

# 1      **Discovery of glycerol phosphate modification on streptococcal rhamnose 2      polysaccharides**

3  
4      **Rebecca J. Edgar<sup>1</sup>, Vincent P. van Hensbergen<sup>2, #</sup>, Alessandro Ruda<sup>3, #</sup>, Andrew G.  
5      Turner<sup>4</sup>, Pan Deng<sup>5</sup>, Yoann Le Breton<sup>6</sup>, Najib M. El-Sayed<sup>6,7</sup>, Ashton T. Belew<sup>6,7</sup>, Kevin S.  
6      McIver<sup>6</sup>, Alastair G. McEwan<sup>4</sup>, Andrew J. Morris<sup>5</sup>, Gérard Lambeau<sup>8</sup>, Mark J. Walker<sup>4</sup>,  
7      Jeffrey S. Rush<sup>1</sup>, Konstantin V. Korotkov<sup>1</sup>, Göran Widmalm<sup>3</sup>, Nina M. van Sorge<sup>2,§,\*</sup>, and  
8      Natalia Korotkova<sup>1, §,\*</sup>**

9      <sup>1</sup>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington,  
10     Kentucky, USA

11     <sup>2</sup>Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University,  
12     Utrecht, The Netherlands

13     <sup>3</sup>Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm,  
14     Sweden

15     <sup>4</sup>Australian Infectious Diseases Research Centre and School of Chemistry and Molecular  
16     Biosciences, The University of Queensland, Brisbane, Australia

17     <sup>5</sup>Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky,  
18     Lexington, Kentucky, USA

19     <sup>6</sup>Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute,  
20     University of Maryland, College Park, Maryland, USA

21     <sup>7</sup>Center for Bioinformatics and Computational Biology, University of Maryland, College Park,  
22     Maryland, USA

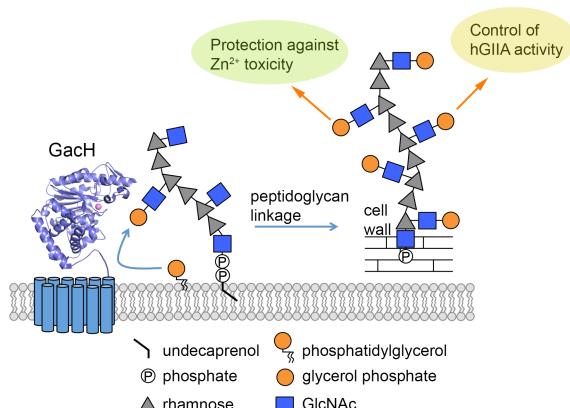
23     <sup>8</sup>Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de  
24     Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France

25     <sup>#</sup> These authors contributed equally to this work.

26     <sup>§</sup> These authors jointly supervised this work.

27     \*Corresponding authors. Correspondence and request for materials should be addressed to  
28     N.K. (email: [nkorotkova@uky.edu](mailto:nkorotkova@uky.edu)) and N.M.vS. (email: [nsorge3@umcutrecht.nl](mailto:nsorge3@umcutrecht.nl)).

29     *Short title:* GroP streptococcal polysaccharide modification


30     *Keywords:* streptococcus, cell wall glycopolymer, glycerol phosphate, biosynthesis, vaccine,  
31     antimicrobial mechanism

32 **Abstract**

33 Cell wall glycopolymers on the surface of Gram-positive bacteria are fundamental to  
34 bacterial physiology and infection biology. These structures have also gained interest as  
35 vaccine antigens, in particular for the human pathogens Group A *Streptococcus* (GAS) and  
36 *Streptococcus mutans*. Streptococcal cell wall glycopolymers are considered to be functional  
37 homologues of wall teichoic acids but surprisingly lack the biologically-relevant and  
38 characteristic anionic charge. Here we identify *gacH*, a gene of unknown function in the GAS  
39 Group A Carbohydrate (GAC) biosynthetic cluster, in two independent transposon library  
40 screens for its ability to confer resistance to zinc and susceptibility to the bactericidal enzyme  
41 human group IIA secreted phospholipase A<sub>2</sub>. To understand the underlying mechanism of these  
42 phenotypes, we determined the structure of the extracellular domain of GacH and discover that  
43 it represents a new family of glycerol phosphate (GroP) transferases. Importantly, we  
44 demonstrate the presence of GroP in both the GAC and the homologous Serotype c  
45 Carbohydrate (SCC) from *S. mutans*, which is conferred by *gacH* and *sccH* products,  
46 respectively. NMR analysis of GAC released from cell wall by non-destructive methods reveals  
47 that approximately 30% of the GAC GlcNAc side-chains are modified by GroP at the C6  
48 hydroxyl group. This previously unrecognized structural modification impacts host-pathogen  
49 interaction and has implications for vaccine design.

50

51 **Graphical abstract**



52

53 Gram-positive bacteria are surrounded by a thick cell wall that consists of a complex  
54 network of peptidoglycan with covalently attached proteins and glycopolymers. Cell wall  
55 glycopolymers comprise a large family of structurally diverse molecules, including wall teichoic  
56 acid (WTA), mycobacterial arabinogalactans and capsular polysaccharides. From these, WTA is  
57 perhaps the most widespread and certainly the best-studied molecule. This polyanionic,  
58 phosphate-rich glycopolymer is critical for functions such as cell division, antibiotic resistance,  
59 metal ion homeostasis, phage-mediated horizontal gene transfer and protection of bacteria from  
60 host defense peptides and antimicrobial enzymes <sup>1-3</sup>. As such, these structures and their  
61 biosynthetic pathways are attractive targets for therapeutic intervention, such as antibiotic  
62 development and vaccine design. Interestingly, many streptococci lack expression of classical  
63 WTA and instead express glycopolymers that are characterized by the presence of L-rhamnose  
64 (Rha) <sup>4</sup>. These structures, referred to as Streptococcal Rhamnose Polysaccharides (SRPs),  
65 comprise about 40-60% of the bacterial cell wall mass <sup>5</sup>, and are historically used for serological  
66 grouping of streptococci <sup>6</sup>. The glycopolymers of two human streptococcal pathogens, Group A  
67 *Streptococcus* (GAS; *Streptococcus pyogenes*) and *Streptococcus mutans*, share a  
68 characteristic [ $\rightarrow 3$ ) $\alpha$ -Rha(1 $\rightarrow$ 2) $\alpha$ -Rha(1 $\rightarrow$ ] polyrhamnose backbone, but are distinguished  
69 based on their specific glycosyl side-chain residues, i.e. *N*-acetyl- $\beta$ -D-glucosamine (GlcNAc) at  
70 the C3 position of Rha in GAS <sup>7</sup> and  $\alpha$ -glucose (Glc) at the C2 position of Rha in *S. mutans* c  
71 serotype <sup>8</sup>. These conserved glycopolymers, referred to as the Lancefield group A Carbohydrate  
72 (GAC) and Serotype c specific Carbohydrate (SCC), play significant roles in the cell physiology  
73 and pathogenesis of GAS and *S. mutans*, respectively. SCC-defective mutants show aberrant  
74 cell morphology and division <sup>9</sup>, increased susceptibility to certain cell wall targeting antibiotics <sup>10</sup>,  
75 defects in biofilm formation <sup>11</sup> and reduced ability to induce infective endocarditis compared to  
76 the parental strain <sup>12</sup>. Biosynthesis of the rhamnan-backbone of GAC is essential for GAS  
77 viability <sup>13,14</sup>. Moreover, GAS mutants deficient in the GAC GlcNAc side-chain are viable but  
78 more susceptible to innate immune clearance by neutrophils and antimicrobial agents, resulting  
79 in significant loss of virulence in animal models of GAS infection <sup>13,15</sup>. Importantly for both  
80 pathogens, GAC and SCC have been evaluated as vaccine antigens. Indeed, immunization with  
81 GAC or SCC induces opsonophagocytic antibodies that enhance killing of GAS and *S. mutans*,  
82 respectively <sup>8,16,17</sup>. In addition, GAC has proven efficacious as a vaccine antigen through active  
83 immunization in mice <sup>16,17</sup>.

84 The GAC and SCC biosynthetic pathways are encoded by 12-gene clusters <sup>4,13</sup>, herein  
85 designated as *gacABCDEFGHIJKL* and *sccABCDEFGHIJKLMNPQ* (Fig. 1a), respectively. The first  
86 seven genes in both operons are conserved in many streptococcal species and they participate

87 in polyrhamnose backbone synthesis and transport<sup>18</sup>. In GAS, we have demonstrated that *gacI*,  
88 *gacJ*, *gacK* and *gacL* encode the machinery to generate and add the immunodominant GlcNAc  
89 side-chain to the polyrhamnose backbone<sup>13,19</sup>. In *S. mutans*, *sccM* and *sccN* are required for  
90 immunoreactivity with serotype c-specific antiserum suggesting a function for these genes in Glc  
91 side-chain attachment to the polyrhamnose backbone<sup>20</sup>. In addition to these streptococcal  
92 species, similar gene clusters are present in a wide variety of streptococcal, lactococcal and  
93 enterococcal species, although the corresponding glycopolymer structures have not all been  
94 elucidated<sup>4</sup>.

95 Within this wider collection of species, one of the conserved genes present in the SRP  
96 biosynthetic clusters, a *gacH* homologue, encodes a putative glycerol phosphate (GroP)  
97 transferase of unknown function. Recently, we employed the *Krmit* GAS transposon mutant  
98 library<sup>14</sup> and identified *gacI* and *gacH* as genes that confer sensitivity of GAS to human group  
99 IIA secreted phospholipase A2 (hGIIA)  
100 (<https://www.biorxiv.org/content/early/2018/02/23/269779>)<sup>21</sup>, an important bactericidal protein of  
101 the innate immune defense against Gram-positive pathogens<sup>22</sup>. Complementary, we now  
102 present the data that *gacH* was the only valid hit when exposing the *Krmit* library to a lethal  
103 concentration of hGIIA. Using the same transposon library, *gacH* was also identified as a gene  
104 providing resistance to zinc toxicity. In pursuit of the underlying mechanisms for GacH-mediated  
105 hGIIA resistance and protection against zinc toxicity, we have characterized the function of  
106 GacH at the genetic, biochemical and structural level. Our study identified a previously  
107 overlooked GroP modification on both GAC and SCC, and demonstrated a function of GacH  
108 homologues in the transfer of GroP to SRP. GroP is attached to the GlcNAc side-chains of GAC  
109 at the C6 hydroxyl group as shown by NMR analysis. These new insights into the structure,  
110 biosynthesis and function of GAC and SCC justify a re-examination of the chemical structures of  
111 cell wall glycopolymers in other streptococcal species. Furthermore, the discovery of GroP  
112 modification of GAC and SCC offers the potential for future vaccine development and provides a  
113 framework for investigation of the function of this modification in bacteria.

## 114 Results

115 **GacH homologues are required for full hGIIA bactericidal activity against GAS and**  
116 ***S. mutans*.** We previously identified *gacH* in a GAS transposon library screen against the  
117 bactericidal activity of hGIIA<sup>21</sup>. Complementary to this susceptibility screen, we also exposed  
118 the *Krmit* GAS transposon library<sup>14</sup> to a lethal concentration of recombinant hGIIA to identify  
119 resistant mutants. Only 47 colonies were recovered after exposure. Sequencing identified that  
120 43% of the recovered mutants (20 out of 47) had a transposon insertion in *gacH*, and 26% in

121 *M5005\_Spy\_1390* (12 out of 47) (Fig. 1b). *M5005\_Spy\_1390* was also identified in the initial  
122 susceptibility screen as an artifact due to biased transposon insertions <sup>21</sup> and therefore not  
123 followed up further. To validate our finding for *gacH*, we generated a *gacH* deletion mutant in a  
124 GAS clinical isolate of the globally-disseminated serotype M1T1 clone 5448, creating  
125 5448Δ*gacH*, and complemented the mutant with *gacH* on an expression plasmid, creating  
126 5448Δ*gacH*:*pgacH*. Exposure of these strains to a concentration range of hGIIA revealed that  
127 deletion of *gacH* increased GAS resistance to hGIIA over 10-fold, which was restored back to  
128 wild-type (WT) in 5448Δ*gacH*:*pgacH* (Fig. 1c). The *gacH*-mediated hGIIA resistance was also  
129 observed in two different GAS backgrounds, 2221 (M1T1 GAS clone strain) and 5005 (clinical  
130 *covS* mutant isolate of M1T1 strain) (Supplementary Fig. 1), demonstrating that the effect is  
131 conserved across GAS strains of the M1T1 background and independent of CovRS status – a  
132 two-component system which regulates about 15% of the genes in GAS <sup>23</sup>.

133 Since other streptococcal species possess a genetic homologue of *gacH*, we  
134 investigated whether the GacH-dependent hGIIA-resistance phenotype was conserved in  
135 different streptococci. To this end, we generated a deletion mutant of the *gacH* homologue *sccH*  
136 (previously known as *orf7* <sup>20</sup>) in serotype c *S. mutans* (SMU) strain Xc, creating SMUΔ*sccH*.  
137 Deletion of *sccH* rendered *S. mutans* completely unsusceptible to the tested hGIIA  
138 concentrations (Fig. 1d), which was restored to WT level by expression of *sccH* on a plasmid.  
139 However, heterologous expression of *gacH* in SMUΔ*sccH* did not restore the hGIIA resistance  
140 phenotype, suggesting that the enzymes might target different substrates. Taken together, our  
141 data indicate that deletion of *gacH* homologues renders streptococci more resistant to the  
142 bactericidal activity of hGIIA and that GacH function is species-specific. Interestingly, lack of the  
143 GAC GlcNAc side-chain, by deletion of *gacI*, also increases hGIIA resistance, which is attributed  
144 to reduced cell wall penetration of hGIIA <sup>21</sup>. These data suggest that similar to *gacI*, *gacH* might  
145 participate in a tailoring modification of GAC.

146 **GacH and SccH provide protection from zinc toxicity.** Recent evidence indicates that  
147 neutrophils deploy zinc poisoning as an antimicrobial strategy against GAS during  
148 phagocytosis <sup>24</sup>. To resist Zn<sup>2+</sup> toxicity, GAS expresses the zinc efflux system encoded by  
149 *czcD* <sup>24</sup>. To search for additional GAS genes that confer resistance to zinc poisoning, we  
150 performed a Tn-seq screen of the GAS *Krmit* transposon library <sup>14</sup> using two Zn<sup>2+</sup>  
151 concentrations, 10 and 20 μM, selected based on growth inhibition analysis (Supplementary Fig.  
152 2a). Genomic DNA for Tn-seq analysis was collected after T2 and T3 passages (Supplementary  
153 Fig. 2b). In addition to the expected importance of *czcD*, we also observed that *gacI* and *gacH*  
154 transposon insertions were significantly reduced in the library (P-value of <0.05) after growth

155 with 20  $\mu$ M  $Zn^{2+}$  in both T2 and T3 passages compared to untreated controls indicating that the  
156 genes provide resistance against  $Zn^{2+}$  toxicity (Fig. 2a-d).

