

1 **Microbiome interaction networks and community structure from lab-
2 reared and field-collected *Aedes aegypti*, *Aedes albopictus*, and *Culex
3 quinquefasciatus* mosquito vectors.**

4
5 Shivanand Hegde^{1*}, Kamil Khanipov^{2*}, Levent Albayrak³, George Golovko³, Maria
6 Pimenova³, Miguel A. Saldaña⁴, Mark M Rojas³, Emily A. Hornett⁵, Greg C. Motl⁶, Chris
7 L. Fredregill⁶, James A. Dennett⁶, Mustapha Debboun⁶, Yuriy Fofanov³, Grant L.
8 Hughes^{7#}

9
10 * The authors contributed equally

11
12 ¹ Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
13 ² Department of Pharmacology and Toxicology, Sealy Center for
14 Structural Biology and Molecular Biophysics. University of Texas Medical Branch,
15 Galveston, TX, USA. Department of Computer Science, University of Houston, Houston,
16 TX, USA.

17 ³ Department of Pharmacology and Toxicology, Sealy Center for
18 Structural Biology. University of Texas Medical Branch, Galveston, TX, USA.

19 ⁴ Department of Microbiology and Immunology, University of Texas Medical Branch,
20 Galveston, TX, USA,

21 ⁵ Department of Zoology, University of Cambridge, Cambridge, UK.

22 ⁶ Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, USA

23 ⁷ Department of Pathology, Institute for Human Infections and Immunity, Center for
24 Tropical Diseases, Center for Biodefense and Emerging Infectious Disease. University
25 of Texas Medical Branch, Galveston, TX, USA.

26 [#]Corresponding author. Grant Hughes: glhughes@utmb.edu

27

28

29 Running head: Microbial interactions in mosquitoes.

30

31 **Abstract.**

32 Microbial interactions are an underappreciated force in shaping insect microbiome
33 communities. Although pairwise patterns of symbiont interactions have been identified,
34 we have a poor understanding regarding the scale and the nature of co-occurrence and
35 co-exclusion interactions within the microbiome. To characterize these patterns in
36 mosquitoes, we sequenced the bacterial microbiome of *Aedes aegypti*, *Ae. albopictus*,
37 and *Culex quinquefasciatus* caught in the field or reared in the laboratory and used
38 these data to generate interaction networks. For collections, we used traps that attracted
39 host-seeking or ovipositing female mosquitoes to determine how physiological state
40 affects the microbiome under field conditions. Interestingly, we saw few differences in
41 species richness or microbiome community structure in mosquitoes caught in either trap.
42 Co-occurrence and co-exclusion analysis identified 116 pairwise interactions
43 substantially increasing the list of bacterial interactions observed in mosquitoes.
44 Networks generated from the microbiome of *Ae. aegypti* often included highly
45 interconnected hub bacteria. There were several instances where co-occurring bacteria
46 co-excluded a third taxa, suggesting the existence of tripartite relationships. Several
47 associations were observed in multiple species or in field and laboratory-reared
48 mosquitoes indicating these associations are robust and not influenced by
49 environmental or host factors. To demonstrate that microbial interactions can influence
50 colonization of the host, we administered symbionts to *Ae. aegypti* larvae that either
51 possessed or lacked their resident microbiota. We found that the presence of resident

52 microbiota can inhibit colonization of particular bacterial taxa. Our results highlight that

53 microbial interactions in mosquitoes are complex and influence microbiome composition.

54

55 **Keywords.** Interaction networks, Microbe-microbe interactions, Gnotobiotic, Gut

56 symbiont, *Wolbachia*.

57

58

59 **Introduction.**

60 The microbiome of mosquitoes can be highly variable, both within and between species,
61 and is often dominated by relatively few genera (Boissière et al., 2012; Buck et al., 2016;
62 Muturi et al., 2017; Osei-Poku et al., 2012; Wang et al., 2011). Understanding the factors
63 that influence this variation is important as microbes drastically alter host biology. For
64 mosquitoes, bacteria can affect a diverse number of traits including immunity,
65 reproduction, survival, and vector competence (Hegde et al., 2015; Jupatanakul et al.,
66 2014). These phenotypes have ramifications for the vectorial capacity of pathogens, and
67 as such, microbial-based vector control strategies are under investigation to reduce the
68 burden of arthropod-borne diseases (Bourtzis et al., 2014; Dennison et al., 2014;
69 Saldaña et al., 2017). While our understanding of the contributing factors that affect the
70 composition and abundance of the microbiome is expanding, there are still many
71 unanswered questions regarding microbiome assembly and maintenance within
72 mosquito hosts.

73

74 Exposure to environmental microbes is undoubtedly a major influence on the mosquito
75 microbiome. These effects are particularly pronounced at the aquatic stage as larvae
76 and pupae are immersed in water and can acquire bacteria by filter feeding. Indeed,
77 several studies have shown the larval stages possess a similar microbiome as their
78 larval water environment (Duguma et al., 2013; Gimonneau et al., 2014; Vázquez-
79 martínez et al., 2009), and exposure to bacteria at these immature stages has
80 implications for adult traits (Dickson et al., 2017). Furthermore, the larval habitat can

81 influence the composition of the adult microbiome. Bacteria can be transstadially
82 transmitted to the adult (Chen et al., 2015; Coon et al., 2014; Gonçalves et al., 2014;
83 Jadin et al., 1966), and newly emerged adults are known to imbibe their larval water,
84 which likely seeds the gut with microbiota (Lindh et al., 2008).

