

1 Cost Effective, Experimentally Robust Differential

2 Expression Analysis for Human/Mammalian, Pathogen,

3 and Dual-Species Transcriptomics

4 **Amol Shetty¹, Anup Mahurkar¹, Scott Filler^{2,3}, Claire M. Fraser^{1,4}, David A. Rasko^{1,5}, Vincent M.**
5 **Bruno^{1,5}, Julie C. Dunning Hotopp^{1,5,6,*}**

6 ¹Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA

7 ²Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center,
8 Torrance, California 90502, USA.

9 ³David Geffen School of Medicine at UCLA, Los Angeles, California 90502, USA.

10 ⁴Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA

11 ⁵Departmnet of Microbiology & Immunology, School of Medicine, University of Maryland, Baltimore,
12 MD 21201, USA

13 ⁶Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA

14 *Corresponding author

15

16 AS: ashetty@som.umaryland.edu

17 AM: amahurkar@som.umaryland.edu

18 SF: sfiller@ucla.edu

19 CMF: cmfraser@som.umaryland.edu

20 DR: drasko@som.umaryland.edu

21 VB: vbruno@som.umaryland.edu

22 JCDH: jdhotopp@som.umaryland.edu

23 ABSTRACT

24 As sequencing read length has increased, researchers have quickly adopted longer reads for their
25 experiments. Here, we examine host-pathogen interaction studies to assess if using longer reads is
26 warranted. Six diverse datasets encountered in studies of host-pathogen interactions were used to
27 assess what genomic attributes might affect the outcome of differential gene expression analysis
28 including: gene density, operons, gene length, number of introns/exons, and intron length. Principal
29 components analysis, hierarchical clustering with bootstrap support, and regression analyses of pairwise
30 comparisons were undertaken on the same reads, looking at all combinations of paired and unpaired
31 reads trimmed to 36, 54, 72, and 101-bp. For *E. coli*, 36-bp single end reads performed as well as any
32 other read length and as well as paired end reads. For all other comparisons, 54-bp and 72-bp reads
33 were typically equivalent and different from 36-bp and 101-bp reads. Read pairing improved the
34 outcome in several, but not all, comparisons in no discernable pattern, such that using paired reads is
35 recommended in most scenarios. No specific genome attribute appeared to influence the data.
36 However, experiments with an *a priori* expected greater biological complexity had more variable results
37 with all read lengths relative to those with decreased complexity. When combined with cost, 54-bp
38 paired end reads provided the most robust, internally reproducible results across all comparisons.
39 However, using 36-bp single end reads may be desirable for bacterial samples, although possibly only if
40 the transcriptional response is expected *a priori* to be robust.

41

42 DATA SUMMARY

- 43 1. The human only CSHL Encode data set (1) was downloaded from
44 <ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/>.
- 45 2. The data from mice vaginas infected with *Candida albicans* (2) was downloaded from the SRA
46 (url - <https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP057050>).
- 47 3. The data from *Aspergillus fumigatus* cells in contact with human cells was downloaded from the
48 SRA (url - <https://www.ncbi.nlm.nih.gov/bioproject/399754>).
- 49 4. The data from a strand-specific library from a study comparing *C. albicans* cells in contact with
50 human cells with those in media (3) was downloaded from the SRA (url -
51 <https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP011085>).
- 52 5. The data from *C. albicans* in culture media (3) was downloaded from the SRA (url -
53 <https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP011085>).
- 54 6. The data from *Escherichia coli* grown in different media (4) was downloaded from the SRA (url -
55 <https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP056578>).

56 **I/We confirm all supporting data, code and protocols have been provided within the article or**
57 **through supplementary data files.**

58

59 **IMPACT STATEMENT**

60 As sequencing technologies improve, sequencing costs decrease and read lengths increase. We examine
61 host-pathogen interaction studies to assess if using these longer reads is warranted given their
62 increased cost relative to using the same number of shorter reads. To this end we compared the use of
63 various read lengths and read pairing for six diverse host-pathogen datasets with varying genomic
64 attributes including: gene density, operons, gene length, number of introns/exons, and intron length.
65 We find that in the bacterial sample, 36-bp single end reads performed as well as any other read length
66 and as well as paired end reads. When combined with cost, 54-bp paired end reads provided the most
67 robust, internally reproducible results for all other comparisons. Read pairing improved the outcome in
68 several, but not all, comparisons in no discernable pattern, such that using paired reads is
69 recommended in most scenarios. No specific genome attribute appeared to influence the data.

70

71 **INTRODUCTION**

72 As sequencing throughput has increased and sequencing costs have decreased, measuring differential
73 expression of genes using sequence data has become an increasingly powerful, effective, and popular
74 approach. While there are several derivations, particularly for the downstream analyses, essentially, a
75 randomly sheared sequencing library is constructed from cDNA synthesized from the RNA samples of
76 interest. Following the sequencing of millions of reads from these libraries, the transcript abundance is
77 measured by counting the reads or sequencing depth underlying each transcript. A normalized version
78 of this number that accounts for numerous factors including the gene length, total number of reads
79 sequenced, and/or total number of reads mapping is then used to compare the samples of interest and
80 to identify genes that are differentially expressed.

81 The most common platform used today for such analyses is the Illumina HiSeq, which currently
82 generates ~90 Gbp of 150-bp paired end reads for ~\$3000. This platform sees frequent updates yielding
83 longer reads and decreasing costs per base pair (bp). As read lengths have increased, many researchers
84 have quickly used the increased read lengths assuming it can only result in better data. However,
85 despite decreasing costs per bp, ultimately the longer reads often mean an increased cost per read and
86 typically fewer reads are sequenced for the same cost. While this leads to the same sequencing depth, it
87 results in fewer independent measurements at each position. For example, a shift from 100-bp paired
88 end reads to 125-bp paired end reads can lead to a 20% reduction in the number of reads sequenced to
89 obtain the same sequencing depth. However, the decreased number of reads can actually result in
90 reduced statistical power since a single read will contribute to the sequencing depth at a larger number
91 of positions. Therefore, biases in the underlying reads may be amplified with longer reads.

92 One alternate approach is to sequence the same number of overall base pairs, but use shorter paired
93 reads. Such an approach would yield more sequence reads underlying each transcript and therefore
94 more independent measurements at each position. For example, the use of 50-bp paired end reads as
95 opposed to 100-bp paired end reads would lead to a 200% increase in the number of reads sequenced
96 to obtain the same sequencing depth. Another alternative would be to sequence single reads, as
97 opposed to paired reads. However, both read length and read pairing are expected to influence the
98 accuracy of read mapping, which is the crucial first step in any RNASeq analysis pipeline. Furthermore,
99 these factors may influence various genomes differently. For example, paired reads may be more
100 beneficial in a genome with a large number of paralogous genes, gene families, and or repeats.

101 Recently this was examined through an analysis of read lengths of various length and pairing status
102 (paired v. unpaired) for a human transcriptome dataset that concluded that 50 bp single end reads could
103 be used reliably for differential expression analysis, but that splice detection required longer, paired
104 reads (1). However, what works best in human datasets may not always be best for other organisms.
105 Therefore, and given the caveats described above, we sought to investigate the influence of read length
106 and read pairing on differential expression analysis across a variety of genomes of various complexity
107 including (a) genome size, (b) presence/absence of introns, (c) length of introns, (d) number of introns
108 per gene, (e) number of genes, and (f) percentage of genes transcribed (**Table 1**). In several instances,
109 we have increased the complexity to include sequencing data that contains both a mammalian host and
110 an associated pathogen. Ultimately, the goal is to identify the most appropriate and most cost-effective
111 sequencing strategy based on the intrinsic properties of the genome(s) being analyzed. In this way, the
112 available resources can be appropriately distributed in order to maximize the number of biological
113 replicates for the conditions being examined while maintaining the greatest quality results.
114

115 **METHODS**

116 **Reference genomes**

117 The human, mouse, and *Aspergillus* reference genomes (**Table 1**) in FASTA format and annotation files in
118 GRF or GFF formats were downloaded from Ensembl, while the *C. albicans* and *E. coli* ones were
119 downloaded from the *Candida* Genome Database (<http://www.candidagenome.org>) and NCBI,
120 respectively. The FASTA genomic sequences were indexed using SAMTOOLS (v. 0.1.19) (5). The GTF/GFF
121 reference annotations were used to extract genomic coordinates for the genes, exons and introns using
122 the BEDTOOLS (v. 2.17.0) (6).

123 **Sequencing Data Used**

124 The 101-bp paired end sequencing reads for each sample (Table 2) were trimmed from the 3' end of the
125 sequence read to generate 36-bp, 54-bp, and 72-bp reads using the FASTX-Toolkit
126 (http://hannonlab.cshl.edu/fastx_toolkit) generating 2 separate FASTQ files consisting of first-in-pair
127 reads and second-in-pair reads that were compressed for downstream analysis.