157 To confirm that *gacI* and *gacH* are required for GAS resistance to  $Zn^{2+}$ , we grew  
158 5448 $\Delta$ *gacH* and 5448 $\Delta$ *gacI*<sup>13</sup> on THY agar supplied with different concentrations of  $Zn^{2+}$  (Fig.  
159 2e and 2f). The growth of both mutants was reduced in THY supplied with 1.25 mM  $Zn^{2+}$ .  
160 Expression of full-length *gacH* in 5448 $\Delta$ *gacH*, and *gacI* in 5448 $\Delta$ *gacI* fully complemented the  
161 growth phenotypes of the mutants. To investigate whether this was a conserved function for  
162 *gacH* homologues, we extended our experiments to *S. mutans*. Similar to the GAS *gacH*  
163 deletion mutant, SMU $\Delta$ *sccH* was more sensitive to  $Zn^{2+}$ , in comparison to the parental strain  
164 and the phenotype can only be restored by *sccH* but not *gacH* (Supplementary Fig. 3). Hence,  
165 our results provide strong evidence that the unknown functions of GacH and SccH are important  
166 for protection of streptococci from  $Zn^{2+}$  toxicity.

167 **GacH structure.** GacH is predicted to contain eleven transmembrane segments in its N-  
168 terminal domain, and a C-terminal extracellular domain (eGacH), that is likely to perform the  
169 enzymatic function. To gain insight into GacH function, the extracellular domain of GacH  
170 (eGacH) was expressed and purified from *E. coli* and its crystal structure was determined in apo  
171 form (PDB ID 5U9Z) at 2.0  $\text{\AA}$  resolution (Fig. 3a). Additionally, to test the hypothesis that GacH  
172 is a GroP transferase, we solved the structure of eGacH in complex with GroP (PDB ID 6DGM)  
173 at 1.49  $\text{\AA}$  resolution (Fig. 3c). The apo- and GroP-containing eGacH structures belong to  
174 different crystal forms, with two molecules in the asymmetric unit. Analysis of the dimer interface  
175 and other crystal contacts revealed that the dimer interface has the largest surface of all the  
176 crystal contacts (1809 and 1894  $\text{\AA}^2$  in the two crystal forms). However, it is scored below the  
177 stable complex formation criteria, and recombinant eGacH behaves as a monomer in solution.  
178 This does not exclude a possibility of a dimer formation in the context of the full-length GacH.  
179 The structures of the apo- and GroP-bound eGacH monomers are very similar with root mean  
180 square deviation of 0.3  $\text{\AA}$  for 380 superimposed  $C\alpha$  atoms, as well as between the non-  
181 crystallographic copies.

182 eGacH has an  $\alpha/\beta$  core structure that is similar of the sulfatase protein family, with the  
183 closest similarity to lipoteichoic acid (LTA) synthase LtaS<sup>25,26</sup> and LTA primase LtaP<sup>27</sup>  
184 (Supplementary Table 1). LtaS and LtaP are GroP transferases that participate in biosynthesis  
185 of LTA, a crucial cell envelope constituent of Gram-positive bacteria. LTA is an anionic polymer  
186 consisting of a polyglycerol-phosphate backbone linked to a glycolipid membrane anchor<sup>28</sup>. The  
187 catalytic site of GacH contained a  $Mn^{2+}$  ion coordinated by residues E488, T530, D711 and  
188 H712, equivalent to residues E255, T300, D475 and H476 of *Staphylococcus aureus* LtaS (Fig.

189 3c, Supplementary Fig. 4d and 5). The structure of GacH in complex with GroP revealed the  
190 position of the ligand in the active site with the phosphoryl group oriented towards the Mn<sup>2+</sup> ion,  
191 and coordinated by residues G529, T530 and H650 (Fig. 3c). The glycerol 2- and 3-hydroxyl  
192 groups form hydrogen bonds with side-chains of residues R589, H580 and N586. The positions  
193 of GroP and coordinating residues are similar in eGacH and *S. aureus* LtaS structures. For  
194 example, the glycerol moiety forms hydrogen bonds with residues H580 and R589 in GacH and  
195 equivalent residues H347 and R356 in *S. aureus* LtaS (Fig. 3c and Supplementary Fig. 4d)<sup>25</sup>.  
196 Thus, the structure of GacH in complex with GroP is consistent with the idea that GacH and  
197 LtaS use related catalytic mechanisms of GroP transfer to substrates.

198 **GacH homologues form a distinct clade of GroP transferases.** Taking into  
199 consideration GacH structural homology to LtaS, we examined the distribution of the GacH  
200 family of proteins throughout the bacterial kingdom and compared the evolutionary relatedness  
201 of GacH with LtaS. Interestingly, with a few exceptions, GacH homologues were found  
202 predominantly in streptococcal species (Fig. 3d, Supplementary Fig. 4e). In contrast to GacH  
203 that contains eleven predicted transmembrane segments, LtaS is composed of an N-terminal  
204 domain with five transmembrane helices<sup>25-27,29</sup>. Based on just the extracellular domains of the  
205 proteins, GacH and LtaS-related proteins are grouped in separate clades on a phylogenetic  
206 tree, suggesting that the proteins may fulfill distinct functions in bacteria by transferring GroP to  
207 different substrates (Fig. 3d).

208 **GacH homologues decorate respective SRPs with GroP.** The genetic, bioinformatic  
209 and structural evidence presented in the preceding sections strongly suggest that *gacH* and  
210 *sccH* encode novel GroP transferases of unknown function in GAS and *S. mutans*  
211 (Supplementary Fig. 6). The presence of these genes in the GAC and SCC biosynthetic clusters  
212 implies that they may participate in polysaccharide synthesis in a previously undefined manner.  
213 To investigate the possibility that GacH and SccH function in the modification of the respective  
214 SRPs with GroP, we enzymatically released SRP from purified cell walls (free of LTA, lipids,  
215 proteins and nucleic acids) from GAS 5005, *S. mutans* WT, and corresponding *gacH* and *sccH*  
216 deletion strains by treatment with peptidoglycan hydrolases (as described in Methods).  
217 Subsequently, the enriched polysaccharide preparations were analyzed for glycerol and  
218 phosphate. Hydrolysis with HCl (2 N HCl, 100 °C, 1 hr) released a significant amount of glycerol  
219 from GAC and SCC isolated from WT bacterial strains (Fig. 4a, b, and Supplementary Fig. 7).  
220 Furthermore, we detected high levels of inorganic phosphate after incubation of these acid-  
221 treated samples with alkaline phosphatase (Fig. 4a, b). Of note, the treatment of intact GAC and  
222 SCC with alkaline phosphatase alone did not release detectable levels of phosphate

223 (Supplementary Fig. 7), indicating that the phosphoryl moiety is present as a phosphodiester,  
224 presumably as GroP. In contrast to WT GAC and SCC, the SRPs isolated from the *gacH* and  
225 *sccH* mutants (5005 $\Delta$ *gacH* and SMU $\Delta$ *sccH*, respectively) contained a significantly reduced  
226 amount of GroP (Fig. 4a, b). Genomic complementation of 5005 $\Delta$ *gacH* phenotype by  
227 expression of *gacH* on the mutant chromosome restored the WT levels of GroP in GAC (Fig.  
228 4a). Similarly, complementation of SMU $\Delta$ *sccH* with plasmid-expressed *sccH* restored GroP  
229 incorporation of the mutant to the level of the parental strain (Fig. 4b). In contrast but in  
230 accordance with our functional data, expression of *gacH* did not restore the GroP levels in SCC  
231 of SMU $\Delta$ *sccH* (Fig. 4b). Importantly, analysis of the glycosyl composition of cell walls purified  
232 from the GAS and *S. mutans* strains demonstrated that the absence of GacH and SccH did not  
233 affect the Rha/GlcNAc and Rha/Glc ratios, respectively (Supplementary Fig. 8). Since the  
234 differences in GroP content for 5005 $\Delta$ *gacH* and SMU $\Delta$ *sccH* were not due to changes in the  
235 composition of GAC and SCC, our results are consistent with a role for SccH and GacH in  
236 modification of SRPs by GroP.

237 Both structurally and functionally, we can only complement the SMU $\Delta$ *sccH* mutant by  
238 expression of the native *sccH*, suggesting that the site of GroP attachment to SRPs might  
239 involve the species-specific side-chains (Glc vs. GlcNAc), rather than the identical  
240 polyrhamnose backbone. Consistent with this hypothesis, the glycerol and phosphate contents  
241 in the GAC isolated from two GlcNAc-deficient mutants, 5005 $\Delta$ *gacL* and 5005 $\Delta$ *gacI*<sup>19</sup> were  
242 significantly reduced, similarly to 5005 $\Delta$ *gacH* (Fig. 4c, d).

243 To prepare bacterial polysaccharide for more detailed analysis, GAC was released from  
244 isolated cell walls by peptidoglycan hydrolase treatment and partially purified by a combination  
245 of size exclusion chromatography (SEC) and ion-exchange chromatography (Fig. 4e,  
246 Supplementary Fig. 9a). Fractions from both chromatography analyses were assayed for Rha  
247 and total phosphate. The majority of the rhamnose- and phosphate-containing material was  
248 bound to the ion-exchange column and eluted as a single coincident peak (Fig. 4e). Similarly  
249 prepared GAC purified from 5005 $\Delta$ *gacH* did not bind to the column (Supplementary Fig. 9b).  
250 Interestingly, the GAC from 5005 $\Delta$ *gacH* does appear to contain a small amount of phosphate,  
251 although its phosphate content is much lower than the GAC isolated from the WT strain. This  
252 data directly supports the conclusion that GAC is modified with GroP donated by GacH.

253 **Identification of the enantiomeric form of GroP associated with GAC.** LTA is formed  
254 by the sequential addition of *sn*-Gro-1-P groups transferred by LtaS from the head group of the  
255 membrane lipid phosphatidylglycerol<sup>30,31</sup>. In contrast, the *Bacillus subtilis* poly-GroP backbone  
256 of WTA consists of *sn*-Gro-3-P repeats that are synthesized on the cytoplasmic surface of the

257 plasma membrane from CDP-glycerol before export to the periplasm and attachment to the cell  
258 wall <sup>1</sup>. Since GacH and Scch are LtaS homologues, it is possible that the incorporated GroP is  
259 derived from phosphatidylglycerol yielding *sn*-Gro-1-P residues. To test this hypothesis, GroP  
260 was liberated from purified GAC by alkaline hydrolysis and separated from the polysaccharide  
261 by SEC. As explained in detail by Kennedy *et al* <sup>32</sup> for GroP-modified membrane  
262 oligosaccharides from *E. coli*, if GAC is modified by *sn*-Gro-1-P, alkaline hydrolysis of the  
263 phosphodiester bond should result in the formation of two cyclic intermediate compounds, Gro-  
264 1-cyclic phosphate and Gro-2-cyclic phosphate which further break up to a mixture of *sn*-Gro-1-  
265 P and Gro-2-P <sup>32</sup>. If GAC is modified by *sn*-Gro-3-P, alkaline hydrolysis would yield a mixture of  
266 *sn*-Gro-3-P and Gro-2-P <sup>32</sup>, whereas a phosphodiester of Gro-2-P would give a mixture of all  
267 three phosphates <sup>32</sup>. Following alkaline hydrolysis the bulk of the carbohydrate still elutes in the  
268 void volume of the SEC column (Supplementary Fig. 10). However, the phosphate-containing  
269 fractions corresponding to the hydrolyzed GroP now elute in the inclusion volume  
270 (Supplementary Fig. 10). The enantiomeric composition of the GroP preparation was  
271 determined using a combination of LC-MS and an enzymatic method (see below). LC-MS  
272 revealed the presence of two GroP isomers, of approximately equal proportions, with LC  
273 retention times and major high molecular weight ions consistent with standard *sn*-Gro-1-P and  
274 Gro-2-P (Fig. 4f–4h, Supplementary Fig. 11). To resolve whether *sn*-Gro-3-P or *sn*-Gro-1-P is  
275 the substituent, the recovered GroP was characterized further by enzymatic analysis using a  
276 commercially available *sn*-Gro-3-P assay kit. Under reaction conditions in which 500 pmol of *sn*-  
277 Gro-3-P produced a robust enzymatic signal, incubation with either 500 pmol of *sn*-Gro-1-P or  
278 500 pmol of the unknown Gro-P, recovered following alkaline hydrolysis, resulted in negligible  
279 activity (Supplementary Fig. 12). When a mixture containing 500 pmol of standard *sn*-Gro-3-P,  
280 and an equal amount of either *sn*-Gro-1-P or the unknown mixture of Gro-P isomers were  
281 tested, 85.8% and 90.0% of the activity detected with 500 pmol *sn*-Gro-3-P, alone, was found,  
282 demonstrating that the negative result using the unknown mixture, by itself, was not due to the  
283 presence of an unknown inhibitory compound in the GroP preparation. Taken together, our  
284 results indicate that GacH decorates GAC with *sn*-Gro-1-P, which is most probably derived from  
285 phosphatidylglycerol.

286 **NMR spectroscopy confirms the presence of GroP at the C6 hydroxyl group of**  
287 **GlcNAc side-chains.** To unambiguously prove the incorporation of GroP in GAC, the  
288 polysaccharide isolated from WT GAS as described above was employed for NMR analysis  
289 (Fig. 5 a-g). <sup>1</sup>H and <sup>13</sup>C NMR spectra of GAC confirmed the presence of Rha and GlcNAc in a  
290 1.7:1 ratio as determined by a chemical analysis of its sugar components. Although the material

291 was heterogeneous, initial analysis revealed that it would be possible to analyze the purified  
292 GAC at different levels of detail. The major component identifiable at the highest level of  
293 intensity in a multiplicity-edited  $^1\text{H}, ^{13}\text{C}$ -HSQC NMR spectrum (Supplementary Fig. 13), acquired  
294 by non-uniform sampling at the 25% level of coverage facilitating enhanced resolution to resolve  
295 spectral overlap <sup>33</sup>, revealed the  $^1\text{H}$  NMR chemical shifts in agreement with the following  
296 structure →3)- $\alpha$ -L-Rhap-(1→2)[ $\beta$ -D-GlcNAc-(1→3)]- $\alpha$ -L-Rhap-(1→ as its repeating unit; <sup>7</sup> the  
297  $^1J_{\text{HC}}$ -based correlations facilitated identification of the resonances of the proton-carrying  $^{13}\text{C}$   
298 nuclei.