85

86 Host and bacterial genetics also contribute to microbiome composition and microbial
87 abundance. Mosquitoes can maintain microbiome homeostasis by a variety of different
88 mechanisms. Host pathways and processes known to influence microbiota in
89 mosquitoes include immunity, amino acid metabolism, reactive oxygen species and
90 calcium transport (Kumar et al., 2010; Pang et al., 2016; Short et al., 2017; Stathopoulos
91 et al., 2014; Xiao et al., 2017; Zhao et al., 2017). Additionally, serial passaging of gut
92 symbionts in mosquitoes selected for isolates that persist in the gut for longer periods of
93 time (Dennison et al., 2016; Riehle et al., 2007), indicating that bacterial genetics is also
94 important in shaping the microbiome.

95

96 Adult mosquito feeding behavior also has important implications for microbiome
97 community structure. It is likely that bacteria can be acquired from the nectar of plants
98 (Gusmão et al., 2007), and taking a blood meal alters the microbiome considerably. At
99 24 hours post-blood meal, the bacterial load in the gut drastically increases while
100 species diversity decreases (Kumar et al., 2010; Oliveira et al., 2011; Terenius et al.,
101 2012; Wang et al., 2011). Culture based assays show that bacterial loads revert to pre-
102 blood fed levels 2-3 days after the blood meal (Demaio et al., 1996; Oliveira et al., 2011;
103 Pompuni et al., 1996), although other studies have seen high bacterial loads persist for

104 some time and species richness not reverting to the original composition seen prior to
105 the blood meal (Gusmão et al., 2010; Wang et al., 2011). Most of these studies either
106 used laboratory-reared mosquitoes to examine culturable bacterial load, or relocated
107 field mosquitoes to the laboratory for experimentation, and as such, there are few
108 studies examining the effect of blood feeding on the microbiome community structure in
109 field populations.

110

111 Recently, it has become evident that a further force affects microbiome composition in
112 mosquitoes – interactions between the microbes themselves. These interactions were
113 first highlighted with the discovery that *Wolbachia* and *Asaia* are antagonistic to one
114 another, thereby affecting the vertical transmission of *Wolbachia* in *Anopheles*
115 mosquitoes (Hughes et al., 2014; Rossi et al., 2015). Further comparisons exploiting
116 16S rRNA amplicon high throughput sequencing have identified interactions between
117 *Wolbachia* and other microbes in both *Drosophila* and mosquitoes (Audsley et al.,
118 2017b; Novakova et al., 2017; Simhadri et al., 2017; Ye et al., 2017; Zink et al., 2015). In
119 addition to the specific interactions between *Wolbachia* and other bacterial taxa,
120 pairwise negative and positive microbial interactions within bacteria or fungi, as well as
121 cross-kingdom interactions (bacterial-fungal) have been reported in the La Crosse virus
122 vectors, *Aedes triseriatus*, and *Ae. japonicus* (Muturi et al., 2016a). Taken together,
123 these studies suggest that microbial interactions are important in dictating the
124 composition and abundance of host-associated microbiota, yet it is unclear how
125 ubiquitous and complex these interactions are within mosquitoes.

126

127 16S rRNA amplicon sequencing datasets have been analyzed to create microbial co-
128 occurrence networks for several species and environments (Barberán et al., 2012;
129 Chaffron et al., 2010; Faust and Raes, 2012; Faust et al., 2012; Goodrich et al., 2014),
130 but these networks are lacking for mosquitoes and insects in general. These methods
131 use presence/absence metrics, relative abundance, or both, to examine pairwise
132 interactions to develop a network. Usually, interacting pairs of taxa are designated as
133 having co-occurring or co-exclusionary relationships. Each method used for the
134 identification of co-occurrence/co-exclusion networks has strengths and weaknesses in
135 identifying particular patterns. CoNet (Faust and Raes, 2016), uses an ensemble
136 approach that combines results from a collection of algorithms (Bray and Curtis, 1957;
137 Cover and Thomas, 2012; Kullback and Leibler, 1951; Pearson, 1895; Sedgwick, 2014)
138 using presence/absence and relative abundance data to identify statistically significant
139 interactions. Interaction networks provide another methodology to examine the
140 community structure of the microbiome of mosquitoes. Comparing microbiome networks
141 generated from mosquitoes exposed to different conditions may provide insights into
142 factors influencing microbiome structure in mosquitoes and identify pairwise interactions
143 not affected by environmental conditions.

