

1 **Title:** Soil viruses are underexplored players in ecosystem carbon processing

2

3 **Running title:** Quantitatively-derived soil viral metagenomes

4

5 Gareth Trubl¹, Ho Bin Jang¹, Simon Roux^{1,†}, Joanne B. Emerson^{1,‡}, Natalie Solonenko¹, Dean R.
6 Vik¹, Lindsey Soden¹, Jared Ellenbogen¹, Alexander T. Runyon¹, Benjamin Bolduc¹, Ben J.
7 Woodcroft², Scott R. Saleska³, Gene W. Tyson², Kelly C. Wrighton¹, Matthew B. Sullivan^{1,4}, &
8 Virginia I. Rich^{1,#}

9

10 ¹Department of Microbiology, The Ohio State University, Columbus, OH, USA

11

12 ²Australian Centre for Ecogenomics, The University of Queensland, St. Lucia,
13 Queensland, Australia

14

15 ³Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA

16

17 ⁴Department of Civil, Environmental and Geodetic Engineering, The Ohio State University,
18 Columbus, OH, USA

19

20 [†]Current address: United States Department of Energy Joint Genome Institute, Lawrence
21 Berkeley National Laboratory, Walnut Creek, CA, USA.

22

23 ‡Current address: Department of Plant Pathology, University of California, Davis, Davis, CA,
24 USA

25 **Summary**

26 Rapidly thawing permafrost harbors ~30–50% of global soil carbon, and the fate of this carbon
27 remains unknown. Microorganisms will play a central role in its fate, and their viruses could
28 modulate that impact via induced mortality and metabolic controls. Because of the challenges of
29 recovering viruses from soils, little is known about soil viruses or their role(s) in microbial
30 biogeochemical cycling. Here, we describe 53 viral populations (vOTUs) recovered from seven
31 quantitatively-derived (i.e. not multiple-displacement-amplified) viral-particle metagenomes
32 (viromes) along a permafrost thaw gradient. Only 15% of these vOTUs had genetic similarity to
33 publicly available viruses in the RefSeq database, and ~30% of the genes could be annotated,
34 supporting the concept of soils as reservoirs of substantial undescribed viral genetic diversity.
35 The vOTUs exhibited distinct ecology, with dramatically different distributions along the thaw
36 gradient habitats, and a shift from soil-virus-like assemblages in the dry palsas to aquatic-virus-
37 like in the inundated fen. Seventeen vOTUs were linked to microbial hosts (*in silico*),
38 implicating viruses in infecting abundant microbial lineages from *Acidobacteria*,
39 *Verrucomicrobia*, and *Delta proteoacteria*, including those encoding key biogeochemical
40 functions such as organic matter degradation. Thirty-one auxiliary metabolic genes (AMGs)
41 were identified, and suggested viral-mediated modulation of central carbon metabolism, soil
42 organic matter degradation, polysaccharide-binding, and regulation of sporulation. Together
43 these findings suggest that these soil viruses have distinct ecology, impact host-mediated
44 biogeochemistry, and likely impact ecosystem function in the rapidly changing Arctic.

45 **Importance**

46 This work is part of a 10-year project to examine thawing permafrost peatlands, and is the first
47 virome-particle-based approach to characterize viruses in these systems. This method yielded >2-
48 fold more viral populations (vOTUs) per gigabase of metagenome than vOTUs derived from
49 bulk-soil metagenomes from the same site (Emerson et al. *in press*, *Nature Microbiology*). We
50 compared the ecology of the recovered vOTUs along a permafrost thaw gradient, and found: (1)
51 habitat specificity, (2) a shift in viral community identity from soil-like to aquatic-like viruses,
52 (3) infection of dominant microbial hosts, and (4) encoding of host metabolic genes. These
53 vOTUs can impact ecosystem carbon processing via top-down (inferred from lysing dominant
54 microbial hosts) and bottom-up (inferred from encoding auxiliary metabolic genes) controls.
55 This work serves as a foundation upon which future studies can build upon to increase our
56 understanding of the soil virosphere and how viruses affect soil ecosystem services.

57 **Introduction**

58 Anthropogenic climate change is elevating global temperatures, most rapidly at the poles
59 (1). High-latitude perennially-frozen ground, i.e. permafrost, stores 30–50% of global soil carbon
60 (C; ~1300 Pg; 2, 3) and is thawing at a rate of ≥ 1 cm of depth yr^{-1} (4, 5). Climate feedbacks from
61 permafrost habitats are poorly constrained in global climate change models (1, 6), due to the
62 uncertainty of the magnitude and nature of carbon dioxide (CO_2) or methane (CH_4) release. A
63 model ecosystem for studying the impacts of thaw in a high-C peatland setting is Stordalen Mire,
64 in Arctic Sweden, which is at the southern edge of current permafrost extent (7). The Mire
65 contains a mosaic of thaw stages (8), from intact permafrost palsas, to partially-thawed moss-
66 dominated bogs, to fully-thawed sedge-dominated fens (9–12). Thaw shifts hydrology (13),
67 altering plant communities (12), and shifting belowground organic matter (OM) towards more
68 labile forms (10, 12), with concomitant shifts in microbiota (14–16), and C gas release (7, 9, 17–

69 19). Of particular note is the thaw-associated increase in CH₄ emissions, due to its 33-times
70 greater climate forcing potential than CO₂ (per kg, at a 100-year time-scale; 20), and the
71 associated shifts in key methanogens. These include novel methanogenic lineages (14) with high
72 predictive value for the character of the emitted CH₄ (11). More finely resolving the drivers of C
73 cycling, including microbiota, in these dynamically changing habitats can increase model
74 accuracy (21) to allow a better prediction of greenhouse gas emissions in the future.

75 Given the central role of microbes to C processing in these systems, it is likely that
76 viruses infecting these microbes impact C cycling, as has been robustly observed in marine
77 systems (22–27). Marine viruses lyse ~one-third of ocean microorganisms day⁻¹, liberating C and
78 nutrients at the global scale (22–24, 28), and viruses have been identified as one of the top
79 predictors of C flux to the deep ocean (29). Viruses can also impact C cycling by metabolically
80 reprogramming their hosts, via the expression of viral-encoded “auxiliary metabolic genes”
81 (AMGs; 28, 30) including those involved in marine C processing (31–35). In contrast, very little
82 is known about soil virus roles in C processing, or indeed about soil viruses generally. Soils’
83 heterogeneity in texture, mineral composition, and OM content results in significant
84 inconsistency of yields from standard virus ‘capture’ methods (36–39). While many soils contain
85 large numbers of viral particles (10⁷–10⁹ virus particles per gram of soil; 37, 40–42), knowledge
86 of soil viral ecology has come mainly from the fraction that desorb easily from soils (<10% in
87 43) and the much smaller subset that have been isolated (44).

88 One approach to studying soil viruses has been to bypasses the separation of viral
89 particles, by identifying viruses from bulk-soil metagenomes; these are commonly referred to as
90 microbial metagenomes but contain sequences of diverse origin, including proviruses and
91 infecting viruses. Using this approach, several recent studies have powerfully expanded our

92 knowledge of soil viruses and have highlighted the magnitude of genetic novelty these entities
93 may represent. An analysis of 3,042 publicly-available assembled metagenomes spanning 10
94 ecotypes (19% from soils) increased by 16-fold the total number of known viral genes, doubled
95 the number of microbial phyla with evidence of viral infection, and revealed that the vast
96 majority of viruses appeared to be habitat-specific (45). This approach was also applied to 178
97 metagenomes from the thawing permafrost gradient of Stordalen Mire (46), where viral linkages
98 to potential hosts were appreciably advanced by the parallel recovery of 1,529 microbial
99 metagenome-assembled genomes (MAGs; 16). This effort recovered ~2000 thaw-gradient
100 viruses, more than doubling known viral genera in Refseq, identified linkages to abundant
101 microbial hosts encoding important C-processing metabolisms such as methanogenesis, and
102 demonstrated that CH₄ dynamics was best predicted by viruses of methanogens and
103 methanotrophs (46). Viral analyses of bulk-soil metagenomes have thus powerfully expanded
104 knowledge of soil viruses and highlighted the large amount of genetic novelty they represent.
105 However this approach is by nature inefficient at capturing viral signal, with typically <2% of
106 reads identified as viral (46, 47). The small amount of viral DNA present in bulk-soil extracts
107 can lead to poor or no assembly of viral sequences in the resulting metagenomes, and omission
108 from downstream analyses (discussed further in 37, 39, 48, 49). In addition, viruses that are
109 captured in bulk-soil metagenomes likely represent a subset of the viral community, since >90%
110 of free viruses adsorb to soil (43), and so depending on the specific soil, communities, and
111 extraction conditions, bulk-soil metagenomes are likely be depleted for some free viruses and
112 enriched for actively reproducing and temperate viruses.

113 Examination of free viruses, while potentially a more efficient and comprehensive
114 approach to soil viral ecology, requires optimized methods to resuspend them (50). Researchers

115 have pursued optimized viral resuspension methods for specific soil types, and metagenomically
116 sequenced the recovered viral particles, generating *viromes*. In marine systems, viral ecology has
117 relied heavily on viromes, since the leading viral particle capture method is broadly applicable,
118 highly efficient, and relatively inexpensive (51), with now relatively well-established
119 downstream pipelines for quantitative sample-to-sequence (52) and sequence-to-ecological-
120 inference (53, 54) processing, collectively resulting in great advances in marine viromics (55).
121 Due to the requirement of habitat-specific resuspension optimization, soil viromics is in its early
122 stages. In addition, because particle yields are typically low, most soil virome studies have
123 amplified extracted viral DNA using multiple displacement amplification, which renders the
124 datasets both stochastically and systematically biased and non-quantitative (53, 56–61). The few
125 polar soil viromes have been from Antarctic soils, and further demonstrated the genetic novelty
126 of this gene pool, while suggesting resident viral communities were dominated by tailed-viruses,
127 had high habitat specificity, and were structured by pH (62–64).

128 Having previously optimized viral resuspension methods for the active layer of the
129 permafrost thaw gradient in the Stordalen Mire (41), here we sequenced and analyzed a portion
130 of the viruses recovered from that optimization effort, with no amplification beyond that minor,
131 quantitative form inherent to sequencing library preparation. The seven resulting viromes yielded
132 378 genuine viral contigs, 53 of which could be classified as vOTUs (approximately representing
133 species-level taxonomy; 65). The goal of this effort was to efficiently target viral particle
134 genomes via viromes from Stordalen Mire, investigate their ecology and potential impacts on C
135 processing using a variety of approaches, and compare the findings to that of viral analyses of
136 bulk-soil-metagenomes from Emerson et al. (46).

137 **Results and Discussion**

138 *Viruses in complex soils*

139 Using recently developed bioinformatics tools to characterize viruses from three different
140 habitats along a permafrost thaw gradient, viral particles were purified from active layer soil
141 samples (i.e. samples from the upper, unfrozen portion of the soil column) via a previously-
142 optimized method tailored for these soils (41; Fig. 1). DNA from viral particles was extracted
143 and sequenced, to produce seven Stordalen Mire viromes (Table 1), spanning palsas (underlain
144 by intact permafrost), bogs (here underlain by partially-thawed permafrost), and fens (where
145 permafrost has thawed entirely). The viromes ranged in size from 2–26 million reads, with an
146 average of 18% of the reads assembling into 28,025 total contigs across the dataset. Among
147 these, VirSorter predicted that 393 contigs were viruses (VirSorter categories 1, 2, and 3; per 66;
148 see Methods; Table 2). After manual inspection, three putative plasmids were identified and
149 removed (i.e. contigs 5, 394, and 3167; Table 2), along with two putatively archaeal viruses
150 (vOTUs 165 and 225; analyzed separately, see supplementary information). Finally, ten
151 additional contigs that did not meet our threshold for read recruitment (i.e. 90% average
152 nucleotide identity across 75% of contig covered) were removed, resulting in 378 putative virus
153 sequences (Table 2). Of these, 53 bacteriophage (phage) were considered well-sampled ‘viral
154 populations’ (54) also known as viral operational taxonomic units (vOTUs) as they had contig
155 lengths \geq 10 kb (average 19.6 kb, range: 10.3 kb–129.6 kb), were most robustly viral (VirSorter
156 category 1 or 2; 66), and were relatively well-covered contigs (averaged 74x coverage, Table 1).
157 These 53 viral populations are the basis for the analyses in this paper due to their genome sizes,
158 which allowed for more reliable taxonomic, functional, and host assignments, and fragment
159 recruitment.

160 There is no universal marker gene (analogous to the 16S rRNA gene in microbes) to
161 provide taxonomic information for viruses. We therefore applied a gene-sharing network where
162 nodes were genomes and edges between nodes indicated the gene content similarities, and
163 accommodating fragmented genomes of varying sizes (67–72). In such networks, viruses sharing
164 a high number of genes localize into viral clusters (VCs) which represent approximately genus-
165 level taxonomy (69, 72). We represented relationships across the 53 vOTUs with 2,010 known
166 bacterial and archaeal viruses (RefSeq, version 75) as a weighted network (Fig. 2). Only 15% of
167 the Mire vOTUs had similarity to RefSeq viruses (Fig. 2). Three vOTUs fell into 3 VCs
168 comprised of viruses belonging to the *Felixounavirinae* and *Vequintavirinae* (VC10),
169 *Tevenvirinae* and *Eucampyvirinae* (VC3), and the *Bcep22virus*, *F116virus* and *Kpp25virus*
170 (VC4) (Fig. 2). Corroborating its taxonomic assignment by clustering, vOTU_4 contained two
171 marker genes (i.e., major capsid protein and baseplate protein) specific for the *Felixounavirinae*
172 and *Vequintavirinae* viruses (73), phylogenetic analysis of which indicated a close relationship
173 of vOTU_4 to the *Cr3virus* within the *Vequintavirinae* (Fig. S2). The other five populations that
174 clustered with RefSeq viruses were each found in different clusters with taxonomically
175 unclassified viruses (Fig. 2). Viruses derived from the dry palsa clustered with soil-derived
176 RefSeq viruses, while those from the bog clustered with a mixture of soil and aquatic RefSeq
177 viruses, and those from the fen clustered mainly with aquatic viruses (Fig. 2). Though of limited
178 power due to small numbers, this suggests some conservation of habitat preference within
179 genotypic clusters, which has also been observed in marine viruses with only ~4% of VCs being
180 globally ubiquitous (70). Most (~85%) of the Mire vOTUs were unlinked to RefSeq viruses, with
181 41 vOTUs having no close relatives (i.e. singletons), and the remaining 4 vOTUs clustering in
182 doubletons. This separation between a large fraction of the Mire vOTUs and known viruses is

183 due to a limited number of common genes between them, i.e. ~70% of the total proteins in these
184 viromes are unique (Fig. 2), reflecting the relative novelty of these viruses and the
185 undersampling of soil viruses (39).

186 Annotation of the 53 vOTUs resulted in only ~30% of the genes being annotated, which
187 is not atypical; >60% of genes encoded in uncultivated viruses have typically been classified as
188 unknown in other studies (46, 66, 74–78). Of genes with annotations, we first considered those
189 involved in lysogeny, to provide insight into the viruses' replication cycle. Only three viruses
190 encoded an integrase gene (other characteristic lysogeny genes were not detected; 79, 80; Table
191 S1), suggesting they could be temperate viruses, two of which were from the bog habitat. It had
192 been proposed that since soils are structured and considered harsh environments, a majority of
193 soil viruses would be temperate viruses (81). Although our dataset is small, a dominance of
194 temperate viruses is not observed here. We hypothesize that the low encounter rate produced by
195 the highly structured soil environment could, rather than selecting for temperate phage, select for
196 efficient virulent viruses (concept derived from 82–84). Recent analyses of the viral signal mined
197 from bulk-soil metagenomes from this site provides more evidence for our hypothesis of
198 efficient virulent viruses, because >50% of the identified viruses were likely not temperate
199 (based on the fact they were not detected as prophage; 46). As a more comprehensive portrait of
200 soil viruses grows, spanning various habitats, this hypothesis can be further tested. Beyond
201 integrase genes, the remaining annotated genes spanned known viral genes and host-like genes.
202 Viral genes included those involved in structure and replication, and their taxonomic affiliations
203 were unknown or highly variable, supporting the quite limited affiliation of these vOTUs with
204 known viruses. Host-like genes included AMGs, which are described in greater detail in the next
205 section.

