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Abstract 1 

Skill learning involves the formation of stable motor patterns. In musical and athletic 2 

training, however, these stable patterns can also impede the attainment of higher levels 3 

of performance, and hence constitute a motor habit. We developed an experimental 4 

paradigm to induce a specific motor pattern in a sequence production task and 5 

investigated how it affected subsequent optimization over a 3-week training period. 6 

Participants initially practiced small segments of 2 to 3 finger movements, which were 7 

then combined to form longer sequences. This initial training induced a persistent 8 

chunking behavior, with shorter inter-press-intervals within a chunk and longer ones at 9 

chunk boundaries. We were able to induce chunking that was either beneficial or 10 

detrimental to performance, and could show that the degree to which these detrimental 11 

chunk structures were maintained, predicted lower levels of final performance. We also 12 

identified two optimization processes by which participants overcame the detrimental 13 

motor habits.  14 

Introduction 15 

Humans are capable of astonishing feats of motor skill in athletics, musical performance 16 

and dance. But what does it take to become an expert? The first obvious factor is 17 

practice: it is estimated that 10,000 hours of training are necessary to develop high-level 18 

motor skills (Ericsson et al., 1993; Hayes, 2013). Perhaps the motor system simply 19 

needs to gather a large amount of experience to optimize the motor commands that are 20 

necessary to achieve skilled movement. Thus, given enough practice, motor expertise 21 

may emerge automatically. 22 

However, simply practicing for many hours will not automatically lead to expert 23 

performance. There are numerous examples in which motor skill acquisition is slow or 24 

fails (Haith & Krakauer, 2018). This is sometimes attributed to the formation of habits: 25 

automatic (Hélie, Waldschmidt, & Ashby, 2010; Moors & De Houwer, 2006) and highly 26 

entrenched behavioral patterns that resist change through retraining (Ashby, Ell, & 27 

Waldron, 2003; Graybiel & Grafton, 2015; Hardwick, Forrence, Krakauer, & Haith, 2017; 28 

Jager, 2003; Seger & Spiering, 2011).  29 
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Animal models have been integral to the study of habit formation and its neural 30 

underpinnings (Jog, Kubota, Connolly, Hillegaart, & Graybiel, 1999; Robbins & Costa, 31 

2017; Smith & Graybiel, 2014, 2016; Wickens, Horvitz, Costa, & Killcross, 2007). 32 

However, the majority of animal experiments investigating this concept have focused on 33 

habits in the context of action selection – i.e. choosing what action to perform. In 34 

contrast, our paper addresses the question of habits in motor performance – i.e. habits 35 

in how to perform a chosen action. For example, a tennis player could have a habit in 36 

action selection, whereby she always chooses a forehand over a backhand to return a 37 

serve. Independently, she could have a motor habit, whereby she executes the 38 

forehand without rotating her hips.  39 

Critical to the definition of a habit is that the behavior is maintained, even though 40 

it is no longer adaptive (Adams, 1982; Dezfouli & Balleine, 2012; Dickinson, 1985). Most 41 

experiments, therefore, demonstrate the existence of a habit by teaching subjects a 42 

behavior under one reward contingency and show that it persists even when the reward 43 

contingency switches (Ashby et al., 2003; Smith & Graybiel, 2013b). In a similar way, 44 

we define motor habits here as a stable way of performing an action that is maintained, 45 

even if it prevents optimal performance. This does not imply that motor habits always 46 

have to be dysfunctional. Their automatic nature can be beneficial by increasing 47 

processing speed (Hardwick et al., 2017) or by reducing cognitive load (Haith & 48 

Krakauer, 2018; Hélie & Cousineau, 2011). Thus, habits can be either functional or 49 

dysfunctional, but their defining criterion is that they are resistant to change even under 50 

circumstance where a change would be beneficial.  51 

To investigate the influence of habit formation on motor skill learning, we 52 

introduce a novel experimental paradigm that enables us to induce beneficial and 53 

detrimental motor habits and to test whether participants can overcome these habits 54 

with practice. As an experimental model of skill acquisition, we used the discrete 55 

sequence production task (DSP), in which participants perform an explicitly known 56 

series of finger presses as fast as possible (Abrahamse, Ruitenberg, de Kleine, & 57 

Verwey, 2013; Verwey, 2001). Learning in this task depends on both cognitive and 58 

motor processes (Diedrichsen & Kornysheva, 2015; Wong, Lindquist, Haith, & 59 
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Krakauer, 2015). Initial performance relies strongly on forming a declarative memory of 60 

the sequence and can, therefore, be sculpted through explicit instructions (de Kleine & 61 

Verwey, 2009; Verwey, Abrahamse, & de Kleine, 2010; Verwey, Abrahamse, & 62 

Jiménez, 2009). An important determinant of the structure of declarative memory is 63 

“chunking” – the process by which participants separate a long sequence into smaller 64 

subsets (Verwey, 1996; Verwey & Dronkert, 1996) to aid memorization and improve 65 

performance by reducing memory capacity demands (Halford, Wilson, & Phillips, 1998; 66 

Miller, 1956; Wymbs, Bassett, Mucha, Porter, & Grafton, 2012).  67 

The structure of the declarative memory representation of a sequence may then 68 

constrain subsequent motor optimization processes (Bo & Seidler, 2009; Seidler, Bo, & 69 

Anguera, 2012). For example, it has been suggested that sequential movements may 70 

be optimized within a chunk, but not across chunk boundaries (Ramkumar et al., 2016). 71 

We hypothesized therefore that the initial cognitive chunking of the sequence influences 72 

the learning of execution-related skills in subsequent motor training. That is, we tested 73 

the hypothesis that cognitive chunking can evolve into a motor habit.  74 

We trained participants to perform the same set of 7 sequences, each consisting 75 

of 11 isometric keypresses. Training occurred on 14 separate days, spread over 3 76 

weeks. In the induction phase (Fig. 1a) we imposed a specific chunk structure by 77 

instructing participants to practice a set of 2-3 digit chunks. They then learned the 11-78 

digit sequences as being composed of four of the pre-trained 2-3 digit chunks. We 79 

induced chunk structures that were designed to be either aligned or misaligned with 80 

biomechanically easy or difficult finger transitions within the sequence and therefore 81 

were predicted to be beneficial or detrimental to performance. Each participant learned 82 

3 sequences using the misaligned chunk structure and 3 distinct sequences with the 83 

aligned chunk structure (Fig. 1d). To test for patterns of spontaneous chunking, a 84 

separate group of participants (control) was trained on the same sequences but did not 85 

receive chunk training and instead practiced the complete sequences during the initial 86 

training. 87 

In the subsequent optimization phase (Fig. 1a), participants were instructed to 88 

improve their performance through practice. During this phase, we did not make any 89 
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further mention of chunks (see Methods). Because participants performed the same 90 

sequences (but differed in the chunk structures with which they had learned the 91 

sequences), we could draw strong inferences about whether their performance was 92 

dictated by biomechanical demands (which were identical across participants) or 93 

whether it was affected by the chunk structure that was imposed during the induction 94 

phase. Using a Bayesian model, we estimated changes in chunk structure. This allowed 95 

us to investigate three questions: First, can explicit instructions at the beginning of 96 

training lead to stable motor performance patterns? Second, to what degree are these 97 

patterns maintained if they impede the participants’ ability to reach skilled performance 98 

