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ABSTRACT

Pathogenic bacteria use different strategies to infect their hosts including the simultaneous 

production of pore forming toxins and several virulence factors that help to synergize their 

pathogenic effects. However, how the pathogenic bacteria are able to complete their life cycle 

and break out the host intestinal barrier is poorly understood. The infectious cycle of Bacillus 

thuringiensis (Bt) bacterium in Caenorhabditis elegans is a powerful model system to study the 

early stages of the infection process. Bt produces Cry pore-forming toxins during the 

sporulation phase that are key virulence factors involved in Bt pathogenesis. Here we show that 

during the early stages of infection, the Cry toxins disrupt the midgut epithelial tissue allowing 

the germination of spores. The vegetative Bt cells then trigger a quorum sensing response that 

is activated by PlcR regulator resulting in production of different virulence factors, such as the 

metalloproteinases ColB and Bmp1, that besides Cry toxins are necessary to disrupt the 

nematode epithelial junctions causing efficient bacterial host infection and dead of the 

nematode. Overall our work describes a novel mechanism for Bt infection, targeting the 

epithelial junctions of its host midgut cells.
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Author summary

The entomopathogenic bacteria Bacillus thuringiensis (Bt) are used worldwide as biopesticides 

due to their insecticidal properties. Crystal proteins (Cry) produced by Bt during the sporulation 

phase of growth are mainly responsible for their insecticidal properties. The infection process 

of Bt includes three successive steps, virulence, necrotrophic, and sporulation processes. During 

the virulence process, after ingestion by the susceptible hosts, the Cry toxins form pores in the 

apical membrane of intestinal cells, inducing favorable conditions for bacterial spore 

germination. Vegetative bacteria multiply in the host and coordinate their behavior by using the 

quorum sensor regulator PlcR, which leads to the production of virulence factors allowing the 

bacteria to kill the host. However, how the bacteria are able to disrupt the host intestinal barrier 

during the early stages of infection remains unknown. Here we show that Bt employs the 

nematicidal Cry toxins and additional virulence factors controlled by the PlcR regulon to disrupt 

the intestinal epithelial junctions of C. elegans at the early stages of infection allowing that Bt 

bacteria complete its life cycle in the worms. Our work provides new insights into the 

pathogenesis of Bt, and highlights the importance of breaking down host epithelial junctions 

for a successful infection, a similar mechanism could be used by other pathogens-host 

interactions since epithelial junctions are conserved structures from insects to mammals.
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INTRODUCTION

Animals encounter a myriad of chemical or biological dangers, including pathogens, in the 

environment. The epithelium tissue naturally serves as a physical barrier to protect themselves 

from detrimental agents [1]. However, pathogenic bacteria evolved to avoid the defense 

mechanisms and to invade their host [2,3] completing their infection lifecycle [4,5]. Indeed, it 

has been reported that many pathogens disrupt the host intestinal barrier functions during 

infection, such as the human opportunistic pathogen Escherichia coli [6], an etiological agent 

of human adult periodontitis Porphyromonas gingivalis [7], and Salmonella enterica serovar 

typhimurium [8], among others. However, there have been very few studies addressing the 

detailed mechanism of how pathogenic bacteria break through the intestinal barrier of their 

hosts during the early stages of infection.

The Gram-positive bacteria Bacillus thuringiensis (Bt) are ubiquitous spore-forming 

bacteria that belong to the Bacillus cereus (Bc) group, which also encompasses B. cereus (a 

human opportunistic pathogen), and B. anthracis (the etiological agent of anthrax in mammals) 

[9]. During sporulation, Bt produces parasporal crystal proteins (Cry) that have specific toxicity 

to different insects, nematode, mites, and protozoa species. [10,11]. The Cry proteins are 

recognized as pore-forming toxins that disrupt the epithelial cells by osmotic shock [12]. In 

addition, Bt produces several other virulence factors important for its pathogenicity in insects 
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[13]. For example, the enhancin protein was reported to facilitate the disruption of the 

peritrophic membrane, while the InhA metalloprotease helps Bt and Bc to escape from innate 

immune system. In the case of Bc it was shown that InhA metalloprotease induces alterations 

in the macrophage membrane [14-16].

As a pathogen, Bt could complete a full infection life cycle in both insects and nematodes 

hosts [13,17]. Overall, the infection process of Bt includes three successive steps, that involve 

virulence, necrotrophic, and sporulation processes [18]. During the virulence process, after 

ingestion by susceptible hosts, Cry toxins form pores in the host intestinal cell membranes, 

inducing favorable conditions for spore germination. Vegetative bacteria multiply in the host 

and coordinate their behavior by using the quorum sensor PlcR regulator, which leads to the 

production of virulence factors allowing the bacteria to kill its host [19,20]. After the host death, 

the quorum sensor NprR regulator controls the expression of a set of genes encoding 

degradative enzymes, allowing the vegetative bacteria cells to use the insect cadaver and to 

survive necrotrophically [21]. Finally, the Rap-Phr system activates a phosphorylation cascade 

leading to the induction of the sporulation regulator Spo0A and to the commitment of part of 

the bacterial population to produce Cry protein and sporulate [18,19]. Although some steps 

related to Bt infection have been studied, it is still not known how the bacteria disrupt the 

intestinal barrier of the host during the early stages of infection.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2018. ; https://doi.org/10.1101/338236doi: bioRxiv preprint 

https://doi.org/10.1101/338236
http://creativecommons.org/licenses/by/4.0/


The infectious cycle of Bt in the nematode C. elegans is a powerful model system to study 

the pathogenesis under natural conditions [17,22]. Indeed, several virulence factors of Bt 

besides Cry toxins were shown to contribute to the nematodes infection, including the 

metalloproteases Bmp1, ColB, and chitinase [22-24]. Especially, the Bmp1 and ColB exhibit 

intestinal tissue degradation activity to enhance the toxicity of Bt. In this study, using Bt-C. 

elegans as a model, we describe the detailed mechanism of how Bt breaks out the intestinal 

barrier of the host. We report that the intestinal epithelial junctions of C. elegans are targeted 

by Bt to invade the worms at the early stages. Also, we show the genetic basis and regulation 

of the virulence factors involved in this process. Our findings point out a crucial role of PlcR 

regulator and the virulence factors, Bmp1 and ColB in disrupting the nematode epithelial 

junctions. Overall, we provide new insights into the pathogenesis of Bt, and highlight the 

importance of breaking down host epithelial junctions for successful infection.