144
145 To expand our understanding of the forces that shape the bacterial microbiome of
146 mosquitoes, we examined the microbial composition and community structure from three
147 major mosquito arboviral vectors, *Ae. aegypti*, *Ae. albopictus*, and *Cx. quinquefasciatus*,
148 collected from the field or reared under uniform insectary conditions. For the field
149 collections, we utilized two trapping methods that primarily attract mosquitoes in different

150 physiological states: host- or oviposition-seeking (Dennett et al., 2007; Figuerola et al.,
151 2012; Maciel-de-Freitas et al., 2006; Reiter et al., 1986). Our sampling regime allowed
152 us to examine how factors such as host species, environment, and physiological state in
153 the field influenced the composition of the mosquito microbiome. We also compared the
154 microbiome of mosquitoes that were naturally infected (*Ae. albopictus* and *Cx.*
155 *quinquefasciatus*) and uninfected (*Ae. aegypti*) with *Wolbachia*. Furthermore, we
156 developed microbial interaction networks to explore the complexity and nature of
157 microbial interactions in mosquitoes. To demonstrate that microbial interactions
158 influence host colonization, we infected *Ae. aegypti* larvae either possessing or lacking
159 their native microbiota with a range of bacterial symbionts. Our results highlight the
160 complexities of microbial networks in field collected *Ae. aegypti* mosquitoes and indicate
161 the native microbiome induces colonization resistance to certain gut microbes.

162 **Material and Methods.**

163 **Mosquito collections and DNA extractions.**

164 Female *Ae. albopictus* and *Cx. quinquefasciatus* were collected from an abandoned tire
165 repository in south-eastern Harris County, Houston, Texas, USA, while female *Ae.*
166 *aegypti* were collected from a separate site in Houston (Figure S1). Further details
167 describing the tire repository location were previously reported (Dennett et al., 2004). All
168 mosquitoes were trapped over a 24 hour period with either the Biogents Sentinel (BG) or
169 Harris County gravid (G) traps, which selectively collect host-seeking or gravid female
170 mosquitoes, respectively (Dennett et al., 2007; Figuerola et al., 2012; Maciel-de-Freitas
171 et al., 2006). Mosquito species were identified using morphological characteristics,
172 surface sterilized (5 min in 70% ethanol followed by 3 washes in 1X PBS each for 5
173 min), and stored in ethanol at -20°C while awaiting DNA extraction. 5-7 day old adult
174 sugar fed laboratory-colonized mosquitoes (*Ae. aegypti*; Galveston strain, *Ae.*
175 *albopictus*; Galveston strain, and *Cx. quinquefasciatus*; Houston strain) were reared
176 under conventional conditions and then processed in the same manner as field samples.
177 All laboratory-reared mosquitoes were reared in the insectary at the University of Texas
178 Medical Branch.

179

180 **High throughput sequencing and bioinformatics analysis.**

181 High-throughput sequencing of the bacterial 16S ribosomal RNA gene was performed
182 using gDNA isolated from each sample. Sequencing libraries for each isolate were
183 generated using universal 16S rRNA V3-V4 region primers (Klindworth et al., 2012) in

184 accordance with Illumina 16S rRNA metagenomic sequencing library protocols. The
185 samples were barcoded for multiplexing using Nextera XT Index Kit v2. Sequencing was
186 performed on an Illumina MiSeq instrument using a MiSeq Reagent Kit v2 (500-cycles).
187 The NCBI Bioproject accession number for the raw sequencing data reported here is
188 PRJNA422599.

189
190 To identify the presence of known bacteria, sequences were analyzed using the CLC
191 Genomics Workbench 8.0.1 Microbial Genomics Module (<http://www.clcbio.com>). Reads
192 containing nucleotides below the quality threshold of 0.05 (using the modified Richard
193 Mott algorithm) and those with two or more unknown nucleotides or sequencing
194 adapters were trimmed out. All reads were trimmed to 264 bases for subsequent
195 operational taxonomic unit (OTU) classification. Reference based OTU picking was
196 performed using the SILVA SSU v119 97% database (Quast et al., 2013). Sequences
197 present in more than one copy but not clustered to the database were placed into de
198 novo OTUs (97% similarity) and aligned against the reference database with 80%
199 similarity threshold to assign the “closest” taxonomical name where possible. Chimeras
200 were removed from the dataset if the absolute crossover cost was 3 using a k-mer size
201 of 6. Alpha diversity was measured using Shannon entropy (OTU level), rarefaction
202 sampling without replacement, and with 100,000 replicates at each point. Beta diversity
203 was calculated using the Bray-Curtis diversity measure (OTU level). PERmutational
204 Multivariate ANalysis Of VAriance (PERMANOVA) analysis was used to measure effect
205 size and significance on beta diversity for grouping variables (Anderson, 2014). The
206 significance is obtained by a permutation test. For each assessment, a permutation of

207 99,999 was chosen. Differentially abundant bacteria (genus level, >0.1%) were identified
208 using analysis of composition of microbiomes (ANCOM) (Mandal et al., 2015) with a
209 significance level of $P > 0.05$, while values quantifying fold change were obtained using
210 the log2 fold change formula (Quackenbush, 2002).

211
212 Detection of complex interaction patterns.

