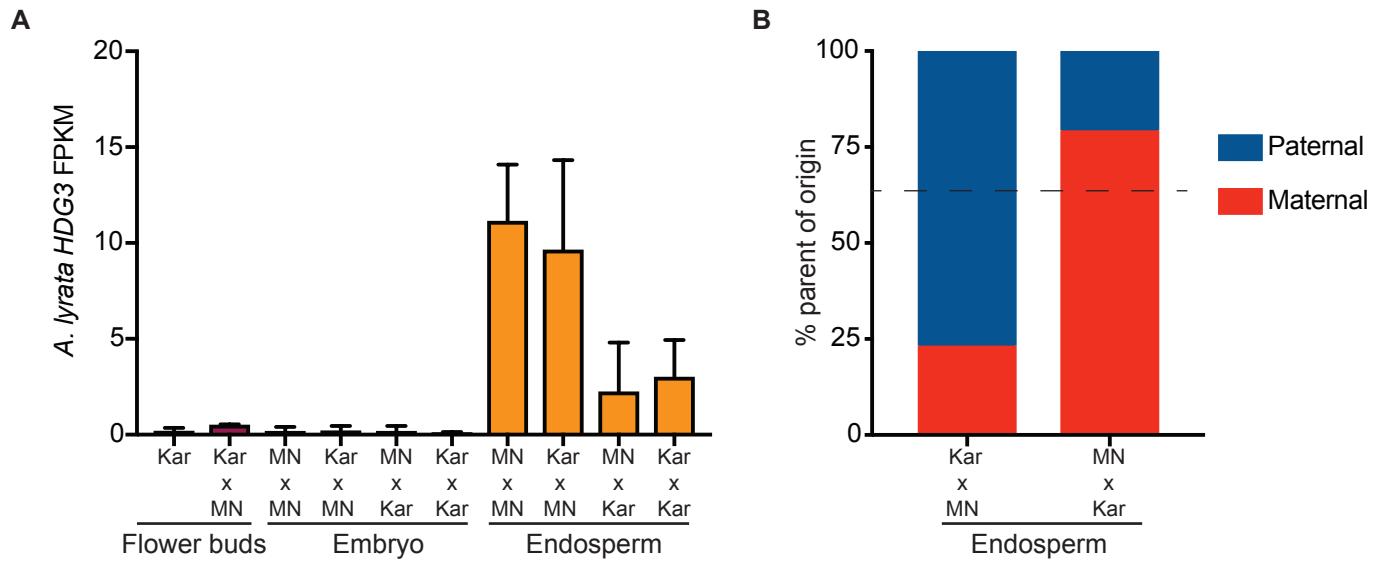
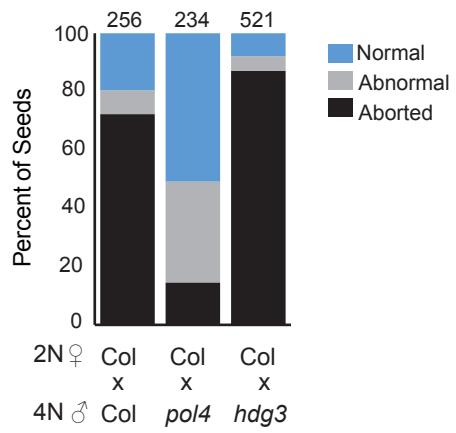
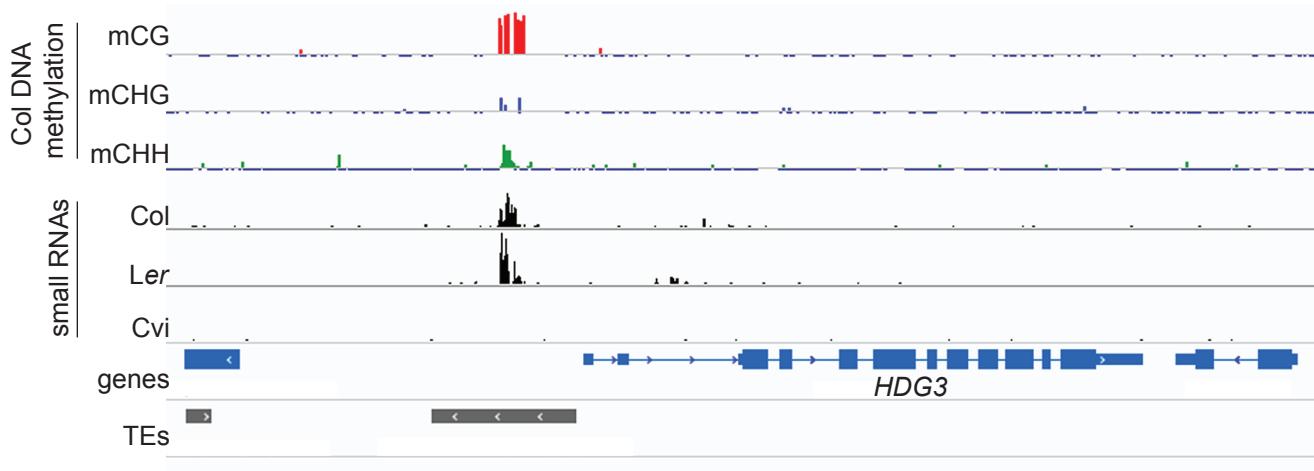


