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ABSTRACT

We studied the problem of calling genotypes using neural networks. A machine learning approach
to calling genotypes requires a training set, an approach to convert genomic sites into tensors and
robust model development and evaluation protocols. We discuss each of these components of our
approach and compare four types of neural network training protocols, two fully supervised and two
semi-supervised approaches. Semi-supervised approaches use unlabeled data to supplement limited
quantities of labeled data. Random hyper-parameter searches identified highly performing models
that reach indel F1 of 99.4% on a chromosomes 20, 21, 22 and X of NA12878/HG001. We further
validate these models by evaluating performance on HG002, an independent sample used in the
PrecisionFDA challenge. We apply GenotypeTensors to evaluate the impact of (1) training with small
datasets, (2) training models only with sites inside confidence regions, or (3) training with improved
true label annotations. A PyTorch open-source implementation of GenotypeTensors is available at
https://github.com/CampagnelLaboratory/GenotypeTensors. DNANexus cloud applications
are provided to help process new datasets both to train model or call genotypes with trained models.
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INTRODUCTION

DNA can be sequenced with high-throughput sequencers to yield short or long reads. Genotype callers are
tools that implement computational approaches to transform sequencing reads aligned to a genome into
genotype calls across the sites of a genome. Several approaches have been followed to develop genotype
callers. Early stage ad-hoc callers used hard thresholds and filters to identify the consensus of bases seen
at each site. These approaches were quickly superseded by approaches that leverage probabilistic methods
to weight the evidence for each genotype at a site. Examples of probabilistic callers include the Genomic
Analysis Toolkit (GATK) [McKenna et al., 2010], or Platypus [Rimmer et al., 2014].

At the heart of the probabilistic approaches are models that given observables at each site of the
genome determine the probability of each genotype at the site. The probabilistic tests implemented in
traditional callers use a limited amount of observable features. For instance, they may rely on the number
of bases supporting a given genotype and the quality scores of these bases. The reason for the focus on a
small number of features is that it is non-trivial to manually develop models that model interactions, often
non-linear, among many kinds of observables.

Poplin et al. [2016] and our group [Torracinta and Campagne, 2016] have independently developed
approaches to estimate the probability function for genotype calling using features observed from align-
ment data and neural network probability estimators. The approach used to develop DeepVariant [Poplin
et al., 2016] consists in transforming aligned reads into images and train convolutional neural networks
to predict genotypes. In contrast, our approach maps aligned reads to a vector of features and uses feed
forward network architectures. We describe this approach in this manuscript and provide details of a
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robust model development and evaluation process that allows to train strong models at a fraction of the
computational cost of the approach implemented in Deep Variant.

A key challenge faced when training genotype callers is access to large amounts of high-quality
labeled data, that is, alignments where the genotypes at each site of the genome are known. In this work,
we used data measured from NA12878/HGO0O01, one of the samples studied by the platinum genome study
[Eberle et al., 2016], subsequently studied by the Genome in a Bottle (GIAB) Consortium [Zook et al.,
2014, 2018]. In order to test if models trained on one genome generalize to a second genome, we use
sample HG002, which was used as benchmark sample in the PrecisionFDA challenge. This evaluation
protocol makes it possible to compare the performance of our approach to the performance reported for
other genotype callers in the same condition.

Importantly, GIAB defined confidence regions as a subset of the genome where confidence in genotype
calls is strong [Zook et al., 2014, 2018]. Genotypes for sites outside of a confidence region may be correct,
but there is less evidence that they are correct, either because data are lacking at the site, or because
complexity of the genomic site yields conflicting genotypes when different sequencing technology are
used to measure the same site, or across pedigrees. We use confidence regions for evaluation on both
HGO001 and HG002. The Deep Variant preprint reported training models with sites only contained in
confidence regions. In our initial preprint, we warned that this could yield biased models that do well
inside confidence regions (where the evaluation is performed), but fare worse in the rest of the genome
(on the more complex sites that make up about 14% of the genome).

In this manuscript, we test whether the performance of models trained exclusively on sites located
inside confidence regions is representative of performance of models trained with sites from across the
entire genome.

Since high-quality genotype calls are rare and millions of these calls are necessary to train strong
models, we evaluate semi-supervised training protocols to determine if using large amounts of unlabeled
data can be beneficial when training genotype callers. This question is particularly interesting because
the performance of neural networks has been shown to increase with larger training sets, but the cost of
acquiring millions of high-quality genotype labels is expected to remain very large in the foreseeable
future. Semi-supervised approaches could facilitate training strong models with limited amounts of labels.
Our results show that semi-supervised approaches do not result in more predictive models when testing
on an independent sample.