213 OTUs with read counts below 0.1% of total number of reads in all samples were
214 excluded from analysis. The remaining OTUs were combined based on lowest common
215 taxonomy assignments down to genus level, and relative abundance tables were
216 generated by normalizing read counts against total number of reads in the original data.
217 The resulting number of unique entries identified in samples was 33. Interactions (such
218 as co-occurrence and co-exclusion) among these were identified using CoNet app
219 (Faust and Raes, 2016) in Cytoscape (Shannon et al., 2003) using the following
220 ensemble of methods: Pearson correlation (Pearson, 1895), Spearman correlation
221 (Sedgwick, 2014), mutual information (Cover and Thomas, 2012), Bray-Curtis
222 dissimilarity (Bray and Curtis, 1957) and Kullback-Leibler divergence (Kullback and
223 Leibler, 1951). Statistical significance of each pair was tested using the row-shuffle
224 randomization option and interactions that scored at the top and bottom 1% of 100
225 bootstraps were reported. Resulting statistically significant interactions were categorized
226 by the software into three groups: co-presence, co-exclusion and unknown. Unknown
227 interactions represent statistically significant patterns that cannot be clearly categorized
228 as co-exclusion or co-occurrence. Since we could not ascribe an interaction pattern, the

229 unknown interactions were excluded from the network. Resulting interaction networks
230 were visualized using Cytoscape software (Shannon et al., 2003).

231

232 **Estimation of microbial load and screening for *Wolbachia* by PCR**
233 Total bacterial load within each mosquito species or group was assessed by qPCR
234 using gDNA as a template. qPCR was conducted using universal bacterial primers
235 (Kumar et al., 2010) that amplified the bacterial 16S rRNA gene or primers that
236 specifically amplified *Wolbachia* (Rao et al., 2006; Walker et al., 2009). Relative
237 abundance was calculated by comparing the load of all bacteria or *Wolbachia* to a single
238 copy mosquito gene (Calvitti et al., 2015; Isoe et al., 2011; Xia and Zwiebel, 2006).
239 PCRs amplifying the 16S rRNA and *wsp* genes of *Wolbachia* were used to screen for
240 *Wolbachia* in field caught *Ae. aegypti* (Baldo et al., 2006; O'Neill et al., 1992; Werren
241 and Windsor, 2000; Zhou et al., 1998), and nematode specific primers were used to
242 screen for nematode infections (Casiraghi et al., 2004).

243

244 **Re-infection of bacteria into mosquito larvae.**

245 *Aedes aegypti* gnotobiotic larvae were generated as previously described (Coon et al.,
246 2014). To synchronize hatching, sterile eggs were transferred to a conical flask and
247 placed under a vacuum for 45 min. To verify sterility, larval water was plated on non-
248 selective LB agar plates and reared under sterile conditions. L1 larvae grown without
249 bacteria have slow growth rates and do not reach pupation (Coon et al., 2014). Forty-
250 five L1 larvae were transferred to a T75 tissue culture flask and inoculated with 1×10^7

251 CFU/ml of transgenic symbionts possessing the plasmid the pRAM18dRGA-mCherry
252 that was derived from pRAM18dRGA (Burkhardt et al., 2011). Bacterial cultures were
253 quantified with a spectrophotometer (DeNovix DS-11, DeNovix) and validated by plating
254 to determine CFU. For conventional rearing of mosquitoes, eggs (non-sterilized) were
255 vacuum hatched and grown under non-aseptic conditions in a T75 tissue culture flask
256 supplemented with transgenic symbionts at the concentration of 1×10^7 CFU/ml. To feed
257 mosquitoes, ground fish food pellets were sterilized by autoclaving, and mixed with
258 sterile water. The equivalent of 6 mg of fish food was fed to both gnotobiotic and
259 conventionally reared mosquitoes every second day. To quantify the bacterial load of
260 symbionts, surface sterilized L4 larvae were homogenized and plated on a selective
261 media (50 μ g/ml Kanamycin) on which only transgenic symbionts grew (pRAM18dRGA-
262 mCherry induces resistance to Kanamycin). After incubation at 30°C or 37°C (depending
263 on symbiont) for 2-3 days, colonies (expressing mCherry fluorescent protein) were
264 counted. All colonies observed on the kanamycin plate were confirmed to have mCherry
265 fluorescence.

266

267 **Results**

268 **Microbiome Diversity.**

269 We sequenced amplicons of the V3/V4 region of the 16S rRNA gene from whole
270 individual adult female mosquitoes either collected from the field or reared in the
271 laboratory. In total, we sequenced 130 adult mosquitoes obtaining 10,668,291 reads
272 (sample size per group and species is reported in Table S1). After quality filtering,
273 7,051,256 reads were assigned to OTUs at 97% identity threshold and on average,
274 there were 54,240 reads per mosquito sample. Rarefaction curve analysis indicated that
275 our sequencing depth was sufficient to observe all OTUs in mosquito samples (Figure
276 S2). We identified a total of 4,419 bacterial OTUs in the three mosquito species, but only
277 58 were present at an infection frequency of over 0.1% within the dataset (Table S2).
278 When abundant microbes were classified at higher taxonomic levels, our analysis found
279 22 families, with Enterobacteriaceae being the most common when disregarding
280 *Wolbachia*. Bacteria found in mosquitoes were classified into five phyla with bacteria in
281 the phylum Proteobacteria most prevalent in the microbiome, which is consistent with
282 previous studies (Audsley et al., 2017a; David et al., 2016; Muturi et al., 2016b; Osei-
283 Poku et al., 2012), although other reports indicated Bacteroidetes or Acinetobacter phyla
284 can be a major component of the microbiome (Coon et al., 2014; 2016b; Minard et al.,
285 2014; 2015).