128 **Reference based alignment**

129 The sequencing reads were aligned to their respective reference genome FASTA sequence using the
130 TopHat splice-aware aligner (v. 2.012) (7) for eukaryotic data or Bowtie aligner (v. 0.12.9) (8) for
131 prokaryotic data allowing for a maximum of 2 mismatches per aligned read, an inner mate distance of
132 200 bp, and discarding reads that aligned to more than 20 genomic loci. The alignment files were sorted,
133 indexed, and converted between BAM and SAM formats using SAMTOOLS (v. 0.1.19) (5). The alignment
134 files were used to compute the total number of reads per sample, the number of reads that aligned to
135 the reference genome, the number of reads that mapped once to the genome and the number of reads
136 that mapped to >1 but <20 genomic loci (**Table 2**). The percentage of reads that mapped to exons,
137 introns, genes and intergenic regions of the genome were computed based on coordinates from the
138 respective annotation files in GTF/GFF format.

139 **RPKM calculations**

140 The number of reads that mapped to each gene was calculated from the BAM alignments using HTSeq
141 (v. 0.5.4) (9) and were further normalized for sequencing library depth and gene length to estimate the
142 read counts per kilobase of the gene length per million mapped reads (RPKM) for each gene for each set
143 of FASTQ files.

144 **Hierarchical clustering and PCA**

145 The raw counts from HTSeq were further normalized using DESeq (v. 1.10.1) (10) in R (v. 2.15.2) (11).
146 Genes with low read counts across all samples for a dataset were excluded from downstream analysis.
147 The final set of normalized gene expression values for each gene for each sample within a dataset are
148 used to compute a Euclidean distance matrix between every pair of samples that was used to generate a
149 heat map cluster with PVCLUST with 1000 bootstraps. Eigen vectors were calculated with the PCA
150 package in R to determine the first and second PCs that illustrate the vectors with the largest variance in
151 the dataset.

152 The final set of normalized gene expression values for each gene for each sample within a dataset are
153 used to test for differential gene expression between the two conditions using the ‘negative binomial’
154 test incorporated within DESeq (v. 1.10.1) (10) in R (v. 2.15.2) (11). The final results have then been
155 filtered to determine significant differentially expressed genes using a <5% false discovery rate (FDR),
156 >2-fold-change, and a >10th percentile of average normalized gene expression distribution within the
157 dataset.

158

159 **RESULTS**

160 **Design and Data Set Selection**

161 We examined RNASeq data from six studies to test the effect of read length and read pairing on gene
162 expression data from a wide set of host-pathogen samples, including (1) the human only CSHL Encode
163 data set used in a prior analysis of the effect of read length on transcriptome analysis (1), (2) data from
164 mice vaginas infected with *Candida albicans* (2), (3) unpublished data from a study comparing

165 *Aspergillus fumigatus* cells in contact with human cells with those in media, (4) data from a strand-
166 specific library from a study comparing *C. albicans* cells in contact with human cells with those in media
167 (3), (5) data from *C. albicans* in culture media (3), and (6) data from *Escherichia coli* grown in different
168 media (4) (**Table 1**). This includes eukaryotic and prokaryotic genomes; organisms of varying genome
169 size and varying numbers of genes; organisms with and without introns; organisms of varying intron
170 length; organisms with varying number of exons/gene; and data from single organisms compared to
171 those from mixtures of organisms with an emphasis on host-pathogen systems (**Table 1**). All of the data
172 sets used were generated as 101-bp paired end reads. Data was trimmed from the 3'-end of the read to
173 generate 36-bp, 54-bp, and 72-bp data sets for comparison. The first read in the pair was analyzed
174 separately from the second read in the pair when single end reads were analyzed.

175 To examine the influence of read length and pairing at many steps, analyses were undertaken on
176 multiple data sets. Mapping statistics were calculated from the Bowtie alignments. Principal
177 components analysis (PCA) and hierarchical clustering were undertaken on FPKM values for each
178 individual replicate in each biological condition (**Additional Files 1-12**). Scatterplots were used to
179 examine differential expression results obtained with DESeq (**Additional Files 13-14**).

180 **Read mapping as a function of read length**

181 The number of reads mapping is dependent upon the number of mismatches allowed, as well as the
182 uniqueness of the sequence, both of which are expected to vary by read length and the aligner used. In
183 this case, Bowtie was used as the aligner, as it is the most prevalent aligner used for transcriptome
184 studies today. With Bowtie, we expect that the number of the reads that map to multiple sites (multi-
185 map reads) will decrease with read length while the number of mismatches will increase with the read
186 length. Therefore, we expect that fewer 36-bp reads will map uniquely since a greater proportion will
187 multi-map, and we expect that fewer 101-bp reads will map because of the accumulation of sequencing
188 errors, which increases with read length.

189 As expected, in half of the cases fewer reads map uniquely for 36-bp and 101-bp for both paired and
190 single end reads, relative to the 54-bp and 72-bp equivalents (**Figure 1ABC**). The number of multi-map
191 reads that do not map uniquely decreases as a function of read length (**Figure 1AB**, squares). However,
192 in organisms with smaller genomes that have no introns (i.e. *E. coli*) or a limited number of introns (i.e.
193 *C. albicans*), increasing read length leads to decreasing mapped read counts (**Figure 1DEF**).

194 The greatest proportion of multi-mapping reads were found in *E. coli* followed by mouse and human.
195 Unlike the eukaryotic datasets analyzed where polyadenylated RNA can be enriched and sequenced, the
196 *E. coli* data had a sizable proportion of rRNA left that was sequenced. Given that there are 7 copies of
197 the rRNA in the reference genome used for mapping (12), a large number of multi-mapping reads were
198 expected. Therefore, as expected, >99% of reads mapping to the rRNA genes were multi-mapping reads,
199 and on average, 78% of the mapped reads mapped to the rRNA genes. The increase in multi-mapping
200 reads in human and mouse is expected given their genome size and composition. In both humans and
201 mice, the paired end reads yielded slightly more multiple hits than the single end reads, which we
202 attribute to how the aligner handles multi-mapping reads.

203 **PC analysis of read length**

204 If read length is of no consequence, samples of the various read lengths should be more similar to one
205 another than to samples from other biological conditions or replicates, which can be examined with
206 PCA. In that case, we would expect the first principle component (PC) to separate the data based on
207 biological condition and the second PC to separate the data based on replicates. Furthermore, we would
208 expect all of the read lengths derived from the same data to be tightly grouped. This was observed for
209 *E. coli* paired end reads (**Figure 2A**). It was also observed for the for the other *E. coli* comparisons
210 (**Additional File 6**), *Candida* paired end reads (**Additional File 4**), and to a lesser degree the *Aspergillus*
211 comparisons (**Additional File 3**).

212 However, in some cases the read length played a greater role. The single end reads from the
213 *Candida*/human data set demonstrate similar PC1 and PC2, but the spread of the data points suggests
214 that read length may have some influence on the data (**Figure 2B**). This was also observed for the paired
215 end reads and single end reads for the other *Candida* data set (**Additional File 5**) as well as the paired
216 end reads from the human/CSHL data set (**Additional File 1**).

217 The influence of read length is very pronounced in the single end reads from the CSHL data set, which
218 were separated on the first PC by biological replicate, but were separated by read length on the second
219 PC (**Figure 2D, Additional File 1**). This suggests that there were greater distinctions in the length of the
220 read pairs than there were in the replicates. This was also true for both the paired end reads and single
221 end reads from the *Candida*-infected mouse vagina data set (**Additional File 2**). When read length does
222 divide the data, it is distinguished from decreasing to increasing read length along the axis, as opposed
223 to a random order.

224 **Hierarchical clustering as a function of read length**

225 In numerous cases, hierarchical clustering (complete clustering, correlation distance) of the datasets
226 with statistical support (AU, approximately unbiased and BP, bootstrap probability) is consistent with
227 the PCA. When the PCA reveals data clustering by biological condition and then replication, but not by
228 read length, in the *E. coli* datasets, the heat map and dendrogram show similar, well-supported
229 (confidence $\geq 80\%$) clustering (**Figure 3A, Additional File 6**). And in the instances where the PCA analysis
230 revealed that read length had the greatest influence, the hierarchical clustering showed the greatest
231 variability in clustering. This was most striking with the mouse data, which had poor clustering of the
232 data, with no discernable pattern (**Figure 3B, Additional File 2**). While the mouse samples clustered by
233 condition, in many instances data with the same read length but from different replicates clustered
234 better than data from the same replicates with different read lengths. This suggests that the read length
235 is influencing the data. However, between these extremes the hierarchical clustering showed more
236 granularity and in most cases some clustering by read length instead of replicates was found (**Additional**
237 **Files 1, 2, 4, 5**), particularly for the 36 bp reads.