– i.e. can these patterns be considered a motor habit? Finally, what are the optimization 99 

processes that allow participants to overcome bad habits (misaligned chunk structures) 100 

through practice?  101 

Results 102 

Over 15 days we trained 32 participants to produce sequences of 11 isometric 103 

keypresses from memory on a keyboard-like device. Participants were rewarded with 104 

points for executing sequences as fast as possible while keeping the proportion of 105 

incorrect keypresses in each block of trials below 15%. We maintained the participants’ 106 

motivation by gradually decreasing the movement time (MT) threshold at which they 107 

received points.  108 

 We manipulated how participants memorized the sequences by splitting the 109 

sequences into several chunks, each composed of 2-3 keypresses. We wanted to test 110 

whether the different ways of chunking (hereafter “chunk structures”) imposed in the 111 

induction phase (Fig. 1a) would affect performance optimization in the subsequent two 112 

weeks of training. On the first day, we trained participants to produce eleven 2-3 press 113 

chunks in response to a visually presented letter. For example, “A” corresponded to the 114 

chunk “3,2,1” (middle finger, index finger, thumb). At the end of the first day, participants 115 

could reliably produce the chunks from memory with an average accuracy of 92.7%. On 116 

days 2-4, we combined these chunks to form 7 different 11-press sequences. Each 117 

sequence was associated with a specific character symbol (e.g. $ see Supp. Table 1). 118 
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At the end of day 4, participants were able to recall all sequences from memory using 119 

the sequence cue with an accuracy of 92.5%.  120 

 

 

Figure 1. Experimental procedure. (a) Experimental timeline depicting the training at 

each stage. In the induction phase participants memorized chunks and sequences. In the 

optimization phase participants trained to perform these sequences as fast as possible 

from memory. In the last week of training, half of the participants were directly cued with 

the sequence, while the other half performed the sequences from memory. (b) Data from 

an independent dataset, in which participants performed all possible combinations of 2 

and 3-digit transitions. Matrix indicates the median inter-press interval (IPI) to produce the 

transition between pairs of keypresses. (c) Top: Example sequence containing a 3-digit 

run and two digit repetitions. Bottom: The sequence was instructed using two possible 

chunk structures. In the aligned structure, the chunk boundaries fell between repetitions, 

in the misaligned structure the chunk boundary broke up the run. (d) The assignment of 

chunk structures to sequences was counterbalanced between participants.  
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Chunk induction induces a stable motor pattern 121 

To assess whether the imposed chunk structure influenced participants’ motor behavior, 122 

we examined inter-press time intervals (IPIs). An increased IPI is commonly taken as a 123 

sign of a chunk boundary, as the cognitive processes (memory recall, action selection) 124 

involved in switching from one chunk to another require additional time (Verwey, 1999; 125 

Verwey et al., 2010). Hence, we would expect our participants to exhibit shorter IPIs 126 

between keypresses that belonged to a chunk imposed during day 1 (within-chunk IPIs) 127 

and larger IPIs for the boundaries between chunks (between-chunk IPIs). We indeed 128 

found significantly longer between-chunk IPIs compared to within-chunk IPIs in the first 129 

few days of training (Fig. 2a: days 2-4: t(31) = 7.728, p = 5.098e-09).  130 

In the optimization phase (day 5-14), we ceased to cue sequences using the 131 

alphabetic letters associated with the chunks. Instead, participants were asked to recall 132 

the sequences from memory in response to the symbolic sequence cues (e.g. “$”). 133 

From this point forward, no further reference to the imposed chunk structure was made. 134 

Across days 5-10, the difference between the within- and between-chunk IPIs remained 135 

stable; t(31) = 7.165, p = 2.351e-08 (Fig. 2a). Importantly, this difference cannot be 136 

attributed to biomechanical difficulty of the finger transitions. The within-chunk IPIs for 137 

one group were the between-chunk IPIs for the other group and vice versa; IPIs that 138 

were within-chunk for all participants (e.g. the first and last IPI of a sequence) were 139 

excluded from this analysis. In summary, even though after day 4 we cued the 140 

sequences only with a single symbol, participants persisted in performing the 141 

sequences consistent with the chunk structures imposed early in training. 142 
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In the last four days of training (days 11-14) we tested whether the persistence of 143 

the imposed chunk structure reflected a motor habit or whether it reflected memory 144 

recall. We split each experimental group into two subgroups: half of the participants 145 

continued to perform the sequences from memory, while the other half were cued using 146 

the numbers (Fig. 1a) that indicated the necessary keypresses, therefore removing any 147 

memory recall demands. Both the memory (t(15) = 4.865, p = 2.059e-04, Fig. 2b) and the 148 

cued subgroup (t(15) = 3.403, p = 0.004)  showed a significant difference between the 149 

within- and between-chunk IPIs and there was no reliable difference between the two 150 

subgroups in this effect (t(30) = -0.749, p = 0.460). Thus, removing the requirement for 151 

memory recall did not abolish chunking. Because none of the subsequent analyses 152 

showed any significant difference between the two subgroups, we will report their 153 

combined results for the remainder of the article. Overall, these results suggest the 154 

 

Figure 2. Within- vs. between-chunk inter-press intervals (IPIs). (a) Time 

course of IPIs that were within an instructed chunk (dashed line), or on the 

boundary between chunks (solid line). Asterisks indicate significant 

differences between average within- and between-chunk IPIs in the 

corresponding week (separated by dashed lines). Shaded area denotes 

between-subject standard error. (b) Difference of between- and within-chunk 

IPIs in the last week of training, split by whether participants had to recall the 

sequences from memory or were cued with the sequence numbers. Violin 

plots indicate distribution of individual participants, white circles indicate 

means.  
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explicit chunk training early in learning established a stable performance pattern that 155 

outlasted 10 days of subsequent practice.  156 

Misaligned chunk structure impairs performance 157 

To show that this initial instruction led to the emergence of a motor habit (as 158 

defined above), we needed to not only show that this initial instruction induced a stable 159 

temporal pattern of IPIs, but also that this pattern was maintained when it leads to 160 

slower execution speeds than other patterns. We therefore designed chunk structures 161 

that were predicted to be either beneficial or detrimental to performance. These 162 

predictions were based on a separate experiment (see Methods), in which we trained 7 163 

participants on all possible 2 and 3 keypress combinations over the course of 3 days 164 

and measured their execution speed. Transitions between two adjacent fingers could be 165 

performed faster than two repeated presses of the same finger (t(6) = 13.965, p = 166 

