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SUMMARY

Plate-based single cell RNA-Seq (scRNA-seq) methods can detect a comprehensive
profile for gene expression but suffers from high library cost of each single cell. Although
cost can be reduced significantly by massively parallel scRNA-seq techniques, these
approaches lose sensitivity for gene detection. Inspired by group testing and compressed
sensing, here, we designed a computational framework to close the gap between
sensitivity and library cost. In our framework, single cells were overlapped assigned into
plenty of pools. Expression profile of each pool was then obtained by using plate-based
sequence approach. The expression profile of all single cells was recovered based on the
pool expression and the overlapped pooling design. The inferred expression profile
showed highly consistency with the original data in both accuracy and cell types
identification. A parallel computing scheme was designed to boost speed when
processing the enormous single cells, and elastic net regression was combined with
compressed sensing to auto-adapt for both sparsely and densely expressed genes.
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INTRODUCTION

Single cells, as the basic components of life, are a new window to understand individual
differences among cells (Janiszewska et al., 2015; Raj et al., 2008). With the development
of advanced technologies to capture single cells quickly and accurately (Perfetto et al.,
2004; Spitzer and Nolan, 2016), scientists can narrow down their view from bulk
sequencing of thousands of cells, which averages out cellular difference, to the subtle
changes between individual cells (Zeisel et al., 2015). The elaborately atlas of single cell,
has shed light on multiple biological questions like revealing new cell types in cancers
(Chung et al., 2017; Grin et al., 2015), investigating the dynamics of developmental
processes (Li et al., 2017), linkage and developmental trajectory of immune cells in cancer
(Zheng et al., 2017) and identification of gene regulatory mechanisms (Datlinger et al.,
2017).

The two most popular methods for single-cell sequencing are plate-based protocols and
microdroplet-based methods. Plate-based protocols like SMART-Seq2 (Picelli et al., 2013;
Picelli et al., 2014; Tang et al., 2009) have higher sensitivity in gene detection by costly
constructing sequencing library for each cell independently. Correspondingly,
microdroplet-based methods like Drop-seq (Klein et al., 2015; Macosko et al., 2015) are
more efficient in sequencing by building one barcoded library for massive cells to analyze
large amount of cells in parallel with low cost. Although this approach is widely used,
these droplet-based approaches lose sensitivity when compared with the plate-based
methods. For each cell, only about a half of genes can be detected (Ziegenhain et al.,
2017). And the 3 sequencing method cannot capture the full length of RNA which
prevents deep downstream analysis (Baran-Gale et al., 2017). In short, the manual library
construction methods are superior in sensitivity but suffer from the high cost, which is
usually a hundred times more expensive than microdrop-based methods for each cell
(Baran-Gale et al., 2017). Therefore, an efficient approach is desirable to be developed to
close the gap between cost and efficiency of gene detection.

In this paper, we proposed an improved technique to cut down the budget of library
construction while maintained the same sensitivity to capture comprehensive gene
expression profiles for scRNA-seq. The basic idea behind our method is to group different
cells into overlapped pools, where the number of pools is usually much less than the
number of cells. We only construct library for each pool and get composite sequencing
results. Certain algorithms are applied to recover expression level for each single cell.

Except some house-keeping genes which routinely expressed cross all kinds of cells,
single cell RNA-seq expression profile (SCEP) is usually sparse for most genes due to a
lot of drop out events, which is also called zero-inflated (Pierson and Yau, 2015; Vallejos
et al., 2017). This intrinsic feature of scRNA-seq data suggests that they are compressible.
Our algorithm to recover the expression profile is based on the idea of group testing and
compressed sensing methods. The objective of quantitative group testing was first raised
to identify counterfeit coin by group test weights, where the weights are analogue to gene
expression level (Grossman and Shapiro, 1988). Basic Group testing method has also
been applied in many biological problems like rare variant detection (Erlich et al., 2009)
and haplotype assembly (Li et al., 2016). Compressed sensing (CS) was first designed to
sample and recover the sparse signals at a much lower rate rather than Shannon/Nyquist
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sampling frequency (Candes et al., 2006). By random sampling, CS method can
overcome two handy occasions: where high sampling rate is not practical in some
situations (Rani et al., 2018) and the cost of each sample is pretty high. Here we interpret
each pool as a measurement to detect our sparse expression profile, whilst use limited
sampling rate (less library) to recover the expression table with much lower cost.