299 An array of 2D NMR experiments including  $^1\text{H}, ^1\text{H}$ -TOCSY,  $^1\text{H}, ^1\text{H}$ -NOESY,  $^1\text{H}, ^{13}\text{C}$ -HMBC  
300 and  $^1\text{H}, ^{13}\text{C}$ -HSQC-TOCSY led to the  $^1\text{H}$  and  $^{13}\text{C}$  NMR chemical shift assignments  
301 (Supplementary Table 2) and confirmed the structure of the trisaccharide repeating unit. A  
302 number of additional cross-peaks were visible at the second intensity level of the  $^1\text{H}, ^{13}\text{C}$ -HSQC  
303 spectrum, particularly in the spectral region of methylene groups, e.g. hydroxymethyl groups of  
304 hexopyranoses <sup>34</sup>. Besides the resonances from the hydroxymethyl group of the  $\beta$ -D-GlcNAc  
305 residue at  $\delta_{\text{H}}$  3.78 and 3.94 correlated with a signal at  $\delta_{\text{C}}$  61.8, three more  $^{13}\text{C}$  signals together  
306 with corresponding  $^1\text{H}$  resonances were present at  $\delta_{\text{C}}$  63.1, 65.4 and 67.3 (Fig. 5a), readily  
307 identified from the multiplicity-editing applied in the experiment. In the  $^{13}\text{C}$  NMR spectrum two  
308 resonances at  $\delta_{\text{C}}$  67.3 and 71.6 were conspicuous in that they were split by 5.6 and 7.6 Hz,  
309 respectively. A  $^{13}\text{C}$  resonance observed as a doublet in this manner suggests scalar coupling to  
310 the NMR active nucleus  $^{31}\text{P}$  <sup>35</sup> and acquisition of a  $^{31}\text{P}$  NMR spectrum on GAC showed a  
311 prominent resonance at  $\delta_{\text{P}}$  1.2. The  $^1\text{H}, ^1\text{H}$ -TOCSY NMR spectrum at the second intensity level  
312 revealed chemical shift displacements in the region for anomeric resonances (Supplementary  
313 Fig. 14), and in the  $^1\text{H}, ^{13}\text{C}$ -HSQC-TOCSY spectrum two correlations from the anomeric proton  
314 resonance at  $\delta_{\text{H}}$  ~4.76 were observed to  $\delta_{\text{C}}$  61.8 (C6 in  $\beta$ -D-GlcNAc) and to  $\delta_{\text{C}}$  65.4 (Fig. 5b).  
315 Employing a  $^1\text{H}, ^{31}\text{P}$ -HMBC experiment revealed correlations to protons of the latter  $^{13}\text{C}$  at  $\delta_{\text{H}}$   
316 4.10 and 4.19 as well as to  $\delta_{\text{H}}$  3.91 and 3.96, the  $^{13}\text{C}$  nucleus of which resonates at  $\delta_{\text{C}}$  67.3 (Fig.  
317 5c). Moreover, a  $^1\text{H}, ^{31}\text{P}$ -hetero-TOCSY experiment showed in addition to the just described  
318 proton correlations further correlations to  $\delta_{\text{H}}$  3.59, 3.64 and 3.70 (Fig. 5d). Using the arsenal of  
319 2D NMR experiments the resonances at the second level deviating from the parent structure  
320 were assigned (Supplementary Table 2). Thus, the GAC is partially substituted by a GroP  
321 residue at O6 of the side-chain  $\beta$ -D-GlcNAc residue; based on integration of the cross-peaks  
322 for the anomeric resonances in the  $^1\text{H}, ^{13}\text{C}$ -HSQC NMR spectrum, the GAC preparation carries  
323 GroP groups to ~30 % of the GlcNAc residues. To validate the above results, a triple-resonance  
324  $^1\text{H}, ^{13}\text{C}, ^{31}\text{P}$  NMR experiment based on through-bond  $^1J_{\text{HC}}$  as well as  $^2J_{\text{CP}}$  and  $^3J_{\text{CP}}$  correlations <sup>36</sup>

325 was carried out. The 3D NMR experiment revealed the <sup>1</sup>H NMR chemical shifts of H5' and the  
326 two H6' protons of the  $\beta$ -D-GlcNAc residue, as well as the two H1' protons and H2' of the Gro  
327 residue all correlated to <sup>13</sup>C nuclei (Fig. 5e). The <sup>13</sup>C NMR chemical shifts of C5' and C6' of the  
328  $\beta$ -D-GlcNAc residue as well as C1' and C2' of the Gro residue all correlated to the <sup>31</sup>P nucleus  
329 (Fig. 5f), and the above protons correlated to the <sup>31</sup>P nucleus (Fig. 5g). Taking into  
330 considerations the GacH-mediated mechanism of GAC modification by GroP as well as the  
331 biochemical experiments carried out herein, the substituent at O6 of  $\beta$ -D-GlcNAc is an *sn*-Gro-  
332 1-P group (Fig. 5h).

### 333 Discussion

334 In Gram-positive bacteria, the common theme of most peptidoglycan-attached  
335 carbohydrate-based polymers is the presence of negatively charged groups in the repeating  
336 units <sup>3</sup>. For example, canonical and non-canonical WTAs and Group B carbohydrate of  
337 *Streptococcus agalactiae* contain phosphodiester groups in the repeating units, peptidoglycan of  
338 *B. subtilis* grown in phosphate limiting conditions is decorated with a teichuronic acid containing  
339 glucuronic acid, and secondary cell wall carbohydrates of *Bacillus anthracis* are modified with  
340 pyruvyl groups <sup>2-4</sup>. In bacteria lacking WTA such as the human pathogens GAS and *S. mutans*,  
341 it has been proposed that other polyanionic structures, such as LTA, fulfill similar functions  
342 during the bacterial cell cycle <sup>4,37</sup>. Previous detailed studies using immunochemical methods,  
343 composition and linkage analyses and NMR methods deduced chemical structures of  
344 peptidoglycan-attached SRPs from both streptococcal species <sup>7,8,38-42</sup>, but none identified  
345 anionic groups in these structures, except one overlooked study in which the presence of  
346 glycerol and phosphate in GAC has been detected <sup>43</sup>. However, it was proposed that this GroP  
347 is part of the phosphodiester linkage connecting GAC to the N-acetylmuramic acid of  
348 peptidoglycan <sup>43</sup>. Similarly, a number of reports identified substantial concentrations of  
349 phosphate in SRPs isolated from *Streptococcus sanguis*, *Streptococcus gallolyticus*,  
350 *Streptococcus dysgalactiae*, *Streptococcus sobrinus* serotype *d* and *S. mutans* serotype  
351 *f* <sup>30,42,44,45</sup>. These phosphate-rich polymers were either disregarded as contamination with  
352 LTA <sup>30</sup>, or further analyzed using <sup>1</sup>H NMR or <sup>13</sup>C NMR methods <sup>7,8,40-42,46,47</sup> that do not directly  
353 detect phosphoryl moieties in polysaccharides. With our report, we unambiguously confirm that  
354 SRPs of GAS and *S. mutans* are in fact polyanionic glycopolymers through decoration of their  
355 respective glycan side-chains with GroP (Fig. 5i).

356 We identified and structurally characterized a new family member of GroP transferase  
357 enzyme, GacH, which is required for GAC modification with GroP in GAS. GacH homologues  
358 are present in the SRP biosynthetic loci of many streptococci suggesting that a large proportion

359 of streptococcal species produce SRPs where glycosyl side-chains are decorated with GroP  
360 similar to our observations for *S. mutans*. GacH is predicted to be an extracellular protein  
361 anchored in the cytoplasmic membrane. It belongs to the alkaline phosphatase superfamily of  
362 which two GroP transferases involved in LTA synthesis, LtaS and LtaP, have been  
363 biochemically and structurally characterized to date <sup>25-27,29</sup>. LtaS and LtaP are membrane  
364 proteins that use the membrane lipid phosphatidylglycerol as the GroP donor for the transfer  
365 reaction <sup>48,49</sup>. Our structural analysis of GacH in complex with GroP indicates that the enzyme  
366 uses the catalytic T530 residue to participate in the formation of a GroP-enzyme intermediate.  
367 This corresponds to the structure of LtaS, where the GroP molecule is complexed in the active  
368 site in which a threonine residue functions as a nucleophile in phosphatidylglycerol  
369 hydrolysis <sup>25-27</sup>. The observation that the GroP in GAC is the *sn*-Gro-1-P enantiomer, strongly  
370 suggests that GacH uses phosphatidylglycerol as its donor substrate, similar to LtaS (Fig. 5i).  
371 Thus our data propose a catalytic mechanism in which GacH binds phosphatidylglycerol and  
372 T530 functions as a catalytic nucleophile to attack the GroP head group and cleave the  
373 phosphodiester bond. Diacylglycerol is released, leaving a covalent GroP-T530 intermediate.  
374 Next, the C6 hydroxyl group of the GAC GlcNAc target is deprotonated and then attacks the  
375 GroP-T530 enzyme, forming the GroP-GlcNAc product and returning the enzyme to the apo  
376 state.

377 In Gram-positive bacteria, the tailoring modification of WTA and LTA with D-alanine  
378 provides resistance against antibiotics, cationic antimicrobial peptides and small bactericidal  
379 enzymes including hGIIA, and promotes Mg<sup>2+</sup> ion scavenging <sup>1-3</sup>. It has been assumed that  
380 incorporation of positively charged D-alanine into teichoic acids decrease negative bacterial  
381 surface charge resulting in reduced initial binding of cationic antimicrobial peptides to the  
382 bacterial surface due to ionic repulsion <sup>50,51</sup>. Our study demonstrates that addition of the  
383 negatively charged GroP group to SRPs protects streptococci from zinc toxicity but also renders  
384 bacteria more sensitive to hGIIA activity. A large body of published evidence indicates that  
385 phagocytic cells utilize Zn<sup>2+</sup> intoxication to suppress the intracellular survival of bacteria <sup>52</sup>. The  
386 mechanism of microbial susceptibility to zinc toxicity is mediated by extracellular competition of  
387 Zn<sup>2+</sup> for Mn<sup>2+</sup> transport and thereby mediating toxicity by impairing Mn<sup>2+</sup> acquisition <sup>53</sup>.  
388 Accordingly, the phenotypes of our mutants deficient in the GroP modifications and the GlcNAc  
389 side-chains could be explained either by “trapping” of Zn<sup>2+</sup> in the WT cell wall as a consequence  
390 of zinc binding to negatively-charged GroP, or the increased Mn<sup>2+</sup>-binding capacity of GroP-  
391 modified bacterial cell wall which has been proposed to act as the conduit for the trafficking of  
392 mono- and divalent cations to the membrane <sup>2</sup>.

393 Charge-dependent mechanisms are likely also underlying the increased hGIIA  
394 susceptibility of GAS and *S. mutans* expressing the GroP-modified SRPs. hGIIA is a highly  
395 cationic enzyme that catalyzes the hydrolysis of bacterial phosphatidylglycerol<sup>54-56</sup>, ultimately  
396 leading to bacterial death. It has been suggested that traversal of this bactericidal enzyme  
397 across the Gram-positive cell wall to reach the plasma membrane is charge dependent because  
398 the absence of positively-charged D-alanine modifications in LTA and WTA severely  
399 compromises *S. aureus* survival when challenged with hGIIA<sup>56,57</sup>. This phenotype was  
400 attributed to increased binding of hGIIA to the cell surface or modified permeability of the cell  
401 envelope. Similarly, the GacH/SccH-dependent GroP modifications on SRPs are required for  
402 hGIIA to exert its bactericidal effect against GAS and *S. mutans*, respectively. We have  
403 previously demonstrated that loss of the GlcNAc GAC side-chain strongly hampers trafficking of  
404 hGIIA through the GAS cell wall, with a minor contribution of reduced hGIIA binding to the cell  
405 surface<sup>21</sup>. Since GroP-modifications were also lost in the GlcNAc side-chain deficient mutant,  
406 5448Δ*gacI*, described in this study, we now assume that the mechanisms of the hGIIA-  
407 dependent phenotype are similar in the *gacI* and *gacH* mutants.

408 Another very important aspect of our study is the identification of a novel, potentially  
409 antigenic, epitope on the surface of streptococcal bacteria. GAS is a major human pathogen,  
410 and is associated with numerous diseases ranging from minor skin and throat infections such as  
411 impetigo and pharyngitis to life-threatening invasive diseases such as scarlet fever,  
412 streptococcal toxic syndrome and rapidly progressing deep-tissue infections, necrotizing fasciitis  
413 (i.e. the “flesh eating disease”), cellulitis and erysipelas<sup>58</sup>. GAS infections are also responsible  
414 for post-infectious autoimmune syndrome, rheumatic fever (RF) and its sequelae, rheumatic  
415 heart disease (RHD)<sup>58</sup>. Invasive GAS infections are difficult to treat with antibiotics and a GAS  
416 vaccine is urgently needed to combat this neglected disease. GAC is an attractive candidate for  
417 GAS vaccine due to its conserved expression in all GAS serotypes and the absence of the  
418 constitutive component of GAC, Rha, in humans<sup>16,17</sup>. However, it has been proposed that the  
419 GAC GlcNAc side-chain can elicit the cross-reactive antibodies relevant to the pathogenesis of  
420 RF and RHD<sup>59-61</sup>. Moreover, persistence of anti-GAC and anti-GlcNAc antibodies is a marker of  
421 poor prognosis in RHD<sup>60,62</sup>. These clinical associations and the lack of understanding of the  
422 pathogenesis of GAS post-infectious RHD have hampered progress in the development of  
423 GAC-based vaccines against GAS. However, the GAC GlcNAc decorated with GroP might be a  
424 feasible candidate for GAS vaccine development because modified GlcNAc represents a unique  
425 epitope, that is absent from human tissues. Thus, our study has implications for design of a safe  
426 and effective vaccine against this important human pathogen for which a vaccine is not yet

427 available. Finally, our work provides a framework for structure-function investigations of cell wall  
428 modifications in streptococci.

429

## 430 **Methods**

### 431 **Bacterial strains, growth conditions and media**

432 All plasmids, strains and primers used in this study are listed in Supplementary Tables 3 and 4.  
433 Streptococcal strains used in this study were the M1-serotype GAS strains, 5448<sup>14</sup>, 2221<sup>63</sup> and  
434 5005<sup>63</sup>, and c serotype *S. mutans* Xc<sup>64</sup>. GAS and *S. mutans* strains were grown in Todd-Hewitt  
435 broth supplemented with 1% yeast extract (THY) without aeration at 37 °C. *S. mutans* plates  
436 were grown with 5% CO<sub>2</sub>. For hGIIA-mediated killing experiments *S. mutans* strains were grown  
437 in Todd-Hewitt broth without yeast extract and with 5% CO<sub>2</sub>. *E. coli* strains were grown in  
438 Lysogeny Broth (LB) medium or on LB agar plates at 37 °C. When required, antibiotics were  
439 included at the following concentrations: ampicillin at 100 µg/mL for *E. coli*; streptomycin at 100  
440 µg/mL for *E. coli*; erythromycin (Erm) at 500 µg/mL for *E. coli* and 5 µg/mL for GAS and *S.*  
441 *mutans*; chloramphenicol (CAT) at 10 µg/mL for *E. coli* and 2 µg/mL for GAS and *S. mutans*;  
442 spectinomycin at 200 µg/mL for *E. coli*, 100 µg/mL for GAS and 500 µg/mL for *S. mutans*.

443 To identify GAS genes providing resistance against zinc toxicity, we used chemically  
444 defined medium based on the formulation of RPMI 1640 medium<sup>65</sup>, which mirrors the amino  
445 acid composition of the van de Rijn and Kessler formulation<sup>66</sup>. This RPMI 1640 (without  
446 glucose) (Gibco) is supplemented with nucleobases guanine, adenine and uracil at a  
447 concentration of 25 µg/mL each, as well as D-glucose at a final concentration of 0.5% w/v and  
448 HEPES at 50 mM. Necessary vitamins for GAS growth are provided by 100X BME Vitamins  
449 (Sigma B6891). The final solution (mRPMI) is pH 7.4 and capable of supporting GAS growth  
450 without additional supplements.

### 451 **Genetic manipulations**

452 *DNA techniques*: Plasmids were transformed into GAS and *S. mutans* by electroporation or  
453 natural transformation as described previously<sup>9,67</sup>. Chromosomal DNA was purified from GAS  
454 and *S. mutans* as described<sup>68</sup>. All constructs were confirmed by sequencing analysis (Eurofins  
455 MWG Operon and Macrogen).

456 *Genetic manipulation of GAS 5005 and 2221*: For construction of the 5005ΔgacH and  
457 2221ΔgacH strains, 5005 chromosomal DNA was used as a template for amplification of two  
458 DNA fragments using two primers pairs: 5005-f/gacHdel-r and gacHdel-f/5005-r. Primer  
459 gacHdel-f is complementary to primer gacHdel-r. The two gel-purified PCR products containing  
460 complementary ends were mixed and amplified using a PCR overlap method<sup>69</sup> with primer pair

461 5005-f/5005-r to create the deletion of *gacH*. The PCR product was digested with BamHI and  
462 Xhol and ligated into BamHI/Sall-digested plasmid pBBL740. The integrational plasmid  
463 pBBL740 does not have a replication origin that is functional in GAS, so the plasmid can be  
464 maintained only by integrating into the GAS chromosome through homologous recombination.  
465 The plasmid was designated pBBL740 $\Delta$ gacH. The resulting plasmid was transformed into 5005  
466 and 2221, and CAT resistant colonies were selected on THY agar plates. Five randomly  
467 selected colonies, that had the first crossover, were grown in liquid THY without CAT for  $\geq$ 5  
468 serial passages. Several potential double crossover mutants were selected as previously  
469 described<sup>70</sup>. The deletion in each mutant was confirmed by PCR sequencing of the loci.