206 *Host-linked viruses are predicted to infect key C cycling microbes*

207 In order to examine these viruses' impacts on the Mire's resident microbial communities
208 and processes, we sought to link them to their hosts via emerging standard *in silico* host
209 prediction methods, significantly empowered by the recent recovery of 1,529 MAGs from the
210 site (508 from palsa, 588 from bog, and 433 from fen; 16). Tentative bacterial hosts were
211 identified for 17 of the 53 vOTUs (Fig. 3; Table S2): these hosts spanned four genera among
212 three phyla (*Verrucomicrobia*: *Pedosphaera*, *Acidobacteria*: *Acidobacterium* and *Candidatus*
213 *Solibacter*, and *Delta proteobacteria*: *Smithella*). Eight viruses were linked to more than one host,
214 but always within the same species. The four predicted microbial hosts are among the most
215 abundant in the microbial communities, and have notable roles in C cycling (15; 16). Three are
216 acidophilic, obligately aerobic chemoorganoheterotrophs and include the Mire's dominant
217 polysaccharide-degrading lineage (*Acidobacteria*), and the fourth is an obligate anaerobe shown
218 to be syntrophic with methanogens (*Smithella*). *Acidobacterium* is a highly abundant, diverse,
219 and ubiquitous soil microbe (85–87), and a member of the most abundant phylum in Stordalen
220 Mire. The relative abundance of this phylum peaked in the bog at 29%, but still had a
221 considerably high relative abundance in the other two habitats (5% in palsa and 3% fen) (16). It
222 is a versatile carbohydrate utilizer, and has recently been identified as the primary degrader of
223 large polysaccharides in the palsa and bog habitats in the Mire, and is also an acetogen (16).
224 Seven vOTUs were inferred to infect *Acidobacterium*, implicating these viruses in directly
225 modulating a key stage of soil organic matter decomposition. The second identified
226 *Acidobacterial* host was in the newly proposed species *Candidatus Solibacter usitatus*, another
227 carbohydrate degrader (88). The third predicted host was *Pedosphaera parvula*, within the
228 phylum *Verrucomicrobia* which is ubiquitous in soil, abundant across our soils (~3% in palsa

229 and ~7% in bog and fen habitats, based on metagenomic relative abundance; 16), utilizes
230 cellulose and sugars (89–93) and in this habitat, this organism could be acetogenic (16). Lastly,
231 vOTU_28 was linked to the *Delta-proteobacteria Smithella* sp. SDB, another acidophilic
232 chemoorganoheterotroph, but an obligate anaerobe, with a known syntrophic relationship with
233 methanogens (94, 95). Collectively, these virus-host linkages provide evidence for the Mire's
234 viruses to be impacting the C cycle via population control of relevant C-cycling hosts, consistent
235 with previous results in this system (46) and other wetlands (96).

236 We next sought to examine viral AMGs for connections to C cycling. To more robustly
237 identify AMGs than the standard protein family-based search approach, we used a custom-built
238 in-house pipeline previously described in Daly et al. (97), and further tailored to identify putative
239 AMGs based on the metabolisms described in the 1,529 MAGs recently reported from these
240 same soils (16). From this, we identified 34 AMGs from 13 vOTUs (Fig. 4; Table S1; Table S3),
241 encompassing C acquisition and processing (three in polysaccharide-binding, one involved in
242 polysaccharide degradation, and 23 in central C metabolism) and sporulation. Glycoside
243 hydrolases that help breakdown complex OM are abundant in resident microbiota (16) and may
244 be especially useful in this high OM environment; notably to our knowledge they have not been
245 found in marine viromes, but have been found in soil (at our site; 46) and rumen (98; Soden et
246 al. *submitted*—99). In addition, central C metabolism genes in viruses may increase nucleotide
247 and energy production during infection, and have been increasingly observed as AMGs (31,
248 32, 33, 34, 35). Finally, two different AMGs were found in regulating endospore formation,
249 *spoVS* and *whiB*, which aid in formation of the septum and coat assembly, respectively,
250 improving spores' heat resistance (100, 101). A WhiB-like protein has been previously identified
251 in mycobacteriophage TM4 (WhiBTM4), and experimentally shown to not only transcriptionally

252 regulate host septation, but also cause superinfection exclusion (i.e. exclusion of secondary viral
253 infections; 102). While these two sporulation genes have only been found in *Firmicutes* and
254 *Actinobacteria*, the only vOTU to have *whiB* was linked to an acidobacterial host (vOTU_178;
255 Fig. 4). A phylogenetic analysis of the *whiB* AMG grouped it with actinobacterial versions and
256 more distantly with another mycobacteriophage (Fig. 4), suggesting either (1) misidentification
257 of host (unlikely, as it was linked to three different acidobacterial hosts, each with zero
258 mismatches of the CRISPR spacer), (2) the virus could infect hosts spanning both phyla
259 (unlikely, as only ~1% of identified virus-host relationships span phyla; 45), or (3) the gene was
260 horizontally transferred into the *Acidobacteria*. Identification of these 34 diverse AMGs
261 (encoded by 25% of the vOTUs) suggests a viral modulation of host metabolisms across these
262 dynamic environments, and supports the findings from bulk metagenome-derived viruses of
263 Emerson et al. (46) at this site. That study's AMGs spanned the same categories as those
264 reported here, except for *whiB* which was not found, but did not discuss them other than the
265 glycoside hydrolases, one of which was experimentally validated.

266 Thus far, the limited studies of soil viruses have identified few AMGs relative to studies
267 of marine environments. This may be due to under-sampling, or difficulties in identifying
268 AMGs; since AMGs are homologs of host genes, they can be mistaken for microbial
269 contamination (103) and thus are more difficult to discern in bulk-soil metagenomes (whereas
270 marine virology has been dominated by viromes); also, microbial gene function is more poorly
271 understood in soils (104). Alternately, soil viruses could indeed encode fewer AMGs. One could
272 speculate a link between host lifestyle and the usefulness of encoding AMGs; most known
273 AMGs are for photo- and chemo-autotrophs (70, 105, 106), although this may be due to more
274 studies of these metabolisms or phage-host systems. Thus far, soils are described as dominated

275 by heterotrophic bacteria (107–111), and if AMGs were indeed less useful for viruses encoding
276 heterotrophs, that could explain their limited detection in soil viruses. However, a deeper and
277 broader survey of soil viruses will be required to explore this hypothesis.

278 *Sample storage impacts vOTU recovery*

279 While our previous research demonstrated that differing storage conditions (frozen versus
280 chilled) of these Arctic soils did not yield different viral abundances (by direct counts; 41), the
281 impact of storage method on viral community structure was unknown. Here, we examined that in
282 the palsa and bog habitats for which viromes were successful from both storage conditions.
283 Storage impacted recovered community structure only in the bog habitat, with dramatically
284 broader recovery of vOTUs from the chilled sample (Fig. 5A/B), leading to higher diversity
285 metrics (Fig. S4), and appreciable separation of the recovered chilled-vs-frozen bog vOTU
286 profiles in ordination (Fig. 5C). The greater vOTUs recovery from the chilled sample was likely
287 partly due to higher DNA input and sequencing depth, which was 107-fold more than bog frozen
288 replicate A (BFA) and 350-fold more than bog frozen replicate B (BFB). This led to 1.6- to 9-
289 fold more reads assembling into contigs (compared to viromes BFA and BFB, respectively;
290 Table 1), and 3.5–9-fold more distinct contigs; while one might expect that as the number of
291 reads increased, a portion would assemble into already-established contigs, that was not
292 observed. This higher proportional diversity in the chilled bog virome relative to the two frozen
293 ones could have several potential causes. Freezing might have decreased viral diversity by
294 damaging viral particles, although these viruses regularly undergo freezing (albeit not with the
295 rapidity of liquid nitrogen). Alternatively, there could be a persistent metabolically active
296 microbial community under the chilled conditions with ongoing viral infections, distinct from
297 those in the field community. Finally, there could have been bog-specific induction of temperate

298 viruses under chilled conditions (since this difference was not seen in the palsa samples). The
299 bog habit is very acidic (pH ~4 versus ~6 in palsa and fen; 10, 46), with a dynamic water table,
300 and each of these has been hypothesized or demonstrated to increase selection for temperate
301 viruses (77, 112–116). In addition, of the 19 vOTUs shared between this study and the bulk-soil
302 metagenome study of Emerson et al. (46; which was likely to be enriched for temperate viruses
303 based on its majority sampling of microbial DNA), 13 were unique to the bog, and of those, 10
304 were only present in the chilled rather than frozen viromes, and the remaining 3 were enriched in
305 the chilled viromes.

306 Finally, while the chilled bog sample was an outlier to all other viromes (dendrogram,
307 Fig. S5A), a social network analysis of the reads that mapped to the viromes (Fig. S5B & C)
308 indicated that habitat remained the primary driver of recovered communities. Because of this, the
309 diversity analyses were redone with the chilled bog sample taken out (Fig. S2B) instead of
310 subsampling the reads, because this is a smaller dataset (subampling smaller datasets described
311 further in 117) and the storage effect was observed only for the bog.

312 *Habitat specificity of the 53 vOTUs along the thaw gradient*

313 We explored the ecology of the recovered vOTUs across the thaw gradients, by fragment
314 recruitment mapping against the (i) viromes, and (ii) bulk-soil metagenomes. Virome mapping
315 revealed that the relative abundance of each habitat's vOTUs increased along the thaw gradient;
316 relative to the palsa vOTU's abundances, bog vOTUs were 3-fold more abundant and fen vOTUs
317 were 12-fold more abundant (Fig. 5A). This is consistent with overall increases in viral-like-
318 particles with thaw observed previously at the site via direct counts (41). Only a minority (11%)
319 of the vOTUs occurred in more than one habitat, and none were shared between the palsa and fen
320 (Fig. 5B). Consistent with this, principal coordinates analyses (PCoA; using a Bray-Curtis

321 dissimilarity metric) separated the vOTU-derived community profiles according to habitat type,
322 which also explained ~75% of the variation in the dataset (Fig. 5C). Mapping of the 214 bulk-
323 soil metagenomes from the three habitats (16) revealed that a majority (41; 77%) of the vOTUs
324 were present in the bulk-soil metagenomes (Fig. 6), collectively occurring in 62% (133) of them.
325 Of the 41 vOTUs present, most derived from the bog, and their distribution among the 133
326 metagenomes reflected this, peaking quite dramatically in the bog (Fig. S4). This strong bog
327 signal in the bulk-soil metagenomes – both in proportion of bog-derived vOTU's present in the
328 bulk metagenomes, and in abundance of all vOTUs in the bog samples – is consistent with the
329 hypothesized higher abundance of temperate viruses in the bog, suggested by the chilled-versus-
330 frozen storage results above. Overall, vOTU abundances in larger and longer-duration bulk-soil
331 metagenomes indicated less vOTU habitat specificity than in the seven viromes: 10% were
332 unique to one habitat, 22% of vOTUs were present in all habitats, 22% were shared between
333 pals and bog, 27% between pals and fen, and 68% between bog and fen (Fig. 6). The
334 difference in observations from vOTU read recruitment of viromes versus bulk-soil
335 metagenomes could be due to many actual and potential differences, arising from their different
336 source material (but from the same sites) and different methodology, including: vOTUs' actual
337 abundances (they derive from different samples), infection rates, temperate versus lytic states,
338 burst size, and/or virion stability and extractability.
339 The vOTUs' habitat preferences observed in both read datasets is consistent with the numerous
340 documented physicochemical and biological shifts along the thaw gradient, and with
341 observations of viral habitat-specificity at other terrestrial sites. Changes in physicochemistry are
342 known to impact viral morphology (reviewed in 37, 118, 119) and replication strategy (36, 37).
343 In addition, at Stordalen Mire (and at other similar sites; 110), microbiota are strongly

344 differentiated by thaw-stage habitat, with some limited overlap among ‘dry’ communities (i.e.
345 those above the water table, the palsa and shallow bog), and among ‘wet’ ones (those below the
346 water table, the deeper bog and fen) (14, 15, 16). These shifting microbial hosts likely impact
347 viral community structure. Expanding from the 53 vOTUs examined here, Emerson et al.’s (46)
348 recent analysis of nearly 2,000 vOTUs recovered from the bulk-soil metagenomes also showed
349 strong habitat specificity among the recovered vOTUs (only 0.1% were shared among all
350 habitats, with <4.5% shared between any two habitats). These findings are also consistent with
351 observations of distinct viral communities from desert, prairie, and rainforests (120), and from
352 grasslands and arctic soils (45). In contrast, an emerging paradigm in the marine field is
353 ‘seascape ecology’ (121), where the majority of taxa are detected across broad geographical
354 areas, as are marine virus (26, 70). This important difference in habitat specificity between soils
355 and oceans may be due to the greater physical structuring of soil habitats.

356 Although vOTU richness and diversity appeared to increase along the thaw gradient
357 (roughly equivalent in palsa and bog, and ~2-fold higher in fen, omitting the chilled bog sample;
358 Fig. S4), this dataset only captured a small fractioned of the viral diversity (based on the
359 collector’s curve from 46), and therefore the undersampling prevents diversity inferences.
360 Intriguingly, while our virome-derived vOTU richness was lowest in the palsa, Emerson et al.’s
361 (46) much greater sampling recovered the most vOTUs in the palsa, more than double that in the
362 fen (42% vs. 18.9% of total vOTUs). This major difference could potentially be due to the
363 known increase in microbial alpha diversity along the thaw gradient (15, 16), causing increased
364 difficulty of viral genome reconstruction in the bulk-soil metagenomes; specifically, this could
365 be due to poorer assembly of temperate phages within an increasingly diverse microbiota, or of
366 lytic or free viruses due to concomitantly increasing viral diversity (which is consistent with the

367 increased vOTU richness with thaw in our virome dataset). Notably, neither this dataset nor that
368 of Emerson et al. (46) captured ssDNA or RNA viruses, which potentially represent up to half of
369 viral particles (122–124).

370 *Challenges in characterizing the soil virosphere*

371 The low yield of viral contigs given the relatively large sequencing depth of the viromes
372 reflects several factors that currently challenge soil viromics. First, resuspending viruses from
373 soils is a challenge due to their adsorption to the soil matrix (43). Second, yields of viral DNA
374 are often very low (due to both low input biomass and potentially low extraction efficiency),
375 requiring amplification; this leads to biases (53, 56–61) or poor assembly and few viral contigs
376 (described further in 125). Third, viral contig identification requires a reference database, yet soil
377 viruses are underrepresented in current databases; for example, a majority (85%) of our sequence
378 space was unknown. Fourth, non-viral DNA may co-extract. Lastly, the optimal approach to
379 identifying ecological units within viral sequence space is unclear.

380 In this study, DNA yields (and sequencing inputs) decreased along the thaw gradient, as
381 did total reads, but counterintuitively viral reads increased (Table 1; the fen had ~5-fold more
382 viral reads than the palsa). This may have been partly due to the shift to a more aquatic-type
383 habitat, for which viruses are better represented in the databases, or to an actual increase in viral
384 DNA (as a portion of total) concomitant with known viral abundance increases (41). A large
385 portion of the assembled reads were non-viral (Table 1), representing either microbial
386 contamination, or gene transfer agents (GTAs), i.e., viral-like capsids that package microbial
387 DNA (reviewed in 126). Since the viral particle purification protocol involved 0.2 μ M filter
388 followed by CsCl density gradient-based separation of the viral particles (removing free genomic
389 DNA), contamination by microbial DNA seems unlikely. While ultra-small microbial cells have

390 been found in our soils (46) and other permafrost soils (reviewed in 127, 128), and may have
391 passed through the 0.2 μm filters, they would be expected to be removed in the CsCl gradient
392 since their density is similar to that of larger microbial cells, and not viruses (reviewed in 128–
393 130). Therefore, to identify GTAs we searched our contigs for 16S rRNA genes and for known
394 GTAs. We found six contigs that had 16S rRNA matches to multiple microbes (131), and 94
395 contigs with matches to known GTAs (126), together accounting for ~25% of the assembled
396 reads. GTAs may thus represent an appreciable and unavoidable ‘contaminant’ in soil viromes,
397 as has been observed in marine systems (reviewed in 126). In this backdrop of potential
398 contaminant DNA and a preponderance of unknown genes in viral sequence space, identifying
399 ecological units in soil viromes is a challenge. We performed a sensitivity analysis on three ways
400 to characterize the ecological units in our dataset: reads characterization, contigs, and as vOTUs
401 (data not shown). While all three methods have validity, there is a higher probability
402 for inclusion of contaminants that can dramatically impact conclusions from the first two
403 approaches. We, therefore, erred on the side of caution and reported our findings in the context
404 of identified vOTUs.