Fig 6.

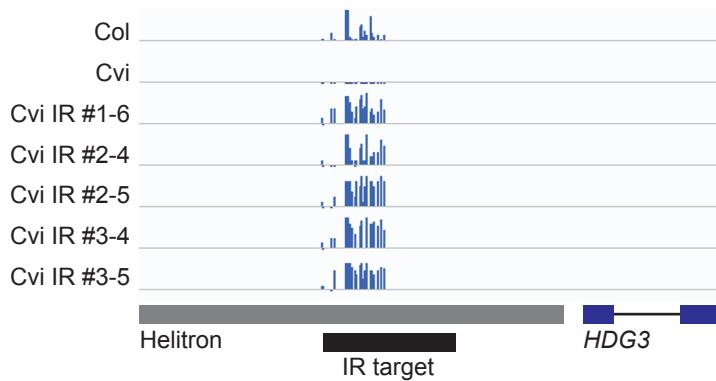





Fig 7.

S1 Fig. Negative and positive controls for *in situ* hybridization. (A) *HDG3* sense probe hybridization for *Col* x *Col* seed. (B) *PDF1* antisense probe hybridization for *hdg3-1* x *hdg3-1* seed. Scale bars, 50 μ m.

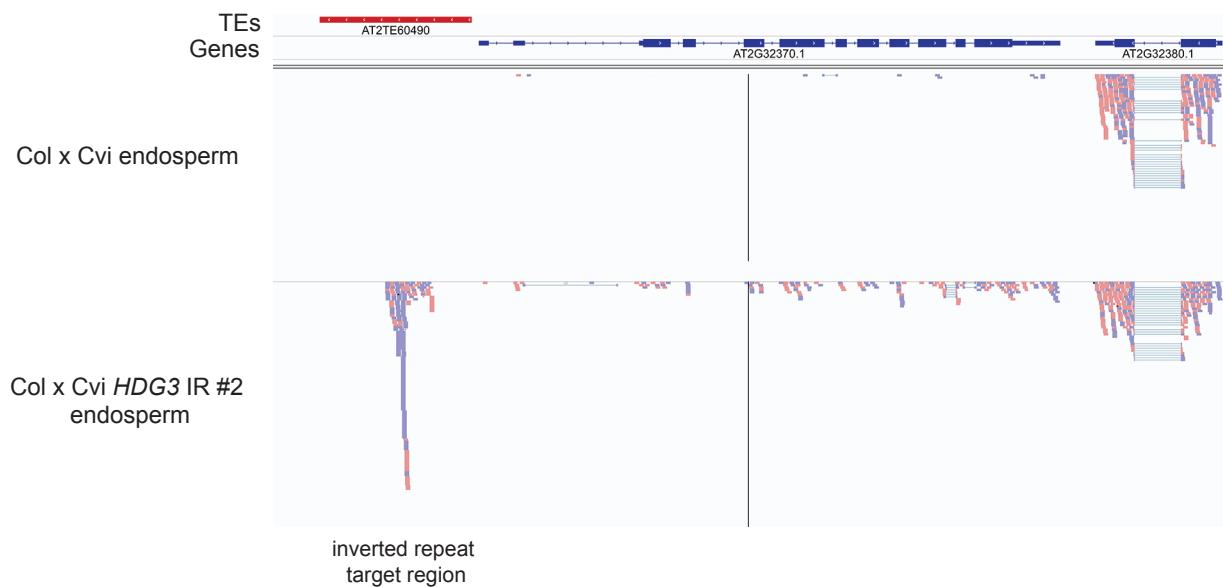


S2 Fig. HDG3 expression in *A. lyrata*. (A) Expression of *HDG3* (ALAI_scaffold_0004_1698 on scaffold 4:15306009-15309421) is specific to endosperm. Bars show mean FPKM values with std deviation for 2-4 biological replicates per genotype. (B) Percent maternal and paternal allele transcripts for the indicated crosses. All data are culled from Kłosinska et al., *Nature Plants* 2016.