470 To construct the plasmid for *in cis* complementation of the 5005 $\Delta$ gacH mutant, 5005  
471 chromosomal DNA was used as a template for amplification of a wild-type copy of *gacH* using  
472 the primer pair 5005-f/5005-r. The PCR products were digested with BamHI and Xhol, and  
473 cloned in pBBL740 previously digested with the respective enzymes. The plasmid was  
474 designated pBBL740gacH. The plasmid was transformed into the 5005 $\Delta$ gacH strain, and CAT  
475 resistant colonies were selected on THY agar plates. Double crossover mutants were selected  
476 as described above. Selected mutants were confirmed by PCR sequencing, yielding strain  
477 5005 $\Delta$ gacH:gacH.

478 *Genetic manipulation of GAS 5448*: For construction of the 5448 $\Delta$ gacH strains, GAS 5448  
479 chromosomal DNA was used to amplify up and downstream regions flanking *gacH* using the  
480 following primer pairs: 5448-f/5448CAT-r and 5448CAT-f/5448-r. Primers 5448CAT-f and  
481 5448CAT-r contain 25 bp extensions complementary to the CAT resistance cassette. Up- and  
482 downstream were fused to the CAT cassette using 5448-f/5448-r, digested with Xhol and HindIII  
483 and ligated into Xhol/HindIII-digested plasmid pHY304, yielding plasmid pHY304 $\Delta$ gacH. After  
484 transformation in electrocompetent GAS 5448, transformed colonies were selected in THY  
485 containing Erm at 30 °C. After confirmation by PCR, transformed colonies were shifted to the  
486 non-permissive temperature of 37 °C to allow plasmid integration. Serial passage at 30 °C in the  
487 absence of antibiotic enabled occurrence of double cross-over events, yielding 5448 $\Delta$ gacH,  
488 which were identified by screening for Erm sensitivity and CAT resistance. Deletion of *gacH* was  
489 confirmed by PCR.

490 To complement 5448 $\Delta$ gacH, we created an expression plasmid pgacH\_erm. *GacH* was  
491 amplified from GAS 5448 chromosomal DNA using primer pair gacH-EcoRI-f/gacH-BglII-r,  
492 digested using EcoRI/BglII, and ligated into EcoRI/BglII-digested pDCerm. pgacH\_erm was  
493 transformed into the electrocompetent 5448 $\Delta$ gacH and selected for Erm resistance on THY  
494 agar plates. Transformation was confirmed by PCR, yielding strain 5448 $\Delta$ gacH:pgacH.

495 *Genetic manipulation of S. mutans* Xc. For construction of the *sccH* deletion mutant  
496 (*SMUΔsccH*), *S. mutans* Xc chromosomal DNA was used to amplify up and downstream  
497 regions flanking using the following primer pairs: *sccH-f/sccH-erm-r* and *sccH-erm-f /sccH-r*.  
498 Primers *sccH-erm-f* and *sccH-erm-r* contain 25 bp extensions complementary to the Erm  
499 resistance cassette. Up and downstream PCR fragments were mixed with the Erm cassette and  
500 amplified as a single PCR fragment using primer pair *sccH-f/sccH-r*. The *sccH* knockout  
501 construct was transformed into *S. mutans* as described previously <sup>9</sup>. Erm resistant single  
502 colonies were picked and checked for deletion of *sccH* and integration of Erm cassette by PCR  
503 using primer pair: *sccH-c-f/sccH-c-r*, resulting in *SMUΔsccH*. For complementation, *sccH* and  
504 *gacH* were amplified from *S. mutans* Xc and GAS 5448 chromosomal DNA, respectively, using  
505 primer pairs *sccH-EcoRI-f/sccH-BgIII-r* and *gacH-EcoRI-f/gacH-BgIII-r*. The PCR products were  
506 digested with EcoRI/BgIII, and ligated into EcoRI/BgIII-digested pDC123 vector, yielding *psscH*  
507 and *pgacH\_cm*, respectively. The plasmids were transformed into *SMUΔsccH* as described <sup>9</sup>.  
508 CAT resistant single colonies were picked and checked for presence of *psscH* or *pgacH\_cm* by  
509 PCR, yielding strains *SMUΔsccH:psscH* and *SMUΔsccH:pgacH*, respectively.

510 *Construction of the plasmids for E. coli expression of gacH*: To create a vector for expression of  
511 extracellular domain of GacH, the gene was amplified from 5005 chromosomal DNA using the  
512 primer pair *gacH-Ncol-f* and *gacH-Xhol-r*. The PCR product was digested with Ncol and Xhol,  
513 and ligated into Ncol/Xhol-digested pET-NT vector. The resultant plasmid, pETGacH, contained  
514 *gacH* fused at the N-terminus with a His-tag followed by a TEV protease recognition site.

### 515 **Protein expression and purification**

516 For expression and purification of eGacH, *E. coli* Rosetta (DE3) cells carrying the respective  
517 plasmid were grown to an OD<sub>600</sub> of 0.4-0.6 and induced with 0.25 mM isopropyl β-D-1-  
518 thiogalactopyranoside (IPTG) at 18 °C for approximately 16 hrs. The cells were lysed in 20 mM  
519 Tris-HCl pH 7.5, 300 mM NaCl with two passes through a microfluidizer cell disrupter. The  
520 soluble fractions were purified by Ni-NTA chromatography with washes of 20 mM Tris-HCl pH  
521 7.5, 300 mM NaCl and 20 mM Tris-HCl pH 7.5, 300 mM NaCl, 10 mM imidazole, and elution  
522 with 20 mM Tris-HCl pH 7.5, 300 mM NaCl, 250 mM imidazole. The eluate was dialyzed into 20  
523 mM Tris-HCl pH 7.5, 300 mM NaCl in the presence of TEV protease (1 mg per 20 mg of  
524 protein). The dialyzed sample was reapplied to a Ni-NTA column equilibrated in 20 mM Tris-HCl  
525 pH 7.5, 300 mM NaCl to remove the cleaved His-tag and any uncleaved protein from the  
526 sample. eGacH was further purified by size exclusion chromatography (SEC) on a Superdex  
527 200 column in 20 mM HEPES pH 7.5, 100 mM NaCl, with monitoring for protein elution at 280

528 nm. Fractions collected during elution from the column were analyzed for purity by SDS-PAGE  
529 and concentrated to approximately 10 mg/mL.

530 For expression of seleno-methionine labeled eGacH, *E. coli* Rosetta (DE3) carrying  
531 eGacH was grown in LB at 37 °C until an optical density at 600 nm of approximately 0.5 was  
532 obtained. The bacteria were centrifuged and resuspended in M9 minimal media supplemented  
533 with seleno-methionine. After a significant increase in optical density, protein expression was  
534 induced with 0.25 mM IPTG, and the cultures were grown at 16 °C for approximately 16 hrs.  
535 Seleno-methionine labeled eGacH was purified as described above.

### 536 **Crystallization, data collection and structure solution**

537 eGacH crystallization conditions were initially screened using the JCSG Suites I–IV screens  
538 (Qiagen) at a protein concentration of 9 mg/mL by hanging drop vapor diffusion method.  
539 Crystals of Se-Met-substituted eGacH were grown in 0.1 M HEPES pH 7.5, 10% PEG8000, 8%  
540 ethylene glycol. Crystals were transferred into crystallization solution supplemented with 20%  
541 ethylene glycol and flash frozen in liquid nitrogen. The data were collected at APS 22-ID at a  
542 wavelength of 0.9793 Å. Crystals of GroP•eGacH complex were obtained using crystallization  
543 solution containing 0.2 M calcium acetate, 0.1 M MES pH 6.0, 20% PEG8000. *sn*-glycerol-1-  
544 phosphate (Sigma Aldrich) was mixed with eGacH at 10 mM prior to crystallization. Initial  
545 crystals of GroP•eGacH complex belonged to the same crystal form as apo GacH, however,  
546 crystals of different morphology grew epitaxially after several days. These crystals displayed  
547 better diffraction and were used for structure determination of GroP•eGacH complex. Crystals  
548 were cryoprotected in crystallization solution supplemented with 10 mM *sn*-glycerol-1-phosphate  
549 and 20% ethylene glycol and vitrified in liquid nitrogen. The data were collected at SSRL BL9-2  
550 at a wavelength of 0.97946 Å.

551 All data were processed and scaled using *XDS* and *XSCALE*<sup>71</sup>. The structure of eGacH  
552 was solved by Se single-wavelength anomalous diffraction method. Se atoms positions were  
553 determined using HySS module in *PHENIX*<sup>72,73</sup>. The structure was solved using AutoSol wizard  
554 in *PHENIX*<sup>74</sup>. The model was completed using *Coot*<sup>75</sup> and refined using *phenix.refine*<sup>76</sup>. The  
555 final structure has two eGacH molecules in the asymmetric unit containing residues 444–822.

556 The structure of GroP•eGacH complex was solved by molecular replacement using  
557 *Phaser*<sup>77</sup> and the dimer of apo eGacH as a search model. The model was adjusted using *Coot*  
558 and refined using *phenix.refine*. Difference electron density corresponding to GroP molecules  
559 was readily identified after refinement. GroP molecules were modeled using *Coot*. The  
560 geometric restraints for GroP were generated using Grade Web Server  
561 (<http://grade.globalphasing.org>) (Global Phasing). The last several rounds of refinement were

562 performed using 19 translation/libration/screw (TLS) groups, which were identified by  
563 *PHENIX*<sup>78</sup>.

564 The structures were validated using *Coot*, *MolProbity*<sup>79</sup> and *wwPDB Validation Service*  
565 (<https://validate.wwpdb.org>)<sup>80</sup>. Statistics for data collection, refinement, and model quality are  
566 listed in Supplementary Table 5. The structure factors and coordinates were deposited to the  
567 Protein Data Bank with accession codes 5U9Z (apo eGacH) and 6DGM (GroP•eGacH  
568 complex). Structure figures were generated using *PyMOL* v1.8.0.3<sup>81</sup>.

#### 569 **Isolation of cell wall**

570 Cell wall was isolated from exponential phase cultures by the SDS-boiling procedure as  
571 described for *S. pneumoniae*<sup>82</sup>. Purified cell wall samples were lyophilized and used for  
572 carbohydrate composition analysis, phosphate and glycerol assays. Cell wall isolated from GAS  
573 5005 was used for purification of GAC for *sn*-glycerol-1-phosphate identification and NMR  
574 analysis.

#### 575 **GAC purification**

576 GAC was released from the cell wall by sequential digestion with mutanolysin (Sigma Aldrich)  
577 and recombinant PlyC amidase<sup>19</sup>, and partially purified by a combination of SEC and ion-  
578 exchange chromatography. Mutanolysin digests contained 5 mg/mL of cell wall suspension in  
579 0.1 M sodium acetate, pH 5.5, 2 mM CaCl<sub>2</sub> and 5 U/mL mutanolysin. Following overnight  
580 incubation at 37 °C, soluble polysaccharide was separated from the cell wall by centrifugation at  
581 13,000 x g, 10 min. Acetone (-20 °C) was added to a final concentration of 80% and the  
582 polysaccharide was allowed to precipitate overnight at -20 °C. The precipitate was sedimented  
583 (5,000 x g, 20 min), dried briefly under nitrogen gas and redissolved in 0.1 M Tris-Cl, pH 7.4  
584 PlyC (50 µg/mL) was added to the GAC sample and the reaction was incubated overnight at  
585 37 °C. Following PlyC digestion, GAC was recovered by acetone precipitation, as described  
586 above, redissolved in a small volume of 0.2 N acetic acid and chromatographed on a 25 mL  
587 column of BioGel P10 equilibrated in 0.2 N acetic acid. Fractions (1.5 mL) were collected and  
588 monitored for carbohydrate by the anthrone assay. Fractions containing GAC (eluting near the  
589 void volume of the column) were combined, concentrated by spin column centrifugation (3,000  
590 MW cutoff filter) and desalting by several rounds of dilution with water and centrifugation. After  
591 desalting, GAC was loaded onto an 18 mL column of DEAE-Sephacel. The column was eluted  
592 with a 100 mL gradient of NaCl (0-1 M). Fractions were analyzed for carbohydrate by the  
593 anthrone assay and phosphate by the malachite green assay following digestion with 70%  
594 perchloric acid (see below). Fractions containing peaks of carbohydrate were combined,  
595 concentrated by spin column (3,000 MW cut off) and lyophilized.

596 **Anthrone assay**

597 Total carbohydrate content was determined by a minor modification of the anthrone procedure.  
598 Reactions containing 0.08 mL of aqueous sample and water were prepared in Safe-Lock 1.5 mL  
599 Eppendorf Tubes. Anthrone reagent (0.2% anthrone, by weight, dissolved in concentrated  
600  $\text{H}_2\text{SO}_4$ ) was rapidly added, mixed thoroughly, capped tightly and heated to 100 °C, 10 min. The  
601 samples were cooled in water (room temperature) and the absorbance at 580 nm was recorded.  
602 GAC concentration was estimated using an L-Rha standard curve.

603 **Phosphate assay**

604 Approximately 1.5 mg of cell wall material isolated from GAS was dissolved in 400  $\mu\text{L}$   $\text{H}_2\text{O}$  and  
605 8  $\mu\text{g}/\text{mL}$  PlyC, and incubated at 37 °C, rotating for approximately 16 hrs. Additional PlyC was  
606 added and incubated for a further 4-6 hrs. To liberate SCC from *S. mutans* cell wall, 1.5 mg of  
607 cell wall material isolated from *S. mutans* were incubated 24 h with 1.5 U/mL mutanolysin in  
608 400  $\mu\text{L}$  of 0.1 M sodium acetate, pH 5.5, 2 mM  $\text{CaCl}_2$ . The samples were incubated at 100 °C  
609 for 20 min and centrifuged for 5 min at maximum speed in a table top centrifuge. The  
610 supernatant was transferred to a new micro-centrifuge tube and incubated with 2 N HCl at  
611 100 °C for 2 hrs. The samples were neutralized with NaOH, in the presence of 62.5 mM  
612 HEPES pH 7.5. To 100  $\mu\text{L}$  of acid hydrolyzed sample, 2  $\mu\text{L}$  of 1 U/ $\mu\text{L}$  alkaline phosphatase  
613 (Thermo Fisher) and 10  $\mu\text{L}$  10 x alkaline phosphatase buffer was added and incubated at 37 °C,  
614 rotating, overnight. Released phosphate was measured using the Pi ColorLock Gold kit (Innova  
615 Biosciences), according to the manufacturer's protocol.

616 During GAC purification on BioGel P10 and DEAE-Sephacel total phosphate content  
617 was determined by the malachite green method following digestion with perchloric acid.  
618 Fractions containing 10 to 80  $\mu\text{L}$  were heated to 110 °C with 40  $\mu\text{L}$  70% perchloric acid (Fisher  
619 Scientific) in 13 x 100 borosilicate disposable culture tubes for 1 h. The reactions were diluted to  
620 160  $\mu\text{L}$  with water and 100  $\mu\text{L}$  was transferred to a flat-bottom 96-well culture plate. Malachite  
621 Green reagent (0.2 mL) was added and the absorbance at 620 nm was read after 10 min at  
622 room temperature. Malachite Green reagent contained 1 vol 4.2% ammonium molybdate  
623 tetrahydrate (by weight) in 4 M HCl, 3 vol 0.045% malachite green (by weight) in water and  
624 0.01% Tween 20.