238 **Log-fold Change of differentially expressed genes as a function of read length**

239 For all comparisons, the log-fold change of differentially expressed genes between the two conditions
240 correlates well between two replicates with R^2 values ranging from 0.63 to 1.0 (average: 0.92; median:
241 0.95) across all pairwise comparisons of read length for single end and paired end reads (**Table 3**).

242 Remarkably, all such pairwise comparisons with *E. coli* yield R^2 values of 0.99 or 1.00 (**Figure 4**),
243 suggesting that 36-bp single end reads yield the same results as 101-bp paired end reads. Overall
244 though, comparisons that include 36-bp reads are typically not as good as those with the long read
245 lengths (**Table 3**). Of the remaining comparisons, the best correlations are found in comparisons of the
246 closest read lengths, specifically 54 bp v. 72 bp and 72 bp v. 101 bp) (**Table 3**).

247 A slightly different result is observed when focusing on genes found to be differentially regulated at one
248 read length but not found to be differentially regulated at another read length, referred to as singlettons.
249 In this case, the 54-bp v. 72-bp comparison consistently outperformed all other comparisons (**Table 4**).
250 The next best comparisons were the other two groupings of similar sizes, 36-bp v. 54-bp and 72-bp v.
251 101-bp (**Table 4**).

252 **PC analysis of read pairing**

253 Read pairing is expected to exert influences in many of the same ways as read length. Theoretically, a
254 pair of 36-bp reads should provide benefits greater than a single 72-bp read, since 36-bp paired end
255 reads will have 72-bp of specific sequence, as well as some information about the approximate distance
256 between the two 36-bp reads. As such a pair of 36-bp reads could resolve repeats of a similar length to
257 the insert size distribution of the library. If read pairing is of no consequence, paired and single end
258 reads should be more similar to one another than to samples from other biological conditions or
259 replicates, which can be examined with a PCA and hierarchical clustering, as was conducted for read
260 length. For the PCA, each read length data set is examined separately for a given pairing status, and we
261 would expect the first PC to separate the data based on biological condition and the second PC to
262 separate the data based on replicates. This was observed for reads from the *E. coli* data sets where read
263 pairing did not matter for each of the four read lengths examined (**Additional File 12**).

264 In all other cases, at least some read lengths showed data being separated by pairing status instead of
265 replication in the second PC. In the *Candida*-only data set, read pairing influenced the data for the 36-
266 bp, 54-bp, and 72-bp paired end reads (**Additional File 11**). For *Candida*/human, read pairing influenced
267 the data for the 36-bp paired end reads (**Additional File 10**). For the mouse vaginas, read pairing
268 influenced the data for 36-bp and 54-bp reads with some effect seen with 72-bp reads (**Additional File**
269 **8**). And in the CSHL data set, some effect was seen at all read lengths (**Additional File 7**).

270 **Hierarchical clustering as a function of read pairing**

271 Hierarchical clustering of the datasets largely supports the PCA analysis for read pairing. When the PCA
272 reveals data clustering by biological condition and then replication, but not by read pairing, as is the case
273 with the *E. coli* datasets, the heat map and dendrogram show similar clustering, which is well supported
274 by the AU/BP values (100%) (**Additional File 12**).

275 The instances where the PCA analysis showed the greatest influence of read pairing also showed the
276 greatest variation in hierarchical clustering. In the 36-bp and 54-bp CSHL human reads, the samples
277 were separated by biological condition with 100% support (**Additional File 7**). However, in one of the
278 conditions, the reads were distinguished into three groups comprised of paired reads, first-in-pair reads,
279 and second-in-pair reads, each with >90% support (**Additional File 7**). In the 72-bp reads, the node of

280 the paired reads and the first-in-pair reads becomes poorly supported (<60% support) (**Additional File**
281 **7**). However, unlike the PCA analysis, in the 101-bp reads, the samples are clustered by biological
282 condition, then replication, and then read pairing, which might not be expected from the PCA analysis,
283 where some influence of pairing was observed (**Additional File 7**). This suggests the differences
284 observed in the PCA analysis of pairing for the 101-bp reads can be resolved in the hierarchical
285 clustering.

286 This difference between the PCA analysis and the hierarchical clustering is also seen in the mouse vagina
287 dataset (**Additional File 8**). In the PCA analysis, the mouse vaginas showed a strong influence of read
288 pairing in the 36-bp and 54-bp reads, as well as some influence of read pairing in the 72-bp reads
289 (**Additional File 8**) that was similar to that seen in the CSHL dataset. In the mouse vagina dataset,
290 hierarchical clustering of the 72-bp and the 101-bp datasets resolved the biological conditions, then the
291 replicates, and then the pairing status (**Additional File 8**).

292 Despite the differences in the PCA for the *Candida*/human dataset (**Additional File 10**) and the *Candida*-
293 only dataset (**Additional File 11**), only the 101-bp reads were resolved first by biological condition, then
294 replication, and then read pairing for both of these data sets. At all other read lengths, clusters
295 separated by read pairing before replication (**Additional Files 10 & 11**).

296

297 **DISCUSSION**

298 As sequencing technologies have improved, sequencing reads have become longer and the inclination is
299 to use these longer sequencing reads to obtain presumably better data. However, with increasing read
300 lengths also comes increasing costs. Here, we examine whether using longer reads provides a benefit
301 when conducting differential expression transcriptomics experiments, or if the increased costs could be
302 better spent in other ways, like increasing the number of reads sequenced or increasing sequencing of
303 replicates. To this end, we compared six diverse datasets consisting of pairwise comparisons of two
304 samples with at least two replicates per sample, frequently focusing on datasets encountered in studies
305 of host-pathogen interactions. In all cases, the number of sequencing reads for each comparison
306 remained constant between the comparisons, but the reads were trimmed to generate paired reads of
307 four different lengths – 36 bp, 54 bp, 72 bp, and 101 bp.

308 For *E. coli*, 36-bp single end reads performed as well as any other read. Given the decreased cost, there
309 does not seem to be any scientific justification for longer sequencing reads, or paired reads, for pairwise
310 differential expression analyses based on this analysis. As read length increases, fewer reads map, likely
311 owing to the known accumulation of errors in long reads. There are a sizable number of multi-mapping
312 reads, due to the presence of rRNA in the comparison, but this does not appear to affect the results. In
313 the PCA and hierarchical clustering, the data are always grouped first by biological condition, then
314 technical replication, and then sequencing reads or pairing, demonstrating that read length and read
315 pairing are less impactful than technical replication for this sample set. All pairwise comparisons of
316 differentially expressed genes for read length or pairing yielded R^2 -values of 0.99 to 1.00. The only

317 difference observed between read length or pairing is the number of singletons between results for
318 each read length. Singletons are genes that found to be differentially regulated under one condition (in
319 this case one read length) but not differentially regulated under another condition (in this case a
320 different read length). Here we do observe a difference between the single end and paired end reads,
321 with more singletons identified with the single end reads. However, these are largely genes that fall on
322 the diagonal in pairwise plots, with differential expression levels that places them closer to the fold-
323 threshold cutoff that they may fall over the threshold for the paired end reads and under the threshold
324 in the single end reads, or vice versa. It is not possible to say which result is correct. In these cases,
325 obtaining more sequencing reads and/or replicates may be more beneficial at resolving the significance
326 of differential expression. As such, 36-bp single end reads seem to be the best, regardless of cost.
327 Further work is needed to see if this result is widely applicable to other bacterial species and systems as
328 well as more heterogenous populations of bacterial cells.

329 *Aspergillus* and *Candida*-only also yielded very similar results. The pairwise comparisons had very strong
330 correlations, with typical R^2 values of 0.99 or 1.00. The PCA and hierarchical clustering largely clustered
331 by biological condition first, then replicate, and then read length or read pairing. In the hierarchical
332 clustering there are instances where the technical replicate cluster together as opposed to with the
333 biological condition, specifically the third replicates for the *Aspergillus* data. However, in these cases the
334 clustering does not have strong statistical support. Collectively, more incongruences are observed with
335 36-bp and 101-bp reads than with 54-bp and 72-bp reads. As such some preference should be given to
336 54-bp and 72-bp reads, as this likely indicates that these read lengths yield the most robust results.