8.404e-06; see Fig. 1b). Given that the 2-3 press sequences hardly taxed the cognitive 167 

system, these results can be taken as a characterization of the biomechanical 168 

constraints of our specific task (see Methods).  169 

We used these results to design two different ways of separating the sequences into 170 

chunks. In one case, we placed chunk boundaries so that they were aligned with digit 171 

transitions that were performed more slowly (as measured in the independent dataset) – 172 

i.e. they were preferentially placed between digit repetitions (Fig. 1c). The time required 173 

to perform these difficult finger transition can therefore simultaneously be used to recall 174 

a next chunk, which should benefit overall performance. In the misaligned chunk 175 

structure, we placed chunk boundaries at digit transitions that can be performed quickly, 176 

thereby breaking up transitions between adjacent fingers or runs (Fig. 1c). Participants 177 

would, therefore, have to slow down their performance at these fast transitions to recall 178 

the next chunk, which should slow overall performance. Each participant learned 3 of 179 

the 7 sequences with a misaligned chunk structure and 3 sequences with an aligned 180 

chunk structure, with the assignment counterbalanced across groups. For the last 181 

remaining sequence, both ways of chunking were predicted to be equally fast, as both 182 

possible chunk structures were aligned with the biomechanical requirements (neutral 183 

chunk structure, Fig. 1d & Supp. Table 1). 184 
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We predicted that training on the misaligned chunk structure would lead to poorer 185 

performance. To quantify performance, we used movement time (MT), the time between 186 

the first finger press and the last finger release. Indeed, in the induction phase (days 2-187 

4), the sequences instructed with the misaligned chunk structure were performed slower 188 

than the sequences instructed with the aligned chunk structure (one-sample t-test: t(31) = 189 

2.693, p = 0.006; Fig. 3a). Hence, we were not only able to manipulate how participants 190 

performed a sequence, but also how well they could perform it. This difference was 191 

maintained in the second week of training (days 5-10: t(31) = 2.313, p = 0.014). 192 

Importantly, this shows that the stable pattern of IPIs indeed constitutes a motor habit.  193 

 

 

Figure 3. Change in chunk structure and performance for aligned and 
misaligned instructed sequences. (a) Differences in movement time (MT) 

between sequences instructed with an aligned or misaligned chunk structure. 

Asterisk indicates a significant difference from 0 (no difference). (b) Within- or 

between-chunk IPIs across training days, separated by whether they were in the 

aligned or misaligned instructed sequences. Error bars denote between-subject 

standard error. 
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Misaligned chunk structure is changed more rapidly 194 

Interestingly, the difference in performance between the sequences instructed with the 195 

aligned compared to the misaligned chunk structure was no longer significant in the last 196 

four days of training (days 11-14: t(31) = 0.764, p = 0.225; Fig. 3a). This suggests that 197 

participants were able to overcome the “bad” habit of a misaligned chunk structure to 198 

some degree. To investigate this, we separated the IPI analysis (Fig. 2a) by whether the 199 

intervals came from sequences that were instructed using an aligned or misaligned 200 

structure. While the difference between within- and between-chunk IPIs for “aligned 201 

sequences” was stable over the entire training period, the difference for the “misaligned 202 

sequences” disappeared in the last four days of training (Fig. 3b). The three-way 203 

interaction between day x within/between x instruction (aligned or misaligned) was 204 

significant (F(12,372) = 19.790, p < 1e-16). Thus, in the last four days of training 205 

participants seemed to diverge from the misaligned chunk structure while maintaining 206 

the aligned chunk structure.  207 

Tracking changes in chunking  208 

A disadvantage of the above analysis, however, is that we cannot discern how 209 

participants restructured their chunking and whether they completely abandoned the 210 

misaligned chunk structure. For a clearer understanding of how participants changed 211 

their chunk structure, we used a Bayesian model to estimate the probability of each 212 

possible chunk structure, given the observed series of IPIs, on a trial-by-trial basis 213 

(Acuna et al., 2014). The state variable in this Hidden Markov Model indicates which of 214 

the 1023 possible chunk structures is present on each trial. Using the expectation-215 

maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977; Welch, 2003), we 216 

simultaneously estimated the 9 free parameters of the model (for details see Methods), 217 

and the posterior probability for each possible chunk structure on each trial. We 218 

accounted for the effects of biomechanical difficulty by regressing out the patterns of 219 

IPIs across finger transitions (Fig. 1b) from each block before modeling. Importantly, our 220 

version of the model could capture separate learning-related changes to the within- and 221 

between-chunk intervals (Fig. 4a). Our method, therefore, allowed us to estimate 222 

participants’ chunk structure independently of the overall speed of performance. We 223 

confirmed this independence using simulated data (see Methods).  224 
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Figure 4b shows two examples of individual participants and sequences. In the 225 

first panel, the participant chunked the sequence according to the initial instructions at 226 

first, then inserted 1 or 2 additional chunk boundaries, and at the end of training 227 

performed the sequence as a single chunk. In comparison, the other participant 228 

maintained the instructed chunk structure for most of the training period.  229 
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Figure 4. Probabilistic chunking model fitted to example participant data. (a) 
The change of within- and between-chunk IPIs were modeled using two separate 

exponential functions across training. The density plot shows individual IPIs, with the 

color indicating the probability of a between- (pink) or within-chunk interval (blue). (b) 
Posterior probability for two example participants (for one sequence per participant) 

over the course of the experiment. Only the 4 most likely chunk structures out of the 

1023 possible structures are shown. The color scale indicates the posterior probability 

of a given chunk structure for each trial - with yellow indicating higher probabilities. 

The dashed vertical lines indicate the boundaries between training phases (Days 2-4; 

5-10 & 11-14). The black box (left) indicates the chunk boundaries as white lines 

within the 11-press sequence (max. 10 boundaries) for the chosen chunk structures. 

The first row indicates the instructed chunk structure (arrow). The other three rows 

illustrate other chunk structures that were highly probable at some point during the 

experiment. The distance measure expresses how many chunks need to be added or 

removed to transform one structure (in this case the instructed chunk structure) into 

the other.  
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Movement towards a single chunk structure 230 

To characterize changes in chunk structure, we first defined a metric that quantified the 231 

difference between two chunking structures: we counted the number of chunk 232 

boundaries that differ – i.e. the number of chunks that needed to be split or merged to 233 

transform one chunk structure into the other (Fig. 4b - distance). We then used this 234 

measure to calculate the distance between the chunk structure used by the participant 235 

and three reference structures of interest: (1) the aligned-, (2) misaligned, and (3) a 236 

structure that consisted of a single chunk. These distances defined a coordinate system 237 

that enabled us to visualize changes in chunk structure. We then projected participants’ 238 

estimated chunk structure into this space (Fig. 5a). On the horizontal axis, we plotted 239 

the expected distance of participants’ chunk structure to the single-chunk structure. 240 