405 This study’s virome-based approach contrasts (Fig. 7) with that used in Emerson et al.
406 (46), which recovered vOTUs from bulk-soil metagenomes from the same site, but different
407 years, months, depths, and preservation methods. While the viromes derived from separated viral
408 particles, the bulk-soil metagenomes captured viruses within hosts – i.e. those engaged in active
409 infection, and those integrated into hosts – as well as free viruses successfully extracted with the
410 general extraction protocol. This study generated 18 Gb of sequence from 7 viromes, while
411 Emerson et al. (46) analyzed 178 Gb from 190 bulk metagenomes, and neither approach captured
412 the total viral diversity in these soils based on rarefaction (46). The efficiency of vOTU recovery

413 was, unsurprisingly, >2-fold higher using the virome approach (2.93 vOTUs/Gbp of virome,
414 versus 1.30 vOTUs/Gbp of bulk-soil metagenome), suggesting that equivalent virome-focused
415 sequencing effort could yield >4,300 vOTUs (although diversity would likely saturate below
416 that). Of the 19 vOTUs that were shared between the two datasets, the longer, virome-derived
417 sequences defined them. These findings suggest that viromes (which greatly enrich for viral
418 particles) and bulk-soil metagenomes (which are less methodologically intensive, and provide
419 simultaneous information on both viruses and microbes) can offer complementary views of viral
420 communities in soils and the optimal method will depend on the goal of the study.

421 Over the last 2 decades, viruses have been revealed to be ubiquitous, abundant, and
422 diverse in many habitats, but their role in soils has been underexplored. The observations made
423 here from virome-derived viruses in a model permafrost-thaw ecosystem show these vOTUs are
424 primarily novel, change with permafrost thaw, and infect hosts highly relevant to C cycling. The
425 next important step is to more comprehensively characterize these viral communities (from more
426 diverse samples, and including ssDNA and RNA viruses), and begin quantifying their direct and
427 indirect impacts on C cycling in this changing landscape. This should encompass the
428 complementary information present in virome, bulk metagenomes, and viral signal from MAGs,
429 analyzed in the context of the abundant metadata available. With increasing characterization of
430 soil viruses, their mechanistic interactions with hosts, and quantification of their biogeochemical
431 impacts, soil viral ecology may significantly advance our understanding of terrestrial ecosystem
432 biogeochemical cycling, as has marine viral ecology in the oceans.

433 **Methods and Materials**

434 *Sample collection*

435 Samples were collected from July 16–19, 2014 from peatland cores in the Stordalen Mire
436 field site near Abisko, Sweden (Fig. 1; more site information in 7, 10, 12). The soils derived
437 from palsa (one stored chilled and the other stored frozen), bog (one stored chilled and two
438 stored frozen), and fen (both stored chilled) habitats along the Stordalen Mire permafrost thaw
439 gradient. These three sub-habitats are common to northern wetlands, and together cover ~98% of
440 Stordalen Mire's non-lake surface (8). The sampled palsa, bog, and fen are directly adjacent,
441 such that all cores were collected within a 120 m total radius. For this work, the cores were
442 subsampled at 36–40 cm, and material from each was divided into two sets. Set 1 was chilled
443 and stored at 4°C, and set 2 was flash-frozen in liquid nitrogen and stored at –80°C as described
444 in Trubl et al. (41). Both sets were processed using a viral resuspension method optimized for
445 these soils (41). For CsCl density gradient purification of the particles, CsCl density layers of rho
446 1.2, 1.4, 1.5, and 1.65 were used to establish the gradient; we included a 1.2 g/cm³ CsCl layer to
447 try to remove any small microbial cells that might have come through the 0.2um filter (for
448 microbial cell densities see 132, 133; for viral particle densities see 50). We then collected the
449 1.4-1.52 g/cm³ range from the gradient for DNA extraction, to target the dsDNA range (per 50).
450 The viral DNA was extracted using Wizard columns (Promega, Madison, WI, products A7181
451 and A7211), and cleaned up with AMPure beads (Beckman Coulter, Brea, CA, product A63881).
452 DNA libraries were prepared using Nextera XT DNA Library Preparation Kit (Illumina, San
453 Diego, CA, product FC-131-1024) and sequenced using an Illumina MiSeq (V3 600 cycle, 6
454 samples/run, 150 bp paired end) at the University of Arizona Genetics Core facility (UAGC).
455 Seventeen viral contigs were previously described in Emerson et al. (46) (Fig. 7).

456 The 214 bulk-soil metagenomes and associated recovered MAGs used here for analyses
457 were described in Woodcroft et al. (16), and derive from the same sampling sites from 2010–

458 2012, and 1–85 cm depths. They were extracted using a modification of the PowerSoil kit
459 (Qiagen, Hilden, Germany) and sequenced via TruSeq Nano (Illumina) library preparation or for
460 low concentration DNA samples, libraries were created using the Nextera XT DNA Sample
461 Preparation Kit (Illumina), as described in Woodcroft et al (16).

462 *vOTU recovery*

463 Eight viromes were prepped and seven samples were successfully sequenced (2 palsa:
464 one chilled and one frozen; 3 bog: one chilled and two frozen; and 2 fen: both chilled). The
465 sequences were quality-controlled using Trimmomatic (134; adaptors were removed, reads were
466 trimmed as soon as the per-base quality dropped below 20 on average on 4 nt sliding windows,
467 and reads shorter than 50 bp were discarded), then assembled separately with IDBA-UD (135),
468 and contigs were processed with VirSorter to distinguish viral from microbial contigs (virome
469 decontamination mode; 66). The same contigs were also compared by BLAST to a pool of
470 putative laboratory contaminants (i.e. phages cultivated in the lab: *Enterobacteria* phage PhiX17,
471 Alpha3, M13, *Cellulophaga baltica* phages, and *Pseudoalteromonas* phages). All contigs
472 matching these genomes at more than 95% average nucleotide identity (ANI) were removed.
473 VirSorted contigs were manually inspected by observing the key features of the viral contigs that
474 VirSorter evaluates (e.g. the presence of a viral hallmark gene places the contigs in VirSorter
475 categories 1 or 2, but further inspection is needed to confirm it is a genuine viral contig and not a
476 GTA or plasmid). To identify GTAs we searched through all of our contigs assembled by IDBA-
477 UD for (1) taxa related to the 5 types of GTAs (keyword searches were: *Rhodobacterales*,
478 *Desulfovibrio*, *Brachyspira*, *Methanococcus*, and *Bartonella*) and (2) microbial DNA the SILVA
479 ribosomal RNA database (release 128; 131), with all the assembled contigs with $\geq 95\%$ ANI. The
480 percent of reads that mapped to these contigs was calculated as previously described.

481 After having verified that the VirSorted contigs were genuine viruses, quality controlled
482 reads from the seven viromes were pooled and assembled together with IDBA-UD to generate a
483 non-redundant set of contigs. Resulting contigs were re-screened as described above, removing
484 all identifiable contamination. The contigs then underwent further quality checks by (i) removing
485 all contigs <10 kb and (ii) only using contigs from VirSorter categories 1 and 2.

486 To detect putative archaeal viruses, the VirSorter output was used as an input for MArVD
487 (with default settings; 136). The output putative archaeal virus sequences were then filtered to
488 include only those contigs \geq 10 kb in size resulting in the set of putative archaeal vOTUs
489 described here.

490 Viral genes were annotated using a pipeline described in Daly et al. (97). Briefly, for each
491 contig, ORFs were freshly predicted using MetaProdigal (137) and sequences were compared
492 to KEGG (138), UniRef and InterproScan (139) using USEARCH (140), with single and
493 reverse best-hit matches greater than a 60 bitscore. AMGs were identified by manual
494 inspection of the protein annotations guided by known resident microbial metabolic functions
495 (identified in 16). To determine confidence in functional assignment, representatives for each
496 AMGs underwent phylogenetic analyses. First each sequence was BLASTed and the top 100
497 hits were investigated to identify main taxa groups. An alignment with the hits and the matching
498 viral sequence (MUSCLE with default parameters; 141) was done with manual curation to refine
499 the alignment (e.g. regions of very low conservation from the beginning or end were removed).
500 FastTree (default parameters with 1000 bootstraps; 142) was used to make the phylogeny and
501 iTol (143) was used to visualize and edit the tree (any distance sequences were removed). To see
502 if this AMG was wide-spread across the putative soil viruses, a BLASTp (default settings) of
503 each AMG against all putative viral proteins from our viromes was done. The sequences from

504 identified homologs (based on a bitscore >70 and an e value of 10^{-4}) were used with the AMG of
505 interest to construct a new phylogenetic tree (same methods as before). Finally, structures were
506 predicted using i-TASSER (144) for our AMGs of interest and their neighbors. To assess
507 correct structural predictions, AMGs of interest and their neighbors' structures were compared
508 with TM-align (TM-score normalized by length of the reference protein; 145).

509 *Gene-sharing network construction, analysis, and clustering of viral genomes (fragments)*

510 We built a gene-sharing network, where the viral genomes and contigs are represented by
511 nodes and significant similarities as edges (71, 72). We downloaded 198,556 protein sequences
512 representing the genomes of 1,999 bacterial and archaeal viruses from NCBI RefSeq (v 75; 146).
513 Including protein sequences from the 53 Stordalen Mire viral contigs, a total of 199,613 protein
514 sequences were subjected to all-to-all BLASTp searches, with an e-value threshold of 10^{-4} , and
515 defined as protein clusters (PCs) in the same manner as previously described (67). Based on the
516 number of PCs shared between the genomes and/or genome fragments, a similarity score was
517 calculated using vConTACT (71, 72). The resulting network was visualized with Cytoscape
518 (version 3.1.1; <http://cytoscape.org/>), using an edge-weighted spring embedded model, which
519 places the genomes or fragments sharing more PCs closer to each other. 398 RefSeq viruses not
520 showing significant similarity to viral contigs were excluded for clarity. The resulting network
521 was composed of 1,722 viral genomes including 53 contigs and 58,201 edges. To gain detailed
522 insights into the genetic connections, the network was decomposed into a series of coherent
523 groups of nodes (aka VCs; 69, 71, 72), with an optimal inflation factor of 1.6. Thus, the
524 discontinuous network structure of individual components, together with the isolated contigs,
525 indicates their distinct gene pools (68). To assign contigs into VCs, PCs needed to include ≥ 2
526 genomes and/or genome fragments, then Markov clustering (MCL) algorithm was used and the

527 optimal inflation factor was calculated by exploring values ranging from 1.0 to 5 by steps of 0.2.
528 The taxonomic affiliation was taken from the NCBI taxonomy
529 (<http://www.ncbi.nlm.nih.gov/taxonomy>).

530 *vOTU ecology*

531 Virome reads were mapped back to the non-redundant set of contigs to estimate their
532 coverage, calculated as number of bp mapped to each read normalized by the length of the
533 contig, and by the total number of bp sequenced in the metagenome in order to be comparable
534 between samples (Bowtie 2, threshold of 90% average nucleotide identity on the read mapping,
535 and 75% of contig covered to be considered as detected; 54, 147). The heat map of the vOTU's
536 relative abundances across the seven viromes, as inferred by read mapping, was constructed in R
537 (CRAN 1.0.8 package pheatmap).

538 The 214 bulk-soil metagenomes and 1,529 associated recovered MAGs used here for
539 analyses were described in Woodcroft et al. (16). The paired MAG reads were mapped to the
540 viral contigs with Bowtie2 (as described above for the virome reads). The heat map of the
541 vOTU's relative abundances across the 214 bulk-soil metagenomes, as inferred by read mapping,
542 was constructed in R (CRAN 1.0.8 package pheatmap); only microbial metagenomes with a viral
543 signal were shown.

544 *Viral-host methodologies*

545 We used two different approaches to predict putative hosts for the vOTUs: one relying on
546 CRISPR spacer matches (45, 97, 148) and one on direct sequence similarity between virus and
547 host genomes (149). For CRISPR linkages, Crass (v0.3.6, default parameters), a program that
548 searches through raw metagenomic reads for CRISPRs was used (further information in Table

549 S2; 150). For BLAST, the vOTU nucleotide sequences were compared to the MAGs (16) as
550 described in Emerson et al. (46). Any viral sequences with a bit score of 50, E-value threshold of
551 10^{-3} , and $\geq 70\%$ average nucleotide identity across ≥ 2500 bp were considered for host prediction
552 (described in 151).

553 *Phylogenetic analyses to resolve taxonomy*

554 Two phylogenies were constructed. The first had the alignment of the protein sequences
555 that are common to all *Felixounavirinae* and *Vequintavirinae* as well as vOTU_4 and the second
556 had an alignment of select sequences from PC_03881, including vOTU_165. These alignments
557 were generated using the ClustalW implementation in MEGA5 (version 5.2.1;
558 <http://www.megasoftware.net/>). We excluded non-informative positions with the BMGE
559 software package (152). The alignments were then concatenated into a FASTA file and the
560 maximum likelihood tree was built with MEGA5 using JTT (jones-Taylor-Thornton) model for
561 each tree. A bootstrap analysis with 1,000 replications was conducted with uniform rates and a
562 partial depletion of gaps for a 95% site coverage cutoff score.

563 *Accession numbers*

564 All data (sequences, site information, supplemental tables and files) are available as a
565 data bundle at the IsoGenie project database under data downloads at <https://isogenie.osu.edu/>.
566 Additionally, viromes were deposited under BioProject ID PRJNA445426 and SRA
567 SUB3893166, with the following BioSample accession numbers: SAMN08784142 for Palsa
568 chilled replicate A, SAMN08784143 for Palsa frozen replicate A, SAMN08784152 for Bog
569 frozen replicate A, SAMN08784154 for Bog frozen replicate B, SAMN08784153 for Bog

570 chilled replicate B, SAMN08784163 for Fen chilled replicate A, and SAMN08784165 for Fen
571 chilled replicate B.

572 **Acknowledgments**

573 We thank Bonnie Poulos and Christine Schirmer for their assistance on different stages of this
574 project. We also thank SWES-MEL, TMPL, and The University of Arizona Genetics Core
575 facility, MAVERIC lab at the Ohio State University, the Abisko Naturvetenskapliga Station, and
576 the Joint Genome Institute for support. We thank Moira Hough, Robert Jones, and Rachel
577 Wilson for sample collection assistance. Bioinformatics were supported by The Ohio
578 Supercomputer Center and by the National Science Foundation under Award Numbers DBI-
579 0735191 and DBI-1265383; URL: www.cyverse.org. This study was funded by the Genomic
580 Science Program of the United States Department of Energy Office of Biological and
581 Environmental Research, (grants DE-SC0004632, DE-SC0010580, and DE-SC0016440), and by
582 a Gordon and Betty Moore Foundation Investigator Award (GBMF#3790 to MBS). We thank
583 Dr. Michael Palace (palace@guero.sr.unh.edu) for generating and allowing us to use the
584 unmanned aerial vehicle (UAV) image in Fig. S1.

585

586 **References**

587 1. Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L.,
588 Dahe, Q., Dasgupta, P., Dubash, N.K. and Edenhofer, O., 2014. IPCC fifth assessment
589 synthesis report-climate change 2014 synthesis report.
590 2. Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E., Ping, C.L., Schirrmeister,
591 L., Grosse, G., Michaelson, G.J., Koven, C.D. and O'Donnell, J.A., 2014. Estimated stocks

592 of circumpolar permafrost carbon with quantified uncertainty ranges and identified data
593 gaps. *Biogeosciences*, 11(23), pp.6573-6593.

594 3. Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., Hayes, D.J.,
595 Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M. and Natali, S.M., 2015. Climate
596 change and the permafrost carbon feedback. *Nature*, 520(7546), pp.171-179.

597 4. Elberling, B., Michelsen, A., Schädel, C., Schuur, E.A., Christiansen, H.H., Berg, L.,
598 Tamstorf, M.P. and Sigsgaard, C., 2013. Long-term CO₂ production following permafrost
599 thaw. *Nature Climate Change*, 3(10), pp.890-894.

600 5. Shelef, E., Rowl, J.C., Wilson, C.J., Hilley, G.E., Mishra, U., Altmann, G.L. and Ping,
601 C.L., Large Uncertainty in Permafrost Carbon Stocks due to Hillslope Soil
602 Deposits. *Geophysical Research Letters*.

603 6. Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G. and Zimov, S.,
604 2009. Soil organic carbon pools in the northern circumpolar permafrost region. *Global
605 biogeochemical cycles*, 23(2).