337 On the other end of the spectrum is the mouse transcriptome data. In this data, the number of multi-
338 mapping reads decreased with increasing read length, showing an advantage to having longer reads.
339 However, the total number of reads mapping decreased with increasing read length, likely owing to
340 errors that accumulate in the reads that make them more difficult to map. The two middle read lengths
341 (54-bp and 72-bp) performed best in terms of mapping percentage. For paired end and single end reads,
342 in the PCA the data clusters (a) first by biological condition and then by read length or (b) first by
343 biological condition and then by a mixture of read pairing and replication suggesting that the read length
344 is strongly influencing the data. Hierarchical clustering of data separated by pairing status reveals that
345 read length plays a larger role than even the biological condition with shorter reads clustering separately
346 than longer reads, and within these clusters reads clustering by read length instead of replicate.
347 Hierarchical clustering of data separated by read length reveals that at greater read lengths clustering is
348 as expected -- first by biological condition, then by replicate, and lastly by pairing status. However, at the
349 two lower read lengths there was clustering first by biological conditions followed by a mixture of
350 clustering by pairing status as opposed to replicate. Analysis of the pairwise comparisons reveals that
351 there is a particularly strong difference in the 36-bp first-in-pair single end reads with poorer R^2 values
352 ranging from 0.72 to 0.75 when compared to the three other read lengths, and that this is due to genes
353 having ratios over the ratio threshold in the 36-bp data but ratios near 1 in the 54-bp, 72-bp, or 101-bp
354 data. In this case, clearly the 36-bp first-in-pair single end reads are yielding different results than all
355 other comparisons, but what is the best data? While there are differences observed, we cannot assume
356 that longer is necessarily better, as might be indicated with the decreasing mapping percentages as a

357 function of read length. It might be important to consider this mouse transcriptome case unusual,
358 possibly there was an undetected problem in the sequencing of the first read. But regardless the
359 congruence between 54-bp, 72-bp, or 101-bp reads likely indicates that these read lengths yield the
360 most robust results. Of these three there does not seem to be a read length that is clearly superior.

361 The remaining two comparisons (human cell lines only and *Candida* in differential contact with human
362 cells) were both more variable than the other *Candida* sample, *E. coli*, or *Aspergillus*, but without an
363 obvious bias like the mouse transcriptome data. The samples always clustered first by biological
364 condition, and then usually by replicate. However, 36-bp reads were sometimes found to cluster
365 together rather than clustering by replicates as were 101-bp reads and paired end reads. The 54-bp and
366 72-bp reads were most likely to cluster as expected and were most similar to one another.

367 We intentionally chose to compare six data sets, representing a diverse array of genomic complexity to
368 assess what attributes might affect the outcome. Our selection included genomes with high gene
369 density, genomes with operons, genomes with long genes, genomes with many introns/exons, and
370 genomes with long introns. We did not observe any obvious patterns associated with these criteria.
371 *Aspergillus* has long introns, many introns/exons per gene, and a lower transcriptional density, yet it
372 performed almost as well as *E. coli* which has a greater transcriptional density, operons, and intronless
373 genes. Instead the experiments roughly clustered into two groups that could be defined by the biological
374 complexity of the transcriptional response. The group contained a comparison of a single synchronized
375 culture growing on two different media and two comparisons of two cultures of mutants synchronized
376 and growing on the same media. In these cases, the cultures were synchronized and as such the
377 transcriptional response is expected to be well delineated. On the other hand, there was the
378 transcriptional response of mice vaginal cells, unsynchronized human cell cultures, and *Candida* in the
379 presence/absence of human cells. In these cases, the transcriptional response is likely to be less
380 delineated and noisier, reflecting the lack of synchronicity of the cells and the increased diversity of the
381 transcriptional response. It seems likely that in these cases, subtle changes that occur when altering the
382 read length are altering the statistical significance of results as opposed to a drastic change in the
383 measured fold-change of the response, which is largely observed in the pairwise comparisons. This
384 suggest that in these cases, more sequencing reads, rather than longer sequencing reads, may allow for
385 more robust conclusions to be drawn.

386

387 AUTHOR STATEMENTS

388 Funding

389 This project was funded by federal funds from the National Institute of Allergy and Infectious Diseases,
390 National Institutes of Health, Department of Health and Human Services under grant number U19
391 AI110820.

392 Acknowledgements

393 We would like to thank other members of the IGS GCID project for their helpful suggestions, particularly
394 other members of the Technology Core.

395 **Ethics approval and consent to participate**

396 Not applicable.

397 **Conflicts of interests**

398 The authors declare that they have no competing interests.

399

400 **ABBREVIATIONS**

401 Approximately unbiased (AU)

402 Bootstrap probability (BP)

403 Base pair (bp)

404 False Discovery Rate (FDR)

405 Principal component (PC)

406 Principal components analysis (PCA)

407 Read counts per kilobase of the gene length per million mapped reads (RPKM)

408

409 **REFERENCES**

410 1. Chhangawala S, Rudy G, Mason CE, Rosenfeld JA. The impact of read length on quantification of
411 differentially expressed genes and splice junction detection. *Genome Biol.* 2015;16:131.

412 2. Bruno VM, Shetty AC, Yano J, Fidel PL, Jr., Noverr MC, Peters BM. Transcriptomic analysis of
413 vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome. *MBio.* 2015;6(2).

414 3. Liu Y, Shetty AC, Schwartz JA, Bradford LL, Xu W, Phan QT, et al. New signaling pathways govern
415 the host response to *C. albicans* infection in various niches. *Genome Res.* 2015;25(5):679-89.

416 4. Hazen TH, Daugherty SC, Shetty A, Mahurkar AA, White O, Kaper JB, et al. RNA-Seq analysis of
417 isolate- and growth phase-specific differences in the global transcriptomes of enteropathogenic
418 *Escherichia coli* prototype isolates. *Frontiers in microbiology.* 2015;6:569.

419 5. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map
420 format and SAMtools. *Bioinformatics.* 2009;25(16):2078-9.

421 6. Quinlan AR. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. *Curr Protoc Bioinformatics.* 2014;47:11 2 1-34.

422 7. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics.* 2009;25(9):1105-11.

423 8. Langmead B. Aligning short sequencing reads with Bowtie. *Curr Protoc Bioinformatics.* 2010;Chapter 11:Unit 11 7.

427 9. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput
428 sequencing data. *Bioinformatics*. 2015;31(2):166-9.
429 10. Anders S, Huber W. Differential expression analysis for sequence count data. *Genome Biol.*
430 2010;11(10):R106.
431 11. Team RC. R: A language and environment for statistical computing Vienna, Austria: R Foundation
432 for Statistical Computing; 2013 [Available from: <http://www.R-project.org/>.
433 12. Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T, Henderson IR, et al. Complete genome
434 sequence and comparative genome analysis of enteropathogenic *Escherichia coli* O127:H6 strain
435 E2348/69. *J Bacteriol.* 2009;191(1):347-54.

436

437 DATA BIBLIOGRAPHY

438 1. ENCODE,
439 <ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/>.
440 2. Bruno et al, Sequence Read Archive. [SRP057050](#)).
441 3. Bruno et al, Sequence Read Archive. [PRJNA399754](#).
442 4. Liu et al, Sequence Reach Archive, [SRP011085](#).
443 5. Hazen et al, Sequence Reach Archive, [SRP056578](#).

444

445

446 FIGURES AND TABLES

447 **Figure 1.** The average percentage of reads mapping (circles, left axis), reads mapping uniquely (triangles,
448 left axis), and reads not mapping uniquely (squares, right axis) are compared for 36-bp, 54-bp, 72-bp,
449 and 100-bp reads for the human (panel A), mouse (panel B), *Aspergillus* (panel C), *Candida*/host (panel
450 D), *Candida* only (panel E), and *E. coli* (panel F) data sets. Results are compared for mappings with the
451 paired reads (red), only the first read in the pair (green), and only the second read in the pair (blue).

452 **Figure 2.** A PCA was undertaken for a vector representing data for the different read lengths (circle, 36-
453 cp; triangle, 54-bp; diamond, 72-bp; square, 101-bp), replicates (green v. red), and biological conditions.
454 Four representative results are illustrated here with *E. coli* paired end data (panel A), *Candida*/human
455 first-in-read single end reads (panel B), human paired end reads (panel C), and human first-in-read single
456 end reads (panel D). All PCA plots for read length are provided in **Additional Files 1-6** and pairing status
457 are provided in **Additional Files 7-12**.

458 **Figure 3.** Hierarchical clustering using PVClust for bootstrap support was undertaken for a vector
459 representing data for each sample at different read lengths. Samples are labeled according to the key in

460 Table 2 followed by the read length (36-bp, 54-bp, 72-bp, and 101-bp). Two representative results are
461 illustrated here with (A) *E. coli* and (B) mouse paired end data. In the *E. coli* data, read length did not
462 affect the clustering of the data, while the largest effect of read length was observed with the mouse
463 data.

