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ABSTRACT

We utilized a cell-level approach to examine glycolytic pathways in the DLPFC of
subjects with schizophrenia (n=16) and control (n=16) subjects and found decreased mRNA
expression of glycolytic enzymes in pyramidal neurons, but not astrocytes. To replicate these
novel bioenergetic findings, we probed independent datasets for bioenergetic targets and found
similar abnormalities. Next, we used a novel strategy to build a schizophrenia bioenergetic
profile by a tailored application of the Library of Integrated Network-Based Cellular Signatures
data portal (iLINCS) and investigated connected cellular pathways, kinases, and transcription
factors using Enrichr. Finally, with the goal of identifying drugs capable of “reversing” the
bioenergetic schizophrenia signature, we performed a connectivity analysis with iLINCS and
identified peroxisome proliferator-activated receptor (PPAR) agonists as promising therapeutic
targets. We administered a PPAR agonist to the GIuN1 knockdown model of schizophrenia and
found it improved long-term memory. Taken together, our findings suggest that tailored
bioinformatics approaches, coupled with the LINCS library of transcriptional signatures of
chemical and genetic perturbagens may be employed to identify novel treatment strategies for

schizophrenia and related diseases.

Key words: bioenergetic/glycolysis/iLINCS/pioglitazone/schizophrenia


https://doi.org/10.1101/338392
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/338392; this version posted June 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Schizophrenia is a devastating illness that affects over 2 million people in the U.S. and
displays a wide range of symptoms (1-6). Cognitive impairment is a hallmark feature of the
illness, and antipsychotics have poor efficacy in treating cognitive decline (7, 8). The
dorsolateral prefrontal cortex (DLPFC) is a brain region heavily implicated in the
pathophysiology of schizophrenia, possibly contributing to defects in working memory (9). A
variety of abnormalities have been reported in the DLPFC of schizophrenia patients, including
changes in gene expression, cell density, receptor binding, and cerebral blood flow (10-12).
There is also accumulating evidence of bioenergetic dysfunction in chronic schizophrenia, which
has recently been reviewed and highlights a number of abnormalities associated with glucose
metabolism, the lactate shuttle, and bioenergetic coupling (13). There is also evidence for
genetic linkage between enzymes that control glycolysis in schizophrenia including 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2) and hexokinase 3 (HK3),
suggesting that genetic risk for this iliness includes bioenergetic substrates (14). Interestingly,
studies using cell-level techniques have demonstrated complex bioenergetic changes, including
decreases in mitochondrial oxidative energy metabolism genes in dentate granule neurons
(n=22) and in layer 3 and 5 pyramidal neurons from the DLPFC (n=36 and n=19)(15-17).
Decreases in metabolic transcripts included lactate dehydrogenase A (LDHA), nicotinamide
adenine dinucleotide dehydrogenases (NADH), and ATP synthases. We have also recently
demonstrated decreases in glycolytic enzymes (HK1, and phosphofructokinase muscle type,
PFKM) and glucose transporters (GLUT1 and GLUT3) in pyramidal neurons, but not astrocytes,
in the DLPFC of schizophrenia subjects (n=16)(18). While examining the expression of
individual targets is important, employing a signature based bioinformatics approach may help

elucidate the pathophysiology of large biological networks.
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Complex illnesses such as schizophrenia are rarely a consequence of an abnormality in
the expression of a single gene, but rather a combination of abnormalities in complex cellular
networks. This study employs a novel strategy to derive and analyze molecular signatures of
schizophrenia by using the Library of Integrated Network-based Cellular Signatures (LINCS).
LINCS is an online reference library of cell-based perturbation-response “signatures” of both
chemical (small drug-like molecule) and genetic (gene knockdown) perturbations, employing a
wide range of assay technologies cataloging diverse cellular responses at the transcriptome,
proteome and other levels (19). This reference library used here includes data on the
expression of 978 landmark genes (L1000 genes) following the genetic knockdown of genes in
various cell lines (with the changes in the L1000 genes from a single genetic perturbation called
“knockdown signatures”). The rationale is that the selected landmark genes would capture most
of the information contained within the entire transcriptome, allowing researchers to examine
disease associated changes at the network level (20). Over 100 cell types have been used to
build the LINCS database, and model systems include proliferating immortal cell lines, primary

cultures, and induced pluripotent stem cells (iPSCs)(19).

While other bioinformatics resources are also used, our strategy heavily utilizes the

iLINCS web portal for querying and complex analyses of LINCS data (http://ilincs.org) to

systematically explore the biological underpinning of schizophrenia associated gene expression
changes and identify candidate therapeutic strategies from network based molecular changes
(Figure 1). We began by modeling a schizophrenia bioenergetic profile in iLINCS based on two
new cell-level findings from this study (PFK liver type, PFKL, and glucose-6-phosphate
isomerase, GPI), previously identified gene expression changes from cell-level studies (HK1,
PFKM, LDHA)(15, 18), and a published genetic linkage study (PFKFB2)(14). The genes
comprising our schizophrenia bioenergetic profile are involved in both glycolysis and the lactate

shuttle, and are referred to as “seed genes” (Table 1). iLINCS may be queried for each seed
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gene to determine if a knockdown signature has been catalogued in the database. By clustering
the seed gene knockdown signatures in iLINCS, we are able to analyze the connectivity of the
knockdown signatures (and thus establish a schizophrenia bioenergetic profile), identifying
groups of L1000 genes that change concordantly following genetic perturbation. Furthermore,
we can perform Enrichr analyses on these genes to gain perspective on bioenergetic pathology,

describe potential multisystem pathological mechanisms, and inform pharmacological studies.

Next, we aimed to identify therapeutic compounds with the potential to “reverse”
glycolytic deficits as well as the associated changes in the L1000 genes. In order to select a
potential drug intervention for preclinical testing, we relied on the ‘connectivity’ analysis to reveal
positively (concordant) and negatively correlated (discordant) chemical (small molecule) and
genetic perturbations. We developed a discovery based workflow to generate a list of small
molecule perturbagens with L1000 transcript changes in the opposite direction of our
knockdown signatures (based on concordance values from iLINCS, i.e. generating an
“inverse/discordant signature”) (Figure 1). iLINCS provides over 40,000 transcriptomic profiles
(signatures) of cell lines following treatment with chemical perturbagens such as FDA approved
drugs, chemical probes, and screening library compounds including those with clinical utility and
known mechanisms of action (19). FDA approved drugs generated from this “knockdown
signature connectivity” analysis could serve as candidates for therapeutic treatment in a
preclinical model of schizophrenia. Peroxisome proliferator-activated receptor (PPAR) agonists
had multiple hits in our analysis and similar drugs in this class are currently FDA approved for

use in humans (21).

One of the leading hypotheses of the etiology of schizophrenia is glutamatergic
hypofunction (22-24). N-methyl-D-aspartate subtype glutamate (NMDA) receptor dysfunction is
strongly implicated in the pathophysiology of schizophrenia, particularly in human

pharmacological studies (25-28). Converging evidence suggests that NMDA receptor
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hypofunction may actually reflect a dysregulation at the receptor level, including mutations in
NMDA receptor subunits (29). Several studies have found associations between the gene that
encodes the GIluN1 subunit of the NMDA receptor (Grinl) and schizophrenia (30-38). The
GluN1 knockdown mouse model has a ~90% global reduction of normal functioning NMDA
receptors, achieved by targeted insertion of 2 kb of foreign DNA into intron 19 of the Grinl gene
(39). Additionally, mice with mutations in the Grinl gene have well-characterized behavioral
endophenotypes for schizophrenia; this includes impairments in executive function and working
memory, increased stereotypic behavior, decreased anxiety-like behavior, decreased
sensorimotor gating, and abnormal social interaction (40). Several of these behaviors are
attenuated with typical and atypical antipsychotics at doses similar to those used in
pharmacological models of schizophrenia (MK-801 or phencyclidine models), including
hyperactivity, stereotypy, and sociability deficits (39, 41). Therefore, the GIuN1 knockdown
mouse model is a viable and useful tool for studying the interface of NMDA receptor

hypofunction, bioenergetics, and schizophrenia symptomology.

There is evidence of abnormal bioenergetic pathways in GIuN1 knockdown animals and
other models of impaired synapses. For example, there is strong evidence linking lactate shuttle
defects to NMDA receptor dysfunction in MK-801 treated rats and in GIuN1 subunit knockdown
mice (42-44). Dysregulation of the energetic flow of lactate inhibits long term potentiation (45,
46), and may contribute to cognitive deficits in GIuUN1 knockdown mice. Additionally, when
lactate flow from astrocytes to neurons is stimulated, or when lactate is introduced to
extracellular space, it enhances working memory and memory formation in rats (45-47). Thus,
drug-induced stimulation of lactate production coupled with behavioral studies in GIuN1
knockdown mice could help elucidate the role of bioenergetic abnormalities in cognitive

dysfunction in schizophrenia.
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Pioglitazone is a member of the thiolazinedione (TZD) drug family (that appeared in our
knockdown signature connectivity analysis) that is approved to treat type 2 diabetes and
hyperglycemia (48). Pioglitazone is a synthetic ligand for PPARYy, a nuclear receptor that is
responsible for the regulation of several bioenergetic functions such as lipid homeostasis,
adipocyte differentiation, and insulin sensitivity (48, 49). Interestingly, PPARy agonists have the
ability to reduce oxidative stress (via mediating nitric oxide production) as well as modifying
mitochondrial metabolism by interacting with proteins associated with mitochondrial function
(mitoNEET proteins)(49-53). Activation of PPARYy via pioglitazone can also alter the
transcription and expression of GLUT1, leading to changes in glucose uptake through PPARy
and other mechanisms (48, 54). Thus, we hypothesize that treatment with pioglitazone will help
restore cognitive endophenotypes associated with schizophrenia in the GIuN1 knockdown
model via stimulation of metabolic pathways.

In our final experiment, we treated animals with pioglitazone and measured various
behavioral outputs that are endophenotypes for schizophrenia (55, 56). First, we assessed
locomotor activity, stereotypic behaviors, and mania-like behavior. Next, we assessed executive
function and cognitive flexibility using the puzzle-box test. This test requires the mouse to
display problem-solving behavior as well as short- and long-term explicit memory to reach a
goal area. To assess pioglitazone’s effect on sociability, we used an age- and sex-matched
mouse as a social stimulus (57). Finally, we assessed sensorimotor gating using the pre-pulse
inhibition (PPI) of acoustic startle paradigm (58). Taken together, these studies provide a
bioinformatics translational approach to identify novel treatment strategies through the use of
the LINCS library of signatures and connectivity analysis, coupled with the analyses of primary

data and published work (to extend the set of ‘seed’ genes).
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RESULTS
Laser capture microdissection-quantitative polymerase chain reaction studies

We used laser capture microdissection coupled with quantitative polymerase chain
reaction (LCM-gPCR) to assess mRNA expression of our metabolic targets in enriched
populations of astrocytes and pyramidal neurons in schizophrenia and control subjects (Table
S1 and S2). We have previously shown our LCM samples are enriched for specific cell-
subtypes using neurochemical markers (11, 18, 59, 60). No significant associations were found
between pH, post-mortem interval (PMI), RNA integrity number (RIN), or age and any of our
dependent measures. In a sample enriched for pyramidal neurons, we found decreases in PFKL
(27%, p=0.010) and GPI (26%, p=0.015) mMRNA expression (Figure 2, p<0.05). We did not
detect any significant changes in mMRNA expression in samples enriched for astrocytes (Figure
S1). To assess the use of antipsychotic medication in our patient population, we reanalyzed our
significant cell-level targets with and without antipsychotic naive subjects. All findings remained
significant without these subjects (PFKL p=0.037, GPI p=0.034) (Figure S2, panels A and B).
We also assessed the effects of antipsychotics on PFKL and GPI across multiple brain regions
in the Stanley Medical Research Institute genomics database and detected an effect on GPI
(p=0.006, fold change=1.09), but not PFKL (p=0.09, fold change=1.06). However, this effect
was in the opposite direction of our findings, suggesting the decreased expression in pyramidal
neurons in schizophrenia is not due to a medication effect. Additionally, we assessed the effects
of ethanol use, smoking, and laterality on our dependent measures in schizophrenia subjects
via secondary analyses of schizophrenia subjects on and off ethanol, smokers/nonsmokers, and
left/right brain and did not detect any effects (Figure S2, panels C-H).
Generation of schizophrenia bioenergetic profile (seed genes)

We built a schizophrenia bioenergetic gene profile of 6 glycolytic genes based on data
from our cell-level postmortem findings (HK1, PFKM, PFKL, GPI) and the literature (LDHA,

PFKFB2). These “seed genes” were used in subsequent “lookup” replication studies, iLINCS
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clustering analyses (followed by Enrichr analysis), and iLINCS connectivity analyses (drug
discovery analysis using “inverse/discordant” signatures). Figure 1 summarizes the
bioinformatic work flow for both clustering and connectivity analyses.