Our aim can be divided into two levels. The first one is to approach the approximately
same accurate SCEP as the manual library construction method with less libraries. The
second is step back a little bit to examine whether we can maintain most of the original
data structure with a compromise of losing some accuracy but reduce more library usage
(Figure 1).

inference
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Figure 1. Objection overview illustration. Single cell expression profile is usually sparse at the gene
level (row of profile), whereas inference profile is dispersive due to group partition and recovery
algorithms. t-SNE (Van Der Maaten and Hinton, 2008) is used for dimension reduction visualization.

A comprehensive computational framework was proposed here to impute SCEP with
composite measurements. We first implemented compressed sensing algorithm alone on
a plate-based 64 cells SCEP dataset (Li et al., 2016) to show the ability of recovering the
data structure by our method. Then, we extended to a much larger dataset containing
5063 single-cells (Zheng et al., 2017) under a parallel computing paradigm by segmenting
all cells into sub block, and at the same time evaluated both the accuracy and the
maintenance of principle data structure. To cope with dense genes, which usually
expressed in various kinds of cells, we proposed a possible solution using self-adapted
regression method. Finally, for various considerations, we provided a more accurate
model but with a higher demand of experimental labor. The three frameworks were
demonstrated to allow users to achieve different resolution of the original expression
profile by using different number of pools, while reduce the library construction cost as a
whole.

RESULTS

From Grouping Idea to Solving Linear Equation: Model Design
To find a systematic approach to achieve our goal of reducing library usage, we learned
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the idea of group testing method, divided all cells into overlapped groups. Here
overlapped means one single cell can appear in different pools, and one pool contains a
group of cells. This overlapping fashion utilize the same cell as an information bridge and
can reduce the tests by cross information. The sparsity of SCEP which suggests it is
compressible. Compressed sensing is a widely used method for sparse signal recovery
and sampling. We combined these two ideas to form our model (Figure 2).
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Figure 2. From grouping idea to linear equation. (A) lllustration of pool strategy for single cell
expression profile inference. The M matrix is pool-cell matrix, which is overlapped. In this example, 22
cells are designated into 4 pools. M;; is orange means pool #1 contains cell #1. Y is pool-gene matrix,
which is the expression level for each pool after sequencing. Different colors represent different levels. X
is cell-gene matrix, that we want to infer from Y and M. It is usually sparse among most genes. (B)
lllustration of pooling strategy, same amount of lysate of each cell is extracted into pools. (C) In the
middle, different masks on the 96 well plate represent different cell group in each pool. Each plate is an
8*12, on the right is a long one-dimensional vector with length of 96. It contains value zero (white) and
one (orange) indicating how to choose cells for each pool. On the left, a grouping-based sequencing
result for each pool.

Pooling (or grouping) is the central idea of our method, and the way we divide different
cells into different pools is represented with a pool design matrix M € R™*". In the basic
scenario, suppose M = {m;;} is a binary m x n matrix, where m indicates the number of
pools which equals the number of library we will use, and n represents the number of
cells. m;; is binary and m;; =1 if and only if it" pool contains jt* cell (Figure 2A).
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Pools are designed according to the M matrix first, and then sequenced using NGS

technology. The result is represented by the Y € R™*9 matrix, which is the expression

profile for pools. Suppose the whole SCEP is X € R™Y, then Y,; = M x X,; can be easily

interpreted as: we get Y,; (a compressed format of gene j's expression profile) by using a

combination of detectors M to overserve the SCEP X; (original format of gene j’s

expression profile). This question can be transformed into a matrix form (Figure 2A):
Y~MxX

Our goal is to solve this equation effectively in high accuracy with a properly designed
M.