625 **Glycerol assay**

626 Samples for glycerol measurement were prepared as described for the phosphate assay but  
627 were not digested with alkaline phosphatase. Instead glycerol concentration was measured  
628 using the Glycerol Colorimetric assay kit (Cayman Chemical) according to the manufacturer's  
629 protocol.

630 **Carbohydrate composition analysis**

631 Carbohydrate composition analysis was performed at the Complex Carbohydrate Research  
632 Center (Athens, GA) by combined gas chromatography/mass spectrometry (GC/MS) of the per-  
633 O-trimethylsilyl derivatives of the monosaccharide methyl glycosides produced from the sample  
634 by acidic methanolysis as described previously<sup>83</sup>.

635 **Identification of the stereochemistry of the GroP moiety of GAC**

636 The stereochemistry of the GroP moiety attached to GAC was determined by a chemo-  
637 enzymatic method following release of GroP by alkaline hydrolysis as described by Kennedy *et*  
638 *al.*<sup>32</sup> using the Amplite<sup>TM</sup> Fluorimetric *sn*-Glycerol-3-Phosphate (Gro-3-P) Assay Kit (AAT  
639 Bioquest). GAC was released from cell wall by sequential digestion with mutanolysin hydrolase  
640 and PlyC amidase, and partially purified by SEC on BioGel P10 and ion exchange  
641 chromatography on DEAE-Sephacel, as described above. GroP was liberated from the GAC by  
642 alkaline hydrolysis (0.5 M NaOH, 100 °C, 1 h), neutralized with acetic acid and recovered from  
643 the inclusion volume following SEC on BioGel P10. Column fractions containing GroP were  
644 identified by HPLC/mass spectrometry (LC-MS) and fractions containing GroP were combined,  
645 concentrated by rotary evaporation (30 °C, under reduced pressure) and desalted on BioGel P2.  
646 Column fractions containing GroP were combined, lyophilized and analyzed with the Gro-3-P  
647 Assay Kit based on the production of hydrogen peroxide in the *sn*-Gro-3-P oxidase-mediated  
648 enzyme coupled reaction. Reactions were conducted at room temperature for 10 to 20 min in  
649 solid black 96 well plates in a total volume of 0.1 ml. Excitation was at 540 nm and fluorescence  
650 at 590 nm was measured.

651 The fractions containing GroP were analyzed by LC-MS using a Q Exactive mass  
652 spectrometer and an Ultimate 3000 ultra high performance liquid chromatography system  
653 (Thermo Fisher Scientific). Chromatographic separation was achieved using a silica-based  
654 SeQuant ZIC-pHILIC column (2.1 mm × 150 mm, 5 µm, Merck, Germany) with elution buffers  
655 consisting of (A) 20 mM (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> with 0.1% NH<sub>4</sub>OH in H<sub>2</sub>O and (B) acetonitrile. The column  
656 temperature was maintained at 40 °C, and the flow rate was set to 150 µL/min. Mass  
657 spectrometric detection was performed by electrospray ionization in negative ionization mode  
658 with source voltage maintained at 3.0 kV. The capillary temperature, sheath gas flow and  
659 auxiliary gas flow were set at 275 °C, 40 arb and 15 arb units, respectively. Full-scan MS  
660 spectra (mass range m/z 75 to 1000) were acquired with resolution R = 70,000 and AGC target  
661 1e6.

662 **Identification of hGIIA-resistant GAS transposon mutants**

663 The GAS M1T1 5448 *Krmit* transposon mutant library <sup>14</sup> was grown to mid-log phase ( $OD_{600} =$   
664  $0.4$ ).  $1 \times 10^5$  CFU were subjected to  $27.5 \mu\text{g/mL}$  recombinant hGIIA <sup>84</sup> in triplicate and incubated  
665 for 1 h at  $37^\circ\text{C}$ . Samples were plated on THY agar plates supplemented with kanamycin. The  
666 position of the transposon insertion of resistant colonies was determined as described  
667 previously <sup>85</sup>.

#### 668 **hGIIA susceptibility assay**

669 hGIIA susceptibility experiments were performed as described previously <sup>21</sup>. In short, mid-log  
670 suspensions ( $OD_{600} = 0.4$ ), of GAS and *S. mutans* were diluted 1,000 times in HEPES solution  
671 (20 mM HEPES, 2 mM  $\text{Ca}^{2+}$ , 1% BSA [pH 7.4]) and 10  $\mu\text{L}$  was added to sterile round-bottom 96  
672 well plates in triplicates. Recombinant hGIIA was serially diluted in HEPES solution and 10  $\mu\text{L}$   
673 aliquots were added to bacteria-containing wells. Samples were incubated for 2 hrs at  $37^\circ\text{C}$  (for  
674 GAS without  $\text{CO}_2$ , for *S. mutans* with 5%  $\text{CO}_2$ ), PBS was added and samples were 10-fold  
675 serially diluted for quantification on agar plates. Survival rate was calculated as Survival (% of  
676 inoculum) = (counted CFU \* 100) / CFU count of original.

#### 677 **Determination of selective metal concentrations**

678 The  $\text{Zn}^{2+}$  sensitive gene deletion mutant 5448 $\Delta$ *czcD* <sup>24</sup> was used to find the target concentration  
679 of  $\text{Zn}^{2+}$ . Briefly, colonies of strains 5448 WT and 5448 $\Delta$ *czcD* were scraped from THY agar  
680 plates and resuspended in PBS. After washing in PBS, the strains were adjusted to  $OD_{600} = 1$ .  
681 These cultures were used to inoculate freshly prepared mRPMI containing varying  
682 concentrations of  $\text{Zn}^{2+}$  to starting  $OD_{600} = 0.05$  in a 96-well plate. Growth at  $37^\circ\text{C}$  was  
683 monitored at  $OD_{595}$  every 15 min using the BMG Fluostar plate reader.

#### 684 **Tn-seq library screen for $\text{Zn}^{2+}$ sensitivity**

685 The 5448 *Krmit* Tn-seq library at  $T_0$  generation <sup>14</sup> was thawed, inoculated into 150 mL  
686 prewarmed THY broth containing  $300 \mu\text{g/mL}$  kanamycin and grown at  $37^\circ\text{C}$  for 6 hrs. After 6  
687 hrs growth, the culture ( $T_1$ ) was centrifuged at  $4,000 \times g$  for 15 min at  $4^\circ\text{C}$  and the pellet  
688 resuspended in 32.5 mL saline. Freshly prepared mRPMI or mRPMI containing 10  $\mu\text{M}$  or 20  $\mu\text{M}$   
689  $\text{Zn}^{2+}$  was inoculated with 500  $\mu\text{L}$  culture into 39.5 mL media, creating a 1:20 fold inoculation.  
690 These  $T_2$  cultures were then grown at  $37^\circ\text{C}$  for exactly 6 hrs, at which point 2 mL of these  
691 cultures were inoculated again into 38 mL of freshly prepared mRPMI alone or mRPMI  
692 containing 10  $\mu\text{M}$  or 20  $\mu\text{M}$   $\text{Zn}^{2+}$ . The remaining 38 mL of  $T_2$  culture was harvested by  
693 centrifugation at  $4,000 \times g$  for 10 min at  $4^\circ\text{C}$  and pellets stored at  $-20^\circ\text{C}$  for later DNA  
694 extraction. Cultures were grown for a further 6 hrs, at which point  $T_3$  cultures were harvested by  
695 centrifugation at  $4,000 \times g$  for 10 min at  $4^\circ\text{C}$  and pellets stored at  $-20^\circ\text{C}$ .

696 Tn-seq *Krmit* transposon insertion tags were prepared from the cell pellets as previously  
697 described<sup>15,86</sup>. Briefly, genomic DNA was prepared using the MasterPure complete DNA and  
698 RNA purification kit (Epicentre) and treated with *MmeI* and the calf intestinal phosphatase (NEB)  
699 before ligation to 12 distinct Tn-seq adapters for sample multiplexing during massively parallel  
700 sequencing<sup>15,86</sup>. Insertion tags were produced through a 22-cycle PCR<sup>15</sup> using the ligation  
701 mixtures and primers oKrmitTNseq2 and AdapterPCR<sup>15,86</sup>. After quality control with the  
702 Bioanalyzer instrument (Agilent), the libraries of *Krmit* insertion tags were sequenced (50-nt  
703 single end reads) on an Illumina HiSeq 1500 in the Institute for Bioscience and Biotechnology  
704 Research (IBBR) Sequencing Core at the University of Maryland, College Park. Tn-seq read  
705 datasets were analyzed (quality, filtering, trimming, alignment, visualization) as previously  
706 described<sup>15,86</sup> using the M1T1 5448 genome as reference for read alignments. The ratios of  
707 mutant abundance comparing the output to input mutant pools were calculated as a fold change  
708 for each GAS gene using the DEseq2 and EdgeR pipelines<sup>86-88</sup>. Illumina sequencing reads from  
709 the Tn-seq analysis were deposited in the NCBI Sequence Read Archive (SRA) under the  
710 accession number SRP150081.

#### 711 **Drop test assays**

712 Strains 5448 WT, 5448Δ*gacI*, 5448Δ*gacI:gacI*, 5448Δ*gacH*, 5448Δ*gacH:pgacH*, *S. mutans* WT,  
713 SMUΔ*sccH*, SMUΔ*sccH:pscCH* and SMUΔ*sccH:pgacH* were grown in THY to mid-exponential  
714 growth phase, adjusted to OD<sub>600</sub> = 0.6 and serial diluted. 5 μL were spotted onto THY agar  
715 plates containing varying concentrations of Zn<sup>2+</sup> (ZnSO<sub>4</sub>·7H<sub>2</sub>O). Plates were incubated at 37 °C  
716 overnight and photographed. Drop tests are representative of biological replicates performed on  
717 at least 3 separate occasions.

#### 718 **NMR spectroscopy**

719 The NMR spectra were recorded on a Bruker AVANCE III 700 MHz equipped with a 5 mm TCI  
720 Z-Gradient Cryoprobe (<sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N) and dual receivers and a Bruker AVANCE II 600 MHz  
721 spectrometer equipped with a 5 mm TXI inverse Z-Gradient <sup>1</sup>H/D-<sup>31</sup>P/<sup>13</sup>C. The <sup>1</sup>H and <sup>13</sup>C NMR  
722 chemical shift assignments of the polysaccharide material were carried out in D<sub>2</sub>O solution  
723 (99.96 %) at 323.2 K unless otherwise stated. Chemical shifts are reported in ppm using internal  
724 sodium 3-trimethylsilyl-(2,2,3,3-<sup>2</sup>H<sub>4</sub>)-propanoate (TSP, δ<sub>H</sub> 0.00 ppm), external 1,4-dioxane in  
725 D<sub>2</sub>O (δ<sub>C</sub> 67.40 ppm) and 2 % H<sub>3</sub>PO<sub>4</sub> in D<sub>2</sub>O (δ<sub>P</sub> 0.00 ppm) as reference. The <sup>1</sup>H,<sup>1</sup>H-TOCSY  
726 experiments (dipsi2ph) were recorded with mixing times of 10, 30, 60, 90 and 120 ms. The  
727 <sup>1</sup>H,<sup>1</sup>H-NOESY experiments<sup>89</sup> were collected with mixing times of 100 and 200 ms. A uniform  
728 and non-uniform sampling (50 and 25 % NUS) were used for the multiplicity-edited <sup>1</sup>H,<sup>13</sup>C-  
729 HSQC experiments<sup>90</sup> employing an echo/antiecho-TPPI gradient selection with and without

730 decoupling during the acquisition. The 2D  $^1\text{H}$ ,  $^{13}\text{C}$ -HSQC-TOCSY were acquired using MLEV17  
731 for homonuclear Hartman-Hahn mixing, an echo/antiecho-TPPI gradient selection with  
732 decoupling during acquisition and mixing times of 20, 40, 80 and 120 ms. The 2D  $^1\text{H}$ ,  $^{31}\text{P}$ -Hetero-  
733 TOCSY experiments <sup>91</sup> were collected using a DIPSI2 sequence with mixing times of 10, 20, 30,  
734 50 and 80 ms. The 2D  $^1\text{H}$ ,  $^{31}\text{P}$ -HMBC experiments were recorded using an echo/antiecho  
735 gradient selection and mixing times of 25, 50 and 90 ms. The 3D  $^1\text{H}$ ,  $^{13}\text{C}$ ,  $^{31}\text{P}$  <sup>36</sup> spectra were  
736 obtained using echo/antiecho gradient selection and constant time in  $t_2$  with a nominal value of  
737  $^nJ_{\text{CP}}$  of 5 Hz and without multiplicity selection. The spectra were processed and analyzed using  
738 TopSpin 4.0.1 software (Bruker BioSpin).

### 739 **Bioinformatics analysis**

740 The TOPCONS (<http://topcons.net/>) <sup>92</sup> web server was employed to predict trans-membrane  
741 regions of GacH. Homology detection and structure prediction were performed by the HHpred  
742 server (<https://toolkit.tuebingen.mpg.de/#/tools/hhpred>) <sup>93</sup>. To construct the GacH phylogenetic  
743 tree the homologues of full-length GacH (M5005\_Spy\_0609) were retrieved using blastp with an  
744 E-value cutoff of  $1e^{-70}$ . In addition, sequences were filtered based on a minimal identity of 33%,  
745 similarity of 73%, and having 11 predicted transmembrane helices. Of all species expressing  
746 *gacH* homologues, *ltaS* homologues were retrieved using blastp and GAS *ltaS*  
747 (M5005\_Spy\_0622) as reference. As representatives of the LtaS and LtaP clades, five  
748 sequences of Listeria were selected that express both enzymes <sup>27</sup>. All protein sequences were  
749 aligned using MUSCLE <sup>94</sup>. The phylogenetic tree was build using MEGA6 <sup>95</sup> and the Maximum  
750 Likelihood method based on the JTT matrix-based model <sup>95</sup>. For the phylogenetic tree with the  
751 extracellular domains of GacH and LtaS homologues, extracellular domains were predicted  
752 using <http://www.cbs.dtu.dk/services/TMHMM/>.

### 753 **Statistical analysis**

754 Unless otherwise indicated, statistical analysis was carried out on pooled data from at least  
755 three independent biological repeats. Quantitative data was analyzed using the paired Student's  
756 t-test. A 2-way ANOVA with Bonferroni multiple comparison test was used to compare multiple  
757 groups. A *P*-value equal to or less than 0.05 was considered statistically significant.