606 7. Bäckstrand, K., Crill, P.M., Jackowicz-Korczynski, M., Mastepanov, M., Christensen, T.R.,
607 and Bastviken, D., 2010. Annual carbon gas budget for a subarctic peatland, Northern
608 Sweden. *Biogeosciences*, 7(1), pp.95-108.

609 8. Johansson, M., Christensen, T.R., Akerman, H.J. and Callaghan, T.V., 2006. What
610 determines the current presence or absence of permafrost in the Torneträsk Region, a sub-
611 Arctic landscape in Northern Sweden?. *AMBIO: A Journal of the Human
612 Environment*, 35(4), pp.190-197.

613 9. Malmer, N., Johansson, T., Olsrud, M. and Christensen, T.R., 2005. Vegetation, climatic
614 changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30
615 years. *Global Change Biology*, 11(11), pp.1895-1909.

616 10. Hodgkins, S.B., Tfaily, M.M., McCalley, C.K., Logan, T.A., Crill, P.M., Saleska, S.R.,
617 Rich, V.I. and Chanton, J.P., 2014. Changes in peat chemistry associated with permafrost
618 thaw increase greenhouse gas production. *Proceedings of the National Academy of
619 Sciences*, 111(16), pp.5819-5824.

620 11. McCalley, C.K., Woodcroft, B.J., Hodgkins, S.B., Wehr, R.A., Kim, E.H., Mondav, R.,
621 Crill, P.M., Chanton, J.P., Rich, V.I., Tyson, G.W. and Saleska, S.R., 2014. Methane
622 dynamics regulated by microbial community response to permafrost
623 thaw. *Nature*, 514(7523), pp.478-481.

624 12. Normand, A.E., Smith, A.N., Clark, M.W., Long, J.R. and Reddy, K.R., 2017. Chemical
625 Composition of Soil Organic Matter in a Subarctic Peatland: Influence of Shifting
626 Vegetation Communities. *Soil Science Society of America Journal*, 81(1), pp.41-49.

627 13. Torbick, N., Persson, A., Olefeldt, D., Frolking, S., Salas, W., Hagen, S., Crill, P. and Li,
628 C., 2012. High resolution mapping of peatland hydroperiod at a high-latitude Swedish
629 mire. *Remote Sensing*, 4(7), pp.1974-1994.

630 14. Mondav, R., Woodcroft, B.J., Kim, E.H., McCalley, C.K., Hodgkins, S.B., Crill, P.M.,
631 Chanton, J., Hurst, G.B., VerBerkmoes, N.C., Saleska, S.R. and Hugenholtz, P., 2014.
632 Discovery of a novel methanogen prevalent in thawing permafrost. *Nature
633 communications*, 5, p.3212.

634 15. Mondav, R., McCalley, C.K., Hodgkins, S.B., Frolking, S., Saleska, S.R., Rich, V.I.,
635 Chanton, J.P. and Crill, P.M., 2017. Microbial network, phylogenetic diversity and

636 community membership in the active layer across a permafrost thaw
637 gradient. *Environmental Microbiology*.

638 16. Woodcroft, B. J. , Singleton, C. M., Boyd, J. A. , Evans, P. N. , Hoelzle, R. D., Lamberton,
639 T. O., McCalley, C. K., Hodgkins, S. B. , Wilson, R. M., Chanton, J. P. , Crill, P. M.,
640 Saleska, S. R., Rich, V. I., Tyson, G. W. (*in press*). Genome-centric metagenomic insights
641 into microbial carbon processing across a permafrost thaw gradient.

642 17. Christensen, T.R., Johansson, T., Åkerman, H.J., Mastepanov, M., Malmer, N., Friborg, T.,
643 Crill, P. and Svensson, B.H., 2004. Thawing subarctic permafrost: Effects on vegetation
644 and methane emissions. *Geophysical research letters*, 31(4).

645 18. Christensen, T.R., Jackowicz-Korczyński, M., Aurela, M., Crill, P., Heliasz, M.,
646 Mastepanov, M. and Friborg, T., 2012. Monitoring the multi-year carbon balance of a
647 subarctic palsa mire with micrometeorological techniques. *Ambio*, 41(3), pp.207-217.

648 19. Schädel, C., Bader, M.K.F., Schuur, E.A., Biasi, C., Bracho, R., Čapek, P., De Baets, S.,
649 Diáková, K., Ernakovich, J., Estop-Aragones, C. and Graham, D.E., 2016. Potential carbon
650 emissions dominated by carbon dioxide from thawed permafrost soils. *Nature Climate
651 Change*.

652 20. Shindell, D.T., Faluvegi, G., Koch, D.M., Schmidt, G.A., Unger, N. and Bauer, S.E., 2009.
653 Improved attribution of climate forcing to emissions. *Science*, 326(5953), pp.716-718.

654 21. Deng J, McCalley C, Frolking S, Chanton J, Crill P, Varner R, Tyson G, Rich V, Saleska S,
655 Hines M, Li C. 2017. Adding Stable Carbon Isotopes Improves Model Representation of
656 the Role of Microbial Communities in Peatland Methane Cycling, *Journal of Advances in
657 Modeling Earth Systems*. 9: 1412–1430. DOI: 10.1002/2016MS000817

658 22. Fuhrman, J.A., 1999. Marine viruses and their biogeochemical and ecological
659 effects. *Nature*, 399(6736), pp.541-548.

660 23. Suttle, C.A., 2005. Viruses in the sea. *Nature*, 437(7057), pp.356-361.

661 24. Suttle, C.A., 2007. Marine viruses—major players in the global ecosystem. *Nature Reviews
662 Microbiology*, 5(10), pp.801-812.

663 25. Hurwitz, B.L., Westveld, A.H., Brum, J.R. and Sullivan, M.B., 2014. Modeling ecological
664 drivers in marine viral communities using comparative metagenomics and network
665 analyses. *Proceedings of the National Academy of Sciences*, 111(29), pp.10714-10719.

666 26. Brum, J.R., Ignacio-Espinoza, J.C., Roux, S., Doulcier, G., Acinas, S.G., Alberti, A.,
667 Chaffron, S., Cruaud, C., De Vargas, C., Gasol, J.M. and Gorsky, G., 2015. Patterns and
668 ecological drivers of ocean viral communities. *Science*, 348(6237), p.1261498.

669 27. Fridman, S., Flores-Uribe, J., Larom, S., Alalouf, O., Liran, O., Yacoby, I., Salama, F.,
670 Bailleul, B., Rappaport, F., Ziv, T. and Sharon, I., 2017. A myovirus encoding both
671 photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus
672 cells. *Nature microbiology*, 2(10), p.1350.

673 28. Breitbart, M., 2012. Marine viruses: truth or dare. *Marine Science*, 4.

674 29. Guidi, L., Chaffron, S., Bittner, L., Eveillard, D., Larhlimi, A., Roux, S., Darzi, Y., Audic,
675 S., Berline, L., Brum, J.R. and Coelho, L.P., 2016. Plankton networks driving carbon
676 export in the oligotrophic ocean. *Nature*.

677 30. Middelboe, M. and Brussaard, C.P., 2017. Marine Viruses: Key Players in Marine
678 Ecosystems. *Viruses* 2017, 9, 302.

679 31. Yooseph, S., Sutton, G., Rusch, D.B., Halpern, A.L., Williamson, S.J., Remington, K.,
680 Eisen, J.A., Heidelberg, K.B., Manning, G., Li, W. and Jaroszewski, L., 2007. The Sorcerer

681 II Global Ocean Sampling expedition: expanding the universe of protein families. *PLoS*
682 *biology*, 5(3), p.e16.

683 32. Dinsdale, E.A., Edwards, R.A., Hall, D., Angly, F., Breitbart, M., Brulc, J.M., Furlan, M.,
684 Desnues, C., Haynes, M., Li, L. and McDaniel, L., 2008. Functional metagenomic profiling
685 of nine biomes. *Nature*, 452(7187), p.629.

686 33. Sharon, I., Battchikova, N., Aro, E.M., Giglione, C., Meinnel, T., Glaser, F., Pinter, R.Y.,
687 Breitbart, M., Rohwer, F. and Béjà, O., 2011. Comparative metagenomics of microbial
688 traits within oceanic viral communities. *The ISME journal*, 5(7), p.1178.

689 34. Hurwitz, B.L., Hallam, S.J. and Sullivan, M.B., 2013. Metabolic reprogramming by viruses
690 in the sunlit and dark ocean. *Genome biology*, 14(11), p.R123.

691 35. Hurwitz, B. L., Brum, J. R. & Sullivan, M. B. 2015. Depth-stratified functional and
692 taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. *ISME*
693 *J.* **9**, 472–484.

694 36. Kimura, M., Jia, Z.J., Nakayama, N. and Asakawa, S., 2008. Ecology of viruses in soils:
695 past, present and future perspectives. *Soil Science and Plant Nutrition*, 54(1), pp.1-32.

696 37. Williamson, K.E., Fuhrmann, J.J., Wommack, K.E. and Radosevich, M., 2017. Viruses in
697 Soil Ecosystems: An Unknown Quantity Within an Unexplored Territory. *Annual Review*
698 *of Virology*, 4(1).

699 38. Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil
700 microbiome. *Nature Reviews Microbiology*, 15(10), pp.579-590.

701 39. Pratama, A.A. and van Elsas, J.D., 2018. The ‘Neglected’ Soil Virome—Potential Role and
702 Impact. *Trends in Microbiology*.

703 40. Williamson, K.E., Corzo, K.A., Drissi, C.L., Buckingham, J.M., Thompson, C.P. and
704 Helton, R.R., 2013. Estimates of viral abundance in soils are strongly influenced by
705 extraction and enumeration methods. *Biology and Fertility of Soils*, 49(7), pp.857-869.

706 Rohwer, F. and Thurber, R.V., 2009. Viruses manipulate the marine
707 environment. *Nature*, 459(7244), p.207.

708 41. Trubl, G., Solonenko, N., Chittick, L., Solonenko, S.A., Rich, V.I. and Sullivan, M.B.,
709 2016. Optimization of viral resuspension methods for carbon-rich soils along a permafrost
710 thaw gradient. *PeerJ*, 4, p.e1999. Sime-Ngando, T. and Colombet, J., 2009. Virus and
711 prophages in aquatic ecosystems. *Canadian journal of microbiology*, 55(2), pp.95-109

712 42. Narr, A., Nawaz, A., Wick, L.Y., Harms, H. and Chatzinotas, A., 2017. Soil Viral
713 Communities Vary Temporally and along a Land Use Transect as Revealed by Virus-Like
714 Particle Counting and a Modified Community Fingerprinting Approach
715 (fRAPD). *Frontiers in Microbiology*, 8, p.1975.

716 43. Goyal, S.M. and Gerba, C.P., 1979. Comparative adsorption of human enteroviruses,
717 simian rotavirus, and selected bacteriophages to soils. *Applied and Environmental
718 Microbiology*, 38(2), pp.241-247.

719 44. Cresawn, S.G., Pope, W.H., Jacobs-Sera, D., Bowman, C.A., Russell, D.A., Dedrick, R.M.,
720 Adair, T., Anders, K.R., Ball, S., Bollivar, D. and Breitenberger, C., 2015. Comparative
721 genomics of cluster O mycobacteriophages. *PLoS One*, 10(3), p.e0118725. Weinbauer,
722 M.G. and Rassoulzadegan, F., 2004. Are viruses driving microbial diversification and
723 diversity?. *Environmental microbiology*, 6(1), pp.1-11

724 45. Paez-Espino, D., Eloë-Fadrosch, E.A., Pavlopoulos, G.A., Thomas, A.D., Huntemann, M.,
725 Mikhailova, N., Rubin, E., Ivanova, N.N. and Kyrpides, N.C., 2016. Uncovering Earth's
726 virome. *Nature*, 536(7617), pp.425-430.

727 46. Emerson, J.B., Roux, S., Brum, J.R., Bolduc, B., Woodcroft, B.J., Jang, H-B., Singleton,
728 C.M., Selden, L. M., Naas, A. E., Boyd, J. A., Hodgkins, S. B., Wilson, R. M., Trubl, G.,
729 Li, L., Frolking, S., Pope, P. B., Wrighton, K. C., Crill, P. M., Chanton, J. P., Saleska, S.
730 R., Tyson, G. W., Rich V. I., Sullivan, M. B. *In press, Nature Microbiology*. Host-linked
731 soil viral ecology along a permafrost thaw gradient.

732 47. Goordial, J., Davila, A., Greer, C.W., Cannam, R., DiRuggiero, J., McKay, C.P. and
733 Whyte, L.G., 2017. Comparative activity and functional ecology of permafrost soils and
734 lithic niches in a hyper-arid polar desert. *Environmental microbiology*, 19(2), pp.443-458.

735 48. Rosario, K. and Breitbart, M., 2011. Exploring the viral world through
736 metagenomics. *Current opinion in virology*, 1(4), pp.289-297.

737 49. Logares, R., Haverkamp, T.H., Kumar, S., Lanzén, A., Nederbragt, A.J., Quince, C. and
738 Kauserud, H., 2012. Environmental microbiology through the lens of high-throughput
739 DNA sequencing: synopsis of current platforms and bioinformatics approaches. *Journal of
740 microbiological methods*, 91(1), pp.106-113.

741 50. Thurber, R.V., Haynes, M., Breitbart, M., Wegley, L. and Rohwer, F., 2009. Laboratory
742 procedures to generate viral metagenomes. *Nature protocols*, 4(4), pp.470-483.

743 51. John, S.G., Mendez, C.B., Deng, L., Poulos, B., Kauffman, A.K.M., Kern, S., Brum, J.,
744 Polz, M.F., Boyle, E.A. and Sullivan, M.B., 2011. A simple and efficient method for
745 concentration of ocean viruses by chemical flocculation. *Environmental microbiology
746 reports*, 3(2), pp.195-202.

747 52. Duhaime, M.B., Deng, L., Poulos, B.T. and Sullivan, M.B., 2012. Towards quantitative
748 metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous
749 assessment and optimization of the linker amplification method. *Environmental*
750 *Microbiology*, 14(9), pp.2526-2537

751 Lindell, D., Jaffe, J.D., Johnson, Z.I., Church, G.M. and Chisholm, S.W., 2005.

752 53. Roux, S., Solonenko, N.E., Dang, V.T., Poulos, B.T., Schwenck, S.M., Goldsmith, D.B.,
753 Coleman, M.L., Breitbart, M. and Sullivan, M.B., 2016. Towards quantitative viromics for
754 both double-stranded and single-stranded DNA viruses. *PeerJ*, 4, p.e2777.

755 54. Roux, S., Emerson, J.B., Eloe-Fadrosh, E.A. and Sullivan, M.B., 2017. Benchmarking
756 viromics: an in silico evaluation of metagenome-enabled estimates of viral community
757 composition and diversity. *PeerJ*, 5, p.e3817.

758 55. Hayes, S., Mahony, J., Nauta, A. and van Sinderen, D., 2017. f. *Viruses*, 9(6), p.127.

759 56. Binga, E.K., Lasken, R.S. and Neufeld, J.D., 2008. Something from (almost) nothing: the
760 impact of multiple displacement amplification on microbial ecology. *The ISME*
761 *journal*, 2(3), pp.233-241.

762 57. Yilmaz, S., Allgaier, M. and Hugenholtz, P., 2010. Multiple displacement amplification
763 compromises quantitative analysis of metagenomes. *Nature methods*, 7(12), pp.943-944.

764 58. Polson, S.W., Wilhelm, S.W. and Wommack, K.E., 2011. Unraveling the viral tapestry
765 (from inside the capsid out). *The ISME journal*, 5(2), p.165.

766 59. Kim, M.S., Whon, T.W. and Bae, J.W., 2013. Comparative viral metagenomics of
767 environmental samples from Korea. *Genomics & informatics*, 11(3), pp.121-128.

768 60. Marine, R., McCarren, C., Vorrasane, V., Nasko, D., Crowgey, E., Polson, S.W. and
769 Wommack, K.E., 2014. Caught in the middle with multiple displacement amplification: the

770 myth of pooling for avoiding multiple displacement amplification bias in a
771 metagenome. *Microbiome*, 2(1), p.3.

772 61. Cremers, G., Gambelli, L., van Alen, T., van Niftrik, L. and den Camp, H.J.O., 2018.
773 Bioreactor virome metagenomics sequencing using DNA spike-ins. *PeerJ*, 6, p.e4351.