464 **Figure 4** The differentially expressed genes identified in *E. coli* (L v. M) using an adjusted p-value (FDR)
465 cutoff ≤ 0.05 for paired end reads at varying read lengths within a dataset were compared using
466 Pearson's correlation implemented in the R statistical tool and illustrated as a matrix of scatterplots. The
467 diagonal represents the histogram of log-transformed fold-changes within the comparison. The lower
468 plots represent the correlation between comparisons with singleton DEGs identified for comparisons on
469 the x-axis (pink) and y-axis (green). Genes with FDR > 0.05 in both comparisons are not shown. The
470 upper portion of the plot lists the corresponding Pearson's correlation coefficient and the number of
471 singleton DEGs identified in each comparison.

472 **Additional File 1. Compendium of figures for Encode CSHL comparisons of IMR-90 v. NHD cells with
473 results separated by read pairing status.** A heatmap with hierarchical clustering with statistical support
474 is shown on page 1 with the condition denoted according to letter code from Table 2, followed by the
475 replicate designation and the read length. A PCA plot is shown on page 2 where the conditions are
476 denoted by the shape (circle, IMR-90; triangle, NHD) and the read length by the color (green, 36 bp;
477 blue, 54 bp; magenta, 72 bp; purple, 101 bp). On both pages, results are shown in the three panels for
478 (A) paired end reads, (B) first-in-pair single end reads, and (C) second-in-pair single reads.

479 **Additional File 2. Compendium of figures for data from *Candida*-infected mouse vaginas with results
480 separated by read pairing status.** A heatmap with hierarchical clustering with statistical support is
481 shown on page 1 with the condition denoted according to letter code from Table 2, followed by the
482 replicate designation and the read length. A PCA plot is shown on page 2 where the conditions are
483 denoted by the shape (circle, CA_d3; triangle, naïve_d3) and the read length by the color (green, 36 bp;
484 blue, 54 bp; magenta, 72 bp; purple, 101 bp). On both pages, results are shown in the three panels for
485 (A) paired end reads, (B) first-in-pair single end reads, and (C) second-in-pair single reads.

486 **Additional File 3. Compendium of figures for *A. fumigatus* data with results separated by read pairing
487 status.** A heatmap with hierarchical clustering with statistical support is shown on page 1 with the
488 condition denoted according to letter code from Table 2, followed by the replicate designation and the
489 read length. A PCA plot is shown on page 2 where the conditions are denoted by the shape (circle,
490 1_6h_AF293; triangle, 4_6h_AF293) and the read length by the color (green, 36 bp; blue, 54 bp;
491 magenta, 72 bp; purple, 101 bp). On both pages, results are shown in the three panels for (A) paired end
492 reads, (B) first-in-pair single end reads, and (C) second-in-pair single reads.

493 **Additional File 4. Compendium of figures for *Candida*-human data with results separated by read
494 pairing status.** A heatmap with hierarchical clustering with statistical support is shown on page 1 with
495 the condition denoted according to letter code from Table 2, followed by the replicate designation and
496 the read length. A PCA plot is shown on page 2 where the conditions are denoted by the shape (circle,
497 5h_c; triangle, 5h_oc) and the read length by the color (green, 36 bp; blue, 54 bp; magenta, 72 bp;

498 purple, 101 bp). On both pages, results are shown in the three panels for (A) paired end reads, (B) first-
499 in-pair single end reads, and (C) second-in-pair single reads.

500 **Additional File 5. Compendium of figures for *Candida*-only data with results separated by read pairing**
501 **status.** A heatmap with hierarchical clustering with statistical support is shown on page 1 with the
502 condition denoted according to letter code from Table 2, followed by the replicate designation and the
503 read length. A PCA plot is shown on page 2 where the conditions are denoted by the shape (circle,
504 rhr2_comp; triangle, rhr2_del) and the read length by the color (green, 36 bp; blue, 54 bp; magenta, 72
505 bp; purple, 101 bp). On both pages, results are shown in the three panels for (A) paired end reads, (B)
506 first-in-pair single end reads, and (C) second-in-pair single reads.

507 **Additional File 6. Compendium of figures for *E. coli* data with results separated by read pairing status.**
508 A heatmap with hierarchical clustering with statistical support is shown on page 1 with the condition
509 denoted according to letter code from Table 2, followed by the replicate designation and the read
510 length. A PCA plot is shown on page 2 where the conditions are denoted by the shape (circle, DMEM;
511 triangle, LB) and the read length by the color (green, 36 bp; blue, 54 bp; magenta, 72 bp; purple, 101
512 bp). On both pages, results are shown in the three panels for (A) paired end reads, (B) first-in-pair single
513 end reads, and (C) second-in-pair single reads.

514 **Additional File 7. Compendium of figures for Encode CSHL comparisons of IMR-90 v. NHD cells with**
515 **results separated by read length.** A heatmap with hierarchical clustering with statistical support is
516 shown on page 1 with the condition denoted according to letter code from Table 2, followed by the
517 replicate designation and the pairing status such that (0) paired reads, (1) first-in-read single end read,
518 and (2) second-in-read single end read. A PCA plot is shown on page 2 where the conditions are denoted
519 by the shape (circle, IMR-90; triangle, NHD) and the pairing status by the color (green, paired end; blue,
520 first-in-pair single end read; magenta, second-in-pair single end read). On both pages, results are shown
521 in the four panels: (A) 36-bp reads, (B) 54-bp reads, (C) 72-bp reads, and (D) 101-bp reads.

522 **Additional File 8. Compendium of figures for data from *Candida*-infected mouse vaginas with results**
523 **separated by read length.** A heatmap with hierarchical clustering with statistical support is shown on
524 page 1 with the condition denoted according to letter code from Table 2, followed by the replicate
525 designation and the pairing status such that (0) paired reads, (1) first-in-read single end read, and (2)
526 second-in-read single end read. A PCA plot is shown on page 2 where the conditions are denoted by the
527 shape (circle, CA_d3; triangle, naïve_d3) and the pairing status by the color (green, paired end; blue,
528 first-in-pair single end read; magenta, second-in-pair single end read). On both pages, results are shown
529 in the four panels: (A) 36-bp reads, (B) 54-bp reads, (C) 72-bp reads, and (D) 101-bp reads.

530 **Additional File 9. Compendium of figures for *A. fumigatus* data with results separated by read length.**
531 A heatmap with hierarchical clustering with statistical support is shown on page 1 with the condition
532 denoted according to letter code from Table 2, followed by the replicate designation and the pairing
533 status such that (0) paired reads, (1) first-in-read single end read, and (2) second-in-read single end read.
534 A PCA plot is shown on page 2 where the conditions are denoted by the shape (circle, 1_6h_AF293;
535 triangle, 4_6h_AF293) and the pairing status by the color (green, paired end; blue, first-in-pair single end

536 read; magenta, second-in-pair single end read). On both pages, results are shown in the four panels: (A)
537 36-bp reads, (B) 54-bp reads, (C) 72-bp reads, and (D) 101-bp reads.

538 **Additional File 10. Compendium of figures for *Candida*-human data with results separated by read**
539 **length.** A heatmap with hierarchical clustering with statistical support is shown on page 1 with the
540 condition denoted according to letter code from Table 2, followed by the replicate designation and the
541 pairing status such that (0) paired reads, (1) first-in-read single end read, and (2) second-in-read single
542 end read. A PCA plot is shown on page 2 where the conditions are denoted by the shape (circle, 5h_c;
543 triangle, 5h_oc) and the pairing status by the color (green, paired end; blue, first-in-pair single end read;
544 magenta, second-in-pair single end read). On both pages, results are shown in the four panels: (A) 36-bp
545 reads, (B) 54-bp reads, (C) 72-bp reads, and (D) 101-bp reads.

546 **Additional File 11. Compendium of figures for *Candida*-only data with results separated by read**
547 **length.** A heatmap with hierarchical clustering with statistical support is shown on page 1 with the
548 condition denoted according to letter code from Table 2, followed by the replicate designation and the
549 pairing status such that (0) paired reads, (1) first-in-read single end read, and (2) second-in-read single
550 end read. A PCA plot is shown on page 2 where the conditions are denoted by the shape (circle,
551 rh2_comp; triangle, rh2_del) and the pairing status by the color (green, paired end; blue, first-in-pair
552 single end read; magenta, second-in-pair single end read). On both pages, results are shown in the four
553 panels: (A) 36-bp reads, (B) 54-bp reads, (C) 72-bp reads, and (D) 101-bp reads.

554 **Additional File 12. Compendium of figures for *E. coli* data with results separated by read length.** A
555 heatmap with hierarchical clustering with statistical support is shown on page 1 with the condition
556 denoted according to letter code from Table 2, followed by the replicate designation and the pairing
557 status such that (0) paired reads, (1) first-in-read single end read, and (2) second-in-read single end read.
558 A PCA plot is shown on page 2 where the conditions are denoted by the shape (circle, DMEM; triangle,
559 LB) and the pairing status by the color (green, paired end; blue, first-in-pair single end read; magenta,
560 second-in-pair single end read). On both pages, results are shown in the four panels: (A) 36-bp reads, (B)
561 54-bp reads, (C) 72-bp reads, and (D) 101-bp reads.