Results

Nematicidal Bt bacteria completed their life cycle in C. elegans destroying host internal 

structures

We previously described the complete lifecycle of the nematicidal Bt strain YBT-1518 in 

C. elegans [22]. To confirm whether this was a special case of that particular Bt strain or an 
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extensive phenomenon, we tested the pathogenicity in C. elegans of other five wild-type Bt 

strains [25] and one recombinant Bt strain (BMB0215) [26]. All of these Bt strains are 

nematicidal expressing the major classes of nematicidal Cry toxins such as Cry5, Cry6, Cry14, 

Cry21 and Cry55 (Table S1) [27]. As negative controls we used a non-nematicidal Bt strain 

YBT-1520 [28] that has high toxicity against lepidopteran insects such as Plutella xylostella 

and Helicoverpa armigera, and an acrystalliferous mutant of Bt strain BMB171 that encodes 

no cry genes and is nontoxic to the nematodes or to the lepidopteran insects [29]. The 

microscopy observations showed that the spores of all Bt strains escape from being destroyed 

in the pharyngeal grinder and reached the intestine of the nematodes (data not shown). The 

spores of the seven Bt strains that have nematicidal activity, were able to germinate and 

developed into vegetative cells after 24 h post infection (hpi). After 72 hpi the body of these 

infected nematodes were filled with Bt vegetative cells; while the tissues and organs of infected 

nematodes were degraded, showing Bt vegetative cells wrapped inside the nematode epidermis 

(Fig. 1A), which is a phenotype known as “bag of bacteria” (“Bob”) [30]. In contrast, the 

nematodes infected with non-active Bt strains BMB171 and YBT1520 showed spores in the 

gut but no vegetative Bt cells were observed in intestinal tissue of the nematodes and neither 

showed “Bob” phenotype (Fig. 1A).

The percentage of worms that showed “Bob” phenotype after treatment with each Bt strain 
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was quantified indicating that most of the worms infected with the nematicidal strains formed 

“Bob” phenotype, ranging from 55.19 ± 11.16 % (infected by Bt strain G25-41) to 96.20 ± 3.78% 

(infected by Bt strain C15) (Fig. 1B). All worms in the two control groups were healthy (Fig. 

1B). Thus, we concluded that the nematicidal Bt strains could complete their full life cycle in 

C. elegans, and shared common pathogenic features destroying the worm’s internal structures.

Epithelial junction related genes of C. elegans are upregulated during Bt infection 

To explore the detailed mechanism of how nematicidal Bt destroys the intestine structures 

of nematodes, we previously analyzed the C. elegans proteome after infection with a 

nematicidal Bt strain in comparison to a non-nematicidal Bt strain [31]. Interestingly, these 

studies showed that three intestinal epithelial junction components related proteins AJM-1, 

DLG-1, and LET-413 were significantly up-regulated after nematicidal Bt infection [31]. The 

DLG-1 protein could physically interact with AJM1 in the C. elegans epithelial junction, while 

the DLG-1/AJM-1 complex is targeted to apical junctions by LET-413, which may be linked 

to the cell membrane by claudin-like transmembrane proteins such as VAB-9 or CLC-1 [32]. 

These data indicate that the epithelial junction related genes may be involved in the response to 

Bt infection.

To confirm this hypothesis, we analyzed the expression of the epithelial junction related 
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genes clc-1, ajm-1, dlg-1, and let-413 by qPCR in C. elegans worms exposed to the six different 

nematicidal Bt strains in comparison with two non-nematicidal Bt strains. Also, worms fed with 

E. coli OP50 strain were used as negative control. The results showed that the epithelial junction 

related genes clc-1, ajm-1, dlg-1, and let-413 were significantly up-regulated (t-test, p< 0.01) 

in animals infected with all the nematicidal Bt strains in contrast with the worms feed with E. 

coli OP50 strain or with the non nematicidal Bt strains (Fig. 2). It is important to mention that 

no significant differences (t-test, p> 0.05) were found in worms fed with the two non-

nematicidal Bt strains in comparison to the treatment with the negative control E. coli OP50 

strain (Fig. 2). This information is consistent with the previously proteomic analysis [31] 

supporting that the epithelial junction related genes of C. elegans were significantly upregulated 

during nematicidal Bt infection.

Nematicidal Bt strains disrupt the intestinal epithelial junctions of C. elegans during 

infection

The intestine of C. elegans is comprised of 20 large epithelial cells that are mostly 

positioned as bilaterally symmetric pairs to form a long tube around the midgut lumen. The 

epithelial junctions serve as link of all the intestinal cells [32]. The DLG-1/AJM-1 complex is 

considered as one of the three major molecular complexes at the apical surface of epithelial 
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cells in C. elegans [33]. Host epithelial junctions could serve as targets for the invasions of 

microorganisms [5,34]. Therefore, we hypothesized that the epithelial junction may be a target 

for Bt to destroy the intestine structures of the worms.