Domain adaptation techniques have been developed to minimize performance drops when a model
is trained on a dataset with different distribution as the test set. We therefore also evaluated a domain-
adaptation approach: Adversarial Discriminative Domain Adaptation (ADDA) [Tzeng et al., 2017]. We
found that ADDA did not improve HG0O02 performance when models trained on HG001 where adapted to
the HG002 data distribution.

Further analysis revealed that the performance of models trained on HG0O1 generalize well to the
validation set and test set of both HG0O01 and HG002, suggesting that differences in performance across
the two genomic samples cannot be explained by overfitting.

Recent work showed that careful tuning of baseline architectures can yield state of the art performance
compared to more complex architectures [Merity et al., 2018] (authors studied sequence models for
natural language processing tasks). This study confirms that hyper-parameter tuning is critical to training
state of the art neural network models. In practice, selecting optimal hyper-parameters is difficult because
of the computational burden of training many models with different hyper-parameters. In this study, we
present and take advantage of an approach that greatly speeds up hyper-parameter searches when the
models are small and many models can fit in the memory of a single graphical processing unit (GPU).

RESULTS

Data Preparation Figure 1 presents an overview of the process we followed to prepare data for neural
network training. Briefly, short reads were aligned to the human genome, alignments were processed
with HaplotypeCaller [McKenna et al., 2010] to realign SNPs in the proximity of indels and to reduce
the dimensionality of the dataset to regions likely to contain variation. Alignments were converted to a
vectorial representation suitable to train a feed-forward neural network. Figure 1 also illustrates the funnel
architecture, which allows for interactions of every feature with every other feature and progressively
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Figure 1. Overview of data generation, data management and neural network architecture. The
process of developing a genotype caller model starts with HTS reads. The reads are aligned to the
genome (here with BWA-mem, but other aligners can be used for different read characteristics). The
BAM alignment is realigned with the GATK3 HaplotypeCaller [McKenna et al., 2010]. Realigned reads
are converted to Goby format and converted to the Sequence Base Information format (extension .sbi). A
feature mapper converts data about individual genomic sites into tensors. The feature mapper encapsulates
choices about what features are potentially informative and how they should be converted to a fixed length
vector. Mapped features are used to train a neural network (funnel architecture shown, see methods) that
consists of a certain number (typically 1 to 6) of densely connected layers, with decreasing number of
neurons. We stack a softmax output on top of the last layer of the funnel, where each softmax element
represents the presence or absence of a specific combination of genotypes at the given genomic site.
[Considering a diploid organism and two additional possible genotypes, the softmax has 17 elements
(2°*2 4 1)]. The neural network model is trained by minimizing the difference between the model output
and true labels. Hyper-parameters r and c are defined in methods.

reduces the size of the representation by applying a reduction factor r (see methods). The advantage of
the funnel architecture is that it does not require a preconceived notion about which feature interactions
should be considered. Training determines which combination of feature values is informative to predict
the labels by adjusting the weights of the neural network. The feature mapper used in this work considers
5 possible genotypes for every position of the genome, and produces 2,255 features per genomic site (451
features per genotype at each genomic site). The features are very sparse (most values are zero), since for
instance, a diploid genome is expected to have one or two genotypes present at each site (when a genotype
is not observed in a sample, all 452 features of this genotype have value zero). Throughout this study, we
observed that networks with 2 layers are sufficient to yield top performing models (see parameters of best
performing models shown in Methods).

Training Protocols In order to establish if semi-supervised methods are beneficial for this type of
models and datasets, we defined four training protocols, two supervised and two semi-supervised:

e Supervised training (Direct Supervised). In this straightforward and popular training protocol,
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input features and labels over a training set are used to optimize the parameters of the model by
minimizing a loss between model output and true labels.

e Supervised mixup training (Mixup Supervised). This approach was proposed to improve training
of images [Zhang et al., 2017]. Supervised mixup trains the model using mixture examples con-
structed by combining two training examples in a linear fashion. This approach seems particularly
relevant to training genotype callers since alignment data is the result of measuring a sample from a
mixture of DNA molecules containing different genotypes (mixture of two alleles for most sites in a
diploid genome). In this setting, mixup can be seen as a data augmentation strategy that constructs
novel training examples using a linear combination of existing examples.

e Semi-supervised training with an adversarial autoencoder (Semi-supervised AAE). AAEs are
a semi-supervised approach which has been shown to improve performance of models trained
with small number of examples [Makhzani et al., 2015]. A semi-supervised training approach
uses unlabeled examples in addition to labeled training examples. Here, we evaluated whether a
semi-supervised AAE can improve genotype calling performance by taking advantage of unlabeled
data from other alignments. This question differs from semi-supervised in small data regimes
because we try to improve results when millions of training examples are already available. In this
setting, it is unclear if adding unlabeled examples can still be of benefit.

e Semi-supervised mixup training (Semi-supervised Mixup). While mixup was initially described
as a fully supervised approach, it is possible to adapt this approach in the semi-supervised setting
by dreaming up labels. Here, we dream up labels for unlabeled examples by sampling from their
distribution. We have evaluated two different sampling methods: either sampling from a uniform
distribution, or sampling from the distribution of the labels observed in the training set.