562 **Additional File 13. Compendium of scatterplots for all data sets with results aggregated by read**
563 **length.** The differentially expressed genes identified using an adjusted p-value (FDR) cutoff ≤ 0.05 at
564 varying read lengths within a dataset were compared using Pearson's correlation implemented in the R
565 statistical tool and illustrated as a matrix of scatterplots. The diagonal represents the histogram of log-
566 transformed fold-changes within the comparison. The lower plots represent the correlation between
567 comparisons with singleton DEGs identified for comparisons on the x-axis (pink) and y-axis (green).
568 Genes with FDR > 0.05 in both comparisons are not shown. The upper portion of the plot lists the
569 corresponding Pearson's correlation coefficient and the number of singleton DEGs identified in each
570 comparison. Each scatterplot is labeled by the comparison according to the letter code from Table 2. A
571 separate plot is shown for paired reads (labelled "0"), first read in pair (labelled "1"), and second read in
572 pair (labelled "2").

573 **Additional File 14. Compendium of scatterplots for all data sets with results aggregated by read**
574 **pairing.** The differentially expressed genes identified using an adjusted p-value (FDR) cutoff ≤ 0.05 at
575 varying read lengths within a dataset were compared using Pearson's correlation implemented in the R
576 statistical tool and illustrated as a matrix of scatterplots. The diagonal represents the histogram of log-
577 transformed fold-changes within the comparison. The lower plots represent the correlation between
578 comparisons with singleton DEGs identified for comparisons on the x-axis (pink) and y-axis (green).
579 Genes with FDR > 0.05 in both comparisons are not shown. The upper portion of the plot lists the
580 corresponding Pearson's correlation coefficient and the number of singleton DEGs identified in each
581 comparison. Each scatterplot is labeled by the comparison according to the letter code from Table 2. A
582 separate plot is shown for the various read lengths.

583 **Table 1. Data set attributes**

No.	Host	Pathogen	Mapping Target	Genome Size of Target	Phylogenetic Domain of Target	Median Intron Length in Targets	Genes in Target	Exons/Gene in Target
1	Human	None	Human	3.09 Gbp	Eukaryote	1501 bp	60,107	~5.4
2	Mouse	Candida	Mouse	2.73 Gbp	Eukaryote	1286 bp	43,346	~6
3	Human	Aspergillus	Aspergillus	29.4 Mbp	Eukaryote	60 bp	9,898	~2.9
4	Human	Candida	Candida	14.3 Mbp	Eukaryote	87 bp	8,254	~1.1
5	None	Candida	Candida	14.3 Mbp	Eukaryote	87 bp	8,254	~1.1
6	None	E. coli	E. coli	4.97 Mbp	Prokaryote	NA*	4,917	NA

584 *NA=not applicable

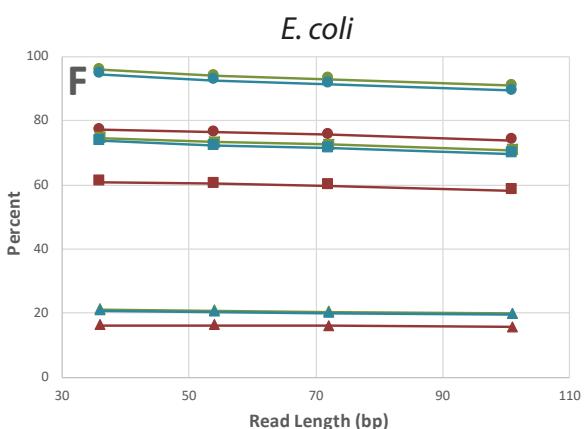
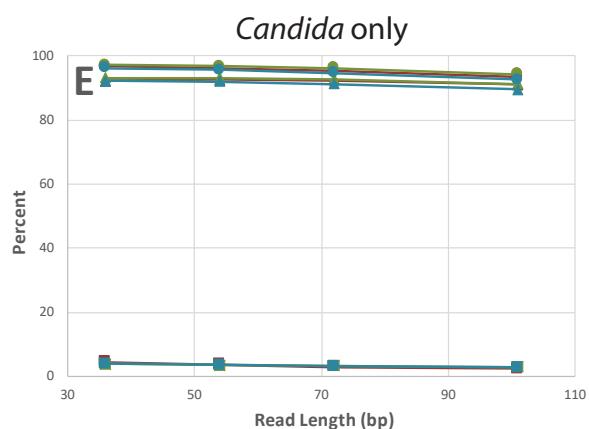
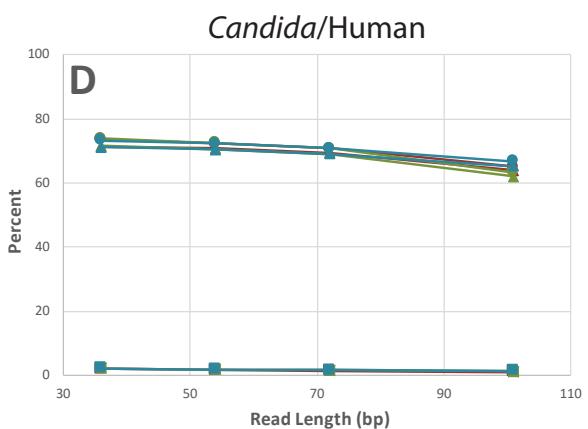
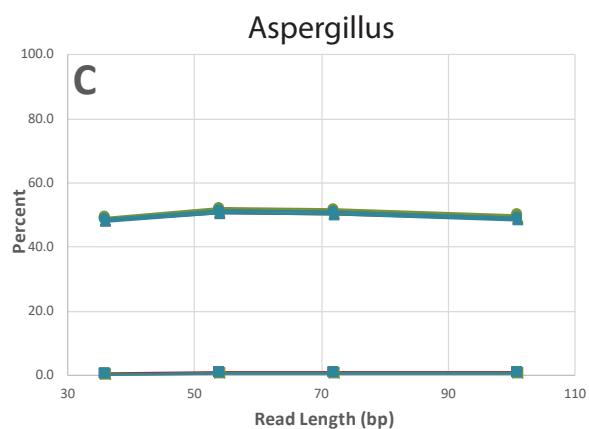
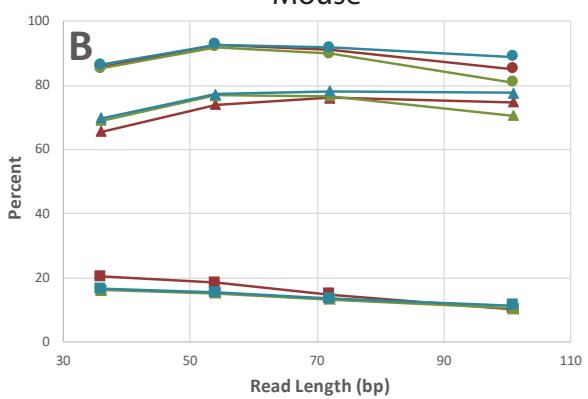
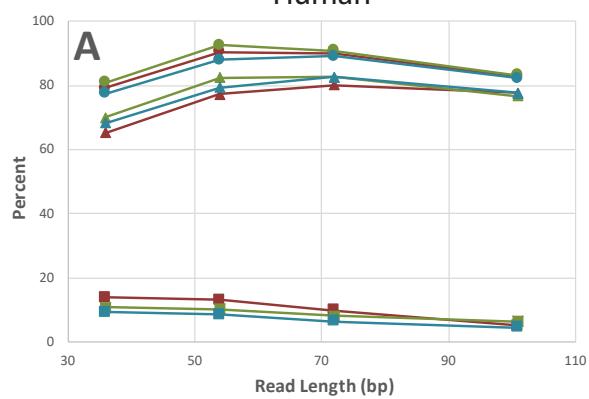
Table 2. Sample key for comparisons in Differential Expression Analysis