Mathematically, this ill-conditioned linear equation (mis usually much less than n,
which meets our needs to use less library) has infinite answers. However, compressed
sensing can help to solve this equation when X is sparse. A well-defined M which
satisfies some requirements can recover an accurate X with confidence. The
requirements on M can be relaxed if we just want a silhouette of the SCEP.

Experimentally, since one single cell will be sequenced many times, people can lyse
single cells at the beginning and use aliquots of cell lysate to represent the exact cells.
Each pool contains several cells, and each cell appears in different pools (Figure 2B,
Figure 2C). Suppose we want to sequence 96 unique cells using a pool strategy, we
would first lyse each cell into different wells of a 96 well plate (Figure 2B), and then adopt
a different combination of different cells for each pool. The same amount of cell lysate is
extracted into a test tube, therefore one library is constructed for one tube and then
sequenced a whole tube at a time.

Toy Example Using Compressed Sensing Maintained Core Structure

We first applied compressed sensing method alone on a 64 single-cell dataset with
17,683 genes (Li et al., 2016) to evaluate the recovery ability. This dataset contains 64
cells from human pancreas and were sequenced based on plate-based Smart-Seq2
protocol (Picelli et al., 2014).The dataset contains 7 defined pancreatic cell types and 1
undefined group. We recovered the SCEP and visualized with t-SNE (Hinton, 2008;
Krijthe, 2015) with given labels from original dataset (Li et al., 2016) to verify the
performance.

Two measurements were used to evaluate the performance: (1) Pearson correlation for
each gene between the original SCEP and the inferred one. (2) A low-dimensional
embedding representation. As expected, the overall correlation calculated based on all
genes was increased with the increment of both pool number and cell number of each
pool (Figure 3A). However, when taking two variables as a whole, the pool numbers
played a more important role, as decreasing the pool numbers from 20 to 15 led to a
dramatic fall in correlation from 0.98 to 0.83 (32 cells in one pool). This decreasing trend is
also non-linear. In general, using 30 pools can capture most information which is highly
coherent with original data, which is visualized by low dimensional embedding (Figure 3B).
Delta, beta, acinar and alpha were distinguished while PP cells and undefined cells are
mixed to some extent which is also consistent with original paper.
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Figure 3. 64 single cells toy example using compressed sensing method. (A) Pearson correlation
for each gene between original and inferred SCEP with different pool numbers and cell numbers in each
pool. (B) A low dimension embedding visualization for both original data and inference. 30 pools were

used, 13 cells in each pool.

Overall, these results showed that by using only compressed sensing method people
can successfully reconstruct SCEP with high accuracy when enough pools were used.
Therefore, we achieved the goal to cut down the library cost at least twice. Though only
half of the cost was cut down and more experimental efforts were paid, the merit of our
approach will be amplified when dealing with much more cells. However, challenges are
still remained like how to recover the non-sparse genes of SCEP and efficiency when
computing an enormous scale of single cells. Next, we will extend this method to tackle
both problems.

A Parallel Comprehensive Model to Speed Up: Model Design

To cope with the high time complexity of accurate recovery in traditional compressed
sensing (Chen et al., 1998; Dantzig, 1963), especially when the design matrix M is large
(like thousands of cells in a bunch), we developed a parallel computing paradigm which
reduces the computation time dramatically while allow experiment designers to choose
the best combination configuration based on experimental condition.

The scheme is illustrated in Figure 4A. In principle, suppose we intend to impute the
SCEP of n cells with m pools, the dimension of pool design matrix M is m x n. We do
not build M as a whole at a time. A series of M;,i € (1:q) were built instead, which line
on the diagonal of the original matrix. For each sub-block M; € RPi*¢i, 31 p, =m, it is
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used as a pool design matrix for a subset of cells c;, which is non-overlap. In this manner,
we bound all recovered X; by row to form the recover expression table as a whole.