Hyper-parameter Optimization Training a model using neural networks requires choosing a number
of hyper-parameters. The performance of neural network models can critically depend on the choice of
hyper-parameter, to the extent that some authors have shown that performance advantages obtained with
new models can be achieved with baseline models when a similar hyper-parameter search is performed.
Given the importance of hyper-parameter tuning, we report all results after tuning each method in a similar
manner.

A random hyper-parameter search consists in choosing hyper-parameters randomly given a suitable
range and distribution for each hyper-parameter. We performed these searches in two phases.

Performance of semi-supervised approaches with 10,000 training examples First, we generated
160 different random combinations of parameters and trained models with the first 10,000 training
examples of the training sets. This produced the range of model performance shown in Figure 2. These
results are surprising because semi-supervised methods are expected to perform best when few training
examples are available. Instead, we observe that the two supervised methods perform best in these
searches.

Domain Adaptation The key assumption of model generalization is that the training dataset and the
dataset where the model is used belong to the same data distribution. One possibility for the loss in
performance observed when transferring a model trained on HG0O1 to HGO0O02 is that the two datasets
have different data distributions. Various domain adaptation techniques have been developed to mitigate
the drop of performance in such situations. We evaluated the ability of the Adversarial Discriminative
Domain Adaptation (ADDA) method to adjust the distribution of the data. Briefly, ADDA fine tunes
the feature part of a model to make the features similarly distributed between the training set and the
unlabeled set. The classifier part of the model is then used as is for classification. When we used ADDA
to adapt a model to the HG002 data distribution, we found that the adapted model performed worse than
the non-adapted model (see Table 1).

Performance with 3.9 million training examples In a second phase of optimization, we use the entire
training set, and choose random hyper-parameters from refined ranges. To refine each hyper-parameter
range, we select the top three models for each training protocol and reduce the range to that observed in
the top models. This process is illustrated in an online notebook [Onl]. We use these refined ranges to
choose 16 sets of random hyper-parameters per training protocol. Figure 3 shows the accuracy (panel

4/13


https://doi.org/10.1101/338780
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/338780; this version posted June 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Supenised direct Supenised mixup Semisupenised mixup Semisupenised AAE
100 —— —r— —— ——
m D e—
a0
a0
N0
0 —_— —_—
08 10 12 08 10 12 08 10 12 08 10 12

Figure 2. Validation accuracy for models produced in first phase of hyper-parameter search. We
trained 160 models per training protocol, using the first 10,000 training examples. The plots show the
accuracy of the model measured on the validation set.
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Figure 3. Validation accuracy for models produced in second phase of hyper-parameter search.
We trained 64 models per training protocol, using the entire training set and optimized hyper-parameters.
A) The plots show the accuracy of the models measured on the validation set. B) Violin plots showing
indel F1 performance estimated on the validation set.

Condition checkpoint F1_SNPs Precision_Indels Recall Indels F1_Indels

no adaptation OMVIA 0.9988 0.9857 0.9826 0.9842
ADDA RBZAZ 0.9988 0.9837 0.9798 0.9818

Table 1. Domain Adaptation Results. These performance results are obtained in the confidence regions
of the entire HG002 genome. The results indicate that the domain adaptation method tested is unable
to improve performance for indels an independent sample, suggesting that systematic biases in data
distributions are not responsible for the observed drop in performance.

A) and indel F1 performance (panel B) of models trained with these optimized parameters. Figure 3
does not show the performance of the AAE training protocol because these models had non-competitive
performance when trained on the entire training set (i.e., all accuracies were below 80%).

Table 2 presents the performance of the top 3 models, for each training protocol, measured on the
validation set. We chose the best model by validation performance and evaluated its performance on
the HGOO1 test set (test set performance shown in Table 3). Since the validation and test sets are fully
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independent, constructed from distinct sets of chromosomes of HG0O01, these data confirm that the models
trained with GenotypeTensors generalize to new sequence variations and genomic contexts.