774 62. Zablocki, O., van Zyl, L., Adriaenssens, E.M., Rubagotti, E., Tuffin, M., Cary, S.C. and
775 Cowan, D., 2014. High-level diversity of tailed phages, eukaryote-associated viruses, and
776 virophage-like elements in the metaviromes of Antarctic soils. *Applied and environmental*
777 *microbiology*, 80(22), pp.6888-6897.

778 63. Zablocki, O., van Zyl, L., Adriaenssens, E.M., Rubagotti, E., Tuffin, M., Cary, S.C. and
779 Cowan, D., 2014. Niche-dependent genetic diversity in Antarctic
780 metaviromes. *Bacteriophage*, 4(4), p.e980125.

781 64. Adriaenssens, E.M., Kramer, R., Van Goethem, M.W., Makhalyane, T.P., Hogg, I. and
782 Cowan, D.A., 2017. Environmental drivers of viral community composition in Antarctic
783 soils identified by viromics. *Microbiome*, 5(1), p.83.

784 65. Gregory, A.C., Solonenko, S.A., Ignacio-Espinoza, J.C., LaButti, K., Copeland, A., Sudek,
785 S., Maitland, A., Chittick, L., dos Santos, F., Weitz, J.S. and Worden, A.Z., 2016. Genomic
786 differentiation among wild cyanophages despite widespread horizontal gene transfer. *BMC*
787 *genomics*, 17(1), p.930.

788 66. Roux, S. Enault, F. Hurwitz, B.L. and Sullivan, M.B. 2015. VirSorter: mining viral signal
789 from microbial genomic data. *PeerJ*, 3, p.e985.

790 67. Lima-Mendez, G., Van Helden, J., Toussaint, A., Leplae, R. 2008. Reticulate
791 representation of evolutionary and functional relationships between phage genomes. *Mol*
792 *Biol Evol* 25: 762-777.

793 68. Halary, S., Leigh, J.W., Cheaib, B., Lopez, P., Bapteste, E. 2010. Network analyses
794 structure genetic diversity in independent genetic worlds. *Proc Natl Acad Sci U S A* 107:
795 127-132.

796 69. Roux, S., Hallam, S.J., Woyke, T., Sullivan, M.B. 2015. Viral dark matter and virus-host
797 interactions resolved from publicly available microbial genomes. *Elife* 4: 1-20.

798 70. Roux, S., Brum, J.R., Dutilh, B.E., Sunagawa, S., Duhaime, M.B., Loy, A., Poulos, B.T.,
799 Solonenko, N., Lara, E., Poulain, J. and Pesant, S., 2016. Ecogenomics and potential
800 biogeochemical impacts of globally abundant ocean viruses. *Nature*.

801 71. Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B.L. and Sullivan, M.B., 2016. iVirus:
802 facilitating new insights in viral ecology with software and community data sets imbedded
803 in a cyberinfrastructure. *The ISME Journal*

804 72. Bolduc, B., Jang, H.B., Doulcier, G., You, Z.Q., Roux, S. and Sullivan, M.B., 2017.
805 vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea
806 and Bacteria. *PeerJ*, 5, p.e3243.

807 73. Rombouts, S., Volckaert, A., Venneman, S., Declercq, B., Vandenheuvel, D., Allonsius,
808 C.N., Van Malderghem, C., Jang, H.B., Briers, Y., Noben, J.P., Klumpp, J., Van
809 Vaerenbergh, J., Maes, M., Lavigne, R. 2016. Characterization of Novel Bacteriophages
810 for Biocontrol of Bacterial Blight in Leek Caused by *Pseudomonas syringae* pv. *porri*.
811 *Front Microbiol* 7: 279.

812 74. Youle, M., Haynes, M. and Rohwer, F., 2012. Scratching the surface of biology's dark
813 matter. In *Viruses: Essential agents of life* (pp. 61-81). Springer Netherlands.

814 75. Hatfull, G.F. 2015. Dark matter of the biosphere: the amazing world of bacteriophage
815 diversity. *Journal of virology*, 89(16), pp.8107-8110.

816 76. Waldron, P.R. and Holodniy, M., 2015. Peripheral blood mononuclear cell gene expression
817 remains broadly altered years after successful interferon-based Hepatitis C Virus
818 treatment. *Journal of immunology research*.

819 77. Brum, J.R., Hurwitz, B.L., Schofield, O., Ducklow, H.W. and Sullivan, M.B., 2016.
820 Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial
821 dynamics. *The ISME journal*, 10(2), p.437.

822 78. Zablocki, O., Adriaenssens, E.M. and Cowan, D., 2016. Diversity and ecology of viruses in
823 hyperarid desert soils. *Applied and environmental microbiology*, 82(3), pp.770-777.

824 79. Lamont, I., Richardson, H., Carter, D.R. and Egan, J.B., 1993. Genes for the establishment
825 and maintenance of lysogeny by the temperate coliphage 186. *Journal of*
826 *bacteriology*, 175(16), pp.5286-5288.

827 80. Villafane, R. and Black, J., 1994. Identification of four genes involved in the lysogenic
828 pathway of the *Salmonella newington* bacterial virus ϵ 34. *Archives of virology*, 135(1-2),
829 pp.179-183.

830 81. Stewart, F.M. and Levin, B.R. 1984. The population biology of bacterial viruses: why be
831 temperate. *Theoretical population biology*, 26(1), pp.93-117.

832 82. Chibani-Chennoufi, S., Bruttin, A., Dillmann, M.L. and Brüssow, H., 2004. Phage-host
833 interaction: an ecological perspective. *Journal of bacteriology*, 186(12), pp.3677-3686

834 83. Srinivasiah, S., Bhavsar, J., Thapar, K., Liles, M., Schoenfeld, T. and Wommack, K.E.,
835 2008. Phages across the biosphere: contrasts of viruses in soil and aquatic
836 environments. *Research in Microbiology*, 159(5), pp.349-357.

837 84. Abedon, S.T., 2011. Communication among phages, bacteria, and soil environments.
838 In *Biocommunication in soil microorganisms* (pp. 37-65). Springer Berlin Heidelberg

839 85. Quaiser, A., Ochsenreiter, T., Lanz, C., Schuster, S.C., Treusch, A.H., Eck, J. and Schleper,
840 C., 2003. Acidobacteria form a coherent but highly diverse group within the bacterial
841 domain: evidence from environmental genomics. *Molecular microbiology*, 50(2), pp.563-
842 575.

843 86. Foesel, B.U., Nägele, V., Naether, A., Wüst, P.K., Weinert, J., Bonkowski, M., Lohaus, G.,
844 Polle, A., Alt, F., Oelmann, Y. and Fischer, M., 2014. Determinants of Acidobacteria
845 activity inferred from the relative abundances of 16S rRNA transcripts in German
846 grassland and forest soils. *Environmental microbiology*, 16(3), pp.658-675.

847 87. Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A. and Kuramae, E.E., 2016.
848 The ecology of Acidobacteria: moving beyond genes and genomes. *Frontiers in
849 Microbiology*, 7.

850 88. Pearce, D.A., Newsham, K.K., Thorne, M.A., Calvo-Bado, L., Krsek, M., Laskaris, P.,
851 Hodson, A. and Wellington, E.M., 2012. Metagenomic analysis of a southern maritime
852 Antarctic soil.

853 89. Janssen, P.H., 1998. Pathway of glucose catabolism by strain VeGlc2, an anaerobe
854 belonging to the *Verrucomicrobiales* lineage of bacterial descent. *Applied and
855 environmental microbiology*, 64(12), pp.4830-4833.

856 90. Kant, R., Van Passel, M.W., Sangwan, P., Palva, A., Lucas, S., Copeland, A., Lapidus, A.,
857 del Rio, T.G., Dalin, E., Tice, H. and Bruce, D., 2011. Genome sequence of Pedosphaera
858 parvula Ellin514, an aerobic verrucomicrobial isolate from pasture soil. *Journal of
859 bacteriology*.

860 91. Bergmann, G.T., Bates, S.T., Eilers, K.G., Lauber, C.L., Caporaso, J.G., Walters, W.A.,
861 Knight, R. and Fierer, N., 2011. The under-recognized dominance of Verrucomicrobia in
862 soil bacterial communities. *Soil Biology and Biochemistry*, 43(7), pp.1450-1455.

863 92. Štursová, M., Žifčáková, L., Leigh, M.B., Burgess, R. and Baldrian, P., 2012. Cellulose
864 utilization in forest litter and soil: identification of bacterial and fungal
865 decomposers. *FEMS Microbiology Ecology*, 80(3), pp.735-746.

866 93. Soares Jr, F.L., Melo, I.S., Dias, A.C.F. and Andreato, F.D., 2012. Cellulolytic bacteria
867 from soils in harsh environments. *World Journal of Microbiology and*
868 *Biotechnology*, 28(5), pp.2195-2203.

869 94. Schmidt, O., Hink, L., Horn, M.A. and Drake, H.L., 2016. Peat: home to novel syntrophic
870 species that feed acetate-and hydrogen-scavenging methanogens. *The ISME journal*, 10(8),
871 pp.1954-1966.

872 95. Wawrik, B., Marks, C.R., Davidova, I.A., McInerney, M.J., Pruitt, S., Duncan, K.E.,
873 Suflita, J.M. and Callaghan, A.V., 2016. Methanogenic paraffin degradation proceeds via
874 alkane addition to fumarate by 'Smithella'spp. mediated by a syntrophic coupling with
875 hydrogenotrophic methanogens. *Environmental microbiology*, 18(8), pp.2604-2619.

876 96. Juottonen, H., Eiler, A., Biasi, C., Tuittila, E.S., Yrjälä, K. and Fritze, H., 2017. Distinct
877 anaerobic bacterial consumers of cellobiose-derived carbon in boreal fens with different
878 CO₂/CH₄ production ratios. *Applied and environmental microbiology*, 83(4), pp.e02533-16.

879 97. Daly, R.A., Borton, M.A., Wilkins, M.J., Hoyt, D.W., Kountz, D.J., Wolfe, R.A., Welch,
880 S.A., Marcus, D.N., Trexler, R.V., MacRae, J.D. and Krzycki, J.A. 2016. Microbial
881 metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. *Nature*
882 *Microbiology*, 1, p.16146.

883 98. Anderson, C.L., Sullivan, M.B. and Fernando, S.C., 2017. Dietary energy drives the
884 dynamic response of bovine rumen viral communities. *Microbiome*, 5(1), p.155

885 99. Soden LM, Roux S, Daly RA, Collis WB, Naas AE, Nicora CD, Purvine SO, Hoyt DW,
886 Schuckel J, Jorgensen B, Willats W, Spalinger DE, Firkins JL, Lipton MS, Sullivan MB,
887 Pope PB, Wrighton KC. Decrypting carbon degradation and phage infection networks in
888 the rumen ecosystem. Submitted to *Nature Microbiology*.

889 100. Kormanec, J. and Homerova, D., 1993. Streptomyces aureofaciens whiB gene encoding
890 putative transcription factor essential for differentiation. *Nucleic acids research*, 21(10),
891 p.2512.

892 101. Resnekov, O., Driks, A. and Losick, R., 1995. Identification and characterization of
893 sporulation gene spoVS from *Bacillus subtilis*. *Journal of bacteriology*, 177(19), pp.5628-
894 5635.

895 102. Rybniker, J., Nowag, A., Van Gumpel, E., Nissen, N., Robinson, N., Plum, G. and
896 Hartmann, P., 2010. Insights into the function of the WhiB \square like protein of
897 mycobacteriophage TM4—a transcriptional inhibitor of WhiB2. *Molecular
898 microbiology*, 77(3), pp.642-657.

899 103. Crummett, L.T., Puxty, R.J., Weihe, C., Marston, M.F. and Martiny, J.B., 2016. The
900 genomic content and context of auxiliary metabolic genes in marine
901 cyanomyoviruses. *Virology*, 499, pp.219-229.

902 104. Jansson, J.K. and Hofmockel, K.S., 2018. The soil microbiome—from metagenomics to
903 metabolomics. *Current opinion in microbiology*, 43, pp.162-168.

904 105. Thompson, M.R., Kaminski, J.J., Kurt-Jones, E.A. and Fitzgerald, K.A., 2011. Pattern
905 recognition receptors and the innate immune response to viral infection. *Viruses*, 3(6),
906 pp.920-940.

907 106. Anantharaman, K., Duhaime, M.B., Breier, J.A., Wendt, K.A., Toner, B.M. and Dick, G.J.,
908 2014. Sulfur oxidation genes in diverse deep-sea viruses. *Science*, 344(6185), pp.757-760.

909 107. Martin, J.K., 1977. Effect of soil moisture on the release of organic carbon from wheat
910 roots. *Soil Biology and Biochemistry*, 9(4), pp.303-304.

911 108. Floyd, M. M., J. Tang, M. Kane, and D. Emerson. 2005. Captured diversity in a culture
912 collection: case study of the geographic and habitat distributions of environmental isolates
913 held at the American Type Culture Collection. *Appl. Environ. Microbiol.* 71:2813-2823.

914 109. Fierer, N., Bradford, M.A. and Jackson, R.B., 2007. Toward an ecological classification of
915 soil bacteria. *Ecology*, 88(6), pp.1354-1364.

916 110. Jansson, J.K. and Taş, N., 2014. The microbial ecology of permafrost. *Nature reviews
917 Microbiology*, 12(6), pp.414-425.

918 111. Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge,
919 D.J., Bardgett, R.D., Maestre, F.T., Singh, B.K. and Fierer, N., 2018. A global atlas of the
920 dominant bacteria found in soil. *Science*, 359(6373), pp.320-325.

921 112. Rice, G., Stedman, K., Snyder, J., Wiedenheft, B., Willits, D., Brumfield, S., McDermott,
922 T. and Young, M.J., 2001. Viruses from extreme thermal environments. *Proceedings of the
923 National Academy of Sciences*, 98(23), pp.13341-13345.

924 113. Laybourn-Parry, J., Marshall, W.A. and Madan, N.J., 2007. Viral dynamics and patterns of
925 lysogeny in saline Antarctic lakes. *Polar Biology*, 30(3), pp.351-358.

926 114. Le Romancer, M., Gaillard, M., Geslin, C. and Prieur, D., 2007. Viruses in extreme
927 environments. *Reviews in Environmental Science and Bio/Technology*, 6(1-3), pp.17-31.

928 115. Evans, C. and Brussaard, C.P., 2012. Regional variation in lytic and lysogenic viral
929 infection in the Southern Ocean and its contribution to biogeochemical cycling. *Applied*
930 *and environmental microbiology*, 78(18), pp.6741-6748.

931 116. Payet, J.P. and Suttle, C.A., 2013. To kill or not to kill: the balance between lytic and
932 lysogenic viral infection is driven by trophic status. *Limnol. Oceanogr*, 58(2), pp.465-474.

933 117. McMurdie, P.J. and Holmes, S., 2014. Waste not, want not: why rarefying microbiome data
934 is inadmissible. *PLoS computational biology*, 10(4), p.e1003531.

935 118. Hurst, C.J., Gerba, C.P. and Cech, I., 1980. Effects of environmental variables and soil
936 characteristics on virus survival in soil. *Applied and environmental microbiology*, 40(6),
937 pp.1067-1079.

938 119. Gerba, C.P., 1984. Applied and theoretical aspects of virus adsorption to
939 surfaces. *Advances in applied microbiology*, 30, pp.133-168.

940 120. Fierer, N., Breitbart, M., Nulton, J., Salamon, P., Lozupone, C., Jones, R., Robeson, M.,
941 Edwards, R.A., Felts, B., Rayhawk, S. and Knight, R., 2007. Metagenomic and small-
942 subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses
943 in soil. *Applied and environmental microbiology*, 73(21), pp.7059-7066.

944 121. Kavanaugh, M.T., Oliver, M.J., Chavez, F.P., Letelier, R.M., Muller-Karger, F.E. and
945 Doney, S.C., 2016. Seascapes as a new vernacular for pelagic ocean monitoring,
946 management and conservation. *ICES Journal of Marine Science*, 73(7), pp.1839-1850.

947 122. Steward, G.F., Culley, A.I., Mueller, J.A., Wood-Charlson, E.M., Belcaid, M. and Poisson,
948 G., 2013. Are we missing half of the viruses in the ocean?. *The ISME journal*, 7(3), p.672.

949 123. Greninger, A.L., 2017. A decade of RNA virus metagenomics is (not) enough. *Virus*
950 *Research*.