286

287 When examining the sequencing data at the genus level, the microbiomes of *Cx.*
288 *quinquefasciatus* and *Ae. albopictus* were dominated by the endosymbiont *Wolbachia*

289 with 87 and 81 % of total reads, respectively (Figure S3, Table S2). While *Wolbachia*
290 accounted for many of the reads, rarefaction analysis indicated our sampling depth was
291 sufficient to identify rare OTUs. Other highly abundant genera in field-collected
292 mosquitoes included *Halomonas*, *Shewanella*, and *Asaia* in *Cx. quinquefasciatus*,
293 *Halomonas*, *Pseudomonas*, and *Zymobacter* in *Ae. albopictus*, and *Pseudomonas*,
294 *Zymobacter*, *Tatumella*, and *Enterobacter* in *Ae. aegypti* (Figure S3, Table S2). Similar
295 to a recent finding (Coon et al., 2016b), we found a small number of *Wolbachia* reads in
296 a few *Ae. aegypti* individuals collected from the field in G traps. It is thought that *Ae.*
297 *aegypti* are naturally uninfected by *Wolbachia* (Iturbe-Ormaetxe et al., 2011), although
298 Coon et al. (2016) suggested that some populations may be infected. However, samples
299 that contained *Wolbachia* reads from our sequencing data could not be independently
300 validated by PCR using several *Wolbachia* genes (*wsp* and MLST genes) commonly
301 used to screen for the bacterium, nor were they PCR positive for filarial nematode
302 infection (that carry *Wolbachia*) when amplifying with primers that detect nematode
303 DNA.

304
305 Given the above finding and since microbiome sequencing can be susceptible to
306 contamination (Pollock et al., 2018; Tournousse et al., 2017), we examined our data for
307 other possible contamination signatures. While we could not find conclusive evidence of
308 contamination, in this process we observed a possible batch effect for a specific
309 bacterium in field-collected *Ae. aegypti*. These samples were extracted in two batches
310 (see Table S1) and the field-collected samples from the latter extraction were found to

311 have higher loads of *Burkholderia* compared to those extracted in the first batch.
312 However, all laboratory-reared mosquitoes extracted during this second extraction did
313 not contain high levels of *Burkholderia*, indicating the prevalence of this microbe in the
314 field-collected samples was not likely due to laboratory contamination. Despite this
315 occurrence, the dataset is suitable for constructing networks as this analysis examines
316 pairwise interactions, and as such, other interacting pairs will not be influenced by
317 *Burkholderia*. Future studies should consider the use of reagent-only controls and spike
318 controls to help determine if cross-contamination of samples occurs in the sequencing
319 process (Pollock et al., 2018; Tourlousse et al., 2017), although it is questionable if
320 these controls would have been of assistance in this case given that laboratory-reared
321 mosquitoes did not have elevated *Burkholderia* reads.

322
323 The Shannon diversity index was used to estimate the species richness in mosquitoes
324 (Shannon, 2001). There were significant differences in diversity between the microbial
325 communities of *Aedes* mosquitoes compared to *Cx. quinquefasciatus* when compared at
326 the OTU level (Figure 1; Kruskal-Wallis $P<0.0001$). When comparing groups within *Ae.*
327 *aegypti*, field collected mosquitoes from either the BG or G trap had a significantly
328 greater Shannon diversity index compared to the laboratory mosquitoes. No differences
329 were seen between groups in *Ae. albopictus*, while *Cx. quinquefasciatus* caught in the G
330 trap had a significantly lower Shannon diversity index compared to laboratory-reared
331 mosquitoes. Across all species, we found no significant differences in species richness
332 between mosquitoes caught in the BG and G traps.

333

334 Since both *Ae. albopictus* and *Cx. quinquefasciatus* were heavily infected with
335 *Wolbachia*, we examined alpha diversity (OTU level) in these mosquitoes when this
336 endosymbiont was computationally excluded from the dataset (Figure S4). In all cases,
337 we observed an increase in Shannon diversity when *Wolbachia* was excluded. This was
338 significant when analyzed by species (*Ae. albopictus* $P < 0.0001$; *Cx. quinquefasciatus* P
339 < 0.0001), and for all groups with the exception of *Ae. albopictus* caught in the G traps
340 (*Ae. albopictus*: BG $P < 0.005$, Lab $P < 0.02$; *Cx. quinquefasciatus*: BG $P < 0.04$, G $P <$
341 0.001, Laboratory $P < 0.01$). No significant differences were seen when comparing the
342 BG to G groups after removal of *Wolbachia* (*Ae. albopictus*: $P = 0.23$; *Cx.*
343 *quinquefasciatus*: $P = 0.57$).