Key/Code	SRA ID	Organism	Name	Read Count	Reference
A1	wgEncodeCsh LongRnaSeq mr90Cel Total FastqRd1Rep1.fastq.gz	Human	lmr90.Rep1	252,511,170	(1)
A2	wgEncodeCsh LongRnaSeq mr90Cel Total FastqRd1Rep2.fastq.gz	Human	lmr90.Rep2	226,870,098	(1)
B1	wgEncodeCsh LongRnaSeqNhdf00608013Cel Total FastqRd1Rep2.fastq.gz	Human	Nhdf.Rep1	369,851,756	(1)
B2	wgEncodeCsh LongRnaSeqNhdf70717012Cel Total FastqRd1Rep1.fastq.gz	Human	Nhdf.Rep2	364,830,572	(1)
C1	SRR1964300	Mouse	CA_d3_2	133,456,368	(2)
C2	SRR1964302	Mouse	CA_d3_5	123,906,814	(2)
C3	SRR1964301	Mouse	CA_d3_3	114,769,442	(2)
D1	SRR1964303	Mouse	naive_d3_1	146,444,330	(2)
D2	SRR1964305	Mouse	naive_d3_4	151,754,032	(2)
D3	SRR1964304	Mouse	naive_d3_2	114,982,004	(2)
E1	SRA pending	<i>A. fumigatus</i>	1_6h_AF293_I	97,317,422	unpublished
E2	SRA pending	<i>A. fumigatus</i>	1_6h_AF293_II	82,838,494	unpublished
E3	SRA pending	<i>A. fumigatus</i>	1_6h_AF293_III	87,774,402	unpublished
F1	SRA pending	<i>A. fumigatus</i>	4_6h_AF293_A549_I	94,705,562	unpublished
F2	SRA pending	<i>A. fumigatus</i>	4_6h_AF293_A549_II	91,974,772	unpublished
F3	SRA pending	<i>A. fumigatus</i>	4_6h_AF293_A549_III	97,818,040	unpublished
G1	SRR424574	<i>C. albicans</i>	8_5h_c	84,649,932	(3)
G2	SRR420200	<i>C. albicans</i>	38_5h_c	80,409,392	(3)
H1	SRR424575	<i>C. albicans</i>	9_5h_oc	117,464,646	(3)
H2	SRR420201	<i>C. albicans</i>	39_5h_oc	732,489,140	(3)
J1	SRR772104	<i>C. albicans</i>	rhr2_comp.Rep1	37,691,946	(3)
J2	SRR772105	<i>C. albicans</i>	rhr2_comp.Rep2	83,600,550	(3)
K1	SRR772102	<i>C. albicans</i>	rhr2_del.Rep1	43,741,256	(3)
K2	SRR772103	<i>C. albicans</i>	rhr2_del.Rep2	43,585,428	(3)
L1	SRR1931802	<i>E. coli</i>	E234869_DMEM_BR1	97,821,086	(4)
L2	SRR1931806	<i>E. coli</i>	E234869_DMEM_BR2	91,319,090	(4)
M1	SRR1931824	<i>E. coli</i>	E234869_LB_BR1	84,974,348	(4)
M2	SRR1931826	<i>E. coli</i>	E234869_LB_BR2	103,395,094	(4)

587

Table 3. R^2 Values for All Pairwise Comparisons of Read Length

Experiment	Pairing Status	36 v. 54	36 v. 72	36 v. 101	54 v. 72	54 v. 101	72 v. 101
A v. B	paired	0.95	0.92	0.88	0.97	0.93	0.95
A v. B	single 1	0.94	0.91	0.88	0.95	0.91	0.95
A v. B	single 2	0.95	0.93	0.89	0.96	0.93	0.95
C v. D	paired	0.89	0.93	0.93	0.94	0.93	0.97
C v. D	single 1	0.75	0.73	0.72	0.98	0.96	0.98
C v. D	single 2	0.95	0.97	0.96	0.92	0.9	0.99
F v. E	paired	0.87	0.87	0.84	1	1	0.97
F v. E	single 1	0.94	0.93	0.93	1	1	1
F v. E	single 2	0.94	0.85	0.93	0.99	0.99	1
H v. G	paired	0.9	0.8	0.84	0.88	0.82	0.92
H v. G	single 1	0.84	0.64	0.63	0.79	0.66	0.78
H v. G	single 2	0.9	0.75	0.67	0.89	0.77	0.8
K v. J	paired	1	0.98	0.99	0.99	1	1
K v. J	single 1	0.99	0.98	0.98	0.98	0.99	0.99
K v. J	single 2	0.86	0.77	0.96	0.93	0.93	1
L v. M	paired	1	1	1	1	1	1
L v. M	single 1	1	1	0.99	1	0.99	1
L v. M	single 2	1	0.99	0.99	0.99	0.99	1







588

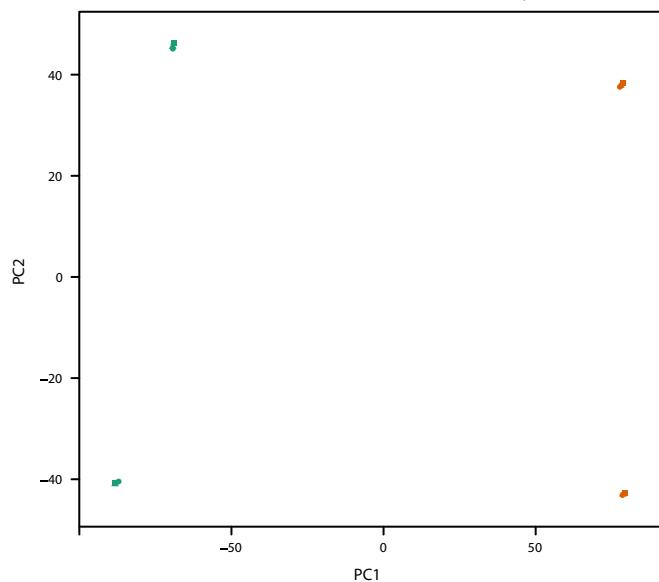
589

Table 4. Number of Singletons for All Pairwise Comparisons of Read Length

Experiment	Pairing Status	36 v. 54	36 v. 72	36 v. 101	54 v. 72	54 v. 101	72 v. 101
A v. B	paired	1540	2010	2704	1060	2030	1478
A v. B	single 1	1500	2088	3017	1248	2377	1705
A v. B	single 2	1619	2173	2936	1162	2201	1591
C v. D	paired	59	60	74	47	59	50
C v. D	single 1	164	170	164	44	56	48
C v. D	single 2	73	72	85	49	68	43
F v. E	paired	90	16	18	7	7	8
F v. E	single 1	16	15	14	5	8	7
F v. E	single 2	19	16	15	9	8	5
H v. G	paired	131	169	268	84	193	149
H v. G	single 1	207	294	445	167	344	295
H v. G	single 2	205	301	428	154	329	243
K v. J	paired	13	19	23	12	14	10
K v. J	single 1	17	23	29	12	20	24
K v. J	single 2	19	23	38	6	25	25
L v. M	paired	22	30	30	14	16	16
L v. M	single 1	37	46	69	19	52	47
L v. M	single 2	36	57	74	41	56	47

590

A


E. coli Minimal Media

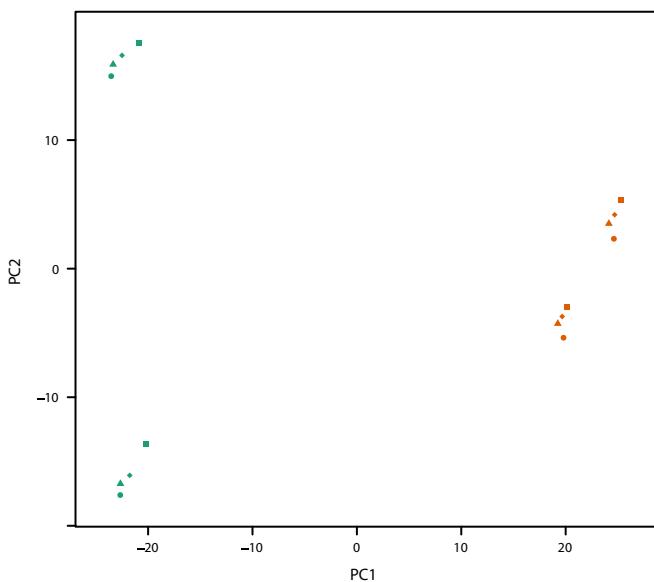
- 101-bp reads
- 36-bp reads
- 54-bp reads
- 72-bp reads

L v. M
Paired end

E. coli Rich Media

- 101-bp reads
- 36-bp reads
- 54-bp reads
- 72-bp reads

B


Candida only

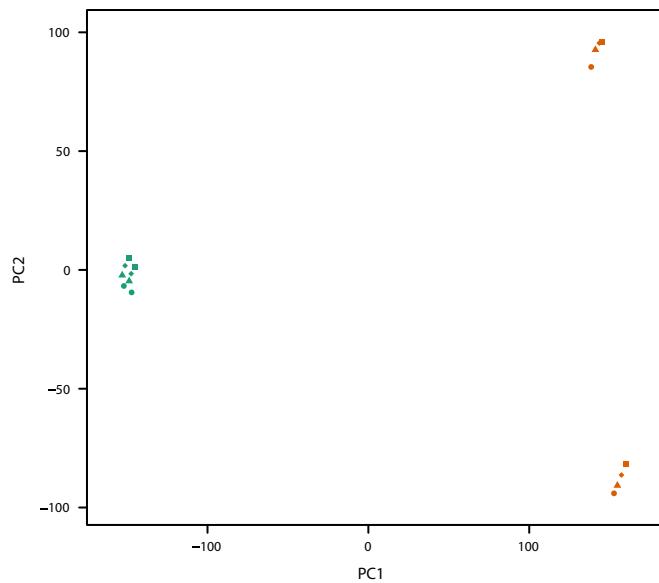
- 101-bp reads
- 36-bp reads
- 54-bp reads
- 72-bp reads