Given the definition of our distance, this measure simply counts the number of chunk 241 

boundaries. On the vertical axis, we plotted how close the estimated chunk structure 242 

was to the aligned and misaligned chunk structure.  243 

Previous literature has suggested that participants group smaller chunks together 244 

with training (Kuriyama, Stickgold, & Walker, 2004; Ramkumar et al., 2016; Sakai, 245 

Kitaguchi, & Hikosaka, 2003; Song & Cohen, 2014; Verstynen et al., 2012; Verwey, 246 

1996; Wymbs et al., 2012), a process that may help to improve performance 247 

(Abrahamse et al., 2013; Ramkumar et al., 2016; Verwey, 1999, 2001; Verwey et al., 248 

2010; Verwey & Wright, 2014). In nearly all previous studies, however, the estimated 249 

number of chunks is biased by the overall movement speed. Using a modified 250 

probabilistic model (see Methods), we were able to disambiguate the two and critically 251 

test this assumption. We estimated the number of chunk boundaries for each participant 252 

averaged across sequences (the neutral sequence was excluded). Interestingly, on the 253 

2nd day, participants separated sequences into more chunks than the 4 chunks we 254 

instructed (Fig. 5a, t(31) = 4.224, p = 0.0002). This tendency continued on day 3, where 255 

participants tended to subdivide the sequences into even smaller chunks (Fig. 5b; day 2 256 

vs. 3: t(31) = 2.023, p = 0.052). After day three the number of chunk boundaries 257 

decreased as shown by a significant effect of day in a repeated measures ANOVA 258 

(F(11,341) = 11.710, p < 1e-16). However, even in the last phase of training, participants 259 

performed the sequences with an average of 2.9 chunk boundaries (we instructed 3 260 
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chunk boundaries). Thus, while there was a clear tendency towards merging chunks 261 

after an initial increase, participants did not perform the sequence as a single chunk, 262 

even after 3 weeks of practice.  263 

Participants abandoned the misaligned chunk structure to a greater degree  264 

Next, we probed how much participants diverged from the initial instructions. 265 

Participants slowly changed their chunk structure for both aligned and misaligned 266 

instructed sequences with training. The average distance to the instructed chunk 267 

structure increased systematically over time (repeated measures ANOVA, effect of day, 268 

F(12,372) = 7.055, p < 1e-16, Fig. 5c).  269 

Consistent with our IPI analysis (Fig. 3b), we observed that participants 270 

abandoned the misaligned chunk structure to a greater degree than the aligned chunk 271 

structure (Day x Instruction interaction: F(12,372) = 5.610, p < 1e-16). In the last four days 272 

of training, the sequences that were instructed with the misaligned chunk structure were 273 

more dissimilar to the misaligned chunk structure than the sequences that were 274 

instructed with the aligned chunk structure were to the aligned chunk structure: t(31) = 275 

2.294, p = 0.029 (Fig. 5c). Additionally, we found a significant Day x Instruction 276 

interaction (F(12,372) = 2.215, p = 0.011) for the distance to a single chunk (Fig. 5b), 277 

suggesting a stronger tendency towards performing a sequence as a single chunk when 278 

trained on the misaligned chunk structures. Together these results indicate that 279 

participants changed their chunking behavior more readily for sequences that were 280 

trained using the misaligned chunk structure than when trained using the aligned chunk 281 

structure. 282 

 Despite the divergence from the misaligned chunk structure with training, our 283 

analysis also revealed that participants did not overcome the influence of the instruction 284 

completely. In the third week, sequences produced after training with a misaligned 285 

chunk structure were still performed closer to the misaligned structure than to the 286 

aligned structure (t(31) = 6.962, p < 1e-16). This shows that even training on misaligned 287 

chunk structures had a lasting influence on participants’ motor behavior. 288 
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Figure 5. Changes in chunk structure with learning. (a) The average chunk structure over 

13 days of practice for aligned (red) and misaligned (blue) instructed sequences for the 

experimental participants. The results of the control group are shown in green. The horizontal 

axis represents the distance to the single-chunk structure, i.e. the number of chunk 

boundaries. The vertical axis shows the distance to the aligned or misaligned chunk structure. 

The crosses indicate the positions of the three reference structures (aligned, misaligned and 

single). Ellipses denote the between-subject standard error. (b) Average distance of 

participants’ chunk structure to the single chunk structure across days. (c) Distance to the 

instructed chunk structure. (d) Day-by-day changes in chunk structure. (e) Trial-by-trial 

changes in chunk structures within each day. Error bars indicate between-subject standard 

error. 
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Chunk structure “crystallizes” with training 289 

Would longer training allow participants to completely overcome the influence of the 290 

instruction and to perform all sequences as a single chunk? Although experiments with 291 

longer training are necessary to provide a definitive answer, our data indicate that this 292 

process, if occurring, may take a very long time. The amount of change in the chunk 293 

structure for each sequence reduced dramatically in the last week of training, 294 

suggesting that a stable motor habit formed. This phenomenon is akin to the 295 

development of an invariant temporal and spectral structure in bird-song, a process that 296 

has been termed “crystallization” (Brainard & Doupe, 2002). To estimate crystallization, 297 

we calculated the distance between the chunk structures from one day to the next (Fig. 298 

5d) and within each day from one trial to the next (Fig. 5e). The analysis was performed 299 

separately for each sequence and participant. Overall, both the day-to-day distance 300 

(F(11,330) = 18.794, p < 1e-16) and the trial-by-trial distance decreased significantly 301 

across training days  (F(12,456) = 13.245, p < 1e-16). Therefore, participants appeared to 302 

settle onto a stable pattern in the last week. Consequently, additional training would 303 

likely only lead to slow changes in their chunk structure.  304 

In summary, our analyses provide a clearer picture of how chunking changes 305 

with learning. Firstly, in line with previous research (Kuriyama et al., 2004; Ramkumar et 306 

al., 2016; Sakai et al., 2003; Song & Cohen, 2014; Verstynen et al., 2012; Verwey, 307 

1996; Wymbs et al., 2012) participants gradually moved towards performing the 308 

sequence as a single chunk by dividing the sequence into fewer chunks. Secondly, 309 

participants diverged from the instructions over time with a quicker deviation from the 310 

misaligned chunk structure. Nevertheless, they did not completely overcome the initial 311 

instruction, nor did they perform the sequences as a single chunk at the end of training. 312 

Considering that the chunk structure crystallized in the last four days of training, these 313 

results demonstrate the formation of a stable motor habit that is still influenced by the 314 

initial instruction.  315 

Spontaneously emerging chunk structures 316 

To investigate how participants would spontaneously chunk the sequences, we tested 317 

an additional control group (N=8), which did not receive any explicit chunk training. 318 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 12, 2019. ; https://doi.org/10.1101/338749doi: bioRxiv preprint 

https://doi.org/10.1101/338749
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

Rather, participants were presented with the entire sequences on the first day and had 319 

to memorize them without any reference to chunks (see Methods for details). Even 320 

though memorization was more difficult, the control group did not differ significantly from 321 

the experimental groups in terms of their explicit knowledge on day 4 (t(36) = 1.288, p = 322 