Condition checkpoint F1_SNPs Precision_Indels Recall_Indels FI1_Indels
Supervised_Direct HCJIQ 0.9999 0.9925 0.9898 0.9911
Supervised_Direct JNKQK 0.9998 0.9915 0.9907 0.9911
Supervised_Direct JBHMQ 0.9999 0.9915 0.9905 0.9910
Supervised_Mixup YBBMB 0.9998 0.9881 0.9873 0.9877
Supervised_Mixup LSOYG 0.9998 0.9880 0.9867 0.9873
Supervised_Mixup IBVNX 0.9997 0.9879 0.9863 0.9871
Semisupervised_Mixup HIFMH 0.9994 0.9840 0.9797 0.9818
Semisupervised_Mixup XSLJO 0.9989 0.9815 0.9810 0.9813
Semisupervised_Mixup XGHOW 0.9993 0.9805 0.9807 0.9806

Table 2. Top 3 HG001 validation performance for each training protocol.

Condition checkpoint F1_SNPs Precision_Indels Recall_ Indels F1_Indels
Supervised_Direct HCIIQ 0.9997 0.9939 0.9936 0.9938
Supervised_Mixup YBBMB 0.9997 0.9901 0.9896 0.9899
Semisupervised_Mixup HIFMH 0.9995 0.9860 0.9849 0.9855

Table 3. Best performance on HG001 test set across conditions. The top-model selected using
validation performance (see Table 2) is evaluated on the test set composed of different chromosomes than
the training and validation set.

Condition checkpoint F1_Full F1_.SNPs Precision_Indels Recall Indels F1_Indels
Supervised_Direct OMVIA 0.9975 0.9988 0.9857 0.9826 0.9842
Supervised_Direct OVMVZ 0.9974 0.9988 0.9858 0.9818 0.9838
Supervised_Direct QIHQJ 0.9974 0.9989 0.9838 0.9823 0.9831
Supervised_Mixup MJOGP 0.9967 0.9988 0.9779 0.9759 0.9769
Supervised_Mixup AWSTO 0.9966 0.9987 0.9780 0.9750 0.9765
Supervised_Mixup ZVHAD 0.9959 0.9982 0.9770 0.9722 0.9746
Semisupervised_Mixup  CIKOE 0.9960 0.9985 0.9708 0.9770 0.9739
Semisupervised_Mixup ~ OTPKK 0.9959 0.9984 0.9728 0.9723 0.9726
Semisupervised_Mixup ~ PUYDA 0.9959 0.9985 0.9723 0.9717 0.9720
Clairvoyante (Luo et al.) modell 0.9950 NP NP NP NP
Clairvoyante (Luo et al.) model2 0.9952 NP NP NP NP
Clairvoyante (Luo et al.) model3 0.9949 NP NP NP NP

Table 4. Performance of top 3 performing models trained on HG001 and tested on HG002 (entire
genome). The table compares the performance of models trained with our approach (best 3 of 64 hyper-
parameter search models) to the performance of models trained with Clairvoyante [Luo et al., 2018]. Since
the Clairvoyante preprint only reported F1 estimated across both SNPs and indels, we report F1_Full for
direct comparison. All of the top 3 models trained with our approach outperform the Clairvoyante model
when tested on the same dataset. While the difference in performance may appear small when considering
the F1_Full metric, these small changes reflect large indel F1 performance differences. Among the top 8
models for each of our approach, the one with the closest performance to 0.9952 obtained an F1 indel of
0.9685, while the top performing model reached 0.9842.

In order to test how well the models generalize to new genomes, and to compare the performance of

our approach to other studies, we tested these models with the HG002 sample. Table 4 presents these
results and shows that our approach remains strongly predictive on HG002, and substantially outperforms
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Condition checkpoint HGOO01 val HGO01 test HGO002 val HGO002 test
Supervised_Direct KTVNR 0.9948 0.9943 0.9959 0.9956
Supervised_Direct LTPEC 0.9948 0.9940 0.9959 0.9953
Supervised_Direct MWCTC 0.9949 0.9934 0.9963 0.9951

Table 5. Consistency of performance across validation and test sets HG001 vs HG002. The table
compares the indel F1 performance of 3 models trained with supervised direct on the HG0O1 training set.
Performance is shown for the validation and test sets of HG0O1 and HG002. Consistency of the predictions
across test sets indicates that the models generalize well. A comparison of these indel performances with
those reported in Table 4 suggests that the test set and validation set are not fully representative of the
sites in an entire genome since test and validation performance over-estimates performance measured on
the entire genome.