758

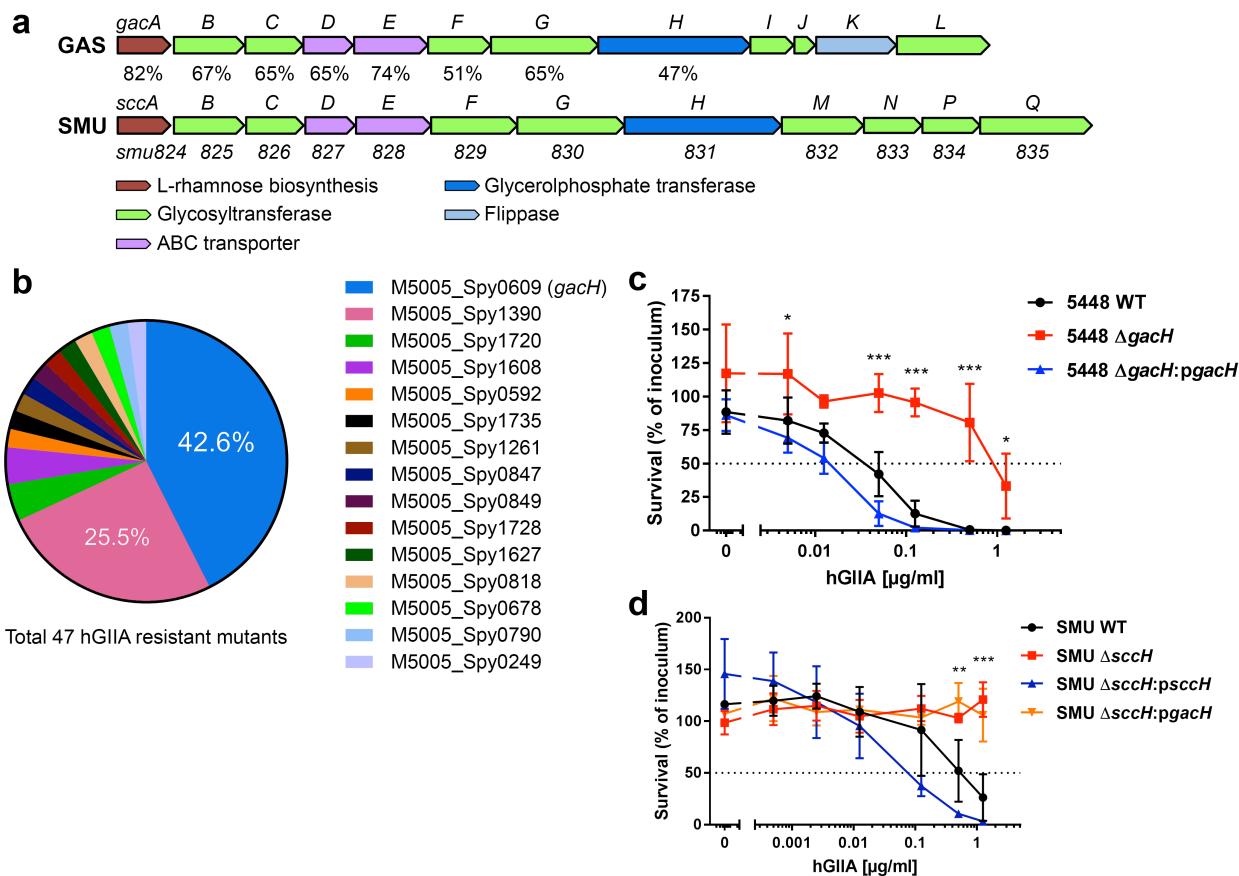
### 759 **Acknowledgements**

760 This work was supported by the Center of Biomedical Research Excellence (COBRE) Pilot  
761 Grant (to NK, KVK and JSR) supported by NIH grant P30GM110787 from the National Institute  
762 of General Medical Sciences (NIGMS), VIDI grant 91713303 from the Netherlands Organization  
763 for Scientific Research (NWO) (to NMvS and VPvH), the Swedish Research Council (no. 2013-

764 4859 and 2017-03703) and The Knut and Alice Wallenberg Foundation (to GW), NIH grant  
765 P30GM110787 from the NIGMS and NIH grant 1S10OD021753 (to AJM), the National Health  
766 and Medical Research Council of Australia (to MJW), grants from CNRS, ANR (MNaims ANR-  
767 17-CE17-0012-01) and FRM (SPF20150934219) (to GL), NIH grant AI047928 from the National  
768 Institute of Allergy and Infectious Diseases (NIAID) (to KSM and YLB) and NIH grant AI094773  
769 (to NES and ATB).

770 Carbohydrate composition analysis at the Complex Carbohydrate Research Center was  
771 supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic  
772 Energy Sciences, U.S. Department of Energy grant (DE-FG02-93ER20097) to Parastoo Azadi.  
773 Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office  
774 of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and NIH  
775 grants S10\_RR25528 and S10\_RR028976. Use of the Stanford Synchrotron Radiation  
776 Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of  
777 Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-  
778 76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of  
779 Biological and Environmental Research, and by the NIH, NIGMS including P41GM103393. The  
780 contents of this publication are solely the responsibility of the authors and do not necessarily  
781 represent the official views of NIGMS or NIH.

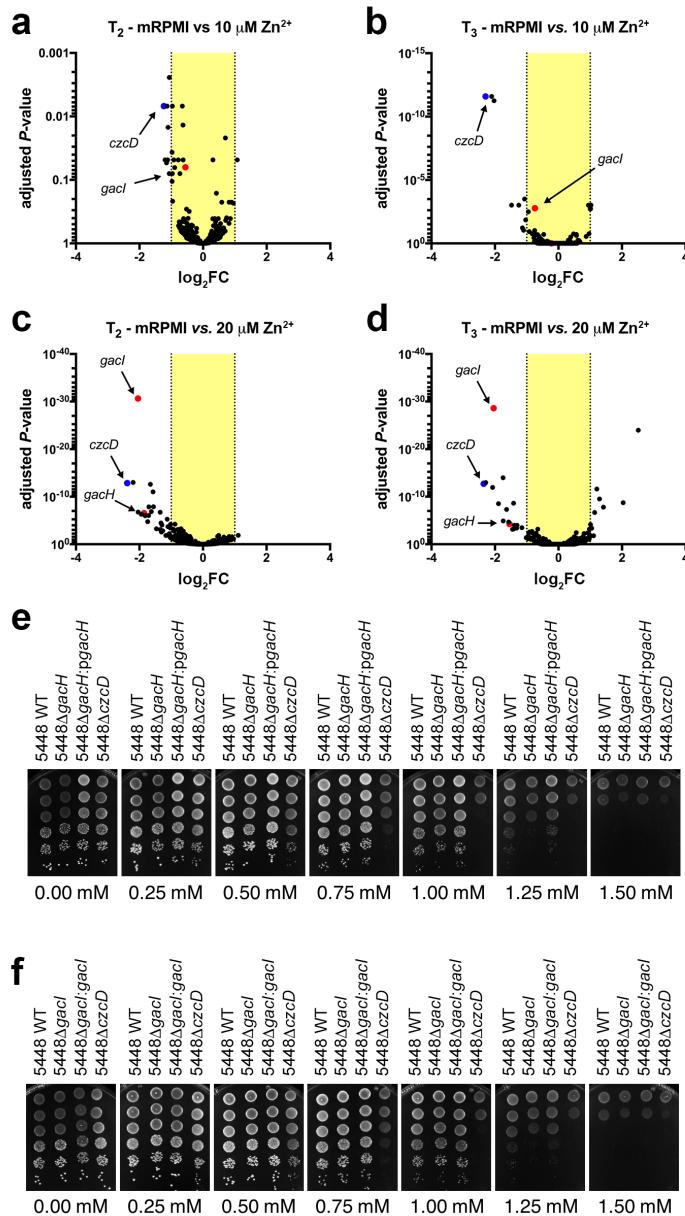
782


783

#### 784 **Author contributions**

785 AR, PD, YLB, KSM, AGM, AJM, GL, MJW, JSR, KVK, GW, NMvS and NK designed the  
786 experiments. RJE, VPvH, AR, AT, JSR, KVK, GW and NK performed functional and  
787 biochemical experiments. KVK carried out X-ray crystallography and structure analysis. AR and  
788 GW performed NMR studies. PD and AJM performed MS analysis. VPvH and NK constructed  
789 plasmids and isolated mutants. RJE, VPvH, AR, PD, YLB, NMES, ATB, KSM, AGM, AJM, MJW,  
790 JSR, KVK, GW, NMvS and NK analyzed the data. NMvS and NK wrote the manuscript with  
791 contributions from all authors. All authors reviewed the results and approved the final version of  
792 the manuscript.

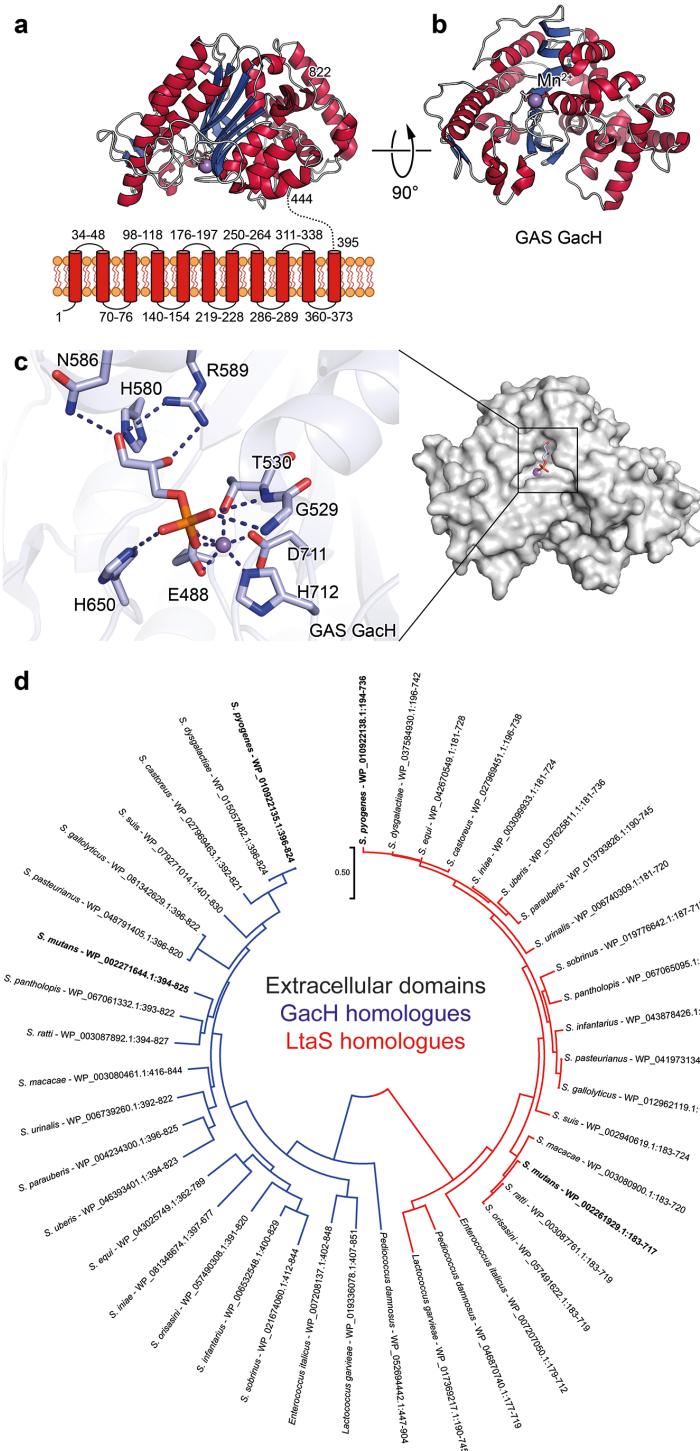
793


794 **Figures**



795

796 **Fig. 1. GacH homologues are required for full hGIIA bactericidal activity against GAS and**  
 797 ***S. mutans*.**

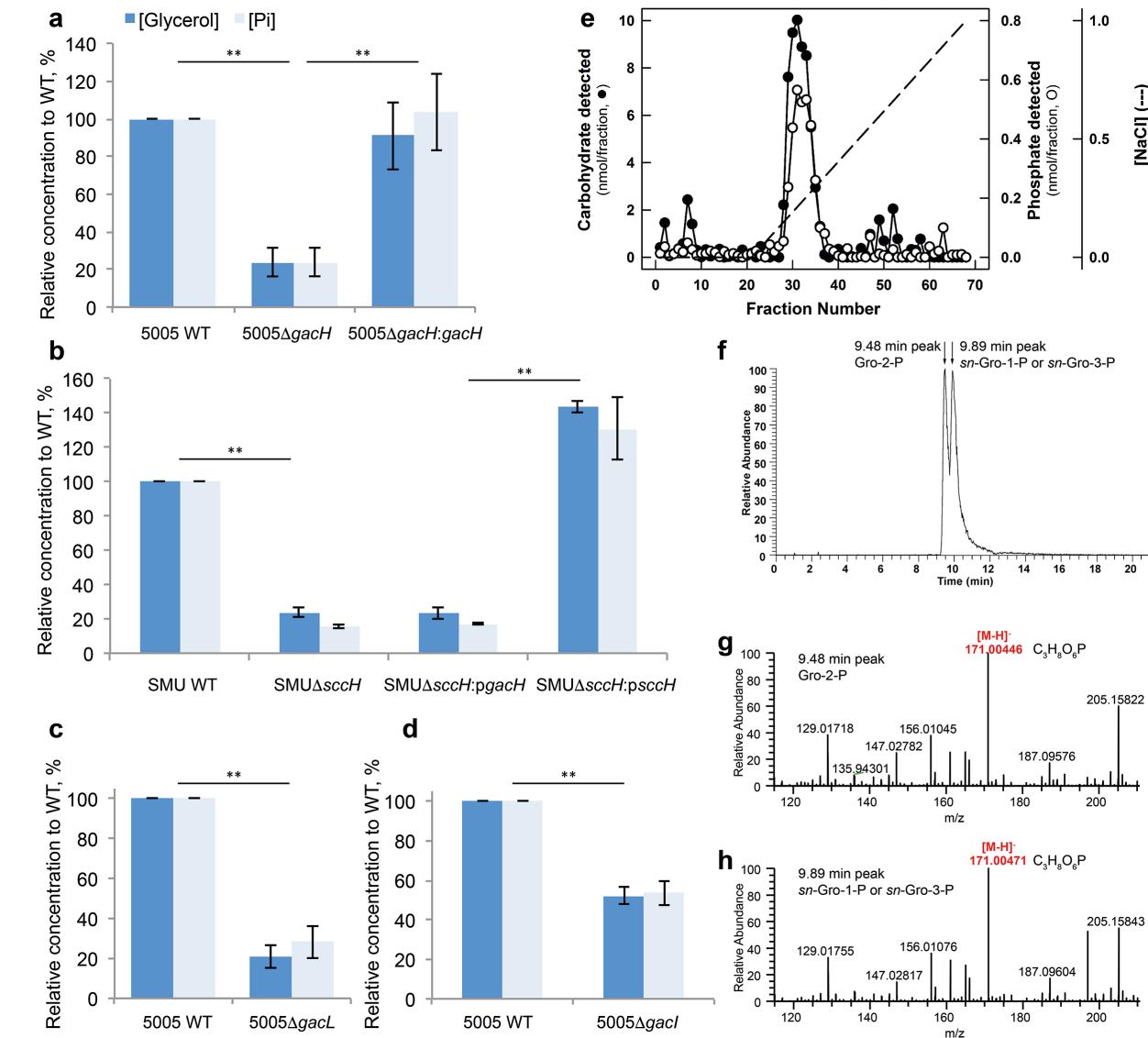

798 (a) Schematic representation of GAC and SCC biosynthetic gene clusters. SCC gene cluster  
 799 *smu824-835* was renamed *sccABCDEFGHIJKLMNPQ*. Sequence identity (%) between homologous  
 800 proteins is indicated. Sequences of GAS 5005 and *S. mutans* UA159 were used for comparison.  
 801 (b-d) *gacH* is identified in Tn-seq screen for hGIIA resistance and its deletion confers  
 802 resistance to hGIIA. (b) Transposon gene location in 47 hGIIA resistant mutants after exposure  
 803 of *Krmit* mutant transposon library to lethal concentrations of hGIIA. (c) Deletion of *gacH* in  
 804 GAS 5448 and (d) the *gacH*-homologous gene *sccH* in *S. mutans* increases hGIIA resistance  
 805 more than 10-fold. Data represent mean  $\pm$  standard deviation of three independent experiments.  
 806 \*, p < 0.05; \*\*, p < 0.01; \*\*\*, p < 0.001.