0.206), or in their overall MT across training (main effect of group: F(1,38) = 0.101, p =  323 

0.753; interaction between group and day (F(1,38) = 1.387, p =  0.168). 324 

Similar to the experimental groups, the control group initially subdivided the 325 

sequences into small chunks and then slowly combined them into larger chunks. The 326 

distance to a single chunk structure decreased significantly over days (F(12,84) = 17.977, 327 

p < 1e-16), and reached a level that was not statistically different from the experimental 328 

participants on the last day of training (t(38) = -0.940, p = 0.353). Interestingly, on the first 329 

day, the control group performed the sequences closer to the misaligned chunk 330 

structure than to the aligned chunk structure (t(7) = -2.799, p = 0.027). With training, 331 

participants then moved closer to the aligned chunk structure, as indicated by a 332 

significant change in the difference between the distance to the aligned and misaligned 333 

chunk structure across days (F(12,84) = 5.303, p < 1e-16). The control group also showed 334 

clear crystallization over time (see Figure 5d&e). Compared to the experimental groups, 335 

control participants showed a higher day-to-day and trial-by-trial change in the 336 

beginning of training, which then reduced more quickly (Group x Day interaction; day-to-337 

day: F(11,330) = 3.780, p = 4.003e-05; trial-by-trial: F(12,456) = 4.254, p = 2.167e-06). In 338 

summary, the control group showed similar behavioral patterns to the experimental 339 

participants, indicating that similar processes of habit formation are also at play in the 340 

absence of explicit instructions.  341 

Two optimization processes correlate with faster final performance 342 

How did these changes in chunk structure determine how fast participants could 343 

execute the sequences at the end of training? We first asked whether performing the 344 

sequences using larger chunks would facilitate performance. For each participant, we 345 

therefore regressed the MT for 6 sequences (last 4 days, excluding the neutral 346 

sequence) against the corresponding distance to the single chunk structure (Fig. 6a). 347 

The majority of the participants showed a positive relationship between the number of 348 
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chunks and MT: a one-sample t-test indicated that the individual slopes were 349 

significantly greater than 0 (Fig. 6a, t(31) = 6.104, p = 4.560e-07). This significant 350 

relationship was also found for the control participants (Fig. 6b, t(7) = 3.429, p = 0.006). 351 

Thus, performing the sequences with fewer chunks led to better performance.  352 

Secondly, we investigated whether performing the sequences in alignment with 353 

the biomechanical constraints was also beneficial. We regressed the MT for 6 354 

sequences in the last four days of training against the corresponding distance to the 355 

aligned chunk structure. On average the individual slopes again were significantly 356 

greater than 0, both for the experimental (Fig. 6c; t(31) = 2.220, p = 0.017), and control 357 

group (Fig. 6d, t(7) = 2.720, p = 0.015). Finding a better way of chunking (for the same 358 

number of chunk boundaries) therefore also improved performance.    359 
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To visualize the relationship between the chosen chunk structure and the MT in 360 

the last four days of training, we plotted the MT and chunk structure for each sequence 361 

and participant in the 2-dimensional space defined in Fig. 5a (Fig. 7). This visualization 362 

 

Figure 6. Relationship between the distance to the aligned/single chunk 
structure and MT. (a) Scatterplot between the normalized (per subj.) 

distance to a single chunk and normalized MT in the last four days of 

practice. A separate regression line is fitted to the 6 sequences for each 

participant. Red dots indicate sequences with aligned instructions, blue dots 

sequences with misaligned chunking instructions. (b) Same as a but for the 

control group. (c&d) same as a & b but for the normalized distance to the 

aligned chunk structure. 
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clearly shows the performance benefit from being closer to a single chunk as well as 363 

being closer to the aligned chunk structure.  364 

Overall, these results suggest that the two optimization processes - joining 365 

chunks and aligning the remaining chunk boundaries with biomechanical constraints - 366 

positively influence participants’ ultimate performance. Furthermore, sequences for 367 

which participants could not develop a better way of chunking were performed 368 

substantially slower.  369 

  

 

 

 

Figure 7. Relationship between chunking 
and speed (days 11-14). The x-axis indicates 

the distance to a single chunk and the y-axis 

the relative distance to the two instructed 

chunk structures. Each data point indicates 

the average chunk structure and MT of a 

single sequence and participant in the last 

four days of training. The diameter of each 

circle represents the MT with larger circles 

indicating slower performance.  
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The amount of musical training did not systematically affect chunk behavior 

One possible confound is the amount of musical training that participants’ were exposed 370 

to prior to the experiment. We found that participants with piano experience (55%) 371 

performed the sequences faster compared to the non-experienced participants (t(38) = 372 

6.297, p = 2.227e-07). This is perhaps not surprising, given the similarity of our task with 373 

playing the piano. Furthermore, the number of practice years significantly correlated 374 

with MT (t(38) = -3.850, p = 4.401e-04). Importantly, however, the amount of participants’ 375 

prior musical experience neither influenced the distance to the instructed chunk 376 

structure in the last week of training (t(30) = -0.291, p = 0.773; practice years: t(30) = 377 

0.059, p= 0.954) nor the distance to a single chunk (t(38) = -0.602, p = 0.551; practice 378 

years: t(38) = -0.380, p = 0.706). Therefore, musical training did not seem to have a 379 

qualitative influence on participants’ chunking behavior. 380 

Discussion 381 

In this study, we utilized chunking as a tool to investigate the role of motor habits 382 

in skill learning. We influenced the structure of the initial declarative sequence 383 

representation by manipulating how participants memorized them (Park, Wilde, & Shea, 384 

2004). By experimentally imposing two different chunk structures on the same physical 385 

sequence, we could make causal inferences on the effects of cognitive chunking on 386 

motor skill development. This is an important advance over previous observational 387 

studies (Ramkumar et al., 2016; Wright, Rhee, & Vaculin, 2010; Wymbs et al., 2012), 388 

which did not experimentally control how participants chose to chunk the sequence.  389 

This paradigm yielded three main results. First, consistent with previous studies 390 

(de Kleine & Verwey, 2009; Verwey et al., 2010, 2009; Verwey & Dronkert, 1996), our 391 

data demonstrate that a stable chunking pattern can be induced through cognitive 392 

manipulations during sequence learning. Importantly, participants did not completely 393 

overcome this imposed chunk structure, even after 2 weeks of additional training. 394 

Participants’ chunk structure crystallized towards the end of training, making it unlikely 395 

that the influence of the initial instruction would disappear completely with longer 396 

practice. Finally, the chunking structure remained stable, even when the task changed 397 

from a memory-guided to a stimulus-guided task. Thus, the initial instruction led to the 398 
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formation of specific motor patterns that were still clearly measurable after three weeks 399 

of training.  400 

Second, we tested whether this stable pattern of chunking could be considered a 401 

motor habit. To do so, we designed two different ways of instructing the sequence, one 402 

aligned and the other misaligned with its biomechanical requirements. This manipulation 403 

either facilitated or impeded performance in the first two weeks of practice. We could 404 

show that participants did not overcome the misaligned structure completely, even 405 

though it was detrimental to their performance. Thus, the stable chunking pattern meets 406 

the requirements (as laid out in our definition) for being called a motor habit. Therefore, 407 

we believe that studying sequential chunking can provide valuable insights into the 408 

neural systems underlying motor habits. Indeed, it has recently been suggested that 409 

chunking plays an integral role in the formation and expression of habits (Dezfouli, 410 