951 124. Zhang, Y.Z., Shi, M. and Holmes, E.C., 2018. Using Metagenomics to Characterize an
952 Expanding Virosphere. *Cell*, 172(6), pp.1168-1172.

953 125. Rinke, C., Low, S., Woodcroft, B.J., Raina, J.B., Skarszewski, A., Le, X.H., Butler, M.K.,
954 Stocker, R., Seymour, J., Tyson, G.W. and Hugenholtz, P., 2016. Validation of picogram-
955 and femtogram-input DNA libraries for microscale metagenomics. *PeerJ*, 4, p.e2486.

956 126. Lang, A.S., Westbye, A.B. and Beatty, J.T., 2017. The Distribution, Evolution, and Roles
957 of Gene Transfer Agents (GTAs) in Prokaryotic Genetic Exchange. *Annual review of*
958 *virology*, 4(1).

959 127. Kuhn, E., Ichimura, A.S., Peng, V., Fritsen, C.H., Trubl, G., Doran, P.T. and Murray, A.E.,
960 2014. Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida,
961 Antarctica. *Applied and environmental microbiology*, 80(12), pp.3687-3698.

962 128. Luef, B., Frischkorn, K.R., Wrighton, K.C., Holman, H.Y.N., Birarda, G., Thomas, B.C.,
963 Singh, A., Williams, K.H., Siegerist, C.E., Tringe, S.G. and Downing, K.H., 2015. Diverse
964 uncultivated ultra-small bacterial cells in groundwater. *Nature communications*, 6, p.6372.

965 129. Solden, L., Lloyd, K. and Wrighton, K., 2016. The bright side of microbial dark matter:
966 lessons learned from the uncultivated majority. *Current opinion in microbiology*, 31,
967 pp.217-226.

968 130. Sariaslani, Sima and Gadd, Geoffrey Michael. Advances in applied microbiology. Vol.
969 101. Elsevier academic press, 2017

970 131. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and
971 Glöckner, F.O., 2012. The SILVA ribosomal RNA gene database project: improved data
972 processing and web-based tools. *Nucleic acids research*, 41(D1), pp.D590-D596.

973 132. Bakken, L.R. and Olsen, R.A., 1983. Buoyant densities and dry-matter contents of
974 microorganisms: conversion of a measured biovolume into biomass. *Applied and*
975 *Environmental Microbiology*, 45(4), pp.1188-1195.

976 133. Pollard, E.C. and Grady, L.J., 1967. CsCl density gradient centrifugation studies of intact
977 bacterial cells. *Biophysical journal*, 7(2), p.205.

978 134. Bolger, A.M. Lohse, M. and Usadel, B. 2014. Trimmomatic: a flexible trimmer for
979 Illumina sequence data. *Bioinformatics*, p.btu170.

980 135. Peng, Y. Leung, H.C. Yiu, S.M. and Chin, F.Y. 2012. IDBA-UD: a de novo assembler for
981 single-cell and metagenomic sequencing data with highly uneven
982 depth. *Bioinformatics*, 28(11), pp.1420-1428.

983 136. Vik, D.R., Roux, S., Brum, J.R., Bolduc, B., Emerson, J.B., Padilla, C.C., Stewart, F.J. and
984 Sullivan, M.B., 2017. Putative archaeal viruses from the mesopelagic ocean. *PeerJ*, 5,
985 p.e3428.

986 137. Hyatt, D., LoCascio, P.F., Hauser, L.J. and Uberbacher, E.C., 2012. Gene and translation
987 initiation site prediction in metagenomics sequences. *Bioinformatics*, 28(17), pp.2223-
988 2230.

989 138. Kanehisa, M. and Goto, S., 2000. KEGG: kyoto encyclopedia of genes and
990 genomes. *Nucleic acids research*, 28(1), pp.27-30.

991 139. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R. and Lopez,
992 R., 2005. InterProScan: protein domains identifier. *Nucleic acids research*, 33(suppl_2),
993 pp.W116-W120.

994 140. Edgar, R.C., 2010. Search and clustering orders of magnitude faster than
995 BLAST. *Bioinformatics*, 26(19), pp.2460-2461.

996 141. Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high
997 throughput. *Nucleic acids research*, 32(5), pp.1792-1797.

998 142. Price, M.N., Dehal, P.S. and Arkin, A.P., 2009. FastTree: computing large minimum
999 evolution trees with profiles instead of a distance matrix. *Molecular biology and
1000 evolution*, 26(7), pp.1641-1650.

1001 143. Letunic, I. and Bork, P., 2006. Interactive Tree Of Life (iTOL): an online tool for
1002 phylogenetic tree display and annotation. *Bioinformatics*, 23(1), pp.127-128.

1003 144. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. and Zhang, Y., 2015. The I-TASSER Suite:
1004 protein structure and function prediction. *Nature methods*, 12(1), p.7.

1005 145. Zhang, Y. and Skolnick, J., 2005. TM-align: a protein structure alignment algorithm based
1006 on the TM-score. *Nucleic acids research*, 33(7), pp.2302-2309.

1007 146. Brister, J.R., Ako-Adjei, D., Bao, Y. and Blinkova, O., 2014. NCBI viral genomes
1008 resource. *Nucleic acids research*, 43(D1), pp.D571-D577.

1009 147. Langmead, B. and Salzberg, S.L. 2012. Fast gapped-read alignment with Bowtie 2. *Nature
1010 methods*, 9(4), pp.357-359.

1011 148. Sanguino, L., Franqueville, L., Vogel, T.M. and Larose, C., 2015. Linking environmental
1012 prokaryotic viruses and their host through CRISPRs. *FEMS microbiology ecology*, 91(5),
1013 p.fiv046.

1014 149. Emerson, J.B., Andrade, K., Thomas, B.C., Norman, A., Allen, E.E., Heidelberg, K.B. and
1015 Banfield, J.F., 2013. Virus-host and CRISPR dynamics in Archaea-dominated hypersaline
1016 Lake Tyrrell, Victoria, Australia. *Archaea*.
1017 150. Skennerton, C.T., Imelfort, M. and Tyson, G.W., 2013. Crass: identification and
1018 reconstruction of CRISPR from unassembled metagenomic data. *Nucleic acids research*,
1019 p.gkt183.
1020 151. Edwards, R.A., McNair, K., Faust, K., Raes, J. and Dutilh, B.E., 2016. Computational
1021 approaches to predict bacteriophage–host relationships. *FEMS microbiology*
1022 *reviews*, 40(2), pp.258-272.
1023 152. Criscuolo, A., Gribaldo, S. 2010. BMGE (Block Mapping and Gathering with Entropy): a
1024 new software for selection of phylogenetic informative regions from multiple sequence
1025 alignments. *BMC Evol Biol* 10: 210.

1026 **Table legends**

1027 **Table 1. Soil viromes read information.** The seven viromes are provided, along with their
1028 DNA quantity, total number of reads, total number of assembled reads, the number of reads that
1029 mapped to soil viral contigs, the number of reads that mapped to the 53 vOTUs, and the average
1030 adjusted coverage. Adjusted coverage was calculated by mapping reads back to this non-
1031 redundant set of contigs to estimate their relative abundance, calculated as number of bp mapped
1032 to each read normalized by the length of the contig and the total number of bp sequenced in the
1033 metagenome. For a read to be mapped it had to have $\geq 90\%$ average nucleotide identity between
1034 the read and the contig, and then for a contig to be considered as detected reads had to cover
1035 $\geq 75\%$ of the contig.

1036 **Table 2. Soil viruses' bioinformatics information.** All 393 putative soil viruses are listed (378
1037 after VirSorter/MArVD and manual inspection). For the vOTUs, the virome(s) in which it
1038 originated from, its genomic information, and its coverage is provided. For the other putative soil
1039 viral contigs, the origin virome(s) is provided, and contig length are provided. Additionally, the
1040 three mobile genetic elements and ten viral contigs with no coverage are reported with their
1041 virome(s) of origin (if applicable) and contig length. No contigs were chimeric (i.e. constructed
1042 with reads coming from multiple viromes). A † denotes the contig did not meet our threshold for
1043 read mapping (i.e. reads recruited to contigs only if they had 90% ANI and then if $\geq 70\%$ of the
1044 contig was covered) and therefore could not be counted as detected.

1045 **Figure legends**

1046 **Figure 1. Overview of sample-to-ecology methods pipeline.** Sampling of the thaw
1047 chronosequence at Stordalen Mire (68°21' N, 19°03' E, 359 m a.s.l.). The underlying image was
1048 collected via unmanned aerial vehicle (UAV) and extensively manually curated for GPS
1049 accuracy (generated by Dr. Michael Palace). Sampling locations were mapped onto this image
1050 based on their GPS coordinates. Soil cores were taken in July of 2014. Viruses were resuspended
1051 as previously described in Trubl et al. (41). Viromes were generated using samples from 36–40
1052 cm. Identified vOTUs were further characterized using geochemical data and metagenome-
1053 assembled genomes (MAGs; 16) from Stordalen Mire. Additionally, these vOTUs were
1054 compared to the vOTUs from bulk-soil-derived viromes (46).

1055 **Figure 2. Relating Stordalen Mire viruses to known viral sequence space.** Clustering of
1056 recovered vOTUs with all RefSeq (v 75) viral genomes or genome fragments with genetic
1057 connectivity to these data. Shapes indicate major viral families, and RefSeq sequences only
1058 indirectly linked to these data are in gray. The contig numbers are shown within circles. Each

1059 node is depicted as a different shape, representing viruses belonging to *Myoviridae* (rectangle),
1060 *Podoviridae* (diamond), *Siphoviridae* (hexagon), or uncharacterized viruses (triangle) and viral
1061 contigs (circle). Edges (lines) between nodes indicate statistically weighted pairwise similarity
1062 scores (see Methods) of ≥ 1 . Color denotes habitat of origin, with “other” encompassing
1063 wastewater, sewage, feces, and plant material. Contig-encompassing viral clusters are encircled
1064 by a solid line (slightly off because it’s a 2-dimensional representation of a 3-D space). Dashed
1065 lines indicate two network regions of consistent known taxonomy, allowing assignment of
1066 contigs 4, 143, and 28. The pie chart represents the number of the Stordalen Mire viral proteins
1067 (i) that are recovered by protein clusters (PCs) (yellow and red) and singletons (gray) and (ii) that
1068 are shared with RefSeq viruses (yellow) or not (red and gray). Proteins of viral genomes/vOTUs
1069 in the dataset were grouped into PCs through all-to-all BlastP comparisons (E-value cut-off $< 10^{-4}$)
1070 followed by Markov clustering algorithm-based clustering (see Materials and Methods).
1071 Proteins that were not grouped into PCs are designated as singletons.

1072 **Figure 3. Viral-host linkages between vOTUs and MAGs.** Seventeen vOTUs were linked to 4
1073 host lineages by multiple lines of evidence, with 15 linked by CRISPRs (solid line; see Table S2)
1074 and 2 by BLAST (dotted line). Node shape denotes organism (oval for microbe and triangle for
1075 virus). Viral nodes are color coded by habitat of origin (green for bog and blue for fen).

1076 **Figure 4. Characterization of select AMGs.** FastTree phylogenies were constructed for select
1077 AMGs (one from each group and one example for central carbon metabolism), and their
1078 structures and those of their nearest neighbors were predicted using iTasser (detailed in Table
1079 S3). Tree lineages are shaded blue for bacteria and red for viruses. “vOTU” sequences are from
1080 the 53-vOTU virome-derived dataset, while “SoilVir contig” represent homologues from
1081 Emerson et al.’s (46) bulk metagenome-derived 1907 vOTUs. AMGs are color coded by

1082 function: green for central carbon metabolism, blue for polysaccharide degradation, yellow for
1083 polysaccharide binding, and purple for sporulation. The first predicted model for each soil virus
1084 is shown and was used for the TM-align comparison. Structures are ordered from left to right
1085 based on the appearance of their sequence in the tree from top to bottom.

1086 **Figure 5. Three views into viral community structure across the thaw gradient.** (A) The
1087 relative abundance of vOTUs (columns) in the seven viromes (rows). Reads were mapped to this
1088 non-redundant set of contigs to estimate their relative abundance (calculated as bp mapped to
1089 each read, normalized by contig length and the total bp in each metagenome). Red color gradient
1090 indicates \log_{10} coverage per Gbp of metagenome. ‘Chilled’ and ‘Frozen’ indicate sample storage
1091 at 4°C or flash frozen in liquid nitrogen and stored at –80°C. “A” and “B” denote technical
1092 replicates. Dots after contig names indicate membership in a viral cluster, filled dots denote
1093 cluster is novel, and fill color indicates habitat specificity (palsa = brown, bog = green, fen =
1094 blue). (B) Euler diagram relating the seven viromes and their 53 vOTUs. (C) Principal coordinate
1095 analysis of the viromes by normalized relative abundance of the 53 vOTUs.

1096

1097 **Figure 6. vOTU abundance in 133 bulk-soil metagenomes.** The heat map represents
1098 abundance of vOTUs (rows) in the bulk-soil metagenomes (columns); metagenome reads were
1099 mapped to the non-redundant set of contigs to estimate their relative abundances (calculated as
1100 bp mapped to each read, normalized by contig length and the total bp in each metagenome). Red
1101 color gradient indicates \log_{10} coverage per Gbp of metagenome. Only the 41 vOTUs present in
1102 the metagenomes (out of 53), and the 63 bulk-soil metagenomes (out of 214) that contained
1103 matches to the vOTUs, are shown. Metagenome names denote source: habitat of origin (palsa =
1104 P, bog = S, fen = E); soil core replicate (1–3); depth (3 cm intervals denoted with respect to

1105 geochemical transitions, see 46; generally, S = 1–4 cm, M = 5–14 cm, D = 11–33 cm, and X =
1106 30–50 cm); month collected (5–10 as May–October); year collected (2010, 11, 12). See Emerson
1107 et al. (46) and Woodcroft et al. (16) for more metagenome and sample details.

1108 **Figure 7. Contrasting Stordalen Mire viruses derived from viromes and bulk-soil**
1109 **metagenomes.** Currently, two datasets exist describing Stordalen Mire (SM) Archaeal and
1110 Bacterial viruses. Emerson et al. (46) characterized the viral signal in bulk-soil metagenomes
1111 (described in 16), while here we characterize viruses from viromes, derived from separated viral
1112 particles. There are three possible stages of the viral life cycle at which to capture viruses:
1113 proviruses (those integrated into a host genome; blue), active infections (viruses undergoing lytic
1114 infection; red), and free viruses (viruses not currently infecting a host; purple). The largest oval
1115 represents all the theoretical SM viruses (gray). The next largest oval represents the vOTUs
1116 reported in Emerson et al. (46; orange). Within that oval are the vOTUs derived from bulk-soil
1117 metagenomes (green), and from size-fractioned bulk-soil metagenomes also used in that study
1118 (blue). The final oval represents the vOTUs identified in this study (yellow circle). Nineteen
1119 vOTUs are shared between the two datasets (57, 90, 110, 111, 141, 144, 155, 157, 179, 183, 186,
1120 189, 197, 204, 208, 243, 246, 261, and 264). Also shown are the methods that produced each
1121 dataset. ^{*} denotes the viral signal was mined from bulk-soil metagenomes. [†] denotes that viruses
1122 were resuspended from the soils using a previously optimized protocol (41). [#] denotes the vOTU
1123 yield normalized per Gbp of metagenome. The active viruses or proviruses detected in the size-
1124 fractioned bulk-soil metagenomes are only those that infect microbial hosts that could pass
1125 through the reduced pore size filters (more sample information in 46).

1126 **Supplementary Table legends**

1127 **Table S1. Virally-encoded auxiliary metabolic genes and other genes of interest.** Genes were
1128 annotated and AMGs identified by running assembled contigs through a pipeline developed by

1129 the Wrighton lab at The Ohio State University previously described in Daly et al. (23). The
1130 habitat that the vOTU was derived from is listed. Predicted genes that are AMGs or integrase-
1131 related are bolded and unannotated genes are no present. Additionally, the PhoH-like protein is
1132 bolded due to its highly debated function as a phosphate starvation gene (reviewed in 24).