G v. H
Single end

Candida/human

- 101-bp reads
- 36-bp reads
- 54-bp reads
- 72-bp reads

C


IMR-90 Cells

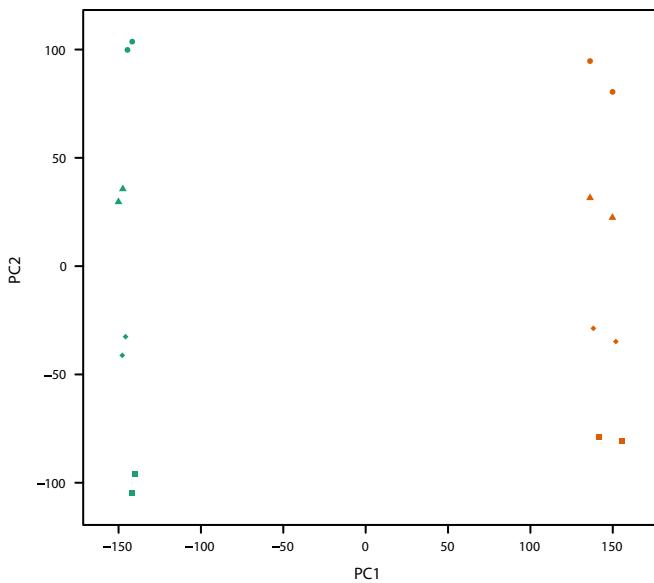
- 101-bp reads
- 36-bp reads
- 54-bp reads
- 72-bp reads

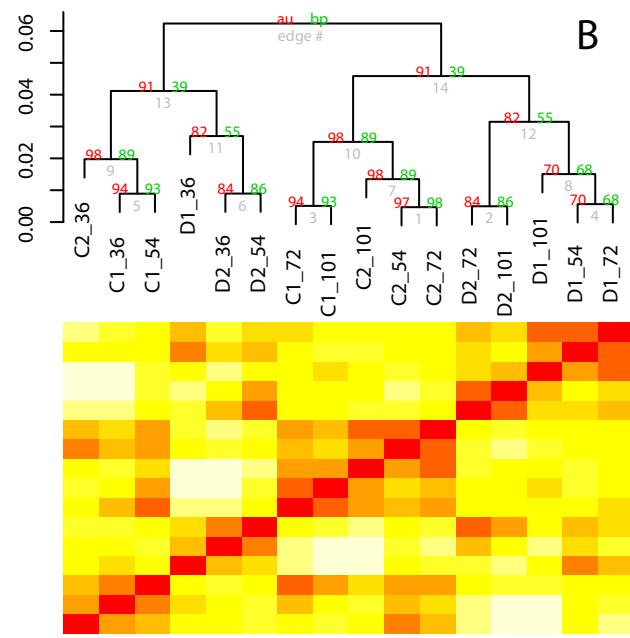
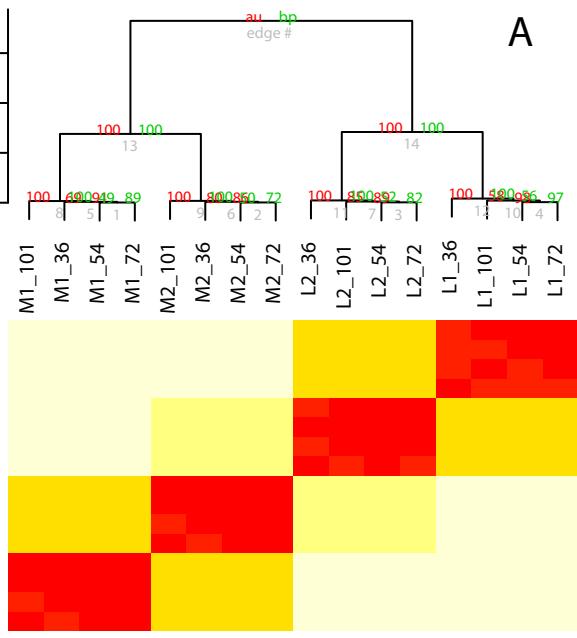
A v. B
Paired end

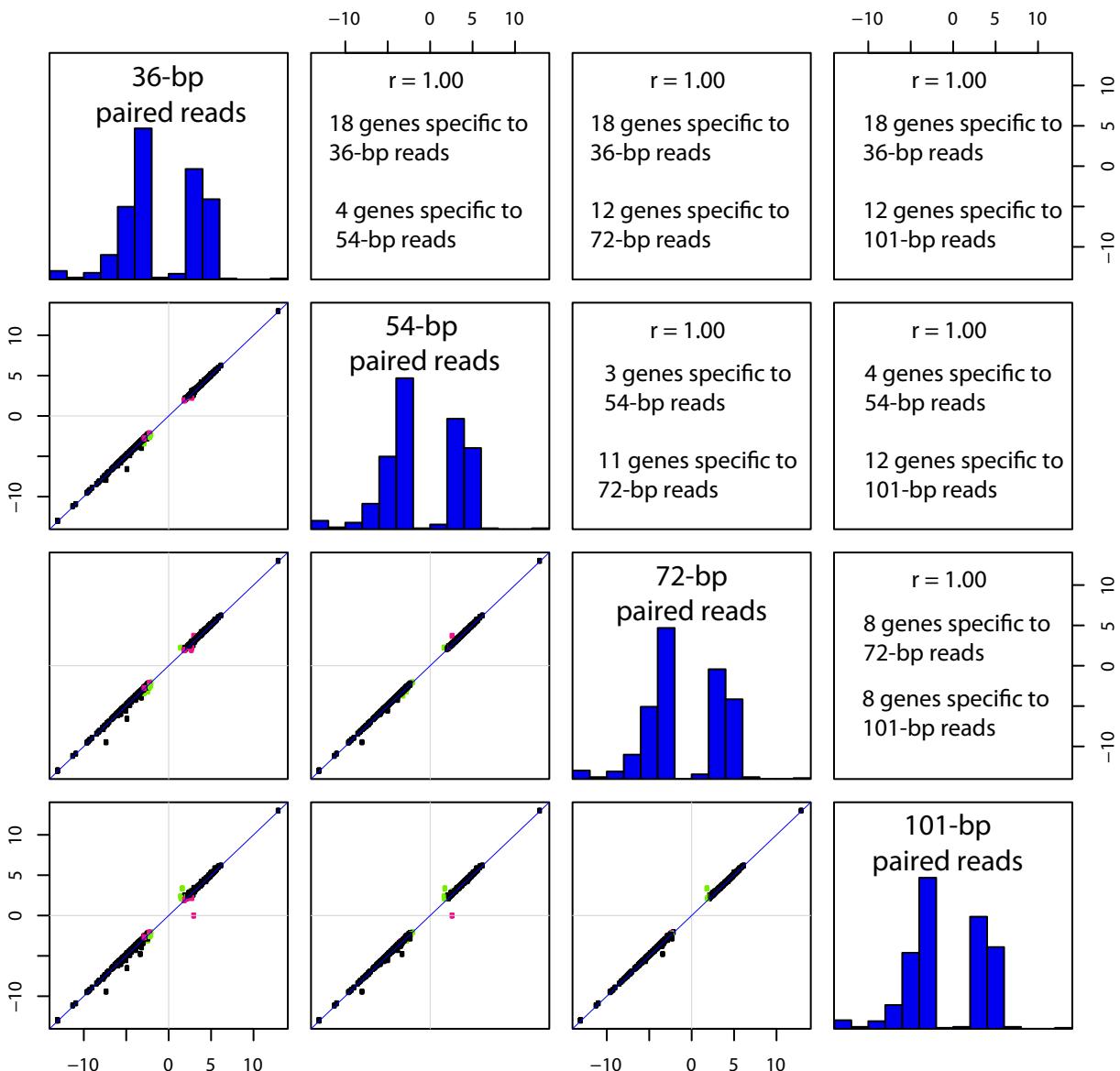
NHDF Cells

- 101-bp reads
- 36-bp reads
- 54-bp reads
- 72-bp reads

D


IMR-90 Cells



- 101-bp reads
- 36-bp reads
- 54-bp reads
- 72-bp reads


A v. B
Single end

NHDF Cells

- 101-bp reads
- 36-bp reads
- 54-bp reads
- 72-bp reads