344

345 Factors that influence microbiome community structure

346 We examined how the environmental, physiological state in the field, and host species
347 affected the bacterial community structure using beta diversity analysis by comparing
348 the microbiomes of the three mosquito species or groups. Within each group, distinct
349 microbiome clustering patterns were observed between the three mosquito species and
350 all pairwise comparisons were significantly different (Figure 2; PERMANOVA with Bray-
351 Curtis distance comparison $P < 0.05$). In general, the microbiome of *Ae. aegypti* was
352 more divergent compared to the microbiomes of *Cx. quinquefasciatus* and *Ae.*
353 *albopictus* regardless of origin (Figure 2A). When *Wolbachia* was computationally
354 excluded from the analysis (Figure 2A), the microbiomes of *Cx. quinquefasciatus* and
355 *Ae. albopictus* became more divergent in the laboratory, but were not significantly

356 different when considering mosquitoes caught in the BG trap ($P=0.24$). Interestingly,
357 there was tight clustering of samples from *Cx. quinquefasciatus* and *Ae. albopictus*
358 caught in the G trap (Figures 2A), although these two groups were significantly different
359 ($P=0.00001$). When *Wolbachia* was removed, this clustering became more divergent, yet
360 still was significantly different ($P=0.0052$) (Figure 2A).

361
362 To determine how the environment and physiological state influences microbial
363 composition we compared the microbiome of laboratory-reared and field-caught (BG or
364 G) individuals within each mosquito species. For all species, laboratory-reared
365 mosquitoes had a significantly distinct microbiota compared to their field counterparts
366 (Figure 2B). This was most pronounced in *Ae. aegypti* but less distinct for *Ae. albopictus*
367 and *Cx. quinquefasciatus*. No significant differences were observed in the microbiome
368 community structure of mosquitoes caught in the BG or G traps for any of the three
369 mosquito species. No differences were observed when these microbiomes were
370 analyzed with *Wolbachia* computationally excluded (Figure 2B).

371
372 Common and differentially abundant bacterial between and within mosquito
373 species.

374 We examined our data for bacterial genera that were unique to or shared between
375 mosquito species. The majority of bacteria were common between species with the
376 notable exception that *Ae. aegypti* caught in the G trap possessed 12 genera not
377 present in the other two mosquito species (Figure 3A, Table S3). Similarly, when

378 comparing within a species between groups, most bacteria were common to all groups
379 (Laboratory, BG, G). To detect bacteria that may contribute to the observed differences
380 in microbiome community structure of a particular mosquito species, we completed
381 pairwise comparisons to identify bacteria that were differentially abundant (Figure 3B).
382 These comparisons were completed within each group (Laboratory, BG or G). The
383 largest differences in the microbiome were seen when comparing *Ae. aegypti* to the
384 other two species, which agreed with our beta diversity analysis findings. Several
385 bacterial taxa were differentially abundant between species regardless of group
386 (Laboratory, BG and G traps), suggesting environmental factors are not greatly
387 influential on these specific host-microbe associations. For example, *Aeromonas*,
388 *Serratia*, *Shewanella* and *Wolbachia* were less abundant in *Ae. aegypti* compared to
389 both *Ae. albopictus* and *Cx. quinquefasciatus* regardless of environmental conditions.
390 When comparing differential abundance within a group, we were able to find infection
391 gradients of specific microbes across species. The two examples of these infection
392 clines were for *Serratia* and *Aeromonas* in laboratory-reared mosquitoes. These bacteria
393 heavily infected *Cx. quinquefasciatus*, had moderate infection densities in *Ae. albopictus*
394 and poorly infected or were absent from *Ae. aegypti*, despite the fact these three
395 mosquito species were reared under common environmental laboratory conditions
396 (Figure 3B and Figure S5).

397
398 Several studies have reported that blood feeding alters the species richness in mosquito
399 guts (Kumar et al., 2010; Oliveira et al., 2011; Terenius et al., 2012; Wang et al., 2011).
400 While at the community level, the microbiomes of G and BG were not significantly

401 different (Figure 2), we did find specific bacteria that were differentially abundant
402 between these groups (Figure 3C). These changes were mainly seen in *Cx.*
403 *quinquefasciatus*. Of the known bacteria, the greatest changes were seen in
404 *Acinetobacter*, *Tatumella*, and *Pantoea*, with the former two being more abundant in the
405 mosquitoes caught in BG traps, while the latter was more abundant in mosquitoes
406 caught in the G trap.

407

408 Total bacterial load in mosquitoes.

409 While high throughput sequencing allows characterization of the composition of the
410 microbiota, it only provides a relative measure of bacterial density (Gloor et al., 2017).
411 Therefore, to obtain an estimate of the total bacterial load in each vector species, we
412 completed qPCR on mosquitoes with universal eubacterial primers that broadly amplify
413 bacterial species (Kumar et al., 2010). *Culex* mosquitoes were seen to have a higher
414 total bacterial load when compared to either of the two *Aedes* species (Figure 4; Kruskal
415 Wallis P<0.0001). When comparing within a species between groups, we found that
416 laboratory-reared *Ae. aegypti* had significantly greater load than those caught in the field
417 (Kruskal Wallis P<0.0001). This was also the case for *Cx. quinquefasciatus* (Kruskal
418 Wallis P<0.0001) while no significant differences were seen between *Ae. albopictus*
419 groups. As both *Ae. albopictus* and *Cx. quinquefasciatus* are infected by *Wolbachia*, we
420 also quantified *Wolbachia* by qPCR to determine its relative density in proportion to the
421 total bacterial load of mosquitoes. While it is inappropriate to statistically compare
422 amplicons that have different amplification efficiencies, it is evident that *Wolbachia*

423 comprises a major component of the microbiome in *Ae. albopictus* and *Cx.*
424 *quinquefasciatus*, which corroborates the high throughput sequencing data.