Clairvoyante [Luo et al., 2018]. We also compare the performance of three models trained with the direct
supervised protocol when measured on the validation and test sets of HG001 and HG002. These data
indicate that the model generalizes well (Table 5), but suggests that neither the validation or test sets are
fully representative of the complexity of indels and genomic context over an entire genome (compare
performance in test set in HG002 to performance on entire genome HG002, Table 4).

To investigate this effect more carefully, we plot a precision recall curve for all predictions on the
HGO002 genome (Figure 4). This plot indicates that while most of the precision/recall curve behaves as
expected for a strong model, some sites are erroneously predicted with the wrong genotype with high
probability (region of the curve marked with an arrow). We found that this result is representative of the
neural network models that we have trained, which when tested on sites with characteristics that they may
not have encountered in the training set can fail with high-probability. Inspection of some of these errors
suggest that most of them are confusion among homozygote and heterozygote calls. While we cannot
rule out that these errors are due to issues remaining in our software implementation, these results suggest
that strong indel models may require training with several genomes in the training set in order to capture
enough indel diversity that such errors on new samples are minimized.

Impact of training with sites in confidence regions only Our preferred training protocol is to train
with all sites of the genome, in order to avoid biasing results for possibly easier sites that may be contained
in the GIAB confidence regions of the genome. Here, we tested this assumption by training models
exclusively with sites contained in the GIAB confidence regions. We performed a random hyper-parameter
search on HGOO1 and tested the top model on HG002. Table 6 presents the performance obtained on
HGO002 and shows that while validation performance is very high (accuracy reaching 99.9681 on the
validation set on HG001), the model (MOMWU) performs worse on HG0O02 than when models are trained
with sites both inside and outside of confidence regions (top model shown for reference: OMVIA).

Labels checkpoint F1_SNPs Precision_Indels Recall_Indels F1_Indels
Platinum OMVIA 0.9988 0.9857 0.9826 0.9842
Platinum only CR  MOMWU 0.9986 0.9792 0.9823 0.9808

Table 6. Training only with confidence regions (CR). We train 64 models, random hyper-parameter
search using only sites contained in GIAB confidence regions. The validation performance of the top
model measured on HGOO1 is shown (checkpoint: MOMWU).

Impact of GIAB genotype call improvements Models trained until this point were trained with geno-
type calls from the platinum genome [Eberle et al., 2016]. Since genotype calls have been refined over the
years by the GIAB consortium, we trained a model with version 3.3.2 of the GIAB calls to determine the
impact of true label refinements on the performance of our models. Table 7 presents these results and
shows that small performance improvements can be obtained by using more recent versions of the true
labels, but that our training protocol is quite robust to some errors in genotypes (i.e., the platinum calls
contain more errors than the GIAB 3.3.2 calls).
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Figure 4. Precision Recall Curve for entire HG002 genome. This figure shows the precision recall
curve for a model that performs well on the HG0O02 test set, but fails on some indel sites of HG002 with
high-probability. Most of the curve is well behaved, but some sites yield indel genotype errors with very
high probability (see arrow). This result is not an outlier, but instead typical of failure modes we have
repeatedly observed when evaluating neural networks for genotype calling. Upon inspection, most of the
errors are confusion between heterozygote or homozygote calls (i.e., one of the alleles is called correctly,
but the other not, resulting in an overall incorrect call).

Labels checkpoint F1_SNPs Precision_Indels Recall_Indels F1_Indels
Platinum OMVIA 0.9988 0.9857 0.9826 0.9842
GIAB 3.3.2 KTVNR 0.9989 0.9865 0.9840 0.9852

Table 7. Impact of genotype label improvements. We compare the performance (HG002 entire
genome) of the top model obtained when training with platinum labels or with the latest release of the
GIAB genotypes for HGOO1 (best of 64 models trained with random hyper-parameter search shown for
each condition). The comparison shows that a small performance improvement is obtained by using more
recent versions of the genotype calls, but also clearly confirms that our approach can learn despite errors
typically found in the genotype calls used in the training set.

Computational Performance The approaches we presented are implemented in the Genotype-
Tensors project, developed as an open-source project available at https://github.com/
CampagnelLaboratory/GenotypeTensors. The project leverages the popular PyTorch deep-
learning framework. Various optimizations are implemented in GenotypeTensors to train models effi-
ciently. Table 8 presents the time to train one epoch for HG001 (with 3,923,305 training examples) with
GenotypeTensors. Timing is dependent on the numbers of parallel processes used to load data from disk
and feed it to the GPU, with more workers resulting in faster training. The results shown in table 8 were
obtained when caching data on a solid state drive.
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Number of parallel workers Time to train an epoch (secs)

6 204
10 136
20 63
30 53

Table 8. Computational Performance. The table shows the number of seconds needed to train a
top-performing model for a single epoch using a representative HG001 dataset. The time required to train
an epoch (one pass through the entire dataset) is determined by the time it takes to load the data from disk
and transfer it to the GPU. Loading data in parallel is supported by PyTorch and adding more workers
results in faster training. Performance gains plateaus at about 20-30 workers.