To confirm this hypothesis, we used the GFP labeled transgenic worms FT63(DLG::GFP) 

as a DLG-1/AJM-1 complex marker to visualize the integrity of C. elegans epithelial junctions 

during infection with Bt strains. The FT63(DLG::GFP) worms were fed with spores and toxin 

mixtures of the seven nematicidal Bt strains and observed after 24 hpi, a time point where all 

worms are still alive. Animals treated with non-nematicidal Bt strains or E. coli OP50 strain at 

the same conditions were used as negative controls. All treated worms were monitored and 

photographed under the fluorescent microscope. Normally, the GFP fluorescence of healthy 

FT63(DLG::GFP) worms is observed intact, just like a ladder. In contrast, when the epithelial 

junction is disrupted, the GFP fluorescence becomes blurry or fragmented. The observations of 

Fig. 3 showed that all nematicidal Bt strains caused severely disruption of C. elegans epithelial 

junctions. In contrast, the non-nematicidal Bt strains BMB171 and YBT-1520, showed that the 

fluorescence of the FT63(DLG::GFP) worms was similar to the animals that were fed with E. 

coli OP50 (Fig. 3). To quantify the damage in the epithelial junction’s, we observed 100-120 

worms randomly selected for each group, and the proportion of worms with disrupted epithelial 

junctions was calculated. The results show that most of the worms infected by the nematicidal 
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Bt strains have disrupted epithelial junctions, ranging from 50.52 ± 3.57 % (infected with Bt 

strain G25-41) to 88.95 ± 7.23% (infected with Bt strain BMB0215). In contrast, the non-

nematicidal Bt strains did not significantly (t-test, p> 0.05) disrupt the epithelial junction of 

FT63(DLG::GFP) worms when compared with the E. coli OP50 control strain (Fig. 4). These 

results show that the nematicidal Bt disrupt the intestinal epithelial junctions of C. elegans 

during infection.

C. elegans susceptibility to Bt is associated with epithelial junction integrity

Cell-cell junctions play a critical role in cell polarity and organogenesis. In addition to these 

fundamental functions, they also contribute to the formation and establishment of a physical 

barrier against pathogens invasion [35]. Therefore, disrupting the intestinal epithelial junctions 

of C. elegans seems to be one of the Bt strategies to infect the worms. To test this hypothesis, 

we analyzed the nematicidal activity of all selected nematicidal Bt strains against the wild type 

worms N2 and against the epithelial junction’s deficient mutant worms clc-1(ok2500), in which 

the epithelial junction related gene clc-1 was knockout. Considering that the selected 

nematicidal Bt strains show high toxicity to the nematodes, we adjusted the medium lethal 

concentration (LC50) of each strain in order to have 50% mortality of the wild type worms N2. 

The non-nematicidal Bt strain BMB171 was used as a negative control, using a dose of 106 
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spores/µl which is equally to the highest dose for selected nematicidal Bt strains in this assay. 

The results of the mortality assay showed that the mutant worms clc-1(ok2500) were 

significantly more sensitive to all the nematicidal Bt strains compared with that of the wild type 

N2 worms (t-test, p < 0.05) (Fig. 5A).

We also measured the sensitivity of wild type and mutant nematodes to copper sulfate (Fig. 

5B) and hydrogen peroxide (Fig. 5C) as controls of non-specific toxicity. There were no 

significant differences to these treatments between mutant worms clc-1(ok2500) compared with 

that of the wild type N2 worms (t-test, p>0.05). Our results show that the intestinal epithelial 

of C. elegans is a physical barrier against the infection of Bt.

The Bt spore development and nematicidal Cry toxin are required for the disruption of 

the epithelial junction in the nematode 

Cry toxins have been shown to be the main Bt virulent factor to kill the nematodes [26]. 

Therefore, we determined the importance of the nematicidal Cry toxins in the disruption of the 

epithelial junctions after Bt infection. We fed FT63(DLG::GFP) worms with 10 μg/μl of pure 

nematicidal Cry5Ba, Cry6A, and Cry21Aa toxins, respectively. The results showed that after 

24 hpi a small proportion of the worms showed disruption of their epithelial junctions (Fig. 6), 

ranging from 10.0 ± 1.0 % when treated with Cry6Aa toxin to 33.0 ± 5.0% when treated with 
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Cry5Ba toxin, compared with the disruption observed in the presence of purified spores of 

BMB171, that do not produce Cry toxins, together with Cry toxins at the same concentration 

as above (10 μg/μl), the epithelial junctions of most of the worms were destroyed, ranging from 

51.7 ± 5.9% for BMB171 spores plus Cry6Aa to 91.6 ± 8.3% for BMB171 spores plus Cry5Ba. 

The control included worms that were fed with purified spores of BMB171, that showed very 

few worms with disrupted epithelial junctions (Fig. 6). As an additional control we used 

inactivated BMB171 spores to fed the worms plus different Cry toxins. Under these conditions 

there were few worms with disrupted epithelial junctions compared with those worms fed with 

live spores plus different Cry toxins, and the amount of affected worms were similar to those 

treated with pure Cry toxins (Fig. 6). These data indicate that live spores, not the components 

of spores, are important for the disruption of the nematode epithelial junctions induced by the 

Bt strains.

In another control we fed FT63(DLG::GFP) worms with a non-nematicidal Cry1Ac toxin, 

or we used inactivated spores from BMB171 strain together with Cry1Ac toxin. The epithelial 

junctions of most of the worms showed no disruption phenotype of their epithelial junctions 

(Fig. 6). Taking together, these results suggest that the developing of spores together with the 

action of a nematicidal Cry toxin are required for Bt to disrupt the nematode epithelial junctions. 