425

426 Microbial interaction networks within mosquitoes.

427 The 16S rRNA sequencing data can be analyzed to create microbial interaction
428 networks, providing information on potential interaction patterns of microbes such as co-
429 occurrence and co-exclusion. We created network maps of bacterial interactions using a
430 variety of models that use presence/absence and relative abundance data to identify
431 pairwise relationships (Faust and Raes, 2016). In general, we saw that interaction
432 networks from *Ae. aegypti* were complex, in that they had more nodes and connections
433 compared to networks from *Ae. albopictus* and *Cx. quinquefasciatus* (Figure 5, Table
434 S4). For all mosquito species, both co-occurrence and co-exclusion interaction patterns
435 were observed in all networks (examples of these patterns are shown in Figure S6). We
436 were able to identify taxa, or groups of bacteria, within these interactions that appear to
437 be important to the overall structure of the network. For example, in the *Ae. aegypti*
438 networks from field collected mosquitoes, *Enterobacter* and *Pseudomonas* are highly
439 interconnected species having between 6 and 15 interactions in these networks. In the
440 laboratory-reared *Ae. aegypti*, an *Enterobacteriaceae* had several interactions with other
441 bacteria. Three-way interactions were also seen in many of the networks, and often
442 these involved *Pseudomonas* and *Enterobacter*. Examples of tripartite co-occurrences
443 interactions in *Ae. aegypti* networks include *Pseudomonas*, *Asaia* and a *Clostridium*
444 isolate in laboratory-reared mosquitoes, *Pseudomonas*, *Serratia*, and *Enterobacter* and

445 *Pseudomonas*, *Acidovorax*, and *Enterobacter* in the G and BG groups, respectively.

446 Common co-exclusionary interactions were found in the networks generated from field-

447 collected mosquitoes such as *Pseudomonas* co-excluding *Pantoea* and *Tatumella*.

448 *Burkholderia* co-excluded *Enterobacter*, *Acidovorax* and *Escherichia-Shigella*, however,

449 these *Burkholderia* interactions could possibly be an artifact due to extraction batch

450 variation.

451

452 *Wolbachia* was a highly interconnected taxon in the interaction networks generated from

453 *Ae. albopictus* and *Cx. quinquefasciatus* mosquitoes, and often had co-exclusionary

454 relationship with other bacteria. In BG-collected *Ae. albopictus*, *Wolbachia* co-excluded

455 six other bacteria including *Asaia* and *Pseudomonas*. In other groups, *Wolbachia* was

456 seen to repeatedly exclude *Aeromonas*, *Serratia* and *Shewanella*. The three-way

457 interaction of *Wolbachia* co-excluding the co-occurring *Aeromonas* and *Serratia* was

458 observed in both *Ae. albopictus* and *Cx. quinquefasciatus*. The *Aeromonas* and *Serratia*

459 co-occurrence pattern appears highly robust and independent of environmental factors

460 as this interaction was observed in five of the six *Ae. albopictus* and *Cx.*

461 *quinquefasciatus* groups.

462

463 Artificial infection of symbionts in germ-free or septic mosquitoes

464 The microbial interaction networks highlight the multifarious interactions that occur within

465 mosquito systems. We undertook preliminary validation experiments using *Ae. aegypti*

466 larvae to further demonstrate that microbial interactions can influence microbiome

467 composition and abundance. To this end, we exploited the recently developed
468 gnotobiotic rearing approach where mosquito larvae can be infected with a single
469 bacterial taxon (Coon et al., 2014). We compared the density and prevalence of
470 artificially infected symbionts in gnotobiotic lines (infected with the single symbiont)
471 compared to conventionally reared septic mosquitoes (that possessed their resident
472 microbiota) (Figure 6). We completed this with six bacteria isolated from *Aedes*
473 mosquitoes. Three of the bacteria were isolated from *Ae. aegypti* (*Pantoea*, *Cedecea*
474 [*Cedecea-aeg*], *Asaia*) while another three were isolated from *Ae. albopictus* (*Serratia*,
475 *Cedecea* [*Cedecea-alb*], and *Enterobacter*). Three bacteria (*Serratia*; Mann Whitney
476 P<0.0001, *Cedecea-alb*; Mann Whitney P<0.0001, and *Cedecea-aeg*; Mann Whitney
477 P<0.0001) were observed to significantly infect *Ae. aegypti* mosquitoes at higher
478 densities when inoculated into axenic rather than non-axenic mosquitoes. The
479 prevalence (number of individuals infected) of *Serratia* (Fisher's exact test, P<0.0001)
480 and *Cedecea-alb* (Fisher's exact test, P<0.0002) was also significantly higher in
481 gnotobiotic compared to conventionally reared mosquitoes. No change in either the
482 prevalence or density of infection was seen for *Enterobacter*, *Pantoea* or *Asaia*. Taken
483 together, these data indicate that microbial interactions influence colonization and
484 infection dynamics of specific bacterial species within mosquitoes.