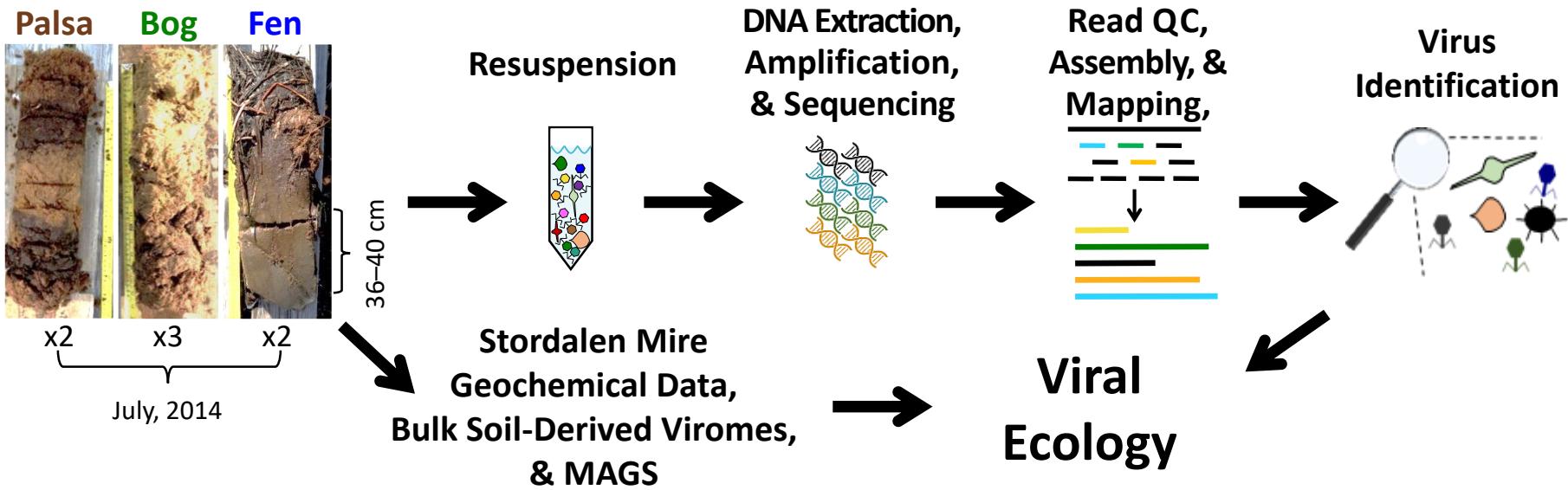
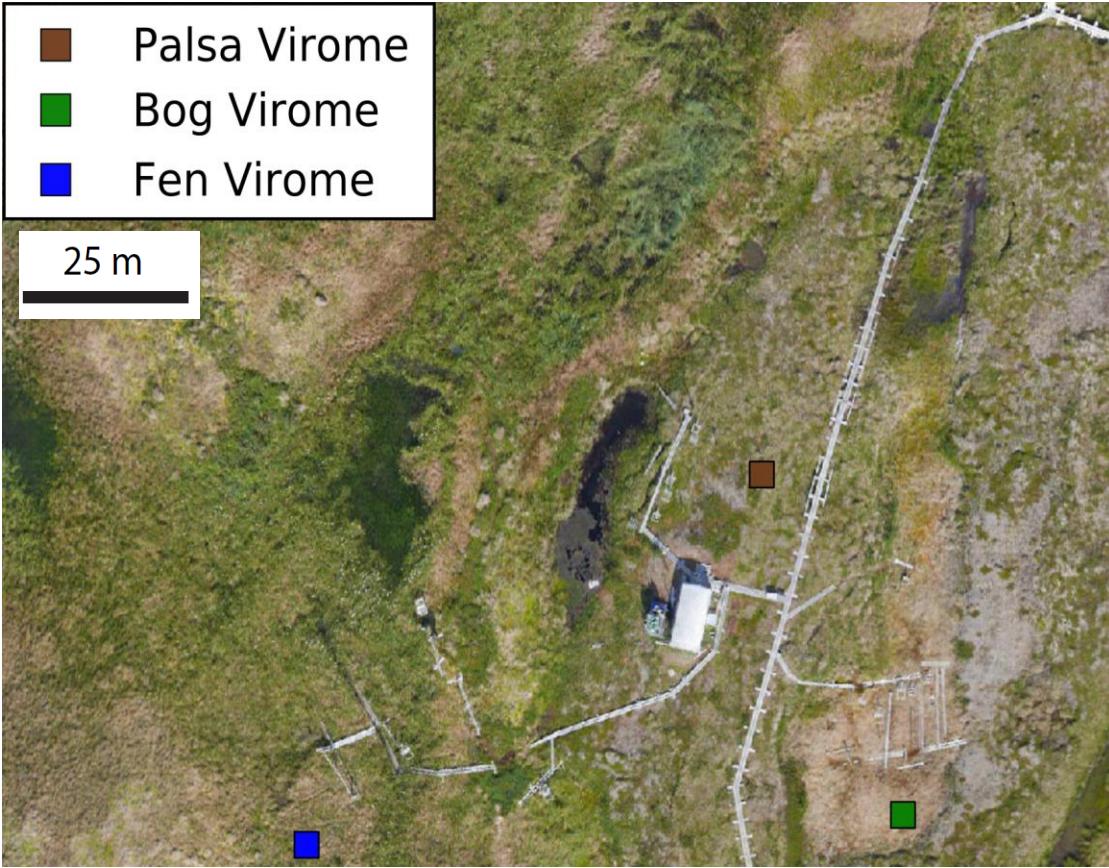
1133 **Table S2. Viral-host linkages supporting information.** NCBI BLAST linkages were
1134 determined based on queries and CRISPR information was provided using Crass software. Host
1135 genomes IDs were assigned from the Joint Genome Institute's Integrated Microbial Genomes
1136 Database. Microbial bins were pulled from Woodcroft et al. (1).

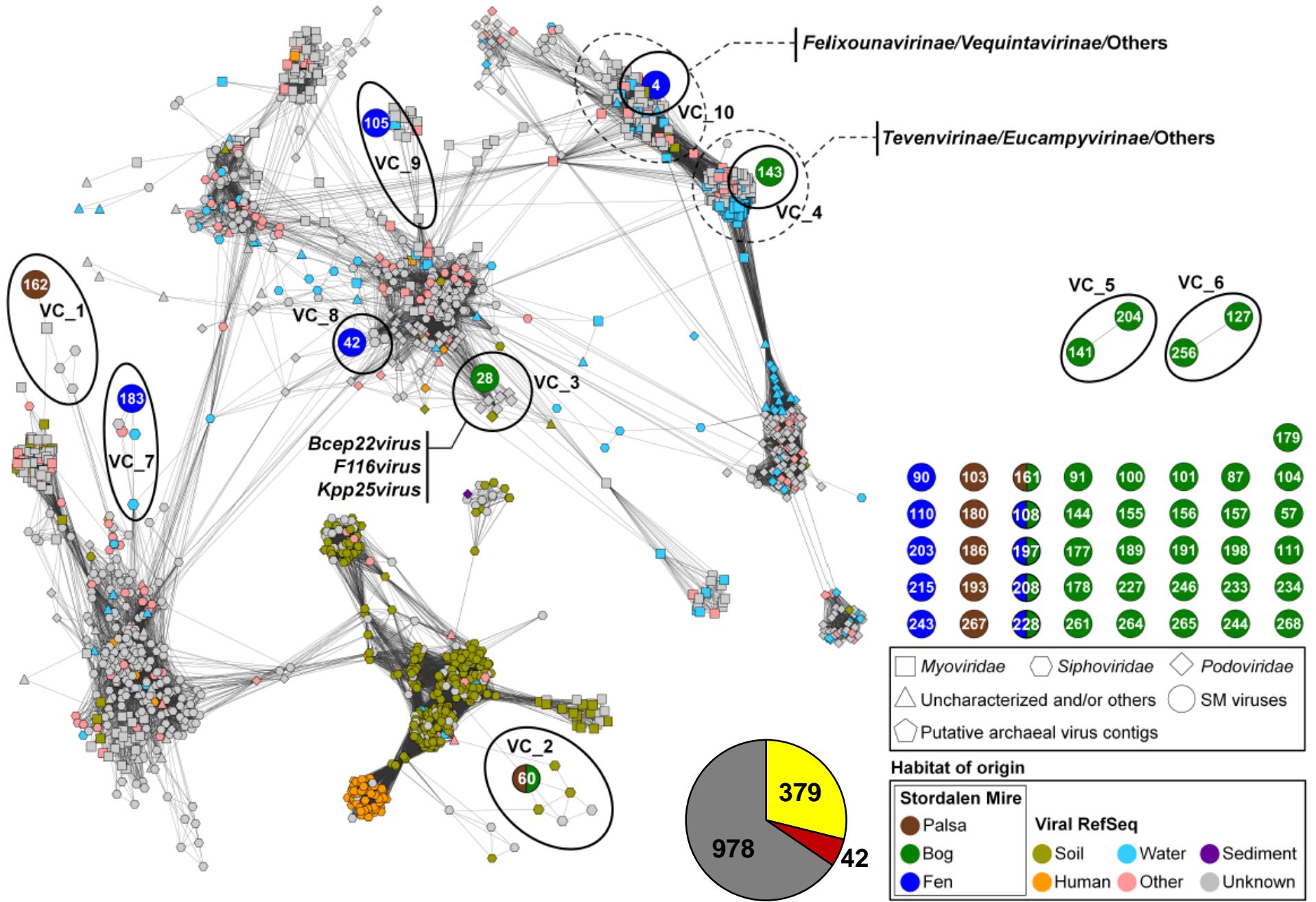
1137 **Table S3. Structural comparison between select AMGs and phylogenetic neighbors.**
1138 Predicted structures for AMGs and neighbors were determined and a comparison of the first
1139 model of their predicted structure was performed using TM-align. Structure similarity between
1140 two proteins is rated on a scale of 0.0–1.0, with TM-scores < 0.30 suggest random structural
1141 similarity and scores = 0.5 suggest similar folds and scores near 1 suggest a perfect match
1142 between two structures.

1143 **Table S4. Codon usage frequency.** The codon usage frequency was determined for the 53
1144 vOTUs and the linked microbial bins.

1145 **Supplementary Figure legends**

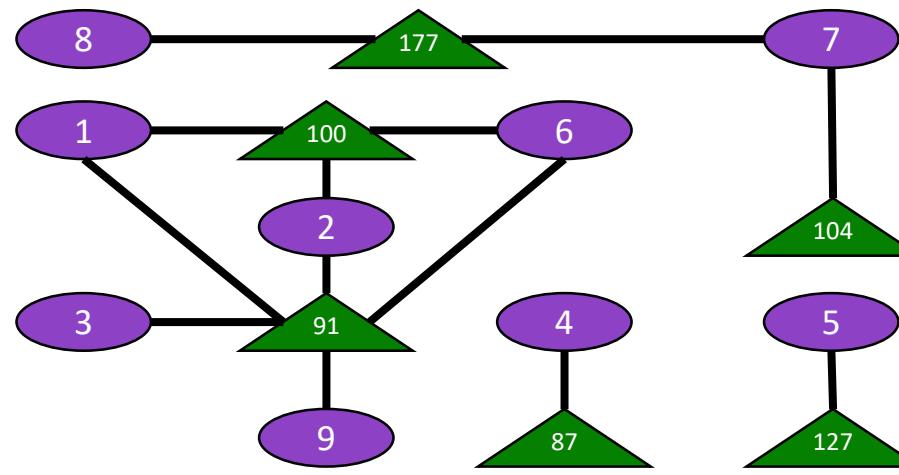
1146 **Figure S1. Phylogenetic analysis of vOTU 4.** Phylogenetic relationships between vOTU_4 and
1147 its related viruses. A maximum-likelihood tree was constructed upon a concatenation of two
1148 structural proteins (major capsid protein and baseplate protein) that are common to the
1149 *Felixounvirinae* and *Vequantavirinae* viruses. The numbers at the branch represent the
1150 bootstrapping probabilities from 1000 replicates. Edges with bootstrap values above 75% are
1151 represented. The scale bar indicates the number of substitution per site.



1152 **Figure S2. Viral biodiversity increases with permafrost thaw.** Richness, Shannon's Diversity
1153 index and Pielou's evenness index were calculated for each virome and the viromes were plotted
1154 by habitat. Chilled samples are denoted with a lighter color and frozen samples denoted with a
1155 darker color. (A) The diversity indices for all seven viromes. (B) The diversity indices of six
1156 viromes (bog chilled B was removed).


1157 **Figure S3. Visualizing relationships among soil viral communities.** The y-axis is a measure of
1158 Bray-Curtis dissimilarity, with an average dissimilarity used for viromes (i.e. dissimilarities are
1159 averaged at each step between viromes for the agglomerative method). Bootstraps n=1000; two
1160 types of *p*-values: Approximately Unbiased (AU) *p*-value in blue and Bootstrap Probability (BP)
1161 value in purple. AU *p*-value, which is computed by multiscale bootstrap resampling, is a better
1162 approximation to unbiased *p*-value than BP value computed by normal bootstrap resampling.
1163 Social networks of: (A) the 53 vOTU sequences and (B) all the reads mapped to the 53 vOTUs
1164 from the seven viromes with clusters circled in black. Dots in the social networks represent
1165 statistical samples taken from the marginal posterior distributions (Bayesian Method).

1166 **Figure S4. Identified Viral Signal in the MAGs.** (A) The stacked bar chart shows the percent
1167 of viral signal occurrences from the 53 vOTUs collected in 2014 in the 133 bulk-soil

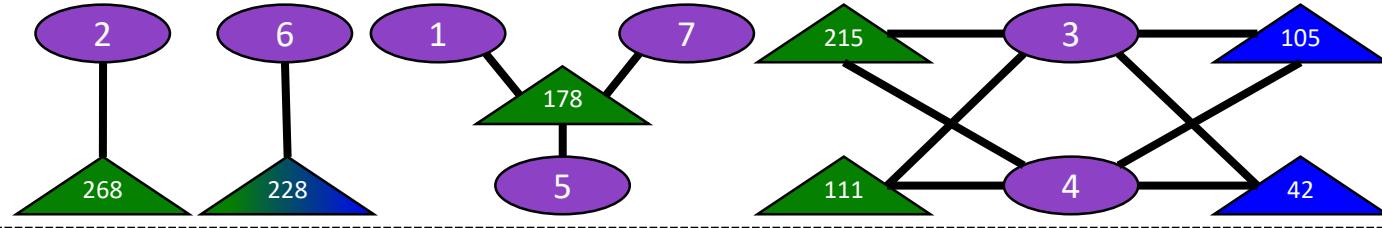
1168 metagenomes that had a signal collected from 2010–2012. In 2010, only fen samples were
1169 collected for microbial metagenomes. Viral signal occurrences were normalized by the number
1170 of viromes constructed for each habitat and the number of metagenomes for each habitat. The
1171 total number of occurrences for each year is italicized. (B) The number of occurrences (presented
1172 as a percentage) of a ‘viral signal’ in a bulk-soil metagenome partitioned by the origin of the
1173 bulk-soil metagenome and the vOTU.

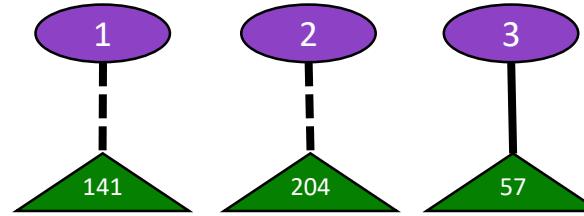

1174 **Figure S5. Codon usage frequency for the linked viruses and their microbial hosts.** Principal
1175 Coordinates Analysis of the codon usage frequency of microbial hosts and their linked viruses,
1176 using the Bray-Curtis dissimilarity metric. Microbial hosts are denoted by circles and colored by
1177 phylum (A) or genus/species (B). The associated viruses have a matching color to its host and
1178 are denoted with a square. (C) The average dissimilarity metric between the viral contigs linked
1179 to potential microbial hosts is plotted against each viruses’ contig length ($\times 10^3$). Average
1180 dissimilarity distance was used with viral contigs with multiple hosts.