5 Computating time with different block size
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Figure 4. Parallel comprehensive model scheme lifts the efficiency. (A) Parallel computing scheme.
A series of measurement matrix M; to observe a subset of cells. Using compressed sensing methods to
recover each subset cells X; with M; and composite expression level of Y;, we stack all X; by rows to
get an overall recovery of X. pcell indicates the number of cells contained in a pool, p stands for the
percentage of pcell divide the number of all cells, which is 0.25=3/12 in this example. Different color
stands for actual amount of lysate of each cell that is added in a pool, deviation from 1 is regard as noise
in M. (B) Parallel model for speeding up. Six genes were randomly chosen to test effectiveness of
parallel computing. For simplicity, we only chose first 4000 cells for simulation. Smaller block size
indicates less cells in a group which also means more parallel threads. Computation environment is 8g
RAM, Matlab 2018a.

This comprehensive model improved the flexibility of the experiment design. In order to
determine the minimal pool size which is informative of original data, we set up few
parameters. By the simulation using a 5063 single cells dataset (Zheng et al., 2017), we
assessed how different parameters influence the performance. Four main parameters to
concern (Figure 4A):

(1) The number of different single cells in each pool: pcell, which roughly equals to
the number of non-zero value in each row of M;. Since we generated M; using a
random scheme, pcellis an approximate value and may vary a little across
different pools.

(2) The sparsity level for each pool: p. It determines the sub block size together with
pcell by size(columns of M;) = p/pcell.

(3) Total number of pools m. This number is of critical importance and has huge
impact on the final performance of our method. It is also the direct indicator of the
library cost.

(4) Sample add-in perturbation: t. It indicates the possible experimental error. It is a
value between 0.5 to 1 and represents the variance and noise when samples
were added into each pool. For example, t = 0.8 means the actual aliquot of cell
is randomly drawn between 0.8 to 1.2.
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For the number of cells in each pool pcell, it is a tradeoff between accuracy and
experimental labor. Generally, a larger pcell value means each pool as an observer has
more antennas to sense the signal (expression profile for one gene), which leads to a
higher probability to maintain the structure and accurate value of original signal. However,
to add more various type of cells in a pool may increase the efforts for experimental
pooling.

Experimental noises are viewed as the noise of M matrix. The volume of a partition of
one single cell is small and the RNA concentration and distribution in the partition might
deviate from equal division. Here we evaluated the performance taking these noise into
considerations.

A Parallel Comprehensive Model to Enormous Data Set: Results

We focused on 5063 T cells isolated from different tissues and locations from liver cancer
patients with deep depth scRNA-seq data as a showcase here (Zheng et al., 2017). Our
comprehensive parallel model was applied on these cells with two goals same as the toy
example: (1) Inferring exact value. (2) Finding a minimal possible number of pools that
distinguishes different cells. Both goals were accessed by different combination of few
parameters mentioned above. Finally, we also examined the running time under different
block size to evaluate the speed up for parallel model.

Level One: The Accuracy Of Recovery

The results using a parallel scheme on 5063 single cells data set are shown in Figure 5A.
To achieve the goal of reducing library consumption, we started the simulation from 2000
pools which is twice less than 5063 libraries as before. We chose this amount based on
the sparsity level of X and the compressed sensing property which indicates that when

pool m satisfies m = cklog (%) then people can recover the data of high accuracy with

confidence (Supplementary method details). We then reduced the libraries gradually to
assess the recovery performance. The reason we believe that use libraries less than the
starting pool- number would still work is based on empirical knowledge of single cell
profile density distribution as well as practical examination (Figure S1).

We can easily spot that the number of overall pools has a profoundly influence on the
accuracy, and there was a sharp decrease from 800 to 400 pools.

As expected, pcell was also positively correlated with the accuracy. The more probes
(cells in one pool) we used to sample a signal, the more information we got which also
means a better performance for the recovery. We also investigated the add-in sample
perturbation t € (0.5,1) in experiment, the result showed that the accuracy was robust to
the perturbation, median correlation can still achieve above 0.9 when the SNR decreased
down to 2 (over 800 pools) (Figure 5A). In summary, the performance of our model lift with
more pools, more cells in a pool, larger block size and less perturbation when add in
sample.
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Figure 5. The results using a parallel scheme on 5063 single cells data set. (A) An Overall result for
parallel comprehensive model. (B) Low dimension embedding visualization of recovered single cell
expression profile using parallel comprehensive model of 1200 and 1600 pools. Each dot represents one
single cell, tags were assigned according to original dataset indicates cell types and locations. (See also
Figure S2). (C) Cell-cell correlation heatmap by inference with 1200 pools. Cell type patterns were

annotated according to previous work. (See also Figure S4).