485 **Discussion.**

486 It is clear that complex factors combine to shape the microbiome of an organism. To
487 further increase our understanding of factors that affect the microbiome of mosquitoes,
488 we sequenced the microbiome of laboratory-reared and field-caught adult mosquitoes
489 exploiting traps that attract host- or oviposition-seeking individuals. Anautogenous
490 mosquitoes require a blood meal to provide the necessary nutrition for egg development
491 and this dramatic influx of blood has been shown to substantially alter the microbiome of
492 laboratory-reared mosquitoes or those caught in the field and blood-fed in the laboratory
493 (Kumar et al., 2010; Oliveira et al., 2011; Terenius et al., 2012; Wang et al., 2011).
494 Intriguingly, we saw few differences in the microbiome between host- and oviposition-
495 seeking mosquitoes. Across all species, there were no significant differences in alpha or
496 beta diversity for mosquitoes caught in either trap. Similarly, the total bacterial load was
497 similar between mosquitoes caught in the BG and G traps, and this was consistent
498 across all three species. However, when comparing beta diversity between traps, we did
499 see less variation in the groupings of individuals from both *Ae. albopictus* and *Cx.*
500 *quinquefasciatus* in the G trap compared to the BG trap. Overall, our results are in
501 contrast to studies using lab-reared mosquitoes or mosquitoes caught in the field and
502 blood-fed in the laboratory that indicate increased bacterial load, but decreased diversity
503 over a 24-48 hour window following a blood meal (Kumar et al., 2010; Oliveira et al.,
504 2011; Terenius et al., 2012; Wang et al., 2011).

505

506 Several factors could explain the differences between our results examining field-
507 collected samples and those of previous studies (Kumar et al., 2010; Oliveira et al.,

508 2011; Terenius et al., 2012; Wang et al., 2011). First, mosquitoes often take multiple
509 blood meals, particularly *Ae. aegypti* (Scott et al., 1993). In our collections, the post-
510 blood feeding history of mosquitoes is unknown, and it is possible that mosquitoes
511 caught in either trap may have had a blood meal (or several) prior to being caught. The
512 body of work examining the influence of blood feeding on the microbiome has only
513 examined the effect of a single blood meal, not several, and while it appears the
514 microbiome reverts to a pre-blood fed microbiome several days post-blood meal, it is
515 unknown how quickly this occurs in the field. In field collected *Anopheles* mosquitoes
516 reared in the laboratory, reversion to a Bacteroidetes-dominated microbiome, which was
517 the dominant phylum seen in sugar fed mosquitoes, was seen 4 days post-blood meal
518 (Wang et al. 2011). In our samples collected from G traps, females may have gone
519 several days without a blood meal before finding a suitable oviposition site (i.e., the
520 trap), possibly even relying on nectar-based food sources for sustenance. It is also
521 possible that mosquitoes in search of an oviposition site may have never taken a blood
522 meal. While most mosquitoes usually require a blood meal to develop eggs, autogeny
523 has been reported in these species (Ariani et al., 2015; Chambers and Klowden, 1994;
524 Olejnícek and Gelbic, 2000). Autogeny rates, which are variable and depend on
525 temperature and nutrition, have been reported to range from 3 – 34% for *Ae. aegypti*,
526 around 5% for *Ae. albopictus*, and up to 87% in *Culex* mosquitoes (Ariani et al., 2015;
527 Chambers and Klowden, 1994; Olejnícek and Gelbic, 2000; Trpis, 1977). Little is known
528 regarding the influence of microbiota and autogeny, although in the autogenous
529 mosquito *Ae. atropalpus*, specific gut taxa have been shown to influence egg production
530 (Coon et al., 2016a). Finally, while reports indicate that BG and G traps preferential

531 catch mosquitoes in different physiological states (Dennett et al., 2007; Figuerola et al.,
532 2012; Maciel-de-Freitas et al., 2006; Reiter et al., 1986), we did not explicitly examine if
533 females were gravid or not. While we contemplated dissecting mosquitoes to examine
534 their parity, we chose not to, as it would increase the potential for contamination of the
535 samples. Although in our work we did not see dramatic differences in the mosquitoes
536 caught in BG or G traps, the earlier points highlight the challenges in undertaking studies
537 on field-derived samples and could explain the disparity between our results and those
538 from studies undertaken in laboratory settings.

539
540 Since both *Ae. albopictus* and *Cx. quinquefasciatus* are heavily infected with *Wolbachia*,
541 we analyzed our data with and without this endosymbiont to garner a better
542 understanding of the other bacterial microbiota in these mosquitoes. Our high
543 throughput sequencing and qPCR results demonstrated that *Wolbachia* was the most
544 abundant bacterium in *Ae. albopictus* and *Cx. quinquefasciatus*. In spite of this, we
545 obtained sufficient sequencing depth to identify other bacterial taxa – a common
546 challenge when characterizing *Wolbachia*-infected species using amplicon sequencing
547 (Minard et al., 2014). Removing *Wolbachia* from our analysis increased the Shannon
548 diversity index, indicating the remaining microbiota within these mosquitoes is relatively
549 even. For beta diversity, we found that our results