Therefore, it is possible that during the spore germination into vegetative cells in vivo, the 
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nematicidal Bt strain would express additional virulence factors, besides the Cry toxins, 

resulting in the disruption of the epithelial junctions of the midgut tissue in the nematodes.

The quorum sensing regulator PlcR plays important role in Bt disrupting nematode 

epithelial junctions

The quorum sensing regulon PlcR is responsible for the expression of additional Bt 

virulence factors to infect the hosts [19], including degradative enzymes, and enterotoxins 

[20,36,37]. On the other hand, the NprR regulator controls the necrotrophic properties of the 

bacteria to allow them to survive in the host cadaver [18,38] by regulating the expression of a 

set of genes encoding degradative enzymes [21]. In view of the importance of these regulons 

for the pathogenicity of Bt, we investigated whether PlcR or NprR play a role in the disruption 

of the epithelial junctions of the nematode.

The nematicidal Bt BMB0215 was used as the parental strain since this strain has the 

highest ability to disrupt the epithelial junctions of worms (Fig. 4), and compared it with the 

NprR-deficient (ΔnprR) and the PlcR-deficient (ΔplcR) strains, respectively. When these 

strains were used to fed FT63(DLG::GFP) worms, the percentage of destroyed epithelial 

junction caused by ΔplcR mutant strain was significant reduced (t-test, p < 0.05) than that of 

the parental strain (Fig. 7A). In contrast, a similar effect in the epithelial junctions was observed 
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with the ΔnprR mutant strain compared with the parental strain (Fig. 7A). These results indicate 

that NprR does not participate in the ability of Bt to disrupt the epithelial junctions of the 

nematodes.

 We also compared the nematicidal activity of the parental Bt strain with that of the ΔnprR, 

and ΔplcR mutant stains against the wild type N2 worms and the mutant clc-1(ok2500) worms 

that are defective in their epithelial junctions. Both the wild type N2 and mutant clc-1(ok2500) 

worms were more resistance to the infection with ΔplcR and ΔnprR Bt strains compared with 

that of the BMB0215 parental strain (t-test, p<0.05) (Fig. 7B). These results supported that both 

regulons PlcR and NprR controlled the expression of virulence factors that contribute to the Bt 

pathogenicity [18]. Even more, the parental BMB0215 strain and ΔnprR mutant Bt strain 

showed significant higher toxicity against the mutant worms clc-1(ok2500) than to the wild 

type worms N2 (t-test, p<0.05). However, the mortality was no significantly different for the 

ΔplcR mutant strain infecting the N2 and the epithelial junction defective mutant worms clc-

1(ok2500) (t-test, p>0.05). Taken together, our data demonstrate that the quorum sensing 

regulator PlcR plays a central role disrupting the epithelial junctions in the worms.

Identification of two PlcR-regulated virulence factors, ColB and Bmp1, that contribute to 

the epithelial junctions disruption induced by Bt strains.
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The role of PlcR in disrupting epithelial junctions is likely due to the activation of expression of 

specific virulence factors that targeted the intestinal epithelial junction of the worms. We 

previously described two metalloproteinase, named Bmp1 [23] and ColB [22], which are 

regulated by PlcR and are involved in the destruction of the intestine structure of C. elegans. 

Therefore, we investigated whether these virulence factors were involved in the disruption of 

the intestinal epithelial junction of worms induced after Bt infection. We fed FT63(DLG::GFP) 

worms with the parental Bt BMB0215, or the ColB-deficient (ΔcolB), or the Bmp1-deficient 

(Δbmp1), or the double ColB, Bmp1-deficient mutant (ΔcolbΔbmp1) strains. The results 

showed that the FT63(DLG::GFP) worms treated with either of the ΔcolB or Δbmp1 single 

mutant strains had no significant differences in the disruption of epithelial junctions induced by 

the wild type BMB0215 strain (Fig. 8A). In contrast, when worms were fed with the double 

ΔcolbΔbmp1mutant the FT63(DLG::GFP) worms showed that the percentage of destroyed 

epithelial junction was significant lower (t-test, p<0.05) than that of the parental BMB0215 

strain (Fig. 8A). 

To further analyze the role of ColB or Bmp1 metalloproteinases, FT63(DLG::GFP) worms 

were fed with E. coli strains over-expressing either ColB or Bmp1 metalloproteinases showing 

a clear disruption of the epithelial junctions of FT63(DLG::GFP) worms (Fig. 8B), indicating 

that high doses of Bmp1 and ColB have the potential to disrupt nematode epithelial junctions. 
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Therefore, we compared the activity of disruption of junctions of the parental strain BMB0215 

strain by measuring the disruption of the epithelial junctions of the ΔplcR strain harboring the 

plasmids that over express ColB or Bmp1 metalloproteinases under the control of a PlcR 

independent promoter (kanamycin promoter Papha3′ [39]). When expression of either Papha3′colB 

or Papha3′bmp1 was induced in the ΔplcR mutant, the disruption of epithelial junctions was no 

significantly different to the ΔplcR strain. However, when both Papha3′colB and Papha3′bmp1 were 

expressed together in the ΔplcR strain the activity of disruption of epithelial junctions was 

partially restored (Fig. 8A). 