S3 Fig. Tetraploid *hdg3-1* does not rescue interploidy seed lethality caused by paternal genomic excess. Tetraploid plants were created by colchicine treatment and confirmed by flow cytometry analysis of DNA content. Tetraploid *pol iv* mutants are a positive control for interploidy seed rescue. Number of seeds analyzed on top of bars.

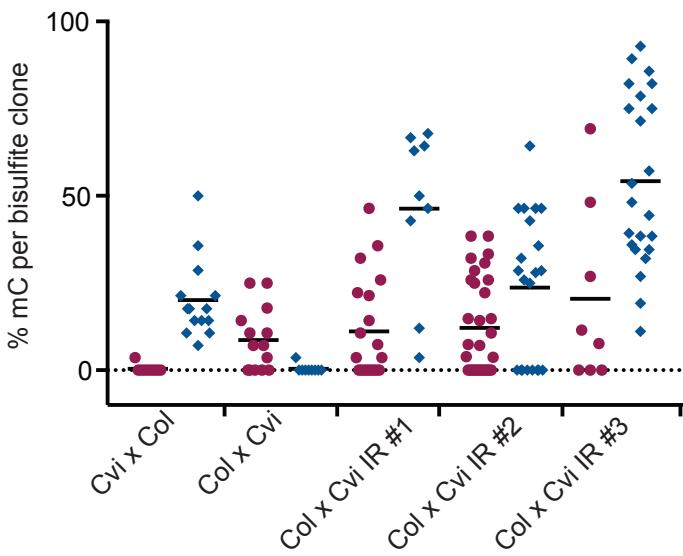
A


B

C

Tissue	# clones	% CG	% CHG	% CHH
Col leaf	15	80	24	14
Cvi leaf	11	1	0	0
Cvi IR #1-6 leaf	10	94	73	38
Cvi IR #2-4 leaf	7	96	38	21
Cvi IR #2-5 leaf	6	93	72	48
Cvi IR #3-4 leaf	15	99	69	51
Cvi IR #3-5 leaf	8	90	75	46

S4 Fig. Gain of *HDG3* methylation in Cvi *HDG3* IR lines. (A) Cvi naturally lacks small RNAs at the TE 5' of *HDG3*. DNA methylation data is from Col embryos (data from Pignatta et al., *eLife* 2014); small RNA data is from Col, Ler and Cvi embryos (data from Erdmann et al., *Cell Rep.* 2017). (B) Total DNA methylation in Col, Cvi, and Cvi *HDG3* IR leaves as determined by bisulfite-PCR. Scale is 100%, tick marks below line indicate unmethylated cytosines. (C) Quantification of above data. Col and Cvi leaf data are from Pignatta et al., *eLife* 2014.



S5 Fig. Accumulation of inverted repeat RNA in Col x Cvi HDG3 IR endosperm. Mapping of mRNA-seq reads to the *HDG3* (AT2G32370) locus in Col x Cvi and Col x Cvi *HDG3* IR #2 endosperm. Reads that match the inverted repeat target region represent expression of the inverted repeat transgene in endosperm from a different location.

A

Cross	Tissue	Allele	# Clones	% CG	% CHG	% CHH
Cvi x Col	Endosperm	Col	14	77.6	9.5	4.8
		Cvi	9	1.6	0	0
	Embryo	Col	9	74.1	3.7	7
		Cvi	18	2.3	0	2.5
Col x Cvi	Endosperm	Col	14	34.5	9.5	0.4
		Cvi	9	0	0	0.6
	Embryo	Col	16	87.5	14.6	3.6
		Cvi	6	2.4	5.6	0
Col x Cvi IR #1	Endosperm	Col	20	16	13.6	9.5
		Cvi	9	64.5	66.7	35.9
	Endosperm	Col	31	31	14.0	5.7
		Cvi	21	18	19.1	28.2
Col x Cvi IR #2	Endosperm	Col	11	100	42.4	35.9
		Cvi	17	92.2	37.3	32
	Endosperm	Col	8	30	24.0	17.4
		Cvi	23	86.1	69.6	40.6

B

S6 Fig. Bisulfite-PCR analysis of HDG3 methylation in seeds. (A) % methylation from the indicated crosses. Female parent listed first. IR lines are independent transgenic events. Cvi x Col and Col x Cvi data are from Pignatta *et al.*, *eLife* 2014. (B) Endosperm total DNA methylation (%) for each bisulfite clone from the above data. Maroon circles, maternal allele clones; blue diamonds, paternal allele clones.