Another practical aspect of computational performance is the ability to quickly determine optimal
hyper-parameters for training a model. As illustrated in Figure 3 (Panel B), the performance of models
varies substantially with the choice of hyper-parameters, so it is important to determine a set of optimal
hyper-parameters for a dataset. Since the data loading time is the bottleneck when training models, we
have developed code to load data once and train several models initialized with different hyper-parameters
(see Methods for details). This approach makes it possible to train up to 64 models in parallel on the same
GPU, and greatly reduces the computational burden of performing random hyper-parameter searches.
With this approach, we are able to train 64 models for about 10 epochs on a single GPU in about 6-8
hours (without this approach, training 16 models on 8 GPUs independently can be done in a few days).
We do not provide specific timing for this process because the search time depends on the range of
hyper-parameters explored (i.e., the number of parameters optimized for each model included in a search
will influence the runtime). However, this approach makes hyper-parameter selection much more practical
than training models independently.

Cloud applications We have developed DNANexus cloud applications to help process alignments
and generate training and evaluation datasets, or to call genotypes across whole genomes with
trained models. The source code of these applications is available at https://github.com/
CampagnelLaboratory/variationanalysis—apps.

DISCUSSION

We have presented an efficient approach to train neural network methods for calling genotypes. The
method is orders of magnitude more efficient than Deep Variant because it converts genomic sites to a few
thousand features and uses a feed forward network instead of a convolutional architecture trained from
images. While our approach is computationally efficient, it has not yielded models competitive with the
performance reported for DeepVariant on HG002, or other more traditional approaches evaluated in the
PrecisionFDA challenge. For instance, the best performance reported on the entire genome of HG002
in the blind evaluation of PrecisionFDA (Truth challenge) reached an indel F1 of 0.9904 (99.4%). This
compares to our best model reaching an indel F1 of 0.9852. In the same challenge, Deep Variant reached
an indel F1 of 0.9898. While DeepVariant has since improved performance on HG002, the performance
statistics are no longer directly comparable to our results because recent DeepVariant models are trained
with several genomes, in contrast to the HG001 training protocol we use for evaluation in this study.

Given the loss of performance outside of the test and validation sets that we observed in Figure 4, it
is likely that adding more genomes to the training set in order to optimize HG002 performance would
yield biased performance estimates (i.e., stronger performance would be observed on HG002 than on a
randomly selected genome, where distinct high probability errors similar to those shown in Figure 4 could
manifest).

Given these results, it is unclear if the superior performance of DeepVariant is due to the convolutional
architecture used in the DeepVariant models, which gives the model access to data about the context of
each specific genomic site (e.g., DeepVariant provides data about 150bp around each site) and represents
a tradeoff between computational efficiency and model performance, or if the implementation of our
approach could be further improved to match deep-variant like model performance at a fraction of the
computational cost.
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A new tool, called Clairvoyante, was recently evaluated in a preprint [Luo et al., 2018]. This tool
implements a neural-network based method for calling SNPs and indels in short and long-read data.
Clairvoyante is described as a convolutional network and therefore also must convert alignment data to
three dimensional tensors. The preprint provides data showing that Clairvoyante is faster than Deep Variant.
Interestingly, no comparison, either computational efficiency or call performance, is provided with our
earlier project, variation analysis (whose performance kept improving since the release of our initial
preprint [Torracinta and Campagne, 2016]). We have included Clairvoyante in our evaluation in this
manuscript and shown that all the training protocols we tested outperform Clairvoyante on HG0O02 by a
wide margin when considering indel performance (see Table 4). Our approach has an advantage as well
for computational performance since (1) we can train an epoch with HG001 in less than a minute (Table 8)
when Clairvoyante needs 170 seconds [Luo et al., 2018] and (2) we can perform a hyper-parameter search
with 64 models in the time it takes to train one Clairvoyant model. Regarding indel performance, as we
have noted in the caption of Table 4, [Luo et al., 2018] presented F1 performance evaluated across both
SNPs and indels. This made comparison with prior studies that separate SNP and indel performance
difficult. We find this presentation confusing because it could mislead readers who quickly glance
at numerical performance metrics without realizing that Full_[F1 (Indel+SNP) can appear numerically
competitive with indel F1, when it is far from competitive. The comparison we provide in Table 4 should
clarify how the performance of Clairvoyante compares to prior neural network methods. Additionally, we
note that there is no reason that our approach, as described previously and in this manuscript, would be
expected to be inferior to the approach implemented in Clairvoyante for long-read datasets. Indeed long-
read technology does not fundamentally change what type of features are informative when considering a
specific genomic site after the reads have been aligned to the genome. We therefore expect that simply
performing a hyper-parameter search with long-read data with the open-source software that we provide
will yield strong performance both for long-read and short-read sequencing datasets.