The toxicity of these strains against the mutant worms clc-1(ok2500) affected in their 

epithelial junctions confirmed the above conclusion (Fig. 8C). Both the wild type worms N2 

and mutant worms clc-1(ok2500) were more resistance to the Bt ΔcolbΔbmp1 double mutant 

strain compared with that of the parental strain BMB0215 (t-test, p<0.05) (Fig. 8C), supporting 

that ColB and Bmp1 contribute to the pathogenicity of Bt [22,23]. The ΔcolbΔbmp1 double 

mutant strain showed significant higher toxicity against the mutant worms clc-1(ok2500) than 

that of the wild type N2 worms (t-test, p<0.05), although the mortality was no significantly 

different when either single mutant strain was used to infect the N2 and mutant clc-1(ok2500) 

worms (t-test, p>0.05) (Fig. 8C). Also, the over expression of Papha3′colB or Papha3′bmp1 in the 

Bt ΔplcR mutant showed no significant difference in nematicidal activity when compared with 
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the ΔplcR strain. But the nematicidal activity was partially restored when both 

metalloproteinases Papha3′colB and Papha3′bmp1 were over expressed together in the ΔplcR strain 

(Fig. 8C). Thus, our results support that ColB and Bmp1 contribute to the pathogenicity of Bt 

via disrupting the epithelial junction of worms.

DISCUSSION 

In this study, we selected to work with different Bt strains in the nematode C. elegans as a 

model system to investigate the pathogenesis of Bt in natural conditions including virulence, 

necrotrophic, and sporulation stages. Our data showed that Bt bacteria disrupt the epithelial 

junctions of the nematode intestinal cells during its host invasion (Fig. 2 and Fig. 3). Moreover, 

we showed that targeting epithelial junctions is a widely adopted strategy since all the 

nematicidal Bt strains analyzed disrupted the epithelial junctions of intestinal cells in C. elegans 

(Fig. 3). Cell-cell junctions play a critical role in cell polarity and organogenesis, and 

constituted a physical barrier against pathogens invasion [35]. This functional barrier is 

composed of three major components, tight junctions (TJ), adherence junctions (AJ) and GAP 

junctions [35]. Several pathogens disrupt epithelia junctions to adhere and invade the deeper 

tissues for their proliferation [5]. For example, the P. gingivalis, a human adult pathogen, 

produces cysteine proteases to degrade the E-cadherin protein that is located at the AJ, 
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facilitating the invasion of the underlying tissues through a paracellular pathway [7]. In the case 

of C. elegans it was shown that knockdown of either dlg-1 or ajm-1 genes, which encode 

intestinal epithelial junction components related protein DLG-1 or AJM-1 respectively, reduces 

worm lifespan upon Enterococcus faecalis challenge [34]. To our knowledge, this is the first 

study explaining the participation of epithelial junctions in C. elegans-Bt interactions.

In addition, we showed that the quorum sensing regulator PlcR of Bt, that is the main 

virulence regulator [19] required for the early steps of the nematode infection process 

[20,36,37], while the NprR regulator that controls the necrotrophic properties of the bacteria by 

regulating a set of genes encoding degradative enzymes [18,38] did not participate in the 

disruption of the epithelial junction of C. elegans (Fig. 7 and Fig. 8). Therefore, our data suggest 

that destroying host epithelial junctions is an early event in Bt pathogenesis that happens before 

the nematode death, rather than in the saprophytic stage. These data gave novel insight into the 

pathogenesis of Bt, since the epithelial junctions are conserved structures found in nematodes, 

insects, or mammals [35], suggesting that epithelial junction disruption could be a common 

mechanism among different Bt-host interactions. 

However, although we show that PlcR plays an important role in the disruption of the 

nematode epithelial junctions (Fig. 7), it is undeniable that when plcR gene was deleted, there 

were about 35% worms that still showed disrupted epithelial junctions (Fig. 7A). There may be 
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two possible explanations: the first is that other virulence factors not controlled by the PlcR 

regulon could also target the epithelial junction. The second, is that the nematicidal Cry toxin 

may also target the epithelial junctions of C. elegans, since treatment with a purified Cry toxin 

without Bt bacteria also lead to some damage of the epithelial junctions from 10.0 ± 1.0 % for 

Cry6Aa to 33.0 ± 5.0% for Cry5Ba (Fig. 6). It was previously shown that AJ of mammalians 

cells participate in the susceptibility to another pore-forming toxin, the α-toxin produced by 

Staphylococcus aureus bacteria [40]. Thus, it could be possible that the Cry toxin may be a key 

factor to initiate the process of disruption of the nematode epithelial junctions. Purified Bt 

spores alone failed to germinate [22] and did not disrupt the epithelial junctions, while live 

spores together with the nematicidal Cry toxin act synergist to disrupt the nematode epithelial 

junctions (Fig. 5). Moreover, the specificity of Cry toxins also plays a crucial role in this process, 

since the effect on the epithelial junctions was not observed when the nematodes were treated 

with the lepidopteran specific Cry1Ac toxin and Bt spores (Fig. 6). The specific binding of Cry 

toxins to their corresponding receptors may determine the pore formation activity of the toxin 

and whether Bt can effectively initiate the disruption of the epithelial junctions in the 

susceptible host. This strategy may be the result of long-term co-evolution between Bt and its 

host.

Regarding the virulence factors directly involved in the disruption of epithelial junctions, 
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our data show that at least colB and bmp1 genes that are activated by the PlcR regulon are 

involved in this process. However, other virulence factors participate since the deletion of colB 

or bmp1 genes alone in its parental strain did not reduce the phenotype of epithelial junction 

disruption (Fig. 8A). Only the double knockout mutant of colb and bmp1 genes resulted in a 

reduced disruption of epithelial junctions, that was lower than the PlcR mutant strain (Fig. 8B). 

Since the PlcR regulon controls the expression of various virulence factors, our results indicate 

that there are other virulence factors regulated by PlcR that are involved in this process. 