Verrucomicrobia

(*Verrucomicrobiae*;
Verrucomicrobiales;
Verrucomicrobia subdivision 3;
Pedosphaera;
Pedosphaera parvula)

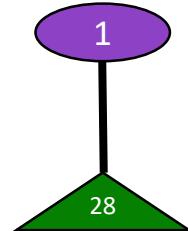
Edge	Evidence
—	CRISPR
- - -	Blast

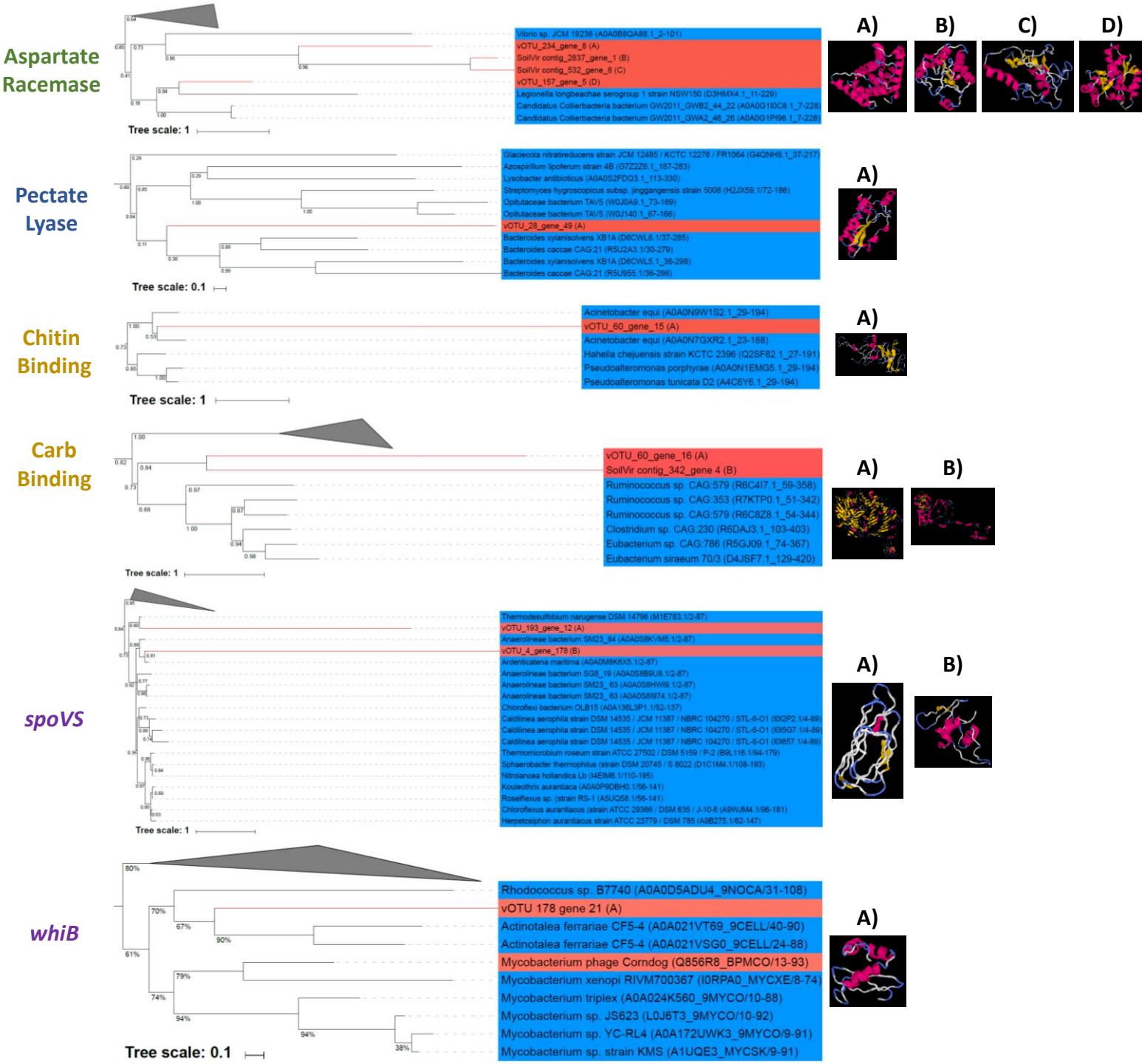
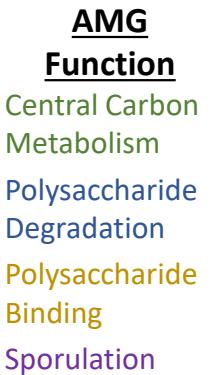
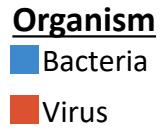

Node Shape	Organism
△	Virus
○	Microbe

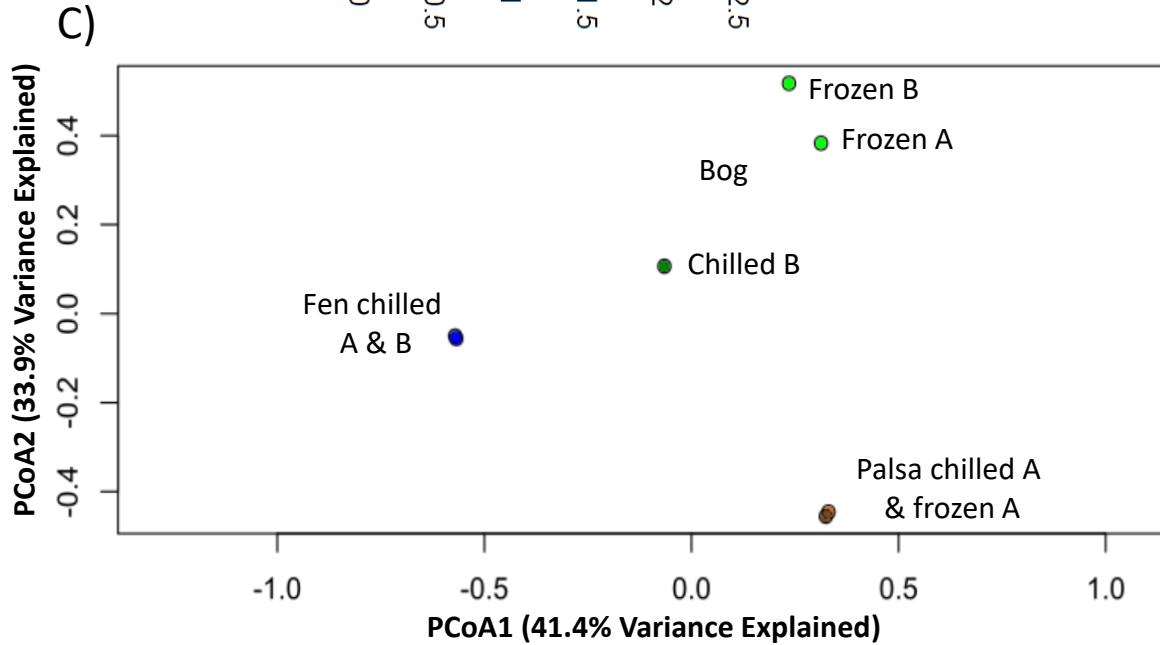
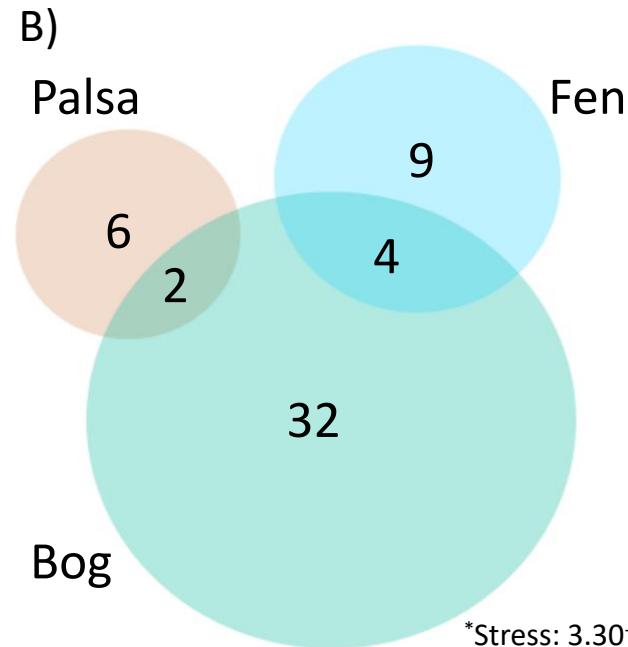
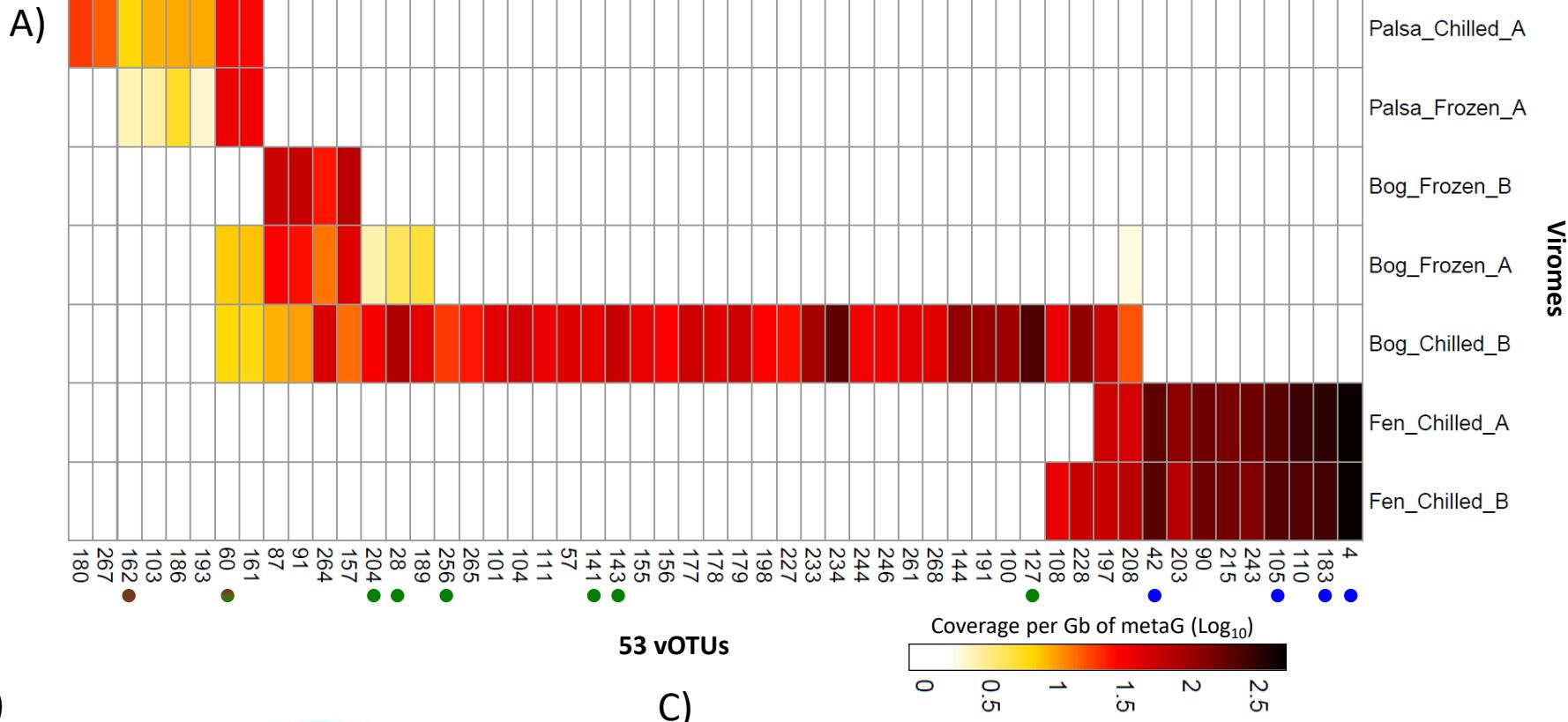

Node Color	Organism
Green	Virus
Blue	Virus
Dark Blue	Virus
Light Blue	Microbe

Acidobacteria

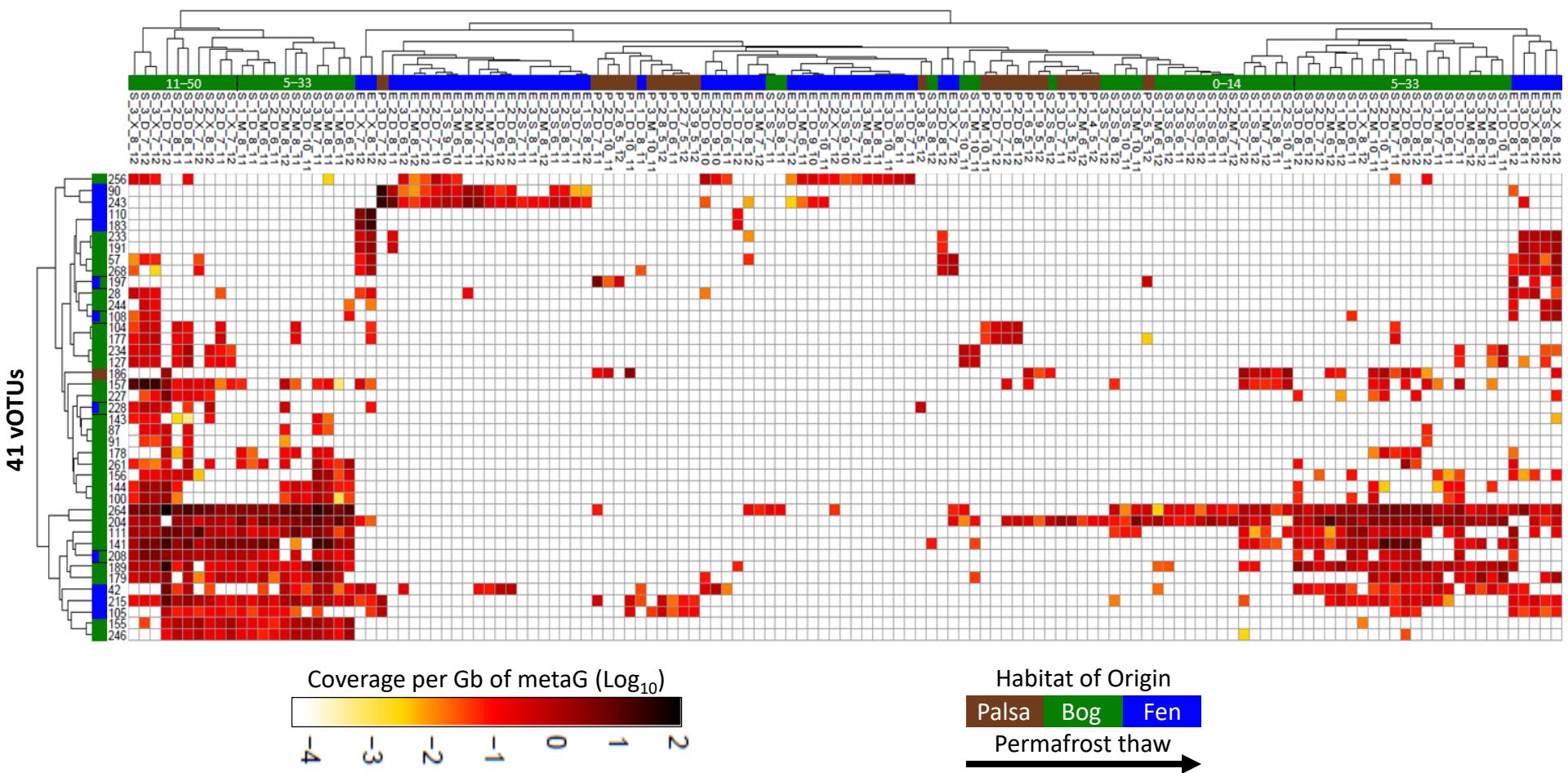
(*Acidobacteriales*;
Acidobacteriaceae;
Acidobacterium)






(*Solibacteres*;
Solibacterales;
Solibacteraceae;
Candidatus Solibacter;
Solibacter usitatus)

Proteobacteria


(*Delta-proteobacteria*;
Syntrophobacteriales;
Syntrophaceae;
Smithella sp. SDB)

133 Bulk-soil Metagenomes

178 Bulk Soil-Derived Viromes

Soil Cores
2010–2012
1–85 cm

Extract DNA

Sequence

*Mine data for
viral sequences

All Stordalen Mire viruses

Proviruses

Active infections

Free viruses

1907 vOTUs (#1.19)

1831 vOTUs (#1.30)

49 vOTUs (#1.01)

8

34 vOTUs (#2.93)

19

7 Viromes

Soil Cores
2014
36–40 cm

[†]Viral
Resuspension

Extract DNA

Sequence

12 size-fractionated metagenomes

Soil Cores
2014
20–44 cm

Bulk soil (3)
<0.2 µm (6)
0.4–0.2 µm (3)

Extract DNA

Sequence

*Mine data for
viral sequences