Clairvoyante uses a convolutional architecture similar to Deep Variant, but fails to match the perfor-
mance of either our simpler single-site models, or Deep Variant models. Therefore, it seems unlikely that
a convolutional architecture is sufficient to explain the difference in performance observed between our
approaches and Deep Variant.

We hypothesize that so-far unnoticed software implementation problems in available code bases,
and/or insufficient hyper-parameter tuning for Clairvoyante, could be responsible for the differences
observed in model performance, rather than being driven only by differences in model architecture and
differences in representation of aligned reads in each genomic context.

We have tested a domain adaptation approach and two semi-supervised approaches for genotype
calling. In both cases, we found that these approaches, which have been successful in other domains,
failed to improve the generalization of genotype caller models for indels or SNPs. This point supports the
notion that data distribution differences are not primarily responsible for variations in performance from
one individual sample to another.

METHODS

Datasets
HGO001 and HG002 read files were obtained from PrecisionFDA (https://precision.fda.gov/).

Reads Processing

Read files were uploaded to DNANexus and processed as follows. Alignments to the genome were done
with BWA (DNANexus application) with default parameters. Alignments were further processed with
DNANexus applications developed by our laboratory: alignments were processed with HaplotypeCaller
(GATK3) to realign SNPs around indels and reduce the size of the training set to regions likely to contain
non-reference calls. Realigned BAM files were converted to Goby alignment format, then to Sequence
Base Information (SBI) format. Finally, SBI files were mapped to tensors with the export-tensors tool
distributed in the variationanalysis project. Tensors files were then downloaded to the laboratory local
server to train models.

True Genotype Labels

Unless otherwise noted under Results, we used the platinum genome VCF file version 2017-1.0 as training
data for NA12878. SNP and indel performance were measured against annotations from the GIAB
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consortium by restricting evaluation to confidence region.

Training Neural Network Models

Models were developed with the PyTorch framework (http://pytorch.org/), version 0.3.1. PyTorch
was selected because it implements automatic differentiation and is a popular framework with strong
community support. All models were trained with a batch size of 1024 examples. The order of training
examples is shuffled at each epoch. We trained models on a Linux server with 8 GTX 1080Ti GPUs
(11GB of RAM per GPU, 256GB of RAM for the server), but we note that single model training can be
conducted on a single GPU overnight in a couple of hours. Hyper-parameter search for 64 models can be
conducted on a single GPU overnight (10 epochs).

Hyper-parameter searches

We implemented a fast random hyper-parameter search approach in GenotypeTensors. Since our models
occupy only a few megabytes of GPU memory, we are able to train 64 different models (each initialized
with different hyper-parameters) at the same time on a single GPU. Briefly, we load tensors for a
mini-batch and then perform forward, backward and parameter updates for a single model in independent
threads. Because most of the computationally expensive work is done on the GPU, the python Global
Interpreter Lock is not a major bottleneck and tens of models can be trained in the same time that a single
model would be trained if done sequentially. When all models are trained with a mini-batch, another
batch of tensors is loaded and training continues until all batches have been used. Testing can similarly
be done for 64 models in different threads. An important advantage of this approach is that a batch of
data is loaded only once. This provides an important speedup when the training set is large and disk
or solid state drive random access is needed to load batches. This approach is implemented in https:
//github.com/CampagnelLaboratory/GenotypeTensors/blob/master/src/org/
campagnelab/dl/genotypetensors/autoencoder/SearchHyperparameters.py.

Best model hyperparameters

This section provides the command lines showing hyper-parameters used to train a few of the top-
performing models discussed under Results. Note that using these command lines to train a model
requires to add the path to the dataset to use for training/validation. This is done by adding an argument of
the form —problem genotyping:NA12878-realigned-2018-01-30, where NA12878-realigned-2018-01-30
is the path to a dataset. Adding the option —num-workers 6 on a machine with 6 cores will also result in
faster training by loading data in parallel.