Lingawi, & Balleine, 2014; Graybiel, 2008) and is neurally represented in the dorsal 411 

lateral striatum as action “start and stop signals” (Barnes, Kubota, Hu, Jin, & Graybiel, 412 

2005; Graybiel, 1998; Jin, Tecuapetla, & Costa, 2014; Smith & Graybiel, 2013a, 2014). 413 

Finally, our results also indicate that the “bad” habit was not completely 414 

immutable. Participants were able to modify the misaligned chunk structure, and did so 415 

more rapidly than the aligned chunk structure. As a consequence, the performance 416 

detriment imposed by the misaligned instruction was no longer significant on the group 417 

level in the last week of training.  418 

We identified two ways by which participants overcame the limitation induced by 419 

the bad habit. After initially breaking up the instructed sequences into 5 chunks on 420 

average, participants then joined chunks together, decreasing the amount of additional 421 

time spent on chunk boundaries. While previous research has suggested that the size 422 

of chunks increases with training, these findings were usually conflated with the overall 423 

speed of the action (Solopchuk, Alamia, Olivier, Ze, & Zénon, 2016; Song & Cohen, 424 

2014; Wymbs et al., 2012). Using a Bayesian model to assess chunk structure 425 

independent of performance, we could demonstrate a positive relationship between 426 

chunk concatenation and execution speed, both in the experimental as well as in the 427 

control group that developed a chunking strategy without explicit instructions. However, 428 
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our results also indicate that participants did not merge all sequences into a single 429 

chunk after 3 weeks of training, but on average subdivided each sequence into 3-4 430 

chunks. This suggests that the number of motor actions that can be joined in a single 431 

chunk may be limited (Langan & Seidler, 2011; Ramkumar et al., 2016; Verwey & 432 

Eikelboom, 2003; Verwey, Lammens, & Van Honk, 2002).   433 

A second (and novel) finding was that participants also optimized performance by 434 

rearranging chunk boundaries in a biomechanically efficient manner. Consistent with 435 

our prediction based on the difficulty of individual digit transitions, placing chunk 436 

boundaries at digit transitions that take more time to execute resulted in faster 437 

performance for the full sequence. This optimization process was also observable in the 438 

control group that memorized and practiced sequences on their own terms.  439 

Conversely, we observed that sequences that were not chunked in line with 440 

these strategies were performed slower. Therefore, if a more beneficial way of chunking 441 

was not found, participants still showed a detriment, suggesting that other learning 442 

mechanisms cannot fully make up for a persistent bad habit. Considering that 443 

participants’ behavior became highly invariant in the last week of practice, we predict 444 

that some bad habit will remain and continue to influence participants’ performance 445 

even after prolonged training.  446 

In many motor tasks, there are numerous strategies and processes that can lead 447 

to excellent performance (Verstynen et al., 2012; Verwey et al., 2010). Examining 448 

Figure 7, one can observe that the shortest MTs were achieved anywhere in the space 449 

between the aligned and single chunk structure. Occasionally, good performance was 450 

also reached in other positions in chunk space. Participants adopted quite idiosyncratic 451 

chunk structures for each sequence at the end of training. This suggests that there may 452 

be considerable inter-individual variability in which technique works best for reaching a 453 

high level of performance. While we based our biomechanical constraint estimates on a 454 

representative sample, it might not perfectly reflect the constraints experienced by each 455 

participant. Alternatively, a number of ways of chunking may work approximately equally 456 

well, such that the cost of changing an established habit may outweigh the small benefit 457 

that could be gained from changing the structure. A similar observation can be made in 458 
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sports, where even top-ranked athletes use slightly different techniques to reach similar 459 

levels of performance. This variation may reflect individual biomechanical differences 460 

but also differences in instruction and training combined with subsequent habit 461 

formation.  462 

The establishment of a novel experimental paradigm to study motor habit 463 

formation will allow us to explore ways to encourage learners to abandon or change a 464 

current habit. While our attempt at accelerating this process by changing the task from a 465 

memory-based to a stimulus-based task was ultimately not successful, there are many 466 

other techniques that would be possible. In many disciplines, teachers have developed 467 

ways to help students overcome bad habits. For instance, the Hanon piano exercise 468 

helps students play difficult passages of a musical piece by breaking up learned 469 

phrases into new chunks to explore different rhythms. Playing a passage slower than 470 

intended has also been suggested to break bad habits (Chang, 2004). Overall, the 471 

general advice from the diverse literature on learning piano is to diversify training and to 472 

practice with careful awareness to prevent bad habits from forming (Sadnicka, 473 

Kornysheva, Rothwell, & Edwards, 2018). This suggests that changes in context and 474 

the exploration of novel ways of moving can aid performance and the abandonment of 475 

bad habits. 476 

While our experimental design enabled us to manipulate participants’ habits in a 477 

laboratory setting, sequence learning only captures a specific aspect of motor skill 478 

acquisition. Nevertheless, similar persistence of habits has been observed in other 479 

motor learning paradigms (Diedrichsen, White, Newman, & Lally, 2010). In bimanual 480 

coordination, for instance, Park et al. (2013) showed that an acquired pattern stayed 481 

remarkably stable even over 8 years of not performing the task.  482 

The current study shows that motor habits can be cognitively induced and can 483 

remain stable for extended time periods, even though they may prevent further 484 

performance gains. Furthermore, the study provides the first insights into the learning 485 

processes that are involved in overcoming a detrimental habit. Our experimental 486 

paradigm allows the further study of how we can aid the abandonment of bad habits. 487 
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Methods 488 

Participants 489 

Forty neurologically healthy participants were recruited for the study (30 females; ages: 490 

19 to 33). Thirty-two were randomly split into two experimental groups and the 491 

remaining eight participants were assigned to the control group. All participants were 492 

right-handed based on the Edinburgh Handedness Inventory and completed informed 493 

consent. On average, participants had received 4.68 (± 5.55) years of musical training, 494 

with 55% percent having played the piano for more than half a year. The study protocol 495 

was approved by the ethics board of the University of Western Ontario. 496 

Apparatus 497 

A custom-built five-finger keyboard was used. The keys were not depressible, but were 498 

equipped with a force transducer (FSG-15N1A, Sensing and Control, Honeywell) 499 

underneath each key which reliably measured participants’ isometric force production 500 

with a repeatability of <0.02N and a dynamic range of 16N (Wiestler & Diedrichsen, 501 