“Lookup” replication studies for seed genes

To replicate our bioenergetic findings, we performed in silico validation studies (“lookup”
studies) using three independent datasets (Stanley Medical Research Institute (SMRI), Mount
Sinai School of Medicine (MSSM), and a frontal cortical neuron RNAseq dataset generated from
IPSCs of a patient with schizophrenia and DISC1 mutation (61)). Table 2 summarizes findings
from this study and previous studies in our laboratory, as well as the mRNA expression of our
selected seed genes (LDHA, HK1, PFKM, PFKL, GPI, PFKFB2) in each dataset.

LDHA is significantly downregulated in both the SMRI (-1.11 FC, p=0.022) and frontal
cortical neuron mRNA (-1.64 FC, p=0.018) dataset, while PFKFB2 was downregulated in the
MSSM microarray dataset (-1.31 FC). Many seed genes were unchanged in the SMRI and
MSSM datasets. However, the SMRI database is an aggregate of 5 brain regions and the
MSSM dataset utilized blended samples from the whole DLPFC, while our findings are from
cell-level studies. This is supported by 5/6 seed genes being above our fold change threshold in
the cell-level frontal cortical neuron dataset.

Generation of seed gene knockdown signatures

We used iLINCS (http://ilincs.org) to retrieve knockdown signatures for each seed gene
individually. Each seed gene knockdown signature (GPI knockdown signature, HXK1
knockdown signature, PFKM knockdown signature, PFKL knockdown signature, LDHA
knockdown signature, PFKFB2 knockdown signature) is comprised of the transcriptional
changes of 978 landmark genes (L1000 genes) when that seed gene is knocked down (Figure
S3). Only signatures designated to be reproducible and self-connected ("gold") by the Broad
Institute are available. When multiple shRNAs are available for gene knock-down experiments,

consensus gene knock-down signatures, as defined by iLINCS are used. To minimize
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variability, we compared signatures for seed genes using one consistent cell line (vertebral-
cancer of the prostate, VCAP).
iLINCS clustering analyses

For unsupervised clustering analyses, we used ILINCS to cluster the union of the top 50
differentially expressed L1000 genes from each of the 6 seed gene knockdown signatures using
Pearson correlation coefficients (Figures 3 and 4). Due to gene overlap between top 50
differentially expressed L1000 genes in seed gene knockdown signatures, this resulted in the
clustering of expression data for 260 L1000 genes. We next used the dendrogram function in
iLINCS to select panels of mMRNAs with increased expression across clustered seed gene
knockdown signatures (“panels of clustered upregulated genes”) and with decreased expression
across clustered seed gene knockdown signatures (“panels of clustered downregulated genes”).
These clustered gene panels (Table S3) were carried forward to two separate Enrichr analyses.
Enrichr analyses of panels of clustered upregulated genes

We performed Enrichr analyses on panels of clustered upregulated genes from our
iLINCS clustering analysis. Top cell signaling pathways included forkhead box O (FOXO),
mitogen-activated protein kinase (MAPK), and Wnt signaling pathways (Figure S4). These
pathways often interact and all have important roles in cell metabolism, inflammation, cellular
proliferation, oxidative stress prevention, and apoptosis (62-65). Analysis of gene ontology (GO)
cellular components for our panels of clustered upregulated genes included several microtubule
and cytoskeletal components (Figure S5), while the top hits for GO molecular function included
protein kinase C (PKC) and MAPK binding (Figure S6). Our protein-protein interactions analysis
(Figure S7) yielded multiple hits for protein kinases such as RPS6KA3, MAPK14, GSK3B, and
CDK1. We also found hits for proteins involved in protein degradation and protein ubiquitination
(CUL1 and SKP1), chromatin remodeling (PCNA and HDACL1), and an estrogen receptor
(ESR1).

We next probed for kinases that when knocked down in various cell lines, have
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upregulated genes similar to the panels of clustered upregulated genes from our iLINCS
clustering analysis. Top hits included several serine/threonine-protein kinases (AKT1, MAP2K2,
PTK2, ATR) as well as G-protein coupled receptors (GPCRSs) involved in energy homeostasis
(NMURZ2, FFARL1) (Figure S8). We next probed for transcription factors that had occupancy
sites for our panels of clustered upregulated genes. We found several transcription factors that
play important roles in developmental processes, such as WT1, TRIM28, NFIB, NUCKS1, and
TCF3 (Figure S9). Finally, our database of genotypes and phenotypes (dbGaP) analysis
implicates diabetes as the most relevant phenotype (Figure S10). A summary of these findings
can be found in Table 3.

Enrichr analyses of panels of clustered downregulated genes

We performed Enrichr analyses on our panels of clustered downregulated genes from
our iLINCS clustering analysis. Top cell signaling pathways include pathways relevant to
immune/inflammatory responses and cell cycle regulation (Figure S11). The top 5 hits in our GO
cellular components analysis for our panels of clustered downregulated genes implicated
mitochondrial function (Figure S12), while the top hits for GO molecular function included
several RNA polymerase promotors/activators (Figure S13). Our protein-protein interactions
analysis (Figure S14) yielded multiple hits for chromatin remodeling proteins (PCNA, HDAC1,
HDAC2, CREBBP). We also found hits for proteins involved in immunity/cell cycle regulation
(NFKB2, CSNK2A1, MYC), and ubiquitination (BRCAL).

We next probed for kinases that when knocked down in various cell lines, have
downregulated genes similar to our panels of clustered downregulated genes from our iLINCS
clustering analysis. Top hits included several kinases involved in fatty acid metabolism and
energy homeostasis (RXRA, PPARG, PXK), cellular growth (RYK, WEE1, ABL2), GPCRs
(GPR37, LPHN1), and a glucocorticoid receptor (NR3C1) (Figure S15).

We next probed for transcription factors that had occupancy sites for our panels of

clustered downregulated genes. We found several transcription factors that play important roles
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in cell proliferation (MYCN, MYC, E2F1, E2F4, FOXM1), development (NUCKS1, POU5F1),
and erythroid function (EKLF) (Figure S16). Finally, our dbGaP analysis implicates carcinoma,
memory, and Grave’s Disease as the most relevant phenotypes (Figure S17). A summary of
these findings can be found in Table 3.

iLINCS connectivity analyses (drug discovery)

Using the connected signatures function in iLINCS, we identified chemical perturbagens
that produce L1000 signatures that are highly discordant (anti-correlated) with our seed gene
knockdown signatures. We generated concordance values (defined in terms of the Pearson
correlation coefficients for the gene expression vectors representing the signatures) for every
perturbagen in the database, comparing each seed gene knockdown signature to each
perturbagen signature separately. The top 20 discordant perturbagen for each seed gene
knockdown signature are shown in Table S4 (GPIl and PFKM had less than 20 discordant
chemical perturbagens, PFKFB2 had none). HK1 and PFKL generated the top 20 perturbagens
with the highest discordance (average of -0.4). LDHA, GPI, and PFKM had perturbagen
signatures with an average discordance of -0.2 to -0.3. PFKFB2 had no significantly discordant
perturbagen signatures.

Next, we combined all discordant perturbagens from Table S4 and reported the top 20
overall discordant perturbagen signatures across all seed gene knockdown signatures (Table
S5). After removing duplicate hits, 12 unique perturbagens remained (Table 4). Hits included
PPARYy agonists (troglitazone and genistein), valproic acid (a voltage-gated sodium channel
blocker and HDAC inhibitor), typical antipsychotic drugs (trifluoperazine, thioridazine, and
fluphenazine), and two PI3K inhibitors (Wortmannin and LY-294002). We selected the FDA
approved PPARYy agonist pioglitazone for preclinical trials due to its ability to regulate glycolytic
pathways that are abnormal in schizophrenia, as well as evidence that pioglitazone treatment
improves negative symptoms in patients (cognition has not been studied)(54, 66).

Confirming bioenergetic defects in GluN1 knockdown mice
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In a cohort of mice separate from our pioglitazone studies, we used a mouse anti-PSD-
95 antibody to capture PSD-95 protein complexes from samples (3 male WT, 3 male GIuN1
knockdown). The affinity purified samples were enriched for PSD95 when compared to the
supernatant and total homogenate (Figure 5A). Following mass spectrometry on affinity purified
samples, we analyzed the top 20 increased proteins in GIUN1 knockdown mice relative to WT
mice with Ingenuity Pathway Analysis (IPA). The top 5 implicated pathways in the GIUN1
knockdown mice were gluconeogenesis, glucose metabolism, pyruvate and citric acid
metabolism, metabolism of carbohydrates, and glycogen storage disease (Figure 5B). Finally,
we examined mMRNA expression of metabolic transporters (MCT1, MCT2, MCT4, GLUT1,
GLUT3) using real time quantitative polymerase chain reaction (RT-gPCR) in a cohort of GIUN1
knockdown and wildtype (WT) mice (n=5 per group). We found significant decreases in GLUT1
(47%, p=0.018) and GLUTS3 (34%, p=0.013) in GIuN1 knockdown mice compared to WT
controls (Figure 5C), confirming that a strategy to increase glucose uptake capacity might be a
successful intervention for schizophrenia.

GluN1 knockdown pioglitazone studies

For pioglitazone studies (in a different cohort of mice, Table S6), we assessed caloric
intake and body weight to ensure pioglitazone treatment did not have adverse effects.
Pioglitazone did not affect the intake of chow or the body weight of the animals (p=0.5096)
(Figure S18).

In the puzzle box assay, we found that one week of pioglitazone treatment decreased
(improved) time to perform task in GIuN1 mice in Trial 1 (training, p=0.011) and Trial 4 (long-
term memory, p=0.017) (Figure 6, Panels C and D).

In the open field test, we detected a genotype effect on locomotor activity, stereotypy,
and vertical activity (p< 0.0001, F (1, 23) = 107.3, F (1, 23) = 363.4, and F (1, 23) = 34.00
respectively) (Figure 7, Panels B-D). GIuN1 knockdown mice, when compared to WT

littermates, displayed an increase in hyperlocomotion, as quantified by an increase in total
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distance traveled measured in centimeters, which was accompanied by an increase in overall
stereotypic movements and rearing. We did not detect changes in hyperactivity, stereotype, or
vertical activity in GIuN1 knockdown mice following pioglitazone treatment (Figure 7, Panels B-
D).

In the elevated plus maze, we detected an effect of genotype (p< 0.0001). GluN1
knockdown animals spent significantly more time in the open arms than did WT mice,
regardless of pioglitazone/vehicle treatment (Figure S19). Increased time in the open arm
indicates a lack of anxiety and is observed in mouse models of mania-like behavior. We did not
detect any significant differences in genotype or drug treatment in our social paradigm (Figure
S20).

Finally, in measures of sensorimotor gating, we detected an effect of genotype and
genotype by drug interaction at 4 decibels (dB) (p=0.0173 and p=0.0002). Pioglitazone-treated
GluN1 knockdown (GluN1pio) animals had decreased PPI compared to all other groups (Figure
8, Panel A). At 8 dB we see an effect of genotype (p=0.0006). GluN1pio mice have significantly
lower PPI than either WT group (Figure 8, Panel A). At 16 dB we also see an effect of genotype
(p=0.006). GluN1pio mice have significantly lower PPl than do WTpio mice (Figure 8, Panel A).
We did not detect any differences in the acoustic startle response between any groups,
although GIuN1 knockdown animals tended to have higher startle responses (Figure 8, Panel

B).
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DISCUSSION

Big biomedical data resources, such as LINCS, open new avenues for innovative
analyses of primary data generated in conjunction with focused, hypothesis driven research
being undertaken in individual research labs. Interdisciplinary studies that combine such
resources and research expertise in neuroscience, bioinformatics, and data science can greatly
enhance our ability to generate novel hypotheses and offer key insights into the mechanisms of
human disease. The goal of this study was 4 parts: first, to further characterize changes in
glycolytic enzyme expression at the cellular level in schizophrenia and to explore these findings
in available in silico databases; second, to analyze the connectivity of bioenergetic pathology in
schizophrenia by generating a schizophrenia bioenergetic profile in iLINCS and performing
pathway analyses on panels of clustered genes that are highly differentially expressed across
knockdown signatures; third, to generate a list of promising drug interventions with the goal of
future preclinical testing; and fourth, to examine endophenotypes of schizophrenia following
treatment with an FDA approved drug identified by our bioinformatic analyses in an animal

model.

Cell-level postmortem studies

Our findings of decreased PFKL and GPI mRNA in pyramidal neurons build upon
previous reports of abnormalities in glycolytic enzymes, as well as glucose/lactate transporters,
in the DLPFC in schizophrenia (18). PFKL codes for the liver (L) subunit of the PFK enzyme,
which catalyzes the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate in the
third, irreversible and rate-limiting step of glycolysis (67). There are several tetrameric isoforms
of the PFK enzyme, each comprised of different combinations of L, muscle (M), or platelet (P)
subunits. The PFK-5 protein is entirely comprised of L subunits, while the PFK-1 protein is
entirely comprised of M subunits. Other erythrocyte PFK enzymes contain a heterogenic

composition, and all PFK enzymes are found in brain (67). Under conditions of high glycolytic
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flux, cells can divert glucose to the pentose phosphate pathway; however, the conversion of
fructose 6-phosphate to fructose 1,6-bisphosphate by PFK commits glucose to the glycolytic
pathway. As a gatekeeper in the metabolic degradation of glucose, PFK is highly regulated,
both by downstream metabolites and its strong allosteric activator fructose 2,6-bisphosphate
(F2,6BP), which is produced by PFKFB when glycolysis is upregulated (Warburg effect) (68).
Notably, knockdown of PFKL impairs glycolysis and promotes metabolism via the pentose
phosphate pathway (69). Decreases in PFKL or PFKM expression in schizophrenia could affect
normal enzyme activity, resulting in either decreased glycolytic breakdown of glucose or an
inability to upregulate glycolysis when energy demand is high. Interestingly, the human PFKL
gene is located on chromosome 21 and abnormal expression of PFKL is associated with
Down’s syndrome (70). Additionally, we previously reported decreased PFK activity in the
DLPFC of schizophrenia subjects (18).

We also found a decrease in the mRNA expression of GPI in an enriched population of
pyramidal neurons in schizophrenia. GPI is a dimeric cytoplasmic enzyme that catalyzes the
reversible isomerization of glucose-6-phosphate to fructose-6-phosphate in the second step in
the glycolytic pathway. When expressed extracellularly, the GPI protein functions as a
neurotrophic factor that promotes neuronal survival (71). One study found an increase in
glucose-6-phosphate levels, as well as several other metabolites in the glycolytic pathway, in
peripheral blood mononuclear cells of schizophrenia patients, suggesting improper functioning
of glycolytic enzymes (72). Other data suggest that GPI deficiency results in an accumulation of
glucose-6-phosphate and over activation of the mammalian target of rapamycin (INTOR)
pathway (73). A decrease in GPI expression in pyramidal neurons could contribute to
dysregulation of both glycolysis and mTOR signaling. A disruption in mTOR signaling could
affect protein synthesis and lead to aberrant neuronal growth and synapse connectivity.
Supporting this hypothesis, the mTOR pathway has been previously implicated in schizophrenia

(74).
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Schizophrenia bioenergetic profile (seed genes)

Based on strong cell-level evidence from this study and prior work, as well as decreases
in glycolytic enzyme activity, we generated a schizophrenia bioenergetic profile consisting of 6
functionally related genes (14, 15, 18). These 6 genes (“seed genes”) are strong glycolysis
regulators and critical steps in the glycolytic pathway. The 6 seed genes in our profile were used
for lookup replication studies, iLINCS clustering, and iLINCS connectivity (drug discovery)
analyses.
“Lookup” replication analyses

We sought to replicate our metabolic LCM findings, as well as explore the mRNA
expression of seed genes through in silico “lookup” analyses (18). In our LCM studies, we found
decreases in HK1, PFKM, PFKL, and GPI in pyramidal neurons in the DLPFC in schizophrenia
(Figure 2, Table 2)(18). We probed a second cell-level dataset (frontal cortical neurons
differentiated from IPSCs of schizophrenia subjects with the DISC mutation (75)) and found that
5/6 of our seed genes were abnormally expressed (LDHA, HK1, PFKM, PFKL, and GPI) (Table
2)(75). LDHA, which was previously found to be downregulated in dentate granule neurons in
schizophrenia, was also significantly downregulated in the SMRI genomics database (15). We
also found that PFKFB2, which is genetically linked to schizophrenia, is downregulated in
schizophrenia in the MSSM DLPFC microarray data (14). The SMRI and the MSSM databases
contain region-level findings in multiple brain regions, while IPSCs and LCM techniques provide
cell-subtype specific resolution. Further, prior work in our laboratory found a decrease in PFK
and HK enzyme activity levels in the DLPFC in schizophrenia (18). These findings suggest our
seed genes are dysregulated at the cell, region, transcript, and functional level in schizophrenia,
as well as by genetic association.
Generation of seed gene knockdown signatures

We used iLINCS (http://ilincs.org) to retrieve knockdown signatures for each seed gene

individually. Each seed gene knockdown signature (GPI knockdown signature, HK1 knockdown
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signature, PFKM knockdown signature, PFKL knockdown signature, LDHA knockdown
signature, PFKFB2 knockdown signature) is comprised of the transcriptional changes of 978
landmark genes (L1000 genes) when that seed gene is knocked down (Figure S3).
Panels of clustered upregulated and downregulated gene identification

After clustering the knockdown signatures of our 6 seed genes in iLINCS, we
(separately) selected panels of clustered upregulated and downregulated genes using the
interactive dendrogram function. This resulted in 67 upregulated and 69 downregulated genes
carried forward to Enrichr analyses.
Enrichr analyses of upregulated genes from iLINCS clustering

We began by using Enrichr to identify pathways associated with our panels of clustered
upregulated genes from our iLINCS clustering analysis (Figure 3, Figures S4-S10). Using
KEGG, we generated top cell signaling pathways which returned hits such as FOXO, Wnt, and
MAPK signaling. These signaling pathways implicate glucose utilization, energy homeostasis,
mitochondrial function, and cell growth. Our top protein-protein interaction hits (RPS6KA3,
MAPK14, glycogen synthase kinase 3 beta (GSK3B) and cyclin dependent kinase 1 (CDK1),
etc.) suggest a role for pathways involved in energy metabolism and cell proliferation. Next, we
probed for kinases that when knocked down in specific cell lines, increased the expression of
genes that were in our panels of clustered upregulated genes. We found several
serine/threonine-protein kinases including AKT1, PTK2, MAP2K2, and ATR. AKT1 is one of 3
closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) thought to regulate
metabolism and promote cellular proliferation (76). We also had significant hits for G-protein
coupled receptor proteins NMUR2 and FFAR1. Neuromedin U (NMURZ2) encodes a G-protein
coupled receptor protein widely expressed in the central nervous system (CNS) that binds the
neuropeptide neuromedin U in order to regulate energy homeostasis (77, 78). These results
suggest that kinases involved in glucose metabolism and cell cycle regulation are relevant to

our panels of clustered upregulated genes. Finally, we performed pathway analyses to identify
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transcription factors with occupancy sites for our panels of clustered upregulated genes, several
of which played key roles in neurodevelopment (WT1, NFIB, TCF3, TRIM28, etc.). Our
transcription factor analysis also generated hits for estrogen receptors (ESR1, ESR2), tumor
suppressors/activators (ELK3), and transcription factors involved in immune responses and
macrophage function (CEBPB)(79, 80). Enrichr analyses are summarized in Table 3 and a full
discussion of panels of clustered upregulated genes can be found in the supplement.
Enrichr analyses of downregulated genes from iLINCS clustering analysis

We used Enrichr to identify pathways associated with our panels of clustered
downregulated genes from our ILINCS clustering analysis (Figure 4, Figures S11-S17). Using
KEGG, we generated top cell signaling pathways which returned hits such as HTLV infection,
hepatitis B, p53 signaling, and cell cycle pathways (Figure S11). This implicates inflammation,
impaired immunity, and cell proliferation. The top 5 hits in our GO cellular components analysis
for panels of clustered downregulated genes implicate mitochondria and oxidative
phosphorylation (Figure S12). The top hits of our protein-protein interaction analysis (Figure
S14) for panels of clustered downregulated genes included histone deacetylase 1 (HDAC1) and
HDAC2, a ubiquitously expressed protein that removes acetyl groups from lysine residues on
core histones (81). Other top hits in our protein-protein interaction analysis include proliferating
cell nuclear antigen (PCNA) and BRCAL, which also bind HDAC1 and are involved in
epigenetics, DNA replication, and DNA repair (82). Interestingly, HDACL is increased in the
prefrontal cortex and hippocampus in schizophrenia and overexpression of HDAC1 leads to
impairments in working memory (83-85). There are accumulating instances of schizophrenia
patients with mutations in genes encoding chromatin regulators (such as histone modifying
enzymes and transcription factors)(86). Other hits included transcription factors involved in
inflammation and the balance of activation and suppression of cellular proliferation processes.
Next, we probed for kinases that when knocked down in specific cell lines, decreased the

expression of genes that were in our panels of clustered downregulated genes (Figure S15). We
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found multiple kinases with important roles in glucose homeostasis and energy metabolism. The
nuclear receptor PPARYy forms a heterodimer with the retinoid X receptor (RXR), two of our top
hits, increasing the transcription of various genes that stimulate glucose uptake and
carbohydrate metabolism (87). PPARYy ligands such as thiazolidinediones (TZDs) increase
glucose utilization, treat hyperglycemia, and represent therapeutic possibilities in diseases with
deficient glycolytic systems (88). We also found kinases that are involved in axonal growth
during CNS development (RYK), cell growth and cycle progression (WEE1, ABL2), and
cytoskeletal remodeling (ABL2). Finally, we performed pathway analyses to identify transcription
factors with occupancy sites for our panels of clustered downregulated genes, several of which
played key roles in cellular proliferation/development and were similar to hits from previous
analyses (MYC, MYCN, NUCKSL1, forkhead box M1) (Figure S16). Enrichr analyses are
summarized in Table 3 and a full discussion of panels of clustered downregulated genes can be
found in the supplement.

In summary, we extrapolated on the abnormalities of glycolytic enzymes using Enrichr
pathway analyses for panels of clustered up and downregulated genes. These analyses yield
additional pathways and regulators involved in cellular processes such as cell cycle regulation
and inflammatory responses. Inappropriate cell cycle regulation could contribute to metabolic
deficits, while the immune system has previously been implicated in schizophrenia (89-91).
Several of our metabolic and immune findings were replicated in other large scale
transcriptomic bioinformatic analyses of psychiatric disorders (92). These results highlight the
connectivity of glycolytic pathology in schizophrenia to several systems that could be important
targets in future studies.
iLINCS connectivity analyses (drug discovery)

We divided the top 12 unique perturbagens from our signature connectivity analysis into
5 groups: PPAR agonists, PI3K inhibitors, antipsychotic drugs, HDAC inhibitors, and other

(Table 4). PI3K inhibitors constituted 2 of the drugs that may “reverse” our disease signature.
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These antitumor drugs inhibit PI3K enzymes, which are part of the PISK/AKT/mTOR signaling
pathway and play critical roles in many cellular functions such as cellular proliferation,
metabolism, and immune cell activation (93-95). Recent work has linked schizophrenia
pathology to the PISK-AKT-mTOR signaling cascade (74, 96, 97). Additionally, PI3K signaling
can modulate synaptic formation and plasticity, and has been implicated in both schizophrenia
and autism disorder (reviewed in (98, 99)). Previous work demonstrated pharmacological
inhibition of the catalytic subunit of PI3K blocks amphetamine induced psychosis in mice,
highlighting PI3K inhibitors as therapeutic targets for the treatment of psychiatric disorders
(100). However, PI3K inhibition may be more suitable for “positive symptoms,” as PI3K inhibition
results in diminished insulin-stimulated glucose uptake by inhibiting translocation of GLUT4
glucose transporters to the plasma membrane (101). Three of our drug discovery analysis hits
were typical antipsychotics, which also treat positive symptoms of schizophrenia via dopamine
receptor D2 antagonism (102). It is possible that the glycolytic knockdown signatures used to
generate these perturbagens could cause transcriptional changes in L1000 genes involved in
the regulation of dopaminergic synapses, suggesting dopamine and metabolic systems could be
connected in schizophrenia. This is not entirely surprising as antipsychotics have well
documented metabolic effects (103).

The top unique perturbagen in our signature connectivity analysis (Table 4) was valproic
acid, an HDAC inhibitor that modulates sodium channels and enhances gamma-aminobutyric
acid (GABA)-mediated neurotransmission (traditionally used to treat epilepsy and bipolar
disorder)(104). Interestingly, sodium valproate (valproic acid) is commonly used as an
adjunctive therapy for the treatment of schizophrenia, and a recent 4 week randomized clinical
trial demonstrated improvement in psychopathology with a combination therapy of valproate and
risperidone or olanzapine compared to antipsychotics alone (n=249)(105). There is also some
evidence for positive effects on aggression and tardive dyskinesia in schizophrenia, although

sample sizes are small (106). Valproic acid also affects ERK and Wnt pathways, which were
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implicated in our pathway analyses and regulate cell survival and cytoskeletal modifications
(107). Stimulation of ERK1/2 has the ability to enhance the transcriptional activity of PPARs and
increase glucose metabolism, indicating PPAR agonists might also be potential therapeutic
targets (108). Interestingly, two of our unique perturbagen hits included PPAR agonists
(troglitazone and Genistein) (109). Troglitazone, part of the TZD family, is an anti-inflammatory
and antidiabetic drug developed to treat type 2 diabetes. Troglitazone is a ligand to both PPARa
and (more strongly) PPARYy, promotes glucose uptake by increasing two transporters we
previously found decreased in pyramidal neurons in schizophrenia (GLUT1 and GLUT3), and
inhibits the pro-inflammatory factor NFKB (implicated in our Enrichr analyses)(18, 54, 110, 111).
The TZD family of PPAR agonists present an interesting therapeutic intervention for studies in
preclinical models of schizophrenia due to their ability to modulate glucose systems we find
abnormal in schizophrenia (112, 113). Pioglitazone, a current FDA approved member of the
TZD family, also stimulates glycolytic systems and can attenuate mitochondrial dysfunction,
reverse memory impairment, and decrease the incidence of dementia (48, 113-119). Thus,
pioglitazone is an easily accessible drug candidate to “reverse” pathology and possibly restore
cognitive defects related to schizophrenia.

To test this hypothesis, we first examined metabolic pathways in the GIuN1 knockdown
model of schizophrenia. GIuN1 knockdown animals display a wide variety of endophenotypes
associated with schizophrenia, including deficits in cognition (40). We found that top pathways
associated with protein changes at the synapse in GIUN1 knockdown mice compared to WT
controls were metabolic in nature (Figure 5B). Additionally, expression of glucose transporters
(GLUT1 and GLUT3) were significantly decreased in the frontal cortex of GIuN1 knockdown
mice (Figure 5C). These results suggest there are similar abnormalities in bioenergetic systems
in this model to schizophrenia, and that modulating these systems are viable treatment
strategies. Thus, we examined the effects of pioglitazone, a PPAR agonist that increases

glucose uptake, on behavioral endpoints in the GIuN1 knockdown model. Pharmacological
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manipulation of glycolytic pathways via pioglitazone could stimulate glucose uptake and
metabolism, possibly restoring some behavioral deficits. We are also able to control for
medication treatments, which can be difficult to interpret in human studies. It is important to
distinguish significant metabolic changes as underlying features of the illness and not
epiphenomena related to treatment with antipsychotics.

We hypothesized that pioglitazone treatment would improve cognitive function in the
GIluN1 knockdown model. The puzzle box assay examines cognitive function and is
progressively more difficult, evident in the similarly poor performance by all groups in later trials.
However, in all earlier trials (where GIuN1 deficit is more robust), pioglitazone tended to
increase WT mean latencies while decreasing GIuN1 knockdown mean latencies. Our statistical
analyses found that in Trial 1 and Trial 4, pioglitazone significantly decreased the latency to
perform the task in GIuN1 knockdown mice (Figure 6, panels C and D). This suggests that in
normal physiology, pioglitazone could have a negative effect on learning, while in a pathological
brain with impaired synapses, pioglitazone may have restorative effects on cognition.

We also examined the effects of pioglitazone on behaviors reflecting positive and
negative schizophrenia symptoms. In line with published findings for this model (39), our data
suggest that GIuN1 knockdown animals have increased locomotor activity and stereotypy
compared to WT littermate controls, as well as increased mania and anti-anxiety like behavior
(increased % time spent in open arms in EPM compared to WT mice) (Figures 7 and S19).
Pioglitazone did not have an effect on these behaviors regardless of genotype, suggesting that
either glucose metabolism does not play a role in this phenotype of GIuN1 knockdown mice or
that this is a neurodevelopmental phenotype that requires earlier intervention.

We did not detect any changes in sociability between any groups. All groups choose to
spend more time in the social zone (Figure S20). Previous studies demonstrate inherent social
abnormalities in GIuN1 knockdown mice, suggesting our experiment may be underpowered to

detect an effect of sociability (39). We also did not detect any changes in social novelty-
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however our social novelty data has high variability, which could contribute to lack of significant
findings.

Finally, we assessed sensorimotor gating using pre-pulse inhibition and acoustic startle
response (Figure 8). While there were no changes in acoustic startle response across all
groups, we detected an effect of genotype on PPl at 4 dB (F (1, 23) = 20.06, p=0.0002), 8 dB (F
(1, 23) = 15.63, p=0.0006), and 16 dB (F (1, 23) = 9.177, p=0.0060). GIuN1 knockdown mice
had generally lower PPI than did WT controls at all dBs. Additionally, at 4 dB, pioglitazone-
treated GIuN1 knockdown (GluN1pio) mice had a lower PPI than any other group, suggesting
pioglitazone interacts in a negative way with the knockdown pathophysiology (drug by genotype
interaction, F (1, 23) = 6.579, p=0.0173). The 4dB pre-pulse is the lowest level of pre-pulse and
thus the “most sensitive” measure of the deficit (vs. 8dB and 16dB, where the deficit is
sometimes not seen in a disease state). This could explain why we only detect this negative
drug interaction at the 4 dB pre-pulse. Interestingly (although not significant), WTpio mice
tended to have a larger PPI versus WTveh mice in all dB tests, while GIuN1pio mice tended to
have a lower PPI versus GluN1veh mice in all dB tests, reinforcing the idea of different
genotype by drug interactions. Additional test animals are needed to explore this possibility.

Our findings suggest that pioglitazone may selectively exert its effects on specific
endophenotypes of schizophrenia, suggesting circuit-specific modulation of neuroplastic
substrates. One possibility is that pioglitazone improves the function of brain regions and circuits
that are hypometabolic, while having no effect/negative consequences on brain regions that are
normal or hypermetabolic. Many behavioral endpoints that are markers of “positive symptoms”
of schizophrenia could correspond to “hypermetabolic” circuitry, and thus not be amenable to
rescue via pioglitazone. We found pioglitazone had no effect on behavioral deficits such as
hyperactivity, increased stereotypy, and social impairments, which are normalized by typical and
atypical antipsychotics in GIuN1 knockdown animals (39, 41, 120-123). However, pioglitazone

did have a restorative effect on cognition (puzzle box assay), while typical antipsychotics do not
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(7, 124). Studies examining the effects of antipsychotic treatment on cognition in GIuN1
knockdown animals has not yet been done and are warranted.

Cognition includes several subprocesses, not all of which are uniquely sustained by the
frontal cortex, but also by distributed cortical networks including frontal regions which may not be
associated with the frontal lobes (125, 126). These processes can include task management,
planning, flexibility of behavior and thought, working memory, attention, or others. Thus, poor
performance in any of these parameters could reflect a number of possible cognitive mechanisms
(125, 127). For instance, two meta-analyses of cannabis use on cognition in schizophrenia
demonstrated cannabis improved certain subtasks for elements of cognition (visual memory,
planning, working memory) while having no effect or worsening other tasks (attention, verbal
memory, processing speed)(128, 129). It is also possible that pioglitazone may only improve a
metabolic subtype of schizophrenia. This is supported by our LCMS and qPCR studies in GIuN1
knockdown mice showing a metabolic profile. Cognition and other related functions disrupted in
schizophrenia are often highly complex, and modulation of these circuits might be treated with
personalized combination therapeutics.

For example, one study examined the effects of pioglitazone as an adjunct treatment to
antipsychotic drugs in schizophrenia subjects (n=40)(66). Subjects received risperidone plus
either pioglitazone (30 mg/day) or placebo for 8 weeks. Patients in the pioglitazone group
showed significantly more improvement in Positive and Negative Syndrome Scale (PANSS)
negative subscale scores (p <0.001) as well as PANSS total scores (p =0.01) compared with
the placebo group, suggesting pioglitazone and risperidone work through different circuitry and
could be used in conjunction to treat both cognitive/negative and positive symptoms. There is
also evidence suggesting pioglitazone treatment could help combat glucose—lipid metabolic
abnormalities and diabetes that are often exacerbated by antipsychotics (119).These findings
suggest the possibility of pioglitazone as an augmentation therapy in reducing difficult to treat

symptoms in schizophrenia.


https://doi.org/10.1101/338392
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/338392; this version posted June 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Our findings also justify future pioglitazone studies examining different types of memory.
For example, pioglitazone may independently influence associative learning, spatial or working
memory, cognitive flexibility, long-term memory, or recognition memory. Pioglitazone is also an
FDA approved drug, and further human trials examining pioglitazone, antipsychotic treatment,
and a larger number of specific cognitive aspects would be useful. This could be achieved
through measures such as the Stroop word-color task (selective attention), n back test and
backward digit span tests (working memory), Brown-Peterson test (memory capacity), or
Wisconsin card sorting (planning and set-shifting)(125, 130). Other indices of cognition such as
the Verbal Comprehension Index (VCI), the Perceptual Organizational Index (POI), the Working
Memory Index (WMI), the Processing Speed Index (PSI), the Immediate Memory Index (IMI) and the
General Memory Index are useful in human cognitive battery (125). In summary, these data
suggest that pioglitazone may impact specific elements of cognition in models of schizophrenia.
Caveats

Bioinformatics approaches have the potential to offer key insights into our understanding
of how specific human diseases or healthy states manifest themselves. However, the
techniques presented here have several limitations. Our pathway analyses are inherently biased
as Enrichr is limited by previously published experiments, meaning some systems are more
extensively studied and may skew results. Additionally, when selecting panels of clustered
genes as inputs for Enrichr using dendrograms and clustering (Figure 3 and Figure 4), it is not
uncommon for 5/6 of the knockdown signatures to change in the same direction for a gene,
while 1/6 knockdown signatures have no change or a change in the opposite direction.
However, since the goal of the study is to analyze an aggregate signature, we selected clusters
of genes that largely change together in the same direction. Enrichr merges human, mouse and
rat data, an approach that has advantages and disadvantages, such as comprehensive libraries
but a lack of species specificity (131).

For our chemical perturbagen analyses, two seed genes (HK1 and PFKL) had the
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strongest discordant perturbagen signatures (Table S4), leading to the overrepresentation of
these two seed genes in the overall top 20 chemical perturbagens table (Table S5).
Furthermore, PFKFB2 did not have any discordant signatures to contribute. However, although
not in the top 20 overall discordant perturbagen signatures, the top hit for PFKM was also
valproic acid (albeit a weak discordance), suggesting our overall top hits may still reverse this
signature.

LINCS, although a powerful resource, also has important caveats in itself. Knockdown
signatures are generated in a variety of cell lines (mostly cancer) and can have differing
transcriptomic changes to the same perturbagen. While the selection of a relevant cell line is
important, not every target gene has been knocked down in every cell line, and comparing
signatures from different cell lines can yield different results. In this study, none of our seed
genes had knockdown signatures in neuronal cell lines. To minimize variability, we compared
signatures for seed genes using one consistent cell line (VCAP). While these cells are not
neuronal cell lines, downstream regulation of transcriptional profiles is often comparable across
cell lines, and still provides a useful basis for comparison of mRNA signatures (132). This is
especially true of fundamental aspects of cellular biology, including energy metabolism and
related pathways considered here. Further, the LINCS database includes 978 “landmark” genes
that are selected as providing representatives of classes of co-expressed genes and to enable
imputing the levels of expressions for genes that are not measured directly. There may be
instances where this panel does not fully capture the changes found in disease states.

Our in silico lookup analyses of metabolic targets in schizophrenia also present
challenges. The SMRI database analysis function performs a meta-analysis across 12
independent studies, combining molecularly and functionally distinct brain regions. It is possible
that for some genes, regions such as the cerebellum drive results, while more subtle differences
in cortical regions are not reported. Additionally, both the SMRI and the MSSM databases were

generated for whole brain regions, and are not cell-subtype specific. It is not surprising that
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many of our cell-subtype specific findings were not appreciated at the region-level in our lookup
confirmation studies. Gene expression may be increased in certain cell types and decreased in
others, with no net changes (10). The SMRI database particularly raises concern due to the
number of individual studies used for comparison, many of which have varying subject
demographics. This notion is supported by the observation that many of our targets are
differentially regulated at the cell-level in the frontal cortical neuron database (75). Limitations
aside, it will be interesting to probe these datasets (and more publicly accessible databases) for
targets in pathways that were implicated in our Enrichr analyses (Table 3).

Our GIuN1 knockdown work is not without limitations. While our locomotor and cognitive
assay is adequately powered (n=9-12 per group), elevated plus maze, social paradigm, and PPI
studies have an average of n=6 mice per group, which may not be large enough to fully
elucidate subtle behavioral differences. It is also possible that pioglitazone doses used here
may not fully produce therapeutic effects, and future work with varying dosing regimens is
warranted. Additionally, as discussed above, cognition is multifaceted and the current study only
utilizes one approach examining executive function (puzzle box assay). Several behavioral
tasks such as fear conditioned learning (context versus cue), water mazes (contextual memory),
radial arm maze (working memory), and novel object task would be useful in determining more
nuanced effects of pioglitazone. Finally, additional biochemical experiments in GIuN1
knockdown mice could help elucidate other potential metabolic pathways to target. This would
provide the framework for future intervention studies using promising new pro-metabolic drugs
in GluN1 knockdown mice or of pioglitazone in more models of schizophrenia (i.e.
pharmacological, other mutants such as DISC1, SHANK3, NRG-1, etc.). This reverse
translational approach could also generate targeted questions for future postmortem work.

In summary, we have utilized the LINCS library of genetic and chemical perturbations,
coupled with a novel bioinformatics approach to gain insight into the connectivity of bioenergetic

pathology in schizophrenia, generated candidate drugs with the potential to reverse the
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connected pathological signature as opposed to a single target, and restored long-term memory
with the PPAR agonist pioglitazone in a preclinical model of schizophrenia. Our work highlights
the potential for bioinformatic analyses to identify novel treatment strategies for disorders of

cognition and other difficult to treat clinical domains.
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MATERIALS AND METHODS
Human tissue acquisition and preparation

Dorsolateral prefrontal cortex (DLPFC, Brodmann area 9) postmortem brain samples
originated from the Maryland Brain Collection and were distributed by both the Maryland Brain
Collection and the Alabama Brain Collection. The cohort consisted of subjects with
schizophrenia (n=16) and nonpsychiatrically ill comparison subjects (n=16) (Tables S1 and S2).
Subjects were diagnosed with schizophrenia based on DSM-IV criteria. The medical records of
the subjects were examined using a formal blinded medical chart review instrument, as well as
in person interviews with the subjects and/or their caregivers, as previously described (133).
Schizophrenia and comparison groups were matched for sex, age, pH, and PMI (Tables S1 and

S2).
Laser capture microdissection (LCM)

LCM was performed as previously described (11, 18, 59, 60). Briefly, 14 um frozen
tissue sections including superficial (2-3) and deep (5-6) layers of DLPFC were removed from -
80°C storage and allowed to air dry. Tissue sections were rehydrated with distilled H?0 and then
underwent rapid Nissl staining with RNase-treated cresyl-violet (1% cresyl violet, 1% glacial
acetic acid, pH 4.0). Slides were dehydrated in increasing ethanol concentrations and cleared in
Histoclear Il (Electron Microscopy Services, USA) for 10 minutes. After drying in a hood for 15
minutes, enriched populations of pyramidal neurons or astrocytes (1000 of each cell type per
subject) were identified via morphology under the 20X objective lens and cut using the Applied
Biosystems ArcturusXT™ LCM instrument and CapSure Macro LCM caps (Life Technologies,
formerly Arcturus, Mountain View, CA, USA)(11, 59, 60). Laser settings were adjusted prior to
each session to produce optimal cutting and capturing with laser settings ranging from 70-100

mW in power, and 2,000-3,000 usec in duration. Separate caps were used for each subject and
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each cell population. Cells were captured in 4 hour sessions as we have previously
demonstrated this time frame has minimal effects on messenger RNA integrity (11). Following
cell capture, each cap was incubated with 50 pl of PicoPure RNA extraction buffer (Molecular
Devices, Sunnyvale, CA, USA) for 30 min at 42° C. Samples were then centrifuged for 2 min at

800 x g and stored at -80°C until further processing.

RT-qPCR

RNA was treated with RNase-free DNase (79254; Qiagen, NL) during processing. RNA
was reverse-transcribed using the High-Capacity cDNA Archive Kit (Applied Biosystems, Foster
City, CA, USA). Before PCR experiments, samples were preamplified as previously described

(11, 59, 60).

TagMan PCR assays for each target gene were performed in duplicate on cDNA
samples in MicroAmp Fast Optical 96-well optical plates (Applied Biosystems; Foster City, CA)
on an Applied Biosystems detection system (ABI SteponePlus, Applied Biosystems, Life
Technologies, USA). For each reaction, 3 pl of cDNA was placed in a 20 pl reaction containing
10 pl of mastermix and 1x dilution of each primer (Applied Biosystems, Life Technologies, USA).
Reactions were performed with an initial ramp time of 10 minutes at 95°C, and 40 subsequent
cycles of 15 seconds at 95°C and 1 minute at 60°C. For negative controls for the gPCR
reactions, cDNA was omitted (non-template control) or cONA was generated with reverse
transcriptase excluded from the reaction (no RT control). Relative concentrations of the
transcripts of interest were calculated with comparison to a standard curve made with dilutions
of cDNA from a pooled sampling of all the subjects. Values for the transcripts of interest were
normalized to the geometric mean of B2M, B-actin (ACTB), and cyclophilin A (PPIA),

housekeeping genes whose expression was unchanged in control and schizophrenia groups
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(Student’s t-test, p>0.05), for the same samples. All TagMan PCR data were captured using

StepOnePlus Software (StepOnePlus Real-Time PCR System; Thermoscientific, Waltham, MA)

Primers

All primers were obtained from Thermo Fisher Scientific, Waltham, MA, USA. Human
(Hs); rat (Rn). Targets are as follows: PFKL (Hs00160027_m1), GPI (Hs00976715 m1), B2M

(Hs99999907_m1), ACTB (Hs99999903_m1), PPIA (Hs99999904 m1).

Schizophrenia bioenergetic profile (seed genes)

We began by selecting genes of interest from schizophrenia pathophysiology to build a
“bioenergetic schizophrenia profile.” We selected targets from the glycolytic pathway that were
selectively downregulated in this study and our previous studies (GPI, HK1, PFKM, PFKL), as
well as dysregulated in the literature (LDHA, PFKFB2) (Table 1)(14, 15, 18). Knockdown
signatures were retrieved for each seed gene in iLINCS, and these knockdown signatures were
used in subsequent lookup replication, iLINCS clustering (Enrichr), and iLINCS connectivity

(drug discovery) analyses.

In silico “lookup” analyses

To replicate our bioenergetic findings in schizophrenia, we probed a publicly available
microarray database (Stanley Medical Research Institute Online Genomics Database),
microarray data from the DLPFC of control and schizophrenia subjects (Mount Sinai School of
Medicine dataset), and RNAseq data from frontal cortical neurons. The Stanley Medical
Research Institute Online Genomics Database (supported by Dr. Michael Elashoff) was used to
assess transcriptomic changes of metabolic targets between 50 schizophrenia and 50 control
subjects in multiple brain regions (Brodmann area (BA) 6, BA8/9, BA10, BA46, and the

cerebellum)(61). The Mount Sinai dataset includes microarray data from the DLPFC of
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schizophrenia (n=16) and control subjects (h=15). The RNAseq database contains data from
frontal cortical neurons differentiated from IPSCs from a schizophrenia subject with the DISC
mutation and an unaffected sibling control subject (75). We reported fold change and p-values

for our metabolic targets in Table 2.

Generation of knockdown signatures for seed genes

We used iLINCS (http://ilincs.org) to retrieve knockdown signatures for each seed gene
individually. Seed genes often have multiple knockdown signatures from experiments done in
different cell lines. We selected the knockdown signature from a vertebral-cancer of the prostate
(VCAP) cell line for each seed gene. This was the only cell line with knockdown signatures
available for all seed genes. Each seed gene knockdown signature (GPI knockdown signature,
HXK1 knockdown signature, PFKM knockdown signature, PFKL knockdown signature, LDHA
knockdown signature, PFKFB2 knockdown signature) is comprised of the transcriptional
changes of 978 landmark genes (L1000 genes) when that seed gene is knocked down. We
downloaded the knockdown signatures for each seed gene. Visual representations of the
transcriptional changes in L1000 genes for each knockdown signature are presented as
heatmaps generated in R Software (R version 3.4.2, 2017 The R Foundation for Statistical

Computing) (Figure S3). A full list of L1000 genes is available on http://ilincs.org.

iLINCS clustering analyses

With the goal of identifying panels of correlated transcriptomic changes in our seed gene
knockdown signatures, we used iLINCS to perform unsupervised clustering of the top 50
differentially expressed L1000 genes from our 6 seed gene knockdown signatures (maximum of
300 L1000 genes) (Figure 3 and Figure 4). Due to gene overlap between top 50 differentially
expressed L1000 genes in seed gene knockdown signatures, this resulted in the clustering of

expression data for 260 L1000 genes. To generate this heatmap, we used the interactive “gene
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clusters” function in iLINCS to cluster expression data from 260 differentially expressed genes
using Pearson correlation coefficients (“‘union of the top 50 differentially expressed genes”).
Using the y-axis dendrogram function, we then selected genes that displayed similar changes in
expression across the signatures. We refer to genes that are upregulated across all signatures
as “panels of clustered upregulated genes” and genes that are downregulated across all
signatures as “panels of clustered downregulated genes.” Panels of clustered upregulated and
panels of clustered downregulated gene groups were selected separately and the data was
exported to Excel (Table S3, Figure 3 and Figure 4). These clustered gene panels (Table S3)
were carried forward to two separate Enrichr analyses.

Enrichr analyses of panels of clustered upregulated and downregulated genes from

iLINCS clustering analysis

To assess the biological underpinning of correlating transcriptional changes in our seed
gene knockdown signatures from iLINCS, we performed traditional pathway analyses on panels
of clustered upregulated and panels of clustered downregulated genes using Enrichr
(http://amp.pharm.mssm.edu/Enrichr/) (Table 3, Figures S4-S17)(131, 134). Analyses for panels
of clustered upregulated genes (67 genes) and panels of clustered downregulated genes (69
genes) were performed separately. We report results for KEGG cell signaling pathway, gene
ontology (GO) molecular function, GO cellular components, protein-protein interacting partners,
and dbGaP disease implications. Using the ChEA 2016 database in Enrichr, we also report
transcription factors that have occupancy sites for a significant number of our panels of
clustered genes. Finally, using LINCS L1000 database in Enrichr, we report kinases that when
knocked down in specific cell lines, increase or decrease genes that are in our panels of
clustered upregulated and downregulated gene data sets, respectively (Table 3, Figures S4-

S17).

iLINCS connectivity analyses (drug discovery)
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With the goal of identifying small drug-like molecules with inverse signatures, we probed
iLINCS for chemical perturbagens that result in L1000 transcriptomic signatures that are highly
discordant (anti-correlated as denoted by negative concordance values) with each seed gene
knockdown signature (potentially reversing the seed gene knockdown signature). This was done
individually for each seed gene knockdown signature (unclustered) and the top 20 discordant
chemical perturbagen signatures were recorded (Table S4). PFKFB2 had no discordant
signatures, while GPl and PFKM had less than 20. Perturbagens appearing multiple times for
the same seed gene are either in different cell lines or were administered to cells at different
concentrations. We also recorded the top 20 overall discordant chemical perturbagen signatures
across all seed gene knockdown signatures (Table S5). The top 20 overall discordant chemical
perturbagen signatures were in the VCAP cell line. When duplicates were removed, 12 unique
discordant chemical perturbagen signatures remained (Table 4). This list was use to select an

FDA approved drug for preclinical trials.

Experimental mouse lines and genotyping

Animal housing and experimentation were carried out in accordance with the Canadian
Council in Animal Care (CCAC) guidelines for the care and use of animals. Mice were group
housed with littermates on a 12-h light-dark cycle (0700 to 1900h) and were given access to
food (2018 Teklad Global 18% Protein Rodent Diet, Envigo, Madison Wisconsin USA,
www.envigo.com) ad libitum, unless otherwise specified. Mice were tail clipped and had their
toes tattooed at P13 (= 3 days) for genotyping and weaned at P21. Toe tattooing was used to

identify all experiment mice.

Grinlneo/neo (GIuN1 knockdown) mice were generated in house, as described
previously (39). The insertion mutation (neo) was identified using the following primers: wildtype
forward 5’- TGA GGG GAA GCT CTT CCT GT-3’, mutant forward 5- GCT TCC TCG TGC TTT

ACG GTA T-3’, common reverse 5’-AAG CGA TTA GAC AAC TAA GGG T-3'.
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For our LCMS/IPA and gPCR studies, we had 5 GIuN1 knockdown and 5 WT mice. For
our open field test and puzzle box assay pioglitazone studies, we had a total of 43 animals, 22
WT and 21 GluN1 knockdown mice (Table S6). For our elevated plus maze, social paradigm,
and PPI pioglitazone studies, we had a total of 27 animals, 14 WT and 13 GluN1 knockdown

mice (Table S6).

GluN1 knockdown LCMS and RT-gPCR studies
We used a mouse anti-PSD-95 antibody (Millipore, catalogue # MAB1596) to capture

PSD-95 protein complexes from samples (3 male WT, 3 male GIuN1 knockdown). We verified
the specificity of this antibody using multiple reaction monitoring mass spectrometry analysis of
PSD-95 peptides captured by affinity purification. 5ug of PSD-95 antibody was coupled per 1mg
of Dynabeads (Life Technologies) according to the antibody coupling kit protocol (#14311D).
For each sample, 1000ul of 10mg/ml antibody coupled beads were washed 2x 1ml with ice cold
1x PBST (#9809S, Cell Signaling) then incubated with mouse brain lysate brought to a final
volume of 1000ul with ice cold 1x PBST for 1 hour at room temperature. The supernatant was
removed and the beads were washed 4 x 10 minutes at room temperature in 1ml ice cold 1x
PBST. Captured protein complexes were eluted with 30ul of 1IN Ammonium Hydroxide
(#320145, Sigma), 5mM EDTA, pH 12 for 10 minutes at room temperature. 6ul of 6x protein
denaturing buffer (4.5% SDS, 15% -mercaptoethanol, 0.018% bromophenol blue, and 36%
glycerol in 170 mM Tris-HCI, pH 6.8) was added to each sample elution. The eluted samples
were heated at 70°C for 10 minutes then processed for mass spectrometry.

All samples (3 male WT, 3 male GIuN1 knockdown) were loaded on a 1.5 mm, 4-12%
Bis-Tris Invitrogen NuPage gel (NP0O335BOX) and electrophoresed in 1x MES buffer (NP0002)
for 10 minutes at 180v. The gel was fixed in 50% ethanol/10% acetic acid overnight at RT, then
washed in 30% ethanol for 10 min followed by two 10 min washes in MilliQ water (MilliQ

Gradient system). The lanes were harvested, cut into small (~2mm) squares, and subjected to


https://doi.org/10.1101/338392
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/338392; this version posted June 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

in-gel tryptic digestion and peptide recovery. Representative western blots are seen in Figure
5A. Samples were resuspended in 0.1% formic acid.

Nano liquid chromatography coupled electrospray tandem mass spectrometry (nLC-ESI-
MS/MS) analyses were performed on a 5600+ QTOF mass spectrometer (Sciex, Toronto, On,
Canada) interfaced to an Eksigent (Dublin, CA) nanoLC.ultra nanoflow system. Peptides were
loaded (via an Eksigent nanoLC.as-2 autosampler) onto an IntegraFrit Trap Column (outer
diameter of 360 um, inner diameter of 100, and 25 pm packed bed) from New Objective, Inc.
(Woburn, MA) at 2 pl/min in formic acid/H,O 0.1/99.9 (v/v) for 15 min to desalt and concentrate
the samples. For the chromatographic separation of peptides, the trap-column was switched to
align with the analytical column, Acclaim PepMap100 (inner diameter of 75 um, length of 15 cm,
C18 particle sizes of 3 pm and pore sizes of 100 A) from Dionex-Thermo Fisher Scientific
(Sunnyvale, CA). The peptides were eluted using a variable mobile phase (MP) gradient from
95% phase A (Formic acid/H,O 0.1/99.9, v/v) to 40% phase B (Formic Acid/Acetonitrile 0.1/99.9,
v/iv) for 70 min, from 40% phase B to 85% phase B for 5 min and then keeping the same mobile
phase composition for 5 additional min at 300 nL/min. The nLC effluent was ionized and
sprayed into the mass spectrometer using NANOSpray® Ill Source (Sciex). lon source gas 1
(GS1), ion source gas 2 (GS2) and curtain gas (CUR) were respectively kept at 8, 0 and 35
vendor specified arbitrary units. The mass spectrometer method was operated in positive ion
mode and the interface heater temperature and ion spray voltage were kept at 150°C, and at
2.6 kV, respectively. The data was recorded using Analyst-TF (version 1.7) software.

The data independent acquisition (DIA) method was set to go through 1757 cycles for 99
minutes, where each cycle performed one TOF-MS scan type (0.25 sec accumulation time, in a
550.0 to 830.0 m/z window) followed by 56 sequential overlapping windows of 6 Daltons
each. Note that the Analyst software automatically adds 1 Dalton to each window to provide
overlap, thus an input of 5 Da in the method set up window results in an overlapping 6 Da

collection window width (e.g. 550-556, then 555-561, 560-566, etc). Within each window, a
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charge state of +2, high sensitivity mode, and rolling collision energy with a collision energy
spread (CES) of 15 V was selected.

Protalizer DIA software (Vulcan Analytical, Birmingham, AL) was used to analyze every
DIA file (Sciex 5600 QTOFs). The Swiss-Prot Homo Sapien database, downloaded March
17" 2015, was used as the reference database for all MS/MS searches. A precursor and
fragment-ion tolerance for QTOF instrumentation was used for the Protalizer Caterpillar
spectral-library free identification algorithm. Potential modifications included in the searches
were phosphorylation at S, T, and Y residues, N-terminal acetylation, N-terminal loss of
ammonia at C residues, and pyroglutamic acid at N-terminal E and Q residues.
Carbamidomethylation of C residues was searched as a fixed modification. The maximum valid
protein and peptide expectation score from the X! Tandem search engine used for peptide and
protein identification on reconstructed spectra was set to 0.005.

For DIA quantification by Protalizer the maximum number of b and y series fragment-ion
transitions were set to nine excluding those with m/z values below 300 and not containing at
least 10% of the relative intensity of the strongest fragment-ion assigned to a peptide. A
minimum of five fragment-ions were required for a peptide to be quantified (except where
indicated otherwise). In datasets where a minimum of seven consistent fragment-ions were not
detected for the same peptide ion in each of the three files compared in a triplicate analysis, the
algorithm identified the file with the largest sum fragment-ion AUC and extracted up to seven of
these in the other files using normalized retention time coordinates based on peptides detected
by the Caterpillar algorithm in all the files in a dataset.

To generate the top pathways for GIuN1 knockdown mice we input the top 20 increased
proteins in GIuN1 knockdown mice relative to WT mice from LCMS experiments into Ingenuity
Pathway Analysis (IPA). The top 5 implicated pathways are reported in Figure 5B.

Finally, we examined the mRNA expression of metabolic transporters using real time

guantitative polymerase chain reaction (RT-gPCR) in a cohort of GIuN1 knockdown and
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wildtype (WT) mice (n=5 per group) (Figure 5C). TagMan PCR assays for each target gene
were performed in duplicate on cDNA samples in 96-well optical plates using StepOnePlus
machine (StepOnePlus Real-Time PCR System; Thermoscientific, Waltham, MA). All TagMan
PCR data were captured using Sequence Detector Software (SDS version 1.6; PE Applied
Biosystems). All primers were obtained from Thermo Fisher Scientific, Waltham, MA, USA.
Targets are as follows: MCT1 (Mm01306379_m1), MCT2 (Mm00441442_m1), MCT4

(Mm00446102_m1), GLUT1 (Mm00441480_m1), and GLUT3 (Mm00441483_m1).

Drug administration for GIuN1 knockdown pioglitazone studies

Pioglitazone is an FDA approved drug for the treatment of type Il diabetes. It increases
the transport of glucose from the bloodstream into tissues by increasing the expression of the
glucose transporter GLUT1. We divided mice into 4 groups: for the open field test and puzzle
box assay, WTveh (n=12), WTpio (n=10), GluN1lveh (n=9) and GluN1pio (n=12) and for
elevated plus maze, social paradigm, and pre-pulse inhibition tasks, WTveh (n=6), WTpio (n=8),
GluN21lveh (n=4) and GluN1pio (n=9). On day 1 of the experimental paradigm, mice were given
free access to either a 2018 Teklad Global 18% Protein Rodent Diet (Envigo, Madison
Wisconsin USA, www.envigo.com) as control chow or chow infused with pioglitazone at 100
ppm (2018 Teklad with 0.01% pio, BOCSCI, Shirley, NY, USA) for 7 days. Dose was selected
based on previous studies (54). On day 8, behavioral tests began (animals remained on
respective diets until sacrificed on day 17). Throughout the experiments, we assessed caloric
intake and body weight to ensure pioglitazone treatment did not have adverse effects (Figure
S18).
Behavioral testing

Ineo/Cre

F1 male and female Grinlf mice were used for all behavioral testing, along with
WT littermates as controls. Animals were aged 10-12 weeks. All behavioral tests were

completed between 09:00 and 15:00h. Animals were weighed at the beginning of the
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experiment and on Days 7 and 14. Food was also weighed throughout experiments (Figure
S18). On Day 7, all mice had their locomotor activity and stereotypy behavior measured in the
Open Field Test. On day 9, mice were tested on the Elevated Plus Maze (EPM). Days 10
through 12, mice were tested in the puzzle box assay. Day 15 mice were subjected to the social
affiliative paradigm, and finally on day 16, pre-pulse inhibition was tested. A timetable is
presented in Table S7.
Open Field Test

Locomotor activity and stereotypy were measured using digital activity monitors
(Omnitech Electronics, Columbus, OH, USA) on the first day of behavioral testing (Day 8 of
overall experimental paradigm) as previously described (135). Naive mice were placed in novel
Plexiglas arenas (20 x 20 x 45 cm) and their locomotor and stereotypic activity were recorded
over a 120-min period in dim light (15-16lux). Activity was tracked via infrared light beam
sensors; total distance traveled and stereotypic movements were collected in 5-min bins.
Elevated Plus Maze

Anxiety behavior was assessed on day 9 of testing via the elevated plus maze (136).
The elevated plus maze was composed of 4 opaque-white arms (2 opposite arms closed, 2
opposite arms open), arranged in a plus shape, with an open center. The dimensions were as
follows; maze elevation (38.7cm), open arm (L:30.5cm, W:5cm, H:0cm), closed arm (L:30.5¢cm,
W:5cm, H:15.2cm) and center (5¢cm x 5cm). The experiment mouse was placed in the center of
the maze, and allowed to freely explore the maze for 8 min. in dim light (15-16lux), while being
tracked with an overhead camera. Open and closed arm times were recorded and collected by
Biobserve Viewer3 software. The percentage of time spent in the open arms, as compared to
closed arms and center time, was calculated and expressed as a percent of time spent in the
open arms of the maze.

Puzzle Box Assay
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Mice were run on the Puzzle Box Assay on days 10-12 of testing to assess cognition
and executive function as previously described (135). Consisting of two compartments, the
puzzle box contains a start area (58 x 28 x 27.5 cm) in bright light (250lux), and a goal zone (14
X 28 x 27.5 cm) in dim light (5lux). The two areas are separated by a black Plexiglas divider, but
connected via an underpass large enough for mice to pass through easily. Mice were placed in
the start box facing away from the divider, and the time to move to the goal zone (through the
underpass, with both hind legs in the goal zone) was manually scored and recorded. Mice were
tested over three days, 3 trials/day, with each day consisting of increasingly difficult obstacles
present in the underpass connecting the start area and the goal zone. 2 min were given
between each trial on a given day, with a max 300 sec allowed for the completion of each trial.

The trials (and obstacles) for the puzzle box were as follows:

Day 10: T1 (training) open door and unblocked underpass, T2 and T3 (challenge, then learning)
doorway closed and underpass open
Day 11: T4 (long-term memory) identical to T3, T5 and T6 (challenge, then learning) underpass
filled with bedding (similar to that found in home cage)
Day 12: T7 (long-term memory) identical to T6, T8 and T9 (challenge, then learning) underpass
blocked by a removable cardboard plug
Social Affiliative Paradigm

Social affiliative behavior was assessed on day 15 of testing, as previously described
(135, 137). Sociability was measured via video recording the motion and exploration of the
experimental mouse, tracked via Biobserve Viewer (version 2) software (center body —
reference point). Experimental mice were allowed to explore the open area (opaque white walls,
62 x 42 x 22 cm) for 10-min. in dim lighting (15-16lux). The area contained two inverted wire
cups, one containing a stimulus mouse (‘social’) and the other empty (‘non-social’). Time spent

in each zone (3 cm zone around the cup) was recorded via the Biobserve software. Mice used
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as a social stimulus were novel, wildtype, inbred C57BI/6 mice that were age- and sex-matched
to the test mouse.
Pre-Pulse Inhibition/Acoustic Startle Reflex

Pre-pulse inhibition of the acoustic startle response was measured on day 16, via SR-
LAB equipment and software from San Diego Instruments (San Diego Instruments, San Diego,
CA, USA). Accelerometers were calibrated to 7005 mV and output voltages were amplified and
analyzed for voltage changes using SR Analysis, and exported as an excel file. Background
white noise was maintained at 65dB. PPl was measured in a 30-min test with 80 randomized
trials of: (1) 10 trials pulse alone (2) 10 trials pre-pulse alone (for each pre-pulse), (3) 10 trials
pre-pulse plus pulse (for each pre-pulse), and (4) 10 trials no pulse. 5 pulse alone trials were
performed before and after the 80 trials, totaling 90 trials per run. The pre-pulse (4dB, 8dB, or
16dB) was presented 100ms prior to the startle pulse (165dB). The inter-stimulus interval (1SI)
was randomized between 5 and 20s. Experimental mice were placed in a cylindrical tube on a
platform in a soundproof chamber. Mice were allowed to acclimatize in the chamber and to the
background noise for 300s, followed by 5 consecutive pulse alone trials, then by 80 randomized
trials (as described above) and then 5 consecutive pulse alone trials. Pre-pulse inhibition was
measured as a decrease in the amplitude of startle response to a 100dB acoustic startle pulse,
following each pre-pulse (4dB, 8dB and 16dB).

Statistical analysis

Statistical analyses for human LCM-gPCR were as follows: data were analyzed using
Statistica 13.0 (Statsoft, Tulsa, Oklahoma, USA) and GraphPad Prism (La Jolla, CA, USA).
Outliers were removed from data sets using the ROUT method (Q = 5%). All dependent
measures were tested for normalcy and homogeneity of variance using D'Agostino & Pearson

omnibus normality test followed by Student’s t-tests. We probed for associations between our


https://doi.org/10.1101/338392
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/338392; this version posted June 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

dependent measures and pH, PMI, age, and RIN using correlation analyses. We did not detect

any significant correlations between age, pH, and PMI with any of our dependent measures.

In addition to postmortem interval, pH, and age, we performed secondary analyses
(using t-tests) to examine ethanol use, smoking, and laterality as grouping variables in our
schizophrenia subjects and found no significant effects. We also performed t-tests after
removing antipsychotic naive subjects and all targets remained significant. No subjects had any
dependence for cocaine, sedatives, cannabis, amphetamines, hallucinogens, inhalants, or
opioid dependence (only subject 828 took morphine for pain). Subjects with prolonged agonal

states were not included in this cohort.

Statistical analyses for animal behavioral assays were as follows: All dependent
measures were tested for normalcy and homogeneity of variance using D'Agostino & Pearson
omnibus normality test. For locomotor activity, stereotypy, vertical activity, EPM, social and
social novelty, and PPIl/acoustic startle response, we performed 2-way ANOVA with Bonferonni
multiple comparison corrections. Each dB in PPl was treated as an individual ANOVA (4 dB, 8
dB, 16 dB).
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Figure 1. Overview of bioinformatic workflow. We began by performing literature searches
and further characterizing cell-level postmortem bioenergetic abnormalities in schizophrenia.
Based on these findings, we established a bioenergetic seed profile containing 6 glycolytic
genes implicated in schizophrenia (“seed genes”). To replicate our bioenergetic findings in
schizophrenia, we probed a publicly available microarray database (Stanley Medical Research
Institute Online Genomics Database), microarray data from the DLPFC of control and
schizophrenia subjects (Mount Sinai School of Medicine, Bronx VAMC mRNA dataset), and
RNAseq data from frontal cortical neurons of a patient with schizophrenia and DISC1 mutation
(75). Next, we used iLINCS (http://ilincs.org) to retrieve knockdown signatures for each seed
gene individually. With the goal of identifying panels of correlated transcriptomic changes in our

seed gene KD signatures, we used iLINCS to perform unsupervised clustering of the top 50
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differentially expressed L1000 genes from our 6 seed gene KD signatures. The panels of
clustered differentially expressed L1000 genes were carried forward to Enrichr analyses. We
also performed iLINCS connectivity analyses and identified peroxisome proliferator-activated
receptor (PPAR) agonists as promising therapeutic targets with the potential to “reverse”
glycolytic deficits as well as the associated changes in the L1000 genes. Finally, we
administered the PPAR agonist pioglitazone to the GIuN1 knockdown model of schizophrenia
an examined endophenotypes of schizophrenia. Phosphofructokinase liver type (PFKL); PFK
muscle type (PFKM); Glucose-6-phosphate isomerase (GPI); 6-phosphofructo-2-kinase
(PFKFBZ2); lactate dehydrogenase A (LDHA); hexokinase 1 (HK1); fold change (FC); inducible

pluripotent stem cells (IPSC); knockdown (KD).
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Figure 2. mRNA expression in pyramidal neurons. Relative expression levels of glucose-6-
phosphate isomerase (GPI) and phosphofructokinase liver (PFKL) transcripts in enriched
pyramidal neuron populations from schizophrenia (SCZ, n=16) and control (CTL, n=16) subjects
(A). Data from pyramidal neuron enriched samples were normalized to the geometric mean of
three housekeeping genes (B2M, PPIA, ACTB). Data are expressed as percent control + SEM.

*P<0.05.
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Figure 3. Clustering analyses: panels of clustered upregulated genes. The union of the top
50 differentially expressed L1000 genes per seed gene knockdown signature were clustered in
iLINCS via Pearson correlation coefficients (n=260 genes due to gene overlap). Panels of
upregulated gene clusters were selected using the dendrogram clustering function and fold

change/p-values were exported to Excel. Phosphofructokinase liver type (PFKL); PFK muscle
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type (PFKM); G lucose-6-phosphate isomerase (GPI); 6-phosphofructo-2-kinase (PFKFB2);

lactate dehydrogenase A (LDHA); hexokinase 1 (HK1).
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Figure 4. Clustering analyses: panels of clustered downregulated genes. The union of the
top 50 differentially expressed L1000 genes per seed gene knockdown signature were clustered
in iILINCS via Pearson correlation coefficients (n=260 genes due to gene overlap). Panels of
clustered downregulated genes were selected using the dendrogram clustering function (based
on Pearson correlation coefficient) and fold change/p-values were exported to Excel.

Phosphofructokinase liver type (PFKL); PFK muscle type (PFKM); G lucose-6-phosphate
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isomerase (GPIl); 6-phosphofructo-2-kinase (PFKFBZ2); lactate dehydrogenase A (LDHA);

hexokinase 1 (HK1).
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Figure 5. Metabolic defects in the GIuN1 knockdown mouse model. Representative PSD-
95 Affinity Purification of WT and GIuN1 KD mouse samples (A). Enrichr pathway analysis of
the top 20 interacting proteins for postsynaptic density 95 (PSD95) interactome for GIuN1 KD
versus WT mice (n=3/group, pooled) (B). Metabolic transporter transcripts in frontal cortex of
GIluN1 KD mice expressed as percent wildtype (WT) (n=5) (C). Wildtype (WT); affinity
purification (AP); knockdown (KD); supernatant (SN); liquid chromatography-tandem mass
spectrometry (LCMS); monocarboxylate transporter (MCT); Glucose transporter (GLUT);

Wildtype (WT). Data are expressed as percent control + SEM. *P<0.05.
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Figure 6. Puzzle box assay. Latency (s) to complete trials in puzzle box expressed as a
time course (significance not denoted) (A). Latency (s) to goal zone in puzzle box in WTveh
(n=12), WTpio (n=10), GluN1veh (n=9), and GluN1pio (n=12) mice (B). Trial 1 of the puzzle
box assay demonstrating a decrease in latency to goal zone in GIuN1pio mice when
compared to GluN1lveh (C). Trial 4 of the puzzle box assay demonstrating a decrease in
latency to goal zone in GluN1pio mice when compared to GluN1veh (D). Only drug

significance (not genotype) is denoted. Data are shown as mean + SEM. P<0.05.
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Figure 7. Locomotor activity and stereotypy. Total distance (cm) over time (mins) in the
open field test (significance not denoted) (A). Total distance (cm) traveled during open field
test (B). Stereotypy number for each group in open field test (C). * denotes significantly

different from WTveh. # denotes significantly different from both WTveh and WTpio groups.

Data shown as mean + SEM. P<0.05.
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Figure 8. Prepulse inhibition and acoustic startle response. Sensorimotor gating (pre-
pulse inhibition) represented as percent inhibition of acoustic startle response at three pre-
pulse tones; 4db, 8db, and 16dB (A). Acoustic startle response to 165dB startle pulse in
pre-pulse inhibition test (B). * denotes significantly different from WTveh; ** denotes
significantly different from WTpio; # denotes significantly different from WTveh and WTpio;
## denotes significantly different from WTveh, WTpio, and GluN1veh. Data shown as mean

+ SEM. P<0.05.
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Table 1. Seed profile for bioinformatic analyses.

Target Main finding Source
GPI decrease PN mRNA New finding (Figure 2)
HK1 decrease PN mRNA Sullivan, C. 2018
PFKM decrease PN mRNA Sullivan, C. 2018
PFKL decrease PN mRNA New finding (Figure 2)
increase in lactate in ACC Rowland, R.
LDHA increase in lactate in DLPFC Sullivan, C. 2018 (abstract)
decrease dentate granule neuron mRNA Altar, C. 2005
PFKFB2 genetic linkage and function Stone, W. 2004

Table 1. Seed profile for iLINCS analyses. Summary of metabolic findings from cell-level
human postmortem studies and literature. Pyramidal neuron (PN), glucose phosphate
isomerase (GPI), hexokinase 1 (HK1), phosphofructokinase muscle and liver type (PFKM,
PFKL), lactate dehydrogenase A (LDHA), 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase 2 (PFKFB2).
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studies.
Human Pyramidal Cortical SMRI
Target DLPFC Neurons Neurons Genomics MSSM
mRNA mRNA mRNA mRNA
s -1.15 FC, -1.11 FC, y -1.11 FC, -1.06 FC,
LDHA p=0.359"% p=0.285" 1.64 FC p=0.022 p=0.320
1.10 FC, -1.24 FC, y 1.12 FC, -1.01 FC,
HK1 p=0.397"% p=0.003"® 1.99FC p=0.065 p=0.831
-1.32 FC, -1.43 FC, y 1.05 FC, 1.03 FC,
PFKM p=0.039'® p=0.0001"2 1.24FC p=0.225 p=0.694
PFKL NM -p1_.(2)70F1c1, -2.00 FC* _pl_'gong% -1.03 FC*
PFKFB2' NM ;60;7':3%8 -1.09 FC* ;'_OOOQF7C5' -1.31 FC*
-1.26 FC, ; -1.01 FC, -1.01 FC,
GPI NM p=0.015 1.97FC p=0.659 p=0.878

Table 2. Summary of experimental changes and “lookup” replication studies (all data
presented as fold change disease versus control). Summary of region and cell-level seed
gene findings from this human postmortem study and online databases. Mount Sinai database
compares microarray data from the dorsolateral prefrontal cortex in schizophrenia (n=16) and
control (n=15) subjects. Stanley Medical Research Institute (SMRI) Genomics database
compares microarray and consortium data from schizophrenia (n=50) and control (n=50)
subjects from 5 postmortem brain regions (BA6, BA8/9, BA10, BA46, cerebellum). The cortical
neuron mMRNA is a publicly available dataset comparing mRNA from inducible pluripotent stem
cells from schizophrenia and control patients differentiated in frontal cortical neurons. Stanley
Medical Research Institute (SMRI) Online Genomics Database, Mount Sinai School of Medicine
(MSSM) dorsolateral prefrontal cortex (DLPFC), fold change (FC), glucose phosphate
isomerase (GPI), hexokinase 1 (HK1), phosphofructokinase muscle and liver type (PFKM,
PFKL), lactate dehydrogenase A (LDHA), 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase 2 (PFKFB2). All results are presented as diseased state versus control. Red

text indicates finding was significant according to p-value cut off of 0.05 and/or fold change cut
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off of 1.1. * denotes unavailable p statistics due to low subject number. * denotes multiple affy

probes for the same gene (geomean was used to calculate fold change). *P<0.05 and FC>1.10.
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Table 3. Summary of Enrichr analyses.

PANELS OF CLUSTERED UPREGULATED GENE ANALYSIS
Analysis Select Targets Function

cell metabolism,
KEGG Signaling Pathways FOXO, MAPK, Wnt inflammation, cell growth,
mitochondrial function

RPS6KA3, MAPK14, GSK3B, | metabolism, cell proliferation,
Protein-Protein Interactions CDK1, CUL1, SKP1, PCNA, degradation/ubiquitination,
HDAC1, ESR1 chromatin remodeling

NMUR2, FFAR1 ycle reg » ENETgy
homeostasis

WT1, TRIM28, NFIB, developmental processes,
Transcription Factors NUCKS1, TCF3, ESR1, immune response, estrogen
ESR?2, ELK3, CEBPB receptors

PANELS OF CLUSTERED DOWNREGULATED GENE ANALYSIS
inflammation, impaired
immunity, and cell
proliferation

p53 signaling, HTLV

KEGG Signaling Pathways infection, hepatitis B

HDAC2, HDAC1, PCNA, Chromatin remodeling/HDAC

Protein-Protein Interactions BRCA1, CREBBP, inhibitors, immunity/cell cycle
CSNK2A1, NFKB2, MYC regulation, ubiquitination
CNS development, cell cycle
PPARy, RXR, PXK, ABL2, progression, cytoskeletal
Kinases RYK, WEE1, LPHN1, remodeling
NR3C1, GPR37 carbohydrate/fatty acid

metabolism, inflammation

MYC, MYCN, NUCKS1,
Transcription Factors FOXM1, E2F1, E2F4,
POUS5F1, EKLF

cellular proliferation and cell
cycle control, development

Table 3. Summary of Enrichr analyses from clustering analysis. Hits and biological function
for Enrichr analyses of panels of clustered upregulated and downregulated genes from iLINCS

clustering analysis.
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Table 4. Top 12 unique chemical perturbagens.

Chemical Description
Valproic acid Histone deacetylase (HDAC) inhibitor, voltage-gated sodium channel blocker
Trifluoperazine Typical antipsychotic drug

Irreversible phosphoinositide 3-kinase (PI3K) inhibitor, mitogen-activated protein
C23H2408, "Wortmannin" | kinase (MAPK) inhibitor at high concentrations

Thioridazine Typical antipsychotic drug

ST013886 Estradiol

Medication used for the treatment of acne and acute promyelocytic leukemia (APL),
Tretinoin prevents APL cells from proliferating

Ligand to both PPARa and more strongly PPARYy, thiazolidinedione (TZD) drug class,

Troglitazone reduces inflammation, enhances insulin sensitivity

Fluphenazine Typical antipsychotic drug

MLS001214919 Small molecule

Genistein Isoflavone with antioxidant abilities, activates PPAR isoforms a, 6, and y
LY-294002 Strong (reversible) inhibitor of phosphoinositide 3-kinases (PI3Ks)
MLS002473819 Small molecule

Table 4. Top 12 unique chemical perturbagens. The top unique chemical perturbagens with

the ability to “reverse” the schizophrenia bioenergetic profile.
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