Level Two: Rough Structure

One prominent task in single cell sequencing is to distinguish cell types according to their
gene expression profile. It is no need to have the exact value to tackle this problem as
long as we keep relative relationship of different genes. To be more specific, only genes
that differently expressed across different cell types will play crucial role in cell type
identification. Here we only kept part of genes for inspection with following reasons.

The first reason is to our knowledge that most of the housekeeping genes express at a
relatively stable level across all kinds of cells, hence it is usually used to be a ruler for
different cells under different conditions to rectify other genes’ expression level. This idea
is used like spike-in strategy in gPCR, DESeq2 normalization pipeline (Love et al., 2014).
These genes are usually not informative for classification. The second reason is that
compressed sensing methods is originally designed to recover those sparse signals. From
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simulation we found that, the algorithm returned a sparse result even if the original signal
was dense (a gene expressed cross a large number of cells) (Figure 6A). These distorted
results will not reflect the real sparse level, so we evaluated the performance without
these dense genes by setting different thresholds.
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Figure 6. A combined model tackling both sparsity and density. (A) Comparison between
compressed sensing only method (left column) and combined model (right column). Each dot represents
a gene defined by it's sparse level and recovery accuracy. Genes that not expressed in any cells (858
genes) and unqualified cells (as original paper) were excluded. Dash b line indicates the sparsity level in
original data and the dash a line is for recovered data. (B) Combined model scheme. The dash line
indicates expressed cells numbers of each gene from the results of Compressed sensing only method
and ranked by sparsity level. Inflection point is estimated as a threshold to decide how to combine two

results.

We chose the profile of patient 1116 (818 cells) for downstream analysis as the original
paper did. Our model successfully distinguished nine different cell types by using only
sparse genes (Figure 5B, Figure S2). The threshold to define sparsity is extended
bilaterally from a half of number of pools we used in experiment. The pivot number is
chosen based on theory but proved to work well in experiment. We show that using only
1600 libraries instead of 5063 libraries can distinguish each cell type, thus reduced two
third of the cost. More interestingly, by using 1200 or less pools, even though we can’t get
the distinct classification for each type, informative patterns were found. NTR and PTR
(CD4*CD25"" cells) are always grouped together, and TTH, PTH and NTH (T helpers
cells) also aggregate. Cell-cell correlation was also investigated (Figure 5C, Figure S4),
even though the correlation between was pretty low, the intra-type correlation can still be
discriminated obviously from inter-type cells (where the correlation is usually near zero).
Speeding Up
Six genes were picked out as an example to test the computation time using different
block size in parallel scheme. As shown in Figure 4B, Time consuming increases as block
size gets bigger, since block size is negatively correlated with parallel threads. Notice that
the trend is non-linear, take gene HMGXB4 as an example. The computation time for
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recovering this gene speeds up near 7 times (from 5 to 35 seconds) when block size gets
twice bigger (from 2000 cells per block to 4000).

So that using smaller blocks with more parallel computing threads can reduce time.
However, people should notice that more computing resources were needed and less
accuracy were achieved when using too many threads (Figure 5A).

In summary, by using parallel comprehensive model we achieved both high accuracy
and maintained the core structure of the data whilst reduced the computing time
significantly.

One Stone Kills Two Birds: A Combined Model Tackling Both Sparsity
and Density

Despite only some sparse genes are informative enough to cell type classification as
discussed above, dense genes may also be desired for downstream analysis. Here we
provided a new scheme which combined compressed sensing method for sparse genes
and elastic net method for dense genes. Basically, we picked out those relatively dense
genes in each sub-block from previous compressed sensing framework and recovered
them again by elastic net.