2013; Wiestler, Waters-Metenier, & Diedrichsen, 2014; Yokoi et al., 2017). The signal 502 

was amplified and sampled at 200 Hz.  503 

Discrete sequence production task 504 

We used a discrete sequence production task (DSP), in which participants had to 505 

execute sequences of 2, 3, or 11 keypresses as fast as possible while keeping their 506 

error rate under 15% within each block. A trial was termed erroneous if participants 507 

pressed a wrong key anywhere within the sequence. No pause between presses was 508 

required and thus some co-articulation between fingers emerged with faster execution. 509 

A finger press was detected when the given finger produced a force above 3N. 510 

Subsequently, a finger was detected as released when the force of the same finger fell 511 

below 1.5N. In order for a subsequent finger to be registered as pressed the previous 512 

finger had to be released. This rule prevented participants to press with more than 2 513 

fingers at once. The force magnitude applied to each key was represented by 5 lines on 514 

an LCD monitor, with the height of the line representing the force in the corresponding 515 

finger. A white asterisk (memory-guided conditions) or digit (cued condition) for each 516 

finger press was presented above the lines. Immediately after the press threshold was 517 
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reached, participants received visually and auditory feedback. If the press was correct, 518 

the white cue changed its color to green and a sound was presented. If the press was 519 

incorrect, the cue turned red and a lower-pitch sound was presented. After each trial, 520 

participants received points based on their accuracy and movement time (MT; the time 521 

between the first press and last release). Correct sequences performed faster than the 522 

current MT threshold were rewarded with 1 point. MTs that were 20% faster than the 523 

threshold were rewarded with 3 points. Incorrect presses or MTs exceeding the 524 

threshold resulted in 0 points. At the end of each block, participants received feedback 525 

on their error rate, median MT, points obtained during the block, and total points 526 

obtained during the session. In order to maintain motivation, we adjusted the MT 527 

threshold by lowering the threshold by 500ms after each block in which the participants 528 

performed with an error rate of 15% or lower and had a median MT faster than the 529 

current threshold. This manipulation resulted in an approximately stable overall success 530 

rate of 61% SD: 13% (0.27% 1pt, 0.34 % 3pt) across the entire experiment.  531 

Study design  532 

To impose a particular way of chunking, we first had participants memorize and perform 533 

smaller 2-3 press chunks. These chunks were then combined to form the training 534 

sequences. All participants were trained on the same 7 sequences, each consisting of 535 

11 digit presses (see suppl. Table 1). Each participant completed 14 training sessions in 536 

total: one session per day across a 3-week period (excluding weekends). Each session 537 

lasted approximately 1 hour, excluding the two initial sessions and the last session 538 

which took 2 hours. Participants completed at least 10 blocks of 28 trials per training 539 

day. Each block comprised 4 repetitions of each of the 7 sequences. Each trial started 540 

with the visual presentation of the sequence to be executed and was completed once 541 

the participants pressed the amount of presented numbers (irrespective of whether the 542 

pressed keys were correct or incorrect). 543 

To verify that the chunking behavior was influenced by the instruction, we used 544 

two different ways of chunking. We split each sequence either into one 2-digit and three 545 

3-digit chunks (2-3-3-3, misaligned) or into three 3-digit chunks and one 2-digit chunk 546 

(3-3-3-2, aligned). Each participant practiced half of the sequences with one chunk 547 
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structure and the other half of the sequences with the other chunk structure. This 548 

resulted in in two different sets of chunks (suppl. Table 2). The control group did not 549 

receive any explicit chunking instructions. 550 

Days 1-4: Chunk induction & initial sequence learning 551 

Experimental group: At the beginning of training the experimental groups were pre-552 

trained on a specific set of eleven 2- or 3-digit chunks (2 two-press chunks and 9 three-553 

press chunks). Participants received one of two different sets of chunks (suppl. Table 554 

2). Each chunk was consistently associated with a letter of the alphabet (A-K). 555 

Participants were explicitly told to learn this association. Each chunk was presented 556 

twice in succession. In half of the blocks, on the first trial of each chunk presentation, 557 

the numbers corresponding to the finger presses accompanied the letter on the screen 558 

while on the second trial participants had to recall the presses solely based on the letter 559 

(numbers were interchanged with stars). This trial order was reversed on every second 560 

block. To ensure that participants had memorized the chunks we added speeded recall 561 

blocks at the end of days 1 and 2. After practicing the 2-3 press chunks on day 1 and at 562 

the beginning of day 2, participants trained on the seven 11-press sequences. Each 563 

sequence was associated with a symbol (e.g. $; suppl. Table 1). Each sequence was 564 

presented twice in succession and participant had to perform the sequences from 565 

memory using the sequence cue on one trial or with the help of the chunk letters on the 566 

next trial. We tested participants’ sequence knowledge with a self-paced recall block at 567 

the end of days 2-4 (The first two participants did not perform the recall blocks).  568 

Control group: The control group did not receive any chunk training but instead trained 569 

directly on the seven 11-press sequences. On the first day, the control participants 570 

practiced the sequences using the digits presented on the screen. We matched the 571 

amount of training across groups by ensuring that all participants were required to 572 

produce the same number of finger presses. On the first day, the control participants 573 

were not aware that they would have to memorize the sequences later on. On days 2-4 574 

they were then instructed to memorize the sequences using the same sequence cues 575 

as the experimental groups and were subsequently tested on their sequence 576 

knowledge. The rest of the experimental design was identical for all groups. 577 
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Days 5-10: Optimization - Memory Recall 578 

For the days 5-10 of training participants practiced exclusively on the entire eleven-579 

press sequences and chunks were no longer mentioned or trained on. Each sequence 580 

was presented twice in succession and participants had to recall the sequence from 581 

memory on both trials using the sequence cue. 582 

Days 11-14: Optimization - Memory recall or cued presentation 583 

During the last four days of training, half of the experimental participants performed the 584 

sequences from memory while for the other half and for the control participants we 585 

removed the sequence cue and presented participants with the actual numbers that 586 

corresponded to the sequences (Fig. 1a). Participants completed an additional 587 

generalization test on day 15. The results of this test are not reported in this article. 588 

Biomechanical baseline study 589 

We conducted a separate study to determine the influence of biomechanical difficulty on 590 

the finger transition speed. 7 participants (5 females, ages: 21-27) participated in this 3-591 

day study. Participants executed all possible two-finger transitions (25) and three-finger 592 

transitions (125), each 8 times per day (each sequence was presented twice in a row). 593 

Each day participants completed 8 blocks with 150 trials each. The setup and 594 

motivational structure were identical to the main experiment. We found that on our 595 

device, finger repetitions (e.g. 2-2) were executed more slowly than presses of 596 

neighboring fingers (e.g. 2-1) To press the same finger twice, the force applied to the 597 

key had to first exceed the press threshold (3N), then go below the release threshold 598 