807

808 Fig. 2. Deletion of *gacI* and *gacH* renders GAS susceptible to Zn<sup>2+</sup>.

(a-d) Tn-seq volcano plots showing representation of *czcD*, *gacH* and *gacI* in GAS *Krmit* transposon library screens for Zn<sup>2+</sup> tolerance. Log<sub>2</sub> fold-change (log<sub>2</sub> FC) in fitness was plotted against adjusted *P*-value from Tn-seq analysis. The outline of the experiment is shown in Supplemental Fig. 2b. Tn-seq screens of the transposon library were conducted using (a) 10 μM Zn<sup>2+</sup> at T<sub>2</sub>, (b) 10 μM Zn<sup>2+</sup> at T<sub>3</sub>, (c) 20 μM Zn<sup>2+</sup> at T<sub>2</sub>, (d) 20 μM Zn<sup>2+</sup> at T<sub>3</sub>. (e and f) Zn<sup>2+</sup> sensitivity as tested in drop test assay using strains (e) 5448 WT, 5448Δ*gacH* and 5448Δ*gacH*:*pgacH*; and (f) 5448 WT, 5448Δ*gacI* and 5448Δ*gacI*:*gacI*. 5448Δ*czcD* was included as a positive control in both panels. Strains were grown in THY to mid-exponential phase, adjusted to OD<sub>600</sub> = 0.6, serial diluted and 5 μL spotted onto THY agar plates containing varying concentrations of Zn<sup>2+</sup>. Each drop test assay experiment was performed at least three times.

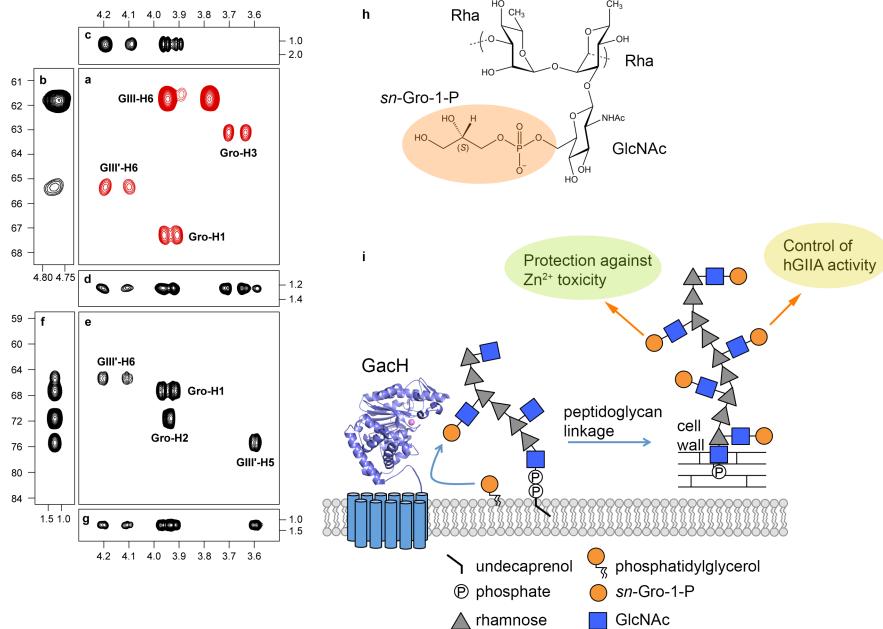



819

820 **Fig. 3. Structure of GacH and phylogenetic analysis of the GacH family of proteins.**  
821 (a) Predicted topology of GacH showing eleven transmembrane helices and structure of  
822 extracellular domain with the enzymatic active site oriented towards the cell membrane. (b)  
823 Structure of apo eGacH viewing at the active site with the Mn<sup>2+</sup> ion shown as a violet sphere. (c)  
824 A close-up view of the active site GacH crystal structure in complex with *sn*-Gro-1-P. (d)  
825 Phylogenetic analysis by Maximum Likelihood method of the predicted extracellular domains of

826 GacH and LtaS enzymes. A phylogenetic tree was generated using the predicted extracellular  
827 domains of 21 GacH (blue) and 21 LtaS (red) homologues from the same species. The GAS  
828 and *S. mutans* proteins analyzed in this study are indicated in bold. The phylogenetic tree is  
829 drawn to scale as indicated by the scale bar, with branch lengths measured in the number of  
830 substitutions per site.

831




832

833 **Fig. 4. GacH and SccH modify SRPs with sn-Gro-1-P.**

834 (a-d) Analysis of glycerol and phosphate content in GAC and SCC isolated from (a) GAS 5005  
 835 WT,  $\Delta$ gacH and complemented strain; (b) *S. mutans* WT,  $\Delta$ sccH, and  $\Delta$ sccH complemented  
 836 with sccH or gacH, and (c and d) GAS 5005 mutants  $\Delta$ gacL and  $\Delta$ gacI that are devoid of  
 837 GlcNAc side-chain. GAC and SCC were released from bacterial cell wall materials by PlyC and  
 838 mutanolysin digestion, respectively, and subjected to acid hydrolysis as described in Methods.  
 839 Phosphate was released from these samples by digestion with alkaline phosphatase and  
 840 measured using the malachite green assay. Glycerol was measured using a colorimetric  
 841 glycerol assay kit. The concentration of phosphate and glycerol is presented relative to the WT  
 842 strain. Data are mean  $\pm$  standard deviation of three independent replicates. \*\*,  $p < 0.01$ .  $P$ -  
 843 values are shown for glycerol and phosphate concentrations. (e) DEAE-Sephacel elution profile  
 844 of GAC. Isolated GAC was loaded onto an 18 mL column of DEAE-Sephacel. The column was  
 845 eluted with a 100 ml gradient of NaCl (0-1 M). Fractions were analyzed for carbohydrate by  
 846 anthrone assay (●) and phosphate by malachite green assay (○). (f-h) Identification of the

847 enantiomeric form of GroP associated with GAC. (f) The GroP isomers were recovered from  
848 GAC following alkaline hydrolysis and separated by liquid chromatography as outlined in  
849 Methods. The elution positions corresponding to standard Gro-2-P and *sn*-Gro-1-P/*sn*-Gro-3-P  
850 are indicated by the arrows. LC-MS analysis identifies two extracted ion chromatogram peaks  
851 for the molecular GroP ion *m/z* 171.004 [M-H]<sup>-</sup>, which eluted at (g) 9.48 and (h) 9.89 min. Based  
852 on the accurate mass and retention times, these two peaks were assigned as Gro-2-P and *sn*-  
853 Gro-1-P/*sn*-Gro-3-P respectively by comparison with authentic chemical standards.



854

855 **Fig. 5. NMR analysis confirms presence of GroP on GlcNAc hydroxymethyl group of**  
 856 **GAC.**

857 (a-g) Selected regions of NMR spectra of GAC. (a) Multiplicity-edited <sup>1</sup>H,<sup>13</sup>C-HSQC in which  
 858 methylene groups have opposite phase and are shown in red color, (b) <sup>1</sup>H,<sup>13</sup>C-HSQC-TOCSY  
 859 with an isotropic mixing time of 120 ms, (c) <sup>1</sup>H,<sup>13</sup>C-HMBC with a mixing time of 90 ms, (d)  
 860 <sup>1</sup>H,<sup>31</sup>P-hetero-TOCSY with an isotropic mixing time of 80 ms, (e) <sup>1</sup>H,<sup>13</sup>C-plane, (f) <sup>13</sup>C,<sup>31</sup>P-plane  
 861 using a nominal <sup>1</sup>J<sub>CP</sub> value of 5 Hz, and (g) <sup>1</sup>H,<sup>31</sup>P-plane of a through-bond 3D <sup>1</sup>H,<sup>13</sup>C,<sup>31</sup>P NMR  
 862 experiment. Cross-peaks are annotated as GIII corresponding to the GlcNAc residue, GIII' being  
 863 the GroP-substituted GlcNAc residue and Gro as the glycerol residue. NMR chemical shifts of  
 864 <sup>1</sup>H (horizontal axis), <sup>13</sup>C (left axis) and <sup>31</sup>P (right axis and panel f) are given in ppm.  
 865 (h) Schematic structure of the GAC repeating unit consisting of →3)-α-L-Rhap-(1→2)[β-D-  
 866 GlcpNAc6P(S)Gro-(1→3)]-α-L-Rhap-(1→. (i) The mechanism and the roles of GroP cell wall  
 867 modification in streptococci.

868 **References**

869

- 870 1. Brown, S., Santa Maria, J.P., Jr. & Walker, S. Wall teichoic acids of Gram-positive  
871 bacteria. *Annu. Rev. Microbiol.* **67**, 313-336 (2013).
- 872 2. Neuhaus, F.C. & Baddiley, J. A continuum of anionic charge: structures and functions of  
873 D-alanyl-teichoic acids in Gram-positive bacteria. *Microbiol. Mol. Biol. Rev.* **67**, 686-723  
874 (2003).
- 875 3. Weidenmaier, C. & Peschel, A. Teichoic acids and related cell-wall glycopolymers in  
876 Gram-positive physiology and host interactions. *Nat. Rev. Microbiol.* **6**, 276-287 (2008).
- 877 4. Mistou, M.Y., Sutcliffe, I.C. & van Sorge, N.M. Bacterial glycobiology: rhamnose-  
878 containing cell wall polysaccharides in Gram-positive bacteria. *FEMS Microbiol. Rev.* **40**,  
879 464-479 (2016).
- 880 5. McCarty, M. The lysis of group A hemolytic streptococci by extracellular enzymes of  
881 *Streptomyces albus*. II. Nature of the cellular substrate attacked by the lytic enzymes. *J.*  
882 *Exp. Med.* **96**, 569-580 (1952).
- 883 6. Lancefield, R.C. A serological differentiation of human and other groups of hemolytic  
884 Streptococci. *J. Exp. Med.* **57**, 571-595 (1933).
- 885 7. Huang, D.H., Rama Krishna, N. & Pritchard, D.G. Characterization of the group A  
886 streptococcal polysaccharide by two-dimensional <sup>1</sup>H-nuclear-magnetic-resonance  
887 spectroscopy. *Carbohydr. Res.* **155**, 193-199 (1986).
- 888 8. St Michael, F. et al. Investigating the candidacy of the serotype specific rhamnan  
889 polysaccharide based glycoconjugates to prevent disease caused by the dental  
890 pathogen *Streptococcus mutans*. *Glycoconj. J.* **35**, 53-64 (2018).
- 891 9. van der Beek, S.L. et al. GacA is essential for Group A Streptococcus and defines a new  
892 class of monomeric dTDP-4-dehydrorhamnose reductases (RmID). *Mol. Microbiol.* **98**,  
893 946-962 (2015).
- 894 10. Tsuda, H., Yamashita, Y., Shibata, Y., Nakano, Y. & Koga, T. Genes involved in  
895 bacitracin resistance in *Streptococcus mutans*. *Antimicrob. Agents Chemother.* **46**,  
896 3756-3764 (2002).
- 897 11. De, A. et al. Deficiency of RgpG causes major defects in cell division and biofilm  
898 formation, and deficiency of LytR-CpsA-Psr family proteins leads to accumulation of cell  
899 wall antigens in culture medium by *Streptococcus mutans*. *Appl. Environ. Microbiol.* **83**,  
900 e00928 (2017).
- 901 12. Nagata, E. et al. Serotype-specific polysaccharide of *Streptococcus mutans* contributes  
902 to infectivity in endocarditis. *Oral. Microbiol. Immunol.* **21**, 420-423 (2006).
- 903 13. van Sorge, N.M. et al. The classical Lancefield antigen of Group A Streptococcus is a  
904 virulence determinant with implications for vaccine design. *Cell Host Microbe* **15**, 729-  
905 740 (2014).
- 906 14. Le Breton, Y. et al. Essential genes in the core genome of the human pathogen  
907 *Streptococcus pyogenes*. *Sci. Rep.* **5**, 9838 (2015).
- 908 15. Henningham, A. et al. Virulence role of the GlcNAc side chain of the Lancefield cell wall  
909 carbohydrate antigen in non-M1-serotype Group A Streptococcus. *mBio* **9**, e02294  
910 (2018).
- 911 16. Kabanova, A. et al. Evaluation of a Group A Streptococcus synthetic oligosaccharide as  
912 vaccine candidate. *Vaccine* **29**, 104-114 (2010).
- 913 17. Sabharwal, H. et al. Group A streptococcus (GAS) carbohydrate as an immunogen for  
914 protection against GAS infection. *J. Infect. Dis.* **193**, 129-135 (2006).
- 915 18. Shibata, Y., Yamashita, Y., Ozaki, K., Nakano, Y. & Koga, T. Expression and  
916 characterization of streptococcal *rgp* genes required for rhamnan synthesis in  
917 *Escherichia coli*. *Infect. Immun.* **70**, 2891-2898 (2002).

918 19. Rush, J.S. et al. The molecular mechanism of N-acetylglucosamine side-chain  
919 attachment to the Lancefield group A carbohydrate in *Streptococcus pyogenes*. *J. Biol.*  
920 *Chem.* **292**, 19441-19457 (2017).

921 20. Ozaki, K. et al. A novel mechanism for glucose side-chain formation in rhamnose-  
922 glucose polysaccharide synthesis. *FEBS Lett.* **532**, 159-163 (2002).

923 21. van Hensbergen, V.P. et al. Streptococcal Lancefield polysaccharides are critical cell  
924 wall determinants for human Group IIA secreted phospholipase A2 to exert its  
925 bactericidal effects. *PLoS Pathog.* **14**, e1007348 (2018).

926 22. Weiss, J.P. Molecular determinants of bacterial sensitivity and resistance to mammalian  
927 Group IIA phospholipase A2. *Biochim. Biophys. Acta.* **1848**, 3072-3077 (2015).

928 23. Graham, M.R. et al. Virulence control in group A Streptococcus by a two-component  
929 gene regulatory system: global expression profiling and *in vivo* infection modeling. *Proc.*  
930 *Natl. Acad. Sci. USA* **99**, 13855-13860 (2002).

931 24. Ong, C.L., Gillen, C.M., Barnett, T.C., Walker, M.J. & McEwan, A.G. An antimicrobial  
932 role for zinc in innate immune defense against group A streptococcus. *J. Infect. Dis.* **209**,  
933 1500-1508 (2014).

934 25. Lu, D. et al. Structure-based mechanism of lipoteichoic acid synthesis by  
935 *Staphylococcus aureus* LtaS. *Proc. Natl. Acad. Sci. USA* **106**, 1584-1589 (2009).

936 26. Schirner, K., Marles-Wright, J., Lewis, R.J. & Errington, J. Distinct and essential  
937 morphogenic functions for wall- and lipo-teichoic acids in *Bacillus subtilis*. *EMBO J.* **28**,  
938 830-842 (2009).

939 27. Campeotto, I. et al. Structural and mechanistic insight into the *Listeria monocytogenes*  
940 two-enzyme lipoteichoic acid synthesis system. *J. Biol. Chem.* **289**, 28054-28069 (2014).