The results for this adaptive method are shown in Figure 6A and Figure S3. We ranked
every gene by their sparsity level from the sparsest on the left to densest on the right.
Compressed sensing took advantage for sparse recovery so that both methods achieve
same high accuracy for sparse genes (Figure 6A). However, a combined model
outperformed pure CS method for dense genes recovery.

Highly variable genes were compared from original and recovery data by considering
both variability and average expression level (Satija et al.,, 2015). Under the same
threshold, increasing number of pools showed greater ability to capture same variable
genes as original data (Figure S5) which may have huge impact on downstream analysis.

In summary, a combined model is more adaptive and took advantage of both CS and
elastic net methods at the same time so that achieves a higher accuracy. This model is
also more flexible that people are allowed to set different threshold for partition between
sparsity and density, balance between lasso and ridge regression.

A Laborious Model for Higher Accuracy

As we mentioned above, a necessary and sufficient condition for recovering x with high
probability requires measurement matrix M satisfies RIP (restricted isometry property)
condition (Baraniuk et al., 2008; Candes et al., 2006). A randomly generated Gaussian or
Bernoulli matrix meet this requirement. A random Gaussian matrix M’ is usually full but
with a better ability to capture more information from Y. Yet, from experimental
perspective, a full pool design matrix M requires more intensive work for adding sample
in each pool.

Here we still provide a full pool design matrix scheme for possible usage. We compared
the results (Figure 7) using 400 pools and 800 pools which performed ordinary when
using Bernoulli matrix. New M’ with original Y outperformed previous scheme in every
aspect, especially when the block size was small (like 200 columns of each M). This can
be interpreted as just a proportion of detectors in a small M cannot even make sure that
each cell was detected at least once. However, a random full matrix can always guarantee
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that.

Even though a full matrix M’ can achieve a better performance, there is a tradeoff
between the experiment efforts and inferring accuracy. One single cell is represented
using aliquots of different volumes in all pools. Alternatively, with the increasing demand
for cell's nucleic acid in a full matrix, amplifications can be applied before pooling, which
might introduce more variance and bias.
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Figure 7. Gaussian design matrix model improved the accuracy. (A) Results comparison between
using random binary pool design matrix (Bernoulli) and full matrix with 4 concentrations randomly
distributed to approximate Gaussian distribution (Gaussian). (B) Correlation analysis of recovery
accuracy with two design matrix schemes with 800 pools.

DISCUSSION

To close the gap between cost and efficiency of gene detection in single cell sequencing,
we adopted the grouping-based pooling strategy for SCEP inference. Only less than a half
of sequencing libraries were needed while the gist information captured. Unlike massively
parallel approaches like Drop-Seq which could only detect limited kinds of genes, this
pooling strategy gets a more extensive expression profile. Meanwhile, the maintainability
of full length RNAs improves the accuracy of gene expression profiles in comparison with
the massive approaches which could only get short sequences adjacent to the barcodes.
In this grouping-based pooling strategy, the number of pools is much less than the number
of cells, but increases slightly along with the increase of cells (Kang et al., 2018; Poli et al.,
2009; Satija and Shalek, 2014). Therefore, if the number of cells is extremely huge, the
cost used by pooling strategy should still be taken into account.

On the basis of compressed sensing framework, the inference process can be
transformed to solve an ill-conditioned linear equation: Y = MX. The only unknown
coefficient matrix M is a connection between cells and pools, it is an abstraction of this
measurement transformation. The designed Bernoulli matrix is a binary matrix which
resembles a switch between choosing a single cell to a pool or not. The designation also
adopts the idea of overlapping from group testing methods. Compared with a binary
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matrix, a random Gaussian matrix achieves higher accuracy but requires more laborious
operations in practical experiments. There is always a tradeoff between numeric accuracy
and experimental efforts. The same is true when we want a better performance by
increasing the number of pools and add in more cells in each pool. The automatic
sampling systems might relieve this dilemma between performance and experimental
effort in the future.