A model explaining the Bt induced disruption of the intestinal epithelial junction in C. 

elegans is shown in Fig. 9. The spores and toxins of nematicidal Bt are ingested by the worms, 

the toxins bind to specific receptors on the midgut epithelial cells, forming pores in the intestinal 

cell membranes, creating favorable conditions for the spore germination and bacterial growth 

[8], vegetative cells express virulence factors mainly controlled by the PlcR regulon inducing 

the disruption of the worm’s epithelial junctions at the early stage, and leading to the 

decomposition of the intestinal cells. The tightness of the intestinal cells collapses, making a 

pathway for vegetative cells to pass through the intestine and invade the worms. Finally, the Bt 

cells express additional virulence factors controlled by NprR regulon that allow the 

reproduction of Bt cells on the nutrient source of the cadaver leading to the release of spores 

into the environment [17,41].
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One of the most studied nematicidal Bt toxin is Cry5B, which specifically binds to the 

glycolipid receptor located in the apical membrane of the intestinal epithelial cells, leading to 

insertion of the toxin into the plasma membrane and pore formation [42]. Worms respond to 

Cry5B intoxication by inducing a conserved innate immunity response including the activation 

of the mitogen-activated protein kinase (MAPK) pathways p38/MAPK and c-Jun/MAPK [43], 

the endoplasmic reticulum unfolded protein response (UPR) pathway [43,44], the hypoxia 

response pathway and the DAF-2 insulin/insulin-like growth factor-1 signaling pathway [45,46]. 

In this study, we describe that PlcR regulated virulence factors help Bt to infect C. elegans by 

disrupting its epithelial junctions (Fig. 7 and Fig. 8), suggesting that epithelial junctions serve 

as a physical barrier to protect C. elegans against the infection of pathogens such as Bt. C. 

elegans is a soil-dwelling and free-living animal [47], which encounters a myriad of chemical 

or biological hazards in the environment. The cuticle naturally serves as the first physical barrier 

to protect the nematodes from these detrimental agents [48,49]. As C. elegans feeds on bacterial 

cells, the pharyngeal grinder should serve as a second barrier to break up bacteria and 

preventing them to contact their intestine [50]. However, Bt spores are resistant to the 

pharyngeal grinder [51]. Thus, the intestine might be the last physical barrier that prevents the 

spore germination into vegetative bacteria in the invaded worms. Therefore, we propose that 

the epithelial junction serves as the crucial connection of intestinal epithelial cells to prevent 
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the invasion of Bt pathogen in C. elegans. Our work highlights the importance of host epithelial 

junctions as a physical barrier in the pathogen-host interactions and describe novel mechanisms 

used by Bt to successful invasion and worm infection.

MATERIALS AND METHODS

Bacterial strains, plasmids and culture conditions. The bacterial strains and plasmids used 

in this study are listed in Table S1. All Escherichia coli and Bt strains were grown on Luria-

Bertani (LB) medium supplemented with the appropriate antibiotics at 37 °C or 28 °C, for E. 

coli or Bt, respectively.

Caenorhabditis elegans strains and culture conditions. The wild-type C. elegans strain N2, 

the epithelial junction GFP labeled transgenic strain FT63 (DLG::GFP), and the epithelial 

junction mutant strain clc-1(ok2500) were provided by the Caenorhabditis Genetics Center 

(CGC, http://www.cbs.umn.edu/CGC/). Worms were cultured at 20 °C on NGM plates 

(0.3% NaCl, 0.25% tryptone and 1.5% agar) with E. coli strain OP50 as food source [47]. The 

synchronized L4 stage worms were prepared according to a previous described method [52].

Preparation of the Cry proteins. For Cry protein production the Bt strains described in table 
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S1 were cultivated in liquid ICPM medium (0.6% tryptone, 0.5% glucose, 0.1% CaCO3, 0.05% 

MgSO4 and 0.05% K2HPO4, PH 7.0) at 28 °C, 220 rpm for three days until complete sporulation. 

The crystal inclusions were purified as previously described [53].

Preparation and inactivation of the spores. The spores of an acrystalliferous mutant of B. 

thuringiensis strain BMB171 were obtained by culturing cells in CCY sporulation medium [54] 

at 28 °C for 4 days. Spores were harvested by centrifugation of the cultures at 10,000 xg for 15 

min at 4 °C and washed 3 times with sterile distilled water (50 ml). The spore pellets were 

suspended in 10 ml sterile distilled water and store in -20 °C. The purified spores were activated 

at 70 °C for 15 min and induced for germination in LB medium at 37 °C for 1 h. Germinated 

spores were then inactivated by heat treatment at 80 °C for 15 min. The surviving spores were 

then induced to germinate in LB medium again. The germination and inactivation procedures 

were repeated twice to make sure that above 99% spores were inactivated.

RNA extraction and qRT-PCR. Total RNA was extracted from C. elegans using TRIzol 

reagent (Invitrogen, Carlsbad, California, USA). The cDNA was reverse transcribed with 

random primers using Superscript II reverse transcriptase (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s protocol. The expression analyses of certain genes in C. 
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elegans were performed using qPCR with the primers listed in Table S2. The qPCR was 

conducted with Life Technologies ViiA™ 7 Real-Time PCR system (Life Technologies, 

California, USA) using the Power SYBR Green PCR Master Mix (Life Technologies, CA, USA) 

according to the manufacturers’ instructions. The experiments were conducted in triplicate. 

Primer efficiency correction was used in 2-△△Ct relative quantitation analysis using tba-1 gene 

for reference and normalization.