OMVIA:

train-autoencoder.sh —--mode supervised_funnel_genotypes \
--L2 9.033815206858845E-5 ——dropout-probability 0 \
—--optimizer adagrad --1lr 0.009161936 \

—-reduction-rate 0.39535806 \

—-—model-capacity 1.0 ——num-layers 2 \

—-indel-weight-factor 2.0382204 \

—--max—-epochs 100 —--epoch-min-accuracy 80.0 \
—--mini-batch-size 1024 --epsilon-label-smoothing 0.0958678 \
——seed 3453641268241957507

KTVNR:

train-autoencoder.sh —--mode supervised_funnel_genotypes \

--L2 9.125417163009775E-5 \

—-dropout-probability 0 —--optimizer adagrad \

--1r 0.006005622 —--reduction-rate 0.4112884 \

—-—-model-capacity 1.0 ——num-layers 2 \

—--indel-weight-factor 9.482289 \

—--max—-epochs 100 —-epoch-min-accuracy 80.0 \

—--mini-batch-size 1024 --epsilon-label-smoothing 0.030408645 \
—-—seed 950779171533190880
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Funnel Architecture (FA)

Funnel models were formulated as n fully connected layers with BatchNormalization and with
RELU/SELU activation and a fully connected output layers with soft-max activation. The number
of output layers n is a hyper-parameter of the architecture that we optimized (see hyper-parameter
search). The first dense inner layer contains ¢ times the number of input features (we call ¢ the
model capacity). The number of neurons of each layer is calculated by applying a reduction fac-
tor r to the number of input to the layer. When r < 1, the model looks like a funnel and pro-
gressively reduces the number of neurons until the softmax layer. The exact model architecture
used is encoded in the class called org.campagnelab.dl.genotypetensors.autoencoder
.genotype_softmax_classifier.GenotypeSoftmaxClassifer distributed in the Geno-
typeTensors project.

Adversarial AutoEncoder Architecture (AAEA)

Adversarial AutoEncoder is implemented as described in [Makhzani et al., 2015]. This architecture is
composed of an encoder, made of n fully connected layers of decreasing number of neurons. The encoder
reduces the number of features progressively to a configurable number z. A decoder implements the
reverse transformation to reconstitute the input features from the encoded representation. A discriminator
loss is used to make each of the z features approximately normally distributed (zero mean and unit standard
deviation). The decoder and encoder are trained to reconstruct unlabeled examples while semi-supervision
is obtained by training the encoder to produce z features that can predict the labels of training set examples.

Direct Supervised Training
Direct supervised training optimizes the supervised loss using an Adagrad optimizer with an L2 loss (an
optimized hyper-parameter). We use the PyTorch MultiLabelSoftMarginLoss.

Mixup Supervised Training

Mixup supervised training optimizes the supervised loss using an Adagrad optimizer with an L2 loss
(an optimized hyper-parameter). In contrast to direct supervised training, mixup training uses two
training examples and combines their features and labels in a linear manner. Xmxp = 0t.x1 + (1 — @) .x2,
Ymixup = 00.¥1 + (1 — ot).y» We use the PyTorch MultiLabelSoftMarginLoss.

Mixup Semisupervised Training

This training procedure is similar to mixup supervised training, but instead of using two training examples,
we use one training example and one unlabeled example. The label of the unlabeled example is sampled
from a distribution. Two sampling approaches are implemented: uniform (each genotype class is
equiprobable), sampling (each genotype class is sampled with probability the frequency of the genotype
in the training set).

Label smoothing

During all types of training, we use label smoothing with configurable € [Goodfellow et al., 2016] (section
7.5.1). An € of 0 means that labels are not smoothed. Label smoothing is also consistently applied in
semi-supervised training schemes when labels are sampled from a distribution.

Performance Metrics

Accuracy is measured as TP/(TP+FP) on the softmax prediction for each site using the GenotypeTensors
software. SNP and indel F-1 are estimated with the Real Time Genomics software tool rtg vcfeval,
from genotypes calls made with variationanalysis and GenotypeTensors. SNP and indel performance is
estimated independently, using baselines restricted to each type of variation. The following command line
is used for rtg to estimate performance for SNPs:

rtg vcfeval --baseline=GOLD-confident-chr-snps.vcf.gz \
—c direct-best-WHVBC-CNG-NA12878-realigned-2018-01-30-test-\
genotypes—-sorted.vcf-snps.vcf.gz \
-0 output-4092/snp —--template=hs37d5_all_chr_CNG.sdf \
-—-evaluation-regions=GIAB-NA12878-confident-regions—-chr.bed.gz \
—-bed-regions=direct-best-WHVBC-CNG-NA12878-\
realigned-2018-01-30-test-observed-regions.bed-sorted.bed.gz \
—-vcf-score-field=P --sort-order=descending
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