To solve this under-determined system, CS is used for sparse genes recovery, and
elastic net is aimed for non-sparse genes. With a progressive approximation algorithm,
CS is efficient considering time complexity, and these inferred sparse genes are sufficient
to maintain the core structure of original data independently which has been proved by our
investigation. The non-sparse genes are also useful for clustering and that are crucial for
downstream analysis. Therefore, it is worth improving the inferring accuracy of non-sparse
genes through elastic net. Of course, the dense genes can'’t be fully recovered on the
basis of information theory without any assumptions.

Extraction features from datasets for cell type identification has been a relish challenge
in cell analysis. Previous studies have suggested that highly expressed and highly varied
genes contain most crucial information for classification (Satija et al., 2015). Although it is
a plight to distinguish those highly varied genes from single cell expression profiles which
are usually sparse due to a high percentage of drop-out events, our simulation
demonstrated that sparse genes were also capable to capture the gist of structure. The
results suggested that the highly varied genes and the sparse genes might be greatly
overlapped, and the sparse property is a potential index to extract the genes which
contain most crucial features for classification.

Cells from same individuals, tissues or positions, or with similar phenotypes revealed
similar expression profiles in previous studies (Li et al., 2016; Zheng et al., 2017). More
resemblance in gene expression is seemed to be carried by cells with similarity. On the
other hand, genes are tended to gather in groups in expression profiles which suggests
that genes in a group are strongly correlated. ldeas were raised by leveraging these
dependencies like eigengenes (Steve and Peter, 2007) and gene modules (Cleary et al.,
2017). Both the similarity in cells and the correlation between specific genes can be
utilized as pre-information for low rank compressed sensing recovery (Fazel et al., 2008),
which might lead a better performance for dense genes recovery.

To sum up, single cell expression profile analysis is an emerging and exciting area to
explore with its intrinsic features like sparsity. Traditional analysis methods should be
improved and adapted based on this property. Our work offered a comprehensive scheme
on recovering an expression profile composed of both sparse genes and non-sparse
genes with a dramatic decrease on library consumption. This frame work can also be
widely adapted to other single cell atlas including proteomics, lipidomics and
metabolomics as long as a sparse feature is presented. More works in this area are
enthusiastically to be seen for the coming years.

STAR METHODS

Detailed methods are provided in the online version of this paper and including the
following:
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STAR METHODS
KEY RESOURCES TABLE
DEPOSITED DATA SOURCE IDENTIFIER
Gene expression Landscape of Infiltrating T Cells in Liver Cancer GSE98638*
data Revealed by Single-Cell Sequencing
Gene expression  Single-cell transcriptomes reveal characteristic GSE73727
data features of human pancreatic islet cell types

*In order to follow the same analysis as original paper, we keep the same 4070 patients from 5063 as the
author did, 4070 cells list can be obtained from GSE98638_HCC.TCell.S4070.norm.centered.txt.

METHOD DETAILS
The inference procedure is designed to recover a single cell expression profile by a known
design matrix and a measurement matrix for all pools.

Dictionary Design

Toy example is generated based on a 64 single cells dataset (GSE73727). We built M by
first generated a gaussian random matrix with dimensions of pools X cells, then set a
threshold to transform gaussian matrix to binary matrix by value comparison which return
a logic value. In parallel comprehensive model, for each sub M;, we used the same
method as above. p is set between 0 and 1 to determine the sparsity level of each pool.
p = 0.1 represents around 10% cells were picked in each pool. In full pool design matrix,
we first generate a vector of equal length of cell numbers in each sub block. Each vector
contains near equal number of {1, 0.1, 0.01, 0.001}. Then we constructed M whose rows
are random permutations of the vector.

Toy Example Simulation Processing

A transcript expression level table for 64 single cells of different pancreatic islet cell types
(Li et al., 2016) dataset EV2 was downloaded. We then collapsed the dataset based on
the gene symbol “ensG” by plyr package in R. Using this computed cell-gene expression
table X, and multiplying by designed measurement matrix M, we then built up composite
measurement by Y = M x X. M was varied on the number of pools from 12 to 30, and
number of cells in each pool was 13 or 32. Basically, the way we decided how to allocate
different cells in each pool is by simulating numbers from a uniform distribution u € [0,1]
and then set a threshold. For all positions, if the value is less than the threshold, it would
be set to one otherwise to zero. The threshold p can be set between 0 to 1, and the
number of cells in each pool equals p times number of all cells. Then X is solved by CS
method. (https://github.com/Irenexzwen/SigRec)