Cloning of Cry21Aa gene. The primers F-Cry21Aa and R-Cry21Aa (Listed in Table S2) were 

designed based on the genome sequence of C15 strain. These primers were used to amplify 

cry21Aa gene including its promoter and terminator. The 5.5-kb PCR fragment was purified 

and cloned into the BamHI-HindIII site of the E. coli-Bt shuttle vector pHT304 to generate 

recombinant plasmid pHT304-cry21Aa. The recombinant plasmid was confirmed by DNA 

sequencing (AuGCT, Beijing, China) and transferred into Bt strain BMB171 to generate 

recombinant strain BMB171/Cry21Aa for expression Cry21Aa protein.

Construction of Bt knockout mutant strains. DNA fragments of Bt BMB0225 strain 

corresponding to the upstream and downstream regions of the target genes (described in results 

section) were generated by PCR using the primers listed in Table S2. The two amplified 
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fragments were digested with BamHI-XbaI and BamHI-KpnI, respectively, and cloned into the 

temperature-sensitive plasmid pHT304-Ts. Then, the spectinomycin resistance gene from 

plasmid pBMB2062 was digested with BamHI and inserted between these two gene fragments. 

The resulting plasmid was transformed into BMB0225 strain and cultivated for 8 h in LB 

medium supplemented with 25 μg/ml erythromycin. The transformant cells were cultivated at 

42 °C for 4 days for selection of bacterial cells that have integrated the plasmid by homologous 

recombination. Erythromycin-resistant (25 μg/ml) but spectinomycin sensitive (20 μg/ml) 

colonies were selected. The mutant strains (Table S1) were confirmed by PCR and DNA 

sequencing (AuGCT, Beijing, China).

Bag-of-bacteria (Bob) phenotype assay. The “Bob” formation bioassay was performed in 

liquid S-media on 96-well plates as previous described [30]. In this assay we used 100 µl 

mixture per well consisted of 80 µl S-media, 10 µl E. coli OP50 strain at OD600 of 0.3, 10 µl 

spores or spore/crystal mixtures (a 106 dose of spores per well) and 30~50 synchronized L4 

stage worms in three independent replicates. The 96-well plates were incubated at 20 °C and 

worms monitored from 24 to 96 h for the formation of “Bob” phenotype under differential 

interference contrast (DIC) microscopy observations using 400 X magnification (Olympus 

BX51, Olympus, Tokyo, Japan).
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Analysis of C. elegans epithelial junctions. The epithelial junctions’ observation assays were 

performed in liquid S-media on 48-well plates. For various Bt strains we used 300 µl mixture 

per well consisted of 270 µl S-media, 20 µl E. coli OP50 strain at OD600 of 0.3, 10 µl spores or 

spore/crystal mixtures (106 dose of spores per well), and approximately 200 synchronized L4 

stage FT63(DLG::GFP) worms. For various Cry proteins we used 300 µl mixture per well 

consisted of 270 µl S-media, 20 µl E. coli OP50 strain at OD600 of 0.3, 10 µl spores (106 dose 

of spores per well) or spore/Cry toxin mixtures (106 dose of spores plus 10 ng/µl Cry toxins), 

and approximately 200 synchronized L4 stage FT63(DLG::GFP) worms. The 48-well plates 

were incubated at 20 °C and worms monitored after 24 h of treatment Observations were 

performed under fluorescent microscope (Olympus BX51, Olympus, Tokyo, Japan) at 100X 

magnification after 18 h of treatment. The percentages of worms with disrupted epithelial 

junctions after each treatment were calculated based on the observation of at least 100-120 

individual worms.

The transformants E. coli BL21(DE3) cells expressing the proteinases ColB [22] and Bmp1 

[23], were grown at 37 °C to the mid-log phase (OD600 0.4 to 0.6) and then 0.1 mM IPTG (final 

concentration) was added to induce the expression of these virulence factors after incubation at 

28 °C for additional 6 h. Then bacteria were spread onto NGM plates (0.3% NaCl, 0.5% 
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tryptone, 0.1% yeast extract and 1.5% agar) containing 0.1 mM IPTG and cultured overnight 

at 28 °C. About 200 synchronized L4 stage FT63(DLG::GFP) nematodes were placed onto each 

plate incubated at 20 °C, and monitored for the disruption of epithelial junctions after 8 h of 

treatment. E. coli BL21(DE3) cells harboring empty vector were used as negative control under 

the same conditions. The percentage of worms that showed disrupted epithelial junctions after 

each treatment was calculated based on the observation of at least 100-120 individual worms. 

All tests were conducted in three independent replicates.

Nematode mortality assays. Bt strains were grown at 28 °C in LB medium overnight and 

spread onto NGM plates at 28 °C for 4~6 days until the spore/crystal mixture covered the plates. 

Then 20~30 L4 stage synchronized worms were transferred onto these NGM plates spread with 

each Bt lawn as the only food source for the worms that feed on spore and crystal mixtures 

freely. The plates were incubated at 20 °C and mortality was recorded after 3 days. We used 

the food source strain E. coli OP50 and nematicidal Bt strain BMB0215 as negative and positive 

controls, respectively. All tests were conducted with three independent replicates and monitored 

for survival at indicated time.

Microscopic observations. Worms were photographed on 2% agarose pads using the 
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fluorescence microscope and the phase contrast microscope (Olympus BX51, Olympus, Tokyo, 

Japan).