(1.5N) and then cross the press threshold again. This rapid alternation of forces takes 599 

time to produce. In contrast, for two adjacent fingers, the second finger can be already 600 

pressed before the finger is released (have already reached the press threshold), 601 

making it easier to rapidly produce this force pattern. Even though participants improved 602 

the overall speed from 622ms on the first to 522ms on the third day, the 5x5 pattern of 603 

relative IPI was stable across both participants (average correlation r = 0.689) and days 604 

(r = 0.894).   605 
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Aligned vs. misaligned chunk structures  606 

To determine how to design our sequences and chunk structures to aid or impede 607 

performance we used the finding from the biomechanical baseline study that finger 608 

repetitions (e.g. 11) are performed slower than presses of adjacent fingers (e.g. 12).  609 

We designed the sequences such that they would include both fast transitions 610 

(runs e.g. 123) and slow finger repetitions (113; suppl. Table 1). Depending on which 611 

chunk structure was instructed, these transitions would either fall on a chunk boundary 612 

or lie within a chunk. We counterbalanced this within and between participants, meaning 613 

that each participant trained on 3 sequences with the aligned chunk structure and 3 with 614 

the misaligned chunk structure (suppl. Table 1). One control sequence was added 615 

which included a within-chunk run for both groups. 616 

Statistical Analysis 617 

We recorded and analyzed the force traces for each finger. For each trial, we calculated 618 

the reaction time (RT, time between presentation and first crossing of the threshold), 619 

movement time (MT, time between first press and last release) and inter-press-intervals 620 

(IPIs; time between force peaks of two consecutive presses). All analyses were 621 

performed using custom-written code for MATLAB (the MathWorks). We excluded trials 622 

that contained one or more incorrect presses from our analyses, as well as trials with an 623 

MT or a press with an IPI three standard deviations above the mean. The data were 624 

analyzed using mixed-effects analysis of variance (mixed ANOVA), Pearson’s 625 

correlation and paired and one sample t-tests. All t-tests were two-sided. A probability 626 

threshold of p<0.05 for the rejection of the null hypothesis was used for all statistical 627 

tests. For the regression analyses as well as for calculating the MT difference between 628 

the sequences with misaligned and aligned instruction we normalized the data for each 629 

participant by subtracting the mean performance for each day due to a wide range of 630 

performance speeds.  631 

Probabilistic model for estimating chunk structure 632 

We used an extended version of a Bayesian model of chunking behavior, 633 

developed by Acuna et al. (2014). The algorithm uses a Hidden Markov Model to 634 

estimate the posterior probability that a specific chunk structure is active on a given trial. 635 
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As we had 10 digit transitions, each of which could either coincide with a chunk 636 

boundary or not, we had to consider 210-1= 1023 possible chunk structures. Between 637 

trials, the hidden Markov process could either stay in the same chunk structure with 638 

probability p or jump to any other chunk structure with probability (1-p)/1022. The IPIs 639 

were modeled as a Gaussian random variable, with a different mean and variance, 640 

depending on whether the transition was within- or between-chunks. In contrast to 641 

Acuna et al.(Acuna et al., 2014), where learning effects were removed in a 642 

preprocessing step using a single exponential, we modeled the learning within our 643 

model with two separate exponentials for the IPI mean. This captured the faster 644 

reduction in the between- compared to the within-chunk intervals (Fig. 2a). The 645 

inclusion of separate learning curves for within- and between-chunk IPIs into the model 646 

allowed us to estimate participants’ chunk structure independently of the overall 647 

performance speed. This is an important advance over previous methods that used a 648 

constant cutoff value to distinguish between within- and between chunk intervals. For 649 

these methods, faster performance would automatically decrease the number of chunk 650 

boundaries detected. To confirm that our algorithm did not show this bias, we simulated 651 

artificial data using parameter estimates for individual participants. We simulated 652 

sequences that switched between 4 different chunk structures, each of which contained 653 

4 chunks. Even though IPIs decreased by about 300ms with learning, the estimated 654 

average number of chunks remained stable across the entire simulated experiment 655 

(average distance to single chunk: 3.35).  656 

The model did not use errors and IPIs covariance structure, as these did not 657 

relate systematically to the imposed chunk structure even early in training. We used an 658 

Expectation-Maximization algorithm to simultaneously estimate the posterior probability 659 

of each chunk structure for each trial, as well as the 9 parameters of the model: 3 660 

parameters each for the exponential curve for the within- and between-chunk IPIs, 1 661 

variance parameter for each, and the transition probability p. 662 

As a preprocessing step, we regressed the IPIs for each subject against the 663 

average biomechanical profile, which was estimated as the average IPI profile for all 664 

possible 2 digit-presses from our biomechanical baseline experiment (Fig. 1b). The 665 
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fitted values were removed from the IPIs. Removing temporal regularities that could be 666 

modeled with biomechanics alone should result in chunking estimates that more closely 667 

reflect cognitive and learning influences. Qualitatively comparable results were also 668 

obtained using the raw IPIs, without biomechanical factors removed.   669 

Expected distance 670 

We quantified how much participants changed their chunking behavior over time by 671 

calculating the expected distance between two estimated chunk structures. The 672 

distance between two chunk structures, d(i,j), was defined as how many of the 10 673 

transitions would have to change from a chunk boundary to a non-boundary (and vice 674 

versa) to transform one structure into the other (for an example, see Fig. 4b). A distance 675 

of 0 would indicate no change and the average distance between two randomly chosen 676 

chunk structures is 5. Because we did not know for certain which chunk structure 677 

participants adopted in each trial, we calculated the expected distance. For this, we first 678 

calculated a 1023 X 1023 matrix containing the distances between any chunk structure 679 

i, and chunk structure j. From the posterior probability distribution, we could then derive 680 

how likely each of these chunk structure changes was, p(i,j). The expected value of the 681 

distance was then simply calculated as  682 

𝐸(𝑑) = ∑ ∑ 𝑝(𝑖, 𝑗)𝑑(𝑖, 𝑗)+,-.
/0+

+,-.
10+ .  683 

Code availability 684 

Bayesian algorithm code available on GitHub: 685 

https://github.com/jdiedrichsen/chunk_inference.  686 

Custom MATLAB code is available from the corresponding author on request. 687 

Data availability 688 

The datasets generated during and analyzed during the current study are available from 689 

the corresponding author on request. 690 
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Supplementary Table 1. Sequences and chunk 
structures for the experimental group. Displayed 

are the 7 sequences used together with the 

associated sequence cue. The black vertical lines 

indicate the chunk boundaries that were imposed. 

Chunk structures were either aligned with the 

biomechanical requirements (red) or misaligned 

(blue). The last sequence (green) was included as a 

control sequence that was chunked either with a 3-

3-3-2 or 2-3-3-3 structure but performance wise 

should lead to similar speeds as for both chunk 

structures the boundaries were placed at 

biomechanically slow transitions. This sequence 

was not included in the analyses. Half of the 

participants were instructed based on “Group1” 

assignment of aligned and misaligned chunk 

structures and the other half based on “Group2” 

assignment 
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