941 28. Schneewind, O. & Missiakas, D. Lipoteichoic acids, phosphate-containing polymers in  
942 the envelope of Gram-positive bacteria. *J. Bacteriol.* **196**, 1133-1142 (2014).

943 29. Webb, A.J., Karatsa-Dodgson, M. & Grundling, A. Two-enzyme systems for glycolipid  
944 and polyglycerolphosphate lipoteichoic acid synthesis in *Listeria monocytogenes*. *Mol.*  
945 *Microbiol.* **74**, 299-314 (2009).

946 30. Emdur, L.I., Saralkar, C., McHugh, J.G. & Chiu, T.H. Glycerolphosphate-containing cell  
947 wall polysaccharides from *Streptococcus sanguis*. *J. Bacteriol.* **120**, 724-732 (1974).

948 31. Fischer, W., Laine, R.A. & Nakano, M. On the relationship between  
949 glycerophosphoglycolipids and lipoteichoic acids in Gram-positive bacteria. II. Structures  
950 of glycerophosphoglycolipids. *Biochim. Biophys. Acta* **528**, 298-308 (1978).

951 32. Kennedy, E.P., Rumley, M.K., Schulman, H. & Van Golde, L.M. Identification of *sn*-  
952 glycero-1-phosphate and phosphoethanolamine residues linked to the membrane-  
953 derived oligosaccharides of *Escherichia coli*. *J. Biol. Chem.* **251**, 4208-4213 (1976).

954 33. Orekhov, V.Y. & Jaravine, V.A. Analysis of non-uniformly sampled spectra with multi-  
955 dimensional decomposition. *Prog. Nucl. Magn. Reson. Spectrosc.* **59**, 271-292 (2011).

956 34. Widmalm, G. A perspective on the primary and three-dimensional structures of  
957 carbohydrates. *Carbohydr. Res.* **378**, 123-132 (2013).

958 35. Bernlind, C., Oscarson, S. & Widmalm, G. Synthesis, NMR, and conformational studies  
959 of methyl  $\alpha$ -D-mannopyranoside 2-, 3-, 4-, and 6-monophosphates. *Carbohydr. Res.*  
960 **263**, 173-180 (1994).

961 36. Marino, J.P. et al. Three-dimensional triple-resonance  $^1\text{H}$ ,  $^{13}\text{C}$ ,  $^{31}\text{P}$  experiment:  
962 sequential through-bond correlation of ribose protons and intervening phosphorus along  
963 the RNA oligonucleotide backbone. *J. Am. Chem. Soc.* **116**, 6472-6473 (1994).

964 37. Caliot, E. et al. Role of the Group B antigen of *Streptococcus agalactiae*: a  
965 peptidoglycan-anchored polysaccharide involved in cell wall biogenesis. *PLoS Pathog.*  
966 **8**, e1002756 (2012).

967 38. Coligan, J.E., Kindt, T.J. & Krause, R.M. Structure of the streptococcal groups A, A-  
968 variant and C carbohydrates. *Immunochemistry* **15**, 755-760 (1978).

969 39. Mc, C.M. & Lancefield, R.C. Variation in the group-specific carbohydrate of group A  
970 streptococci. I. Immunochemical studies on the carbohydrates of variant strains. *J. Exp.*  
971 *Med.* **102**, 11-28 (1955).

972 40. Pritchard, D.G., Coligan, J.E., Geckle, J.M. & Evanochko, W.T. High-resolution <sup>1</sup>H- and  
973 <sup>13</sup>C-n.m.r. spectra of the group A-variant streptococcal polysaccharide. *Carbohydr. Res.*  
974 **110**, 315-319 (1982).

975 41. Pritchard, D.G., Gregory, R.L., Michalek, S.M. & McGhee, J.R. Characterization of the  
976 serotype e polysaccharide antigen of *Streptococcus mutans*. *Mol. Immunol.* **23**, 141-145  
977 (1986).

978 42. Pritchard, D.G., Michalek, S.M., McGhee, J.R. & Furner, R.L. Structure of the serotype f  
979 polysaccharide antigen of *Streptococcus mutans*. *Carbohydr. Res.* **166**, 123-131 (1987).

980 43. Heymann, H., Manniello, J.M. & Barkulis, S.S. Structure of streptococcal cell walls. V.  
981 Phosphate esters in the walls of group A *Streptococcus pyogenes*. *Biochem. Biophys.*  
982 *Res. Commun.* **26**, 486-491 (1967).

983 44. Pazur, J.H., Cepure, A., Kane, J.A. & Karakawa, W.W. Glycans from streptococcal cell  
984 walls: glycosyl-phosphoryl moieties as immunodominant groups in heteroglycans from  
985 group D and group L streptococci. *Biochem. Biophys. Res. Commun.* **43**, 1421-1428  
986 (1971).

987 45. Prakobphol, A., Linzer, R. & Genco, R.J. Purification and characterization of a  
988 rhamnose-containing cell wall antigen of *Streptococcus mutans* B13 (serotype d). *Infect.*  
989 *Immun.* **27**, 150-157 (1980).

990 46. Czabanska, A., Holst, O. & Duda, K.A. Chemical structures of the secondary cell wall  
991 polymers (SCWPs) isolated from bovine mastitis *Streptococcus uberis*. *Carbohydr. Res.*  
992 **377**, 58-62 (2013).

993 47. Neiwert, O., Holst, O. & Duda, K.A. Structural investigation of rhamnose-rich  
994 polysaccharides from *Streptococcus dysgalactiae* bovine mastitis isolate. *Carbohydr.*  
995 *Res.* **389**, 192-195 (2014).

996 48. Karatsa-Dodgson, M., Wormann, M.E. & Grundling, A. *In vitro* analysis of the  
997 *Staphylococcus aureus* lipoteichoic acid synthase enzyme using fluorescently labeled  
998 lipids. *J. Bacteriol.* **192**, 5341-5349 (2010).

999 49. Lequette, Y., Lanfroy, E., Cogez, V., Bohin, J.P. & Lacroix, J.M. Biosynthesis of  
1000 osmoregulated periplasmic glucans in *Escherichia coli*: the membrane-bound and the  
1001 soluble periplasmic phosphoglycerol transferases are encoded by the same gene.  
1002 *Microbiology* **154**, 476-483 (2008).

1003 50. Peschel, A. et al. Inactivation of the *dlt* operon in *Staphylococcus aureus* confers  
1004 sensitivity to defensins, protegrins, and other antimicrobial peptides. *J. Biol. Chem.* **274**,  
1005 8405-8410 (1999).

1006 51. Falagas, M.E., Rafailidis, P.I. & Matthaiou, D.K. Resistance to polymyxins: Mechanisms,  
1007 frequency and treatment options. *Drug Resist. Updat.* **13**, 132-138 (2010).

1008 52. Djoko, K.Y., Ong, C.L., Walker, M.J. & McEwan, A.G. The role of copper and zinc  
1009 toxicity in innate immune defense against bacterial pathogens. *J. Biol. Chem.* **290**,  
1010 18954-18961 (2015).

1011 53. McDevitt, C.A. et al. A molecular mechanism for bacterial susceptibility to zinc. *PLoS*  
1012 *Pathog.* **7**, e1002357 (2011).

1013 54. Buckland, A.G. & Wilton, D.C. Inhibition of secreted phospholipases A2 by annexin V.  
1014 Competition for anionic phospholipid interfaces allows an assessment of the relative  
1015 interfacial affinities of secreted phospholipases A2. *Biochim. Biophys. Acta* **1391**, 367-  
1016 376 (1998).

1017 55. Hsu, Y.H., Dumla, D.S., Cao, J. & Dennis, E.A. Assessing phospholipase A2 activity  
1018 toward cardiolipin by mass spectrometry. *PLoS One* **8**, e59267 (2013).

1019 56. Koprivnjak, T., Peschel, A., Gelb, M.H., Liang, N.S. & Weiss, J.P. Role of charge  
1020 properties of bacterial envelope in bactericidal action of human group IIA phospholipase  
1021 A2 against *Staphylococcus aureus*. *J. Biol. Chem.* **277**, 47636-47644 (2002).

1022 57. Hunt, C.L., Nauseef, W.M. & Weiss, J.P. Effect of D-alanylation of (lipo)teichoic acids of  
1023 *Staphylococcus aureus* on host secretory phospholipase A2 action before and after  
1024 phagocytosis by human neutrophils. *J. Immunol.* **176**, 4987-4994 (2006).

1025 58. Carapetis, J.R., Steer, A.C., Mulholland, E.K. & Weber, M. The global burden of group A  
1026 streptococcal diseases. *Lancet Infect. Dis.* **5**, 685-694 (2005).

1027 59. Goldstein, I., Rebeyrotte, P., Parlebas, J. & Halpern, B. Isolation from heart valves of  
1028 glycopeptides which share immunological properties with *Streptococcus haemolyticus*  
1029 group A polysaccharides. *Nature* **219**, 866-868 (1968).

1030 60. Ayoub, E.M. & Dudding, B.A. Streptococcal group A carbohydrate antibody in rheumatic  
1031 and nonrheumatic bacterial endocarditis. *J. Lab. Clin. Med.* **76**, 322-332 (1970).

1032 61. Kirvan, C.A., Swedo, S.E., Heuser, J.S. & Cunningham, M.W. Mimicry and autoantibody-  
1033 mediated neuronal cell signaling in Sydenham chorea. *Nat. Med.* **9**, 914-920 (2003).

1034 62. Shulman, S.T. et al. Group A streptococcal pharyngitis serotype surveillance in North  
1035 America, 2000-2002. *Clin. Infect. Dis.* **39**, 325-332 (2004).

1036 63. Sumby, P. et al. Evolutionary origin and emergence of a highly successful clone of  
1037 serotype M1 group a *Streptococcus* involved multiple horizontal gene transfer events. *J.*  
1038 *Infect. Dis.* **192**, 771-782 (2005).

1039 64. Koga, T., Asakawa, H., Okahashi, N. & Takahashi, I. Effect of subculturing on  
1040 expression of a cell-surface protein antigen by *Streptococcus mutans*. *J. Gen. Microbiol.*  
1041 **135**, 3199-3207 (1989).

1042 65. Moore, G.E., Gerner, R.E. & Franklin, H.A. Culture of normal human leukocytes. *JAMA*  
1043 **199**, 519-524 (1967).

1044 66. van de Rijn, I. & Kessler, R.E. Growth characteristics of group A streptococci in a new  
1045 chemically defined medium. *Infect. Immun.* **27**, 444-448 (1980).

1046 67. Hoff, J.S., DeWald, M., Moseley, S.L., Collins, C.M. & Voyich, J.M. SpyA, a C3-like ADP-  
1047 ribosyltransferase, contributes to virulence in a mouse subcutaneous model of  
1048 *Streptococcus pyogenes* infection. *Infect. Immun.* **79**, 2404-2411 (2011).

1049 68. Caparon, M.G. & Scott, J.R. Genetic manipulation of pathogenic streptococci. *Methods*  
1050 *Enzymol.* **204**, 556-586 (1991).

1051 69. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. & Pease, L.R. Engineering hybrid genes  
1052 without the use of restriction enzymes: gene splicing by overlap extension. *Gene* **77**, 61-  
1053 68 (1989).

1054 70. Trevino, J., Liu, Z., Cao, T.N., Ramirez-Pena, E. & Sumby, P. RivR is a negative  
1055 regulator of virulence factor expression in group A *Streptococcus*. *Infect. Immun.* **81**,  
1056 364-372 (2013).

1057 71. Kabsch, W. *Xds. Acta Crystallogr. D Biol. Crystallogr.* **66**, 125-132 (2010).

1058 72. Grosse-Kunstleve, R.W. & Adams, P.D. Substructure search procedures for  
1059 macromolecular structures. *Acta Crystallogr. D Biol. Crystallogr.* **59**, 1966-1973 (2003).

1060 73. McCoy, A.J., Storoni, L.C. & Read, R.J. Simple algorithm for a maximum-likelihood SAD  
1061 function. *Acta Crystallogr. D Biol. Crystallogr.* **60**, 1220-1228 (2004).

1062 74. Terwilliger, T.C. et al. Decision-making in structure solution using Bayesian estimates of  
1063 map quality: the PHENIX AutoSol wizard. *Acta Crystallogr. D Biol. Crystallogr.* **65**, 582-  
1064 601 (2009).

1065 75. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot.  
1066 *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486-501 (2010).

1067 76. Afonine, P.V. et al. Towards automated crystallographic structure refinement with  
1068 phenix.refine. *Acta Crystallogr. D Biol. Crystallogr.* **68**, 352-367 (2012).

1069 77. McCoy, A.J. et al. Phaser crystallographic software. *J. Appl. Crystallogr.* **40**, 658-674  
1070 (2007).

1071 78. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular  
1072 structure solution. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 213-221 (2010).

1073 79. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular  
1074 crystallography. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 12-21 (2010).

1075 80. Gore, S. et al. Validation of structures in the Protein Data Bank. *Structure* **25**, 1916-1927  
1076 (2017).

1077 81. Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8.0.3. (2010).

1078 82. Bui, N.K. et al. Isolation and analysis of cell wall components from *Streptococcus*  
1079 *pneumoniae*. *Anal. Biochem.* **421**, 657-666 (2012).

1080 83. Santander, J. et al. Mechanisms of intrinsic resistance to antimicrobial peptides of  
1081 *Edwardsiella ictaluri* and its influence on fish gut inflammation and virulence.  
*Microbiology* **159**, 1471-1486 (2013).

1082 84. Ghomashchi, F. et al. Preparation of the full set of recombinant mouse- and human-  
1083 secreted phospholipases A2. *Methods Enzymol.* **583**, 35-69 (2017).

1084 85. Le Breton, Y. & McIver, K.S. Genetic manipulation of *Streptococcus pyogenes* (the  
1085 Group A Streptococcus, GAS). *Curr. Protoc. Microbiol.* **30**, Unit 9D 3 (2013).

1086 86. Le Breton, Y. et al. Genome-wide discovery of novel M1T1 group A streptococcal  
1087 determinants important for fitness and virulence during soft-tissue infection. *PLoS*  
1088 *Pathog.* **13**, e1006584 (2017).

1089 87. Anders, S. & Huber, W. Differential expression analysis for sequence count data.  
*Genome Biol.* **11**, R106 (2010).

1090 88. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for  
1091 differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139-  
1092 140 (2010).

1093 89. Wagner, R. & Berger, S. Gradient-selected NOESY-A fourfold reduction of the  
1094 measurement time for the NOESY Experiment. *J. Magn. Reson. A* **123**, 119-121 (1996).

1095 90. Willker, W., Leibfritz, D., Kerssebaum, R. & Bermel, W. Gradient selection in inverse  
1096 heteronuclear correlation spectroscopy. *Magn. Reson. Chem.* **31**, 287-292 (1993).

1097 91. Kellogg, G.W. Proton-detected hetero-TOCSY experiments with application to nucleic  
1098 acids. *J. Magn. Reson.* **98**, 176-182 (1992).

1099 92. Tsirigos, K.D., Peters, C., Shu, N., Kall, L. & Elofsson, A. The TOPCONS web server for  
1100 consensus prediction of membrane protein topology and signal peptides. *Nucleic Acids*  
1101 *Res.* **43**, W401-407 (2015).

1102 93. Soding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology  
1103 detection and structure prediction. *Nucleic Acids Res.* **33**, W244-248 (2005).

1104 94. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high  
1105 throughput. *Nucleic Acids Res.* **32**, 1792-1797 (2004).

1106 95. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular  
1107 Evolutionary Genetics Analysis version 6.0. *Mol. Biol. Evol.* **30**, 2725-2729 (2013).

1110