S2 Table: Endosperm Cellularization Timing and Embryogenesis Stages at 5 DAP

S3 Table. Tests of statistical significance for pairwise comparisons of differences in endosperm or embryo development.

Seed Genotype 1	Seed Genotype 2	Endosperm diff?	Embryo diff?
Col x Col	<i>hdg3</i> x <i>hdg3</i>	***	
Col x Col	Col x <i>hdg3</i>	***	
Col x Col	<i>hdg3</i> x Col		
<i>hdg3</i> x Col	Col x <i>hdg3</i>	***	
Col x Cvi	Col x Cvi <i>HDG3</i> IR 2-5	***	***
Col x Cvi	Col x Cvi <i>HDG3</i> IR 3-4	***	*
Col x Cvi	<i>hdg3</i> x Cvi <i>HDG3</i> IR 2-5	***	***
Cvi x Cvi	Cvi x Cvi <i>HDG3</i> IR 2-5		***
Cvi x Cvi	Cvi x Cvi <i>HDG3</i> IR 3-4		***
Col x Col	Col x Cvi	**	***
Col x Cvi	Cvi x Col	***	***
Col x Col	Cvi x Cvi	***	***
Col x Cvi	Cvi x Cvi	***	***
Cvi x Col	Cvi x Cvi		
Col x Col	Cvi x Col	*	***

***= difference significant, padj < 0.001; **= difference significant, padj < 0.01; *=difference significant, padj < 0.05; no stars = no significant difference

S5 Table. Oligos used in this study.

Oligo Name	Sequence 5'-3'	Gene	Purpose
Expression			
HDG3 Fwd Set 4	CATCATGGAGTTGGCATTGG	HDG3	TaqMan RT-qPCR
HDG3 Rev Set 4	CAAAGCTAACGCTAGTGCCATTAAA	HDG3	TaqMan RT-qPCR
HDG3 Prb Set 4	/56-JOEN/ACT TGA GCC/ZEN/ ATC ACC AAG AGC TCC/3IABKFQ/	HDG3 – Col	Col probe for TaqMan RT-qPCR
HDG3_Cvi	/56-FAM/ACT TGA GTC /ZEN/ ATC ACC AAG AAC TCC/3IABkFQ/	HDG3 – Cvi	Cvi probe for Taqman RT-qPCR
MG510	TGCAACGGAGAGATGATGCACAAG	HDG3	Sybr Green
MG511	TGCTCTTGCTAGTGTGTCCATGCC	HDG3	RT-qPCR
MG446	CCATTCTACTTTTGGCGGCT	AT1G58050	Sybr Green
MG447	TCAATGGTAAC TGATCCACTCTGATG	AT1G58050	RT-qPCR
DNA methylation			
MG422	GTTTAAGGATATTTGGATAATGTATTGA	HDG3 5' TE	BS-PCR
MG423	CTATRCTTTATTAACTATATARATCRTTACAC	HDG3 5' TE	
MG424	TACATCTCATATCTACAAATARTATTATTAAC	HDG3 5' TE	BS-PCR
MG425	TGGTATGAGYYTAGGAGAAATAATGTAAG	HDG3 5' TE	
In situ			
KN13	TCTCACCCCTCACCTCCATC	PDF1	Amplify 602 bp of <i>PDF1</i> coding sequence for in situ probe
KN14	GGGGTTGTGAAAGGGAACTT	PDF1	
KN19	GATGGGATCTAAGGGAAATGTCG	HDG3	Amplify 278 bp of <i>HDG3</i> coding sequence for in situ probe
KN20	ACATTGCCACGAGTCAGTT	HDG3	
IR cloning			
DP215	CACCTACCAAATTATTATCTATTGAT	HDG3 5' TE	Amplify IR sequence for cloning
DP216	GAATTCATAGTGAAATGGACCATC	HDG3 5' TE	