Data analysis. The data were analyzed using Statistical Package for the Social Sciences, (SPSS 

version 13.0 Chicago, IL, USA). Statistic comparisons used a Student’s t test and significant 

differences were determined as a threshold of p<0.05 (*), p<0.01 (**), or p<0.001 (***).
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Figure legends:

Fig. 1. Nematicidal Bt bacterium destroys the internal structures of the nematodes. (A) 

The pathogenicity behavior of selected Bt strains in N2 worms was assessed by the “Bob” 

phenotype assay. Representative images of worms treated with different Bt strains after 72 hpi 

are shown. Scan bars represent 10 μm. (B) Analysis of the percentage of worms that showed 

“Bob” phenotype after treatment with each Bt strain. The mean and standard error deviations 

of three independent experiments are shown. Triple asterisks indicate a significant difference 

(t-test, p<0.001) and no labeled indicates no significant difference between these treatments 

compared with that of E. coli OP50 strain. BMB171 is an acrystalliferous Bt strain. YBT-1520 

is a Bt strain active against Lepidopteran insects, non-active against nematodes.

Fig. 2. Several epithelial junction related genes of C. elegans are significantly upregulated 

after Bt infection. The expression levels of C. elegans epithelial junction related genes were 

monitored by qPCR after exposure to different Bt strains for 10 h. Asterisks indicate significant 

difference (Student’s t-test, *, p<0.05; **, p<0.01) and no label indicates any significant 

difference between these treatments compared with that of E. coli OP50 strain. BMB171 is an 

acrystalliferous Bt strain. YBT-1520 is a Bt strain active against Lepidopteran insects, non-

active against nematodes.
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Fig. 3. The nematicidal Bt strains disrupts the intestinal epithelial junctions of C. elegans. 

The transgenic worms FT63(DLG::GFP) were fed with selected Bt strains. The intestinal 

epithelial junctions of worms were observed under fluorescent microscope at 100X 

magnification after 18 hpi. Representative images of worms that were treated by each Bt strain 

are shown. The scan bars represent 20 μm.

Fig. 4. Extent of disruption of epithelial junctions caused by different Bt strains. The data 

are expressed as the percentages of worms that showed disrupted epithelial junctions after 18 

hpi with each Bt strain. The mean and standard error of three independent experiments are 

shown. Asterisks indicate significant difference (Student’s t-test, **, p<0.01; ***, p<0.01) and 

no label indicates no significant differences between these treatments compared with that of E. 

coli OP50 strain.

Fig. 5. Toxicity of Bt to C. elegans is associated with the low epithelial junction integrity. 

(A) The mortality assay of nematicidal Bt strains against the wild type worms N2 or the 

epithelial junction mutant worms clc-1(ok2500). The mean and standard error of three 

independent experiments are shown. (B and C) The mortality assay of the copper sulfate and 
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hydrogen peroxide against the wild type worms N2 or the epithelial junction mutant worms clc-

1(ok2500). The mean and standard error of three independent experiments are shown. Asterisks 

indicate significance as determined by a Student’s t-test (p<0.05). No labeled indicates no 

significant difference.

Fig. 6. The presence of live-spores together with nematicidal Cry toxins are required for 

the disruption of the nematode epithelial junctions. The data are expressed as the percentage 

of worms with disrupted epithelial junctions after each treatment. The mean and standard error 

of three independent experiments are shown. Asterisks indicate significant differences 

(Student’s t-test, **, p<0.01) and ND indicates no significant difference between these 

treatments compared with that of corresponding pure Cry toxin treatment.

Fig. 7. The PlcR regulon plays an important role in the disruption of the epithelial 

junctions of the worms induced by Bt bacteria. (A) Analysis of the disruption of epithelial 

junctions caused by plcR or nprR deficient Bt strains. The data are expressed as the percentage 

of worms that showed disrupted epithelial junctions after 24 h treatment for each strain. The 

mean and standard errors of three independent experiments are shown. (B) Toxicity assays of 

plcR or nprR deficient Bt strains against the wild type worms N2 or against the epithelial 
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junction mutant worms clc-1(ok2500). The mean and standard error of three independent 

experiments are shown. Asterisks indicate significance as determined by a Student’s t-test (*, 

p<0.05; **, p<0.01) and ND indicates no significant differences.

Fig. 8. The PlcR regulated virulence factors ColB and Bmp1 contribute in the disruption 

of the epithelial junction of the worms induced by Bt. (A) Analysis of the disruption of 

epithelial junctions caused by different Bt mutant strains. The data are expressed as the 

percentage of worms that with no-integrity epithelial junctions after treatment. The mean and 

standard error of three independent experiments are shown. (B) Epithelial junction disruption 

observations of worms fed with E. coli strains over-expressing either ColB or Bmp1 

metalloproteinases. Representative images of are shown. The scan bars represent 20 μm and 

the arrows indicate the disrupted of epithelial junctions. (C) The toxicity assay of mutant Bt 

strains against the wild type worms N2 or the epithelial junction mutant worms clc-1(ok2500). 

The mean and standard error of three independent experiments are shown. Asterisks indicate 

significance as determined by a Student’s t-test (*, p<0.05; **, p<0.01) and ND indicates no 

significant difference.

Fig. 9. Model of Bt infection cycle by disrupting the epithelial junction of nematodes. After 
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the nematicidal Bt spore/Crystals were fed to the worms, the Bt spores are resistant to the 

pharyngeal grinder and both spores and Cry toxins reach the midgut lumen. The Cry toxins 

form pores in the membrane of the midgut epithelial cells (1), leading to the germination of 

spores in the intestinal lumen (2). The spores then could develop into vegetative cells (2), which 

express different virulence factors of the PlcR regulon. The various irregular shapes represent 

the virulence factors involved in Bt to disrupting the host epithelial junctions such as Bmp1 and 

ColB, and other PlcR-independent factors (4), that participate in the disruption of epithelial 

junctions of worms (5). Then the vegetative cells could break through the epithelial cells (6), 

multiply in the host and collapse the intestinal lumen of the worms (7). The solid arrows indicate 

steps that have been described before. The dashed arrows represent the steps described in this 

study.
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