Parallel Comprehensive Model on Large Dataset

We collected data of 5063 single cells from NCBI (GSE98638) (Zheng et al., 2017), and
then excluded unqualified single cells followed the original paper for downstream analysis.
To implement a parallel model, we first constructed M; based on four parameters
introduced before. To implement parallel scheme, we partitioned original expression
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profile by rows into sub groups of cells’ expression profile X;, whose row number equals
the column number of M;. Each block was then computed using same scheme as toy
example. Finally, we bounded all recovered X, by rows to form the SCEP. For the
turbulence t € (0,1), we replace value 1 with a random number sampled from a uniform
distribution u € (t,1 — t). For classification visualization, we chose patient 1116 followed
the original paper. The sparsity distribution of all genes were calculated once we got the
recovered SCEP and set expressed cells cut off according to 1% and 3 quantile value.

Combined Model Processing

Elastic net regression was applied based on the results of purely compressed sensing.
For each block of recovered X,, we counted the number of non-zero items of each
gene across all cells and picked out those dense genes whose expression profile in' Y
are all non-zero. These selected genes were then regressed using elastic net by
tuning the hyperparameters A and a using cross validation. After regression, we
stuck them back to the original position in each sub regressed X, and then bounded
all X, by rows together to get the recovered X'. Next, we examined the result of
compressed sensing only method to find a inflection point as a threshold. Genes
whose expressed cells numbers beyond this threshold were viewed as
“inappropriately regressed” so that we substituted these genes expression inference
with the results of elastic net regression to get a final result X (Figure 6B).

Full Pool Design Matrix Scheme

In full pool design matrix, first row in new M’ matrix was generated by randomly sampling
from {1,0.1,0.01,0.001} with equal frequency, which represents four concentration
gradients. Then we constructed M; with all rows are random permutation of the first row.
By this manner, we created a near random matrix but only with four possible value for
experimental convenience. Following procedures were exactly the same as
comprehensive parallel model with know Y.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sparse gene set identification

After we got recovered single cell expression profile from compressed sensing method,
for each gene i, we first calculated the number of cells that expressed this gene (non-zero
items in each gene) as c;, then sorted all genes by c; increasingly to get a vector C;.
Function Q is defined as the quantile function. For specific pool numbers m, Qc,(0.5)
was chosen as a pivot threshold(median) and extended the value towards Qc,(0.25) and
Qc,(0.75) by equal 5 intervals. All genes that has a c; < threshold will be preserved for
downstream analysis like t-SNE and correlation analysis.

Single cell expression profile normalization

Zero-inflation property of single-cell expression profile (high proportion of zero counts due
to biological or technical reasons) account for a poor performance when using bulk-seq
normalization methods (Vallejos et al., 2017). However, to follow the same strategy as
original research using DESeq2 (Anders and Huber, 2010), we tailored the method to
meet our sparse recovered results. Briefly speaking, DESeq2 calculates global scale
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factors based on a pseudo-reference which is composed of geometric mean of specific
genes over all samples, unfortunately, it's too rigorous for a zero-inflated SCEP to meet
this requirement. We circumvent this dilemma by choosing the densest cell from our
inference (expressed most genes) as reference cell. Then size factor for each cell is the
median of gene expression level ratio (only genes that expressed in both cells) between
two cells. After that expression level for each gene of a cell is modified by multiply the size
factor calculated above.

Differential expressed gene set identification

We identified highly variable genes followed the same method as Seurat. Basically, both
average expression and dispersion of each gene are taken into consideration. Parameters
were chosen as default value from the toolkit (x.low.cutoff = 0.0125, x.high.cutoff = 3,
y.cutoff = 0.5). We tested the combined model results (4070 cells and 23389 genes) by
this method generated Figure S4.

DATAT AND SOFTWARE AVAILABILITY

Software availability
Analysis and code scripts can be found at https://github.com/Irenexzwen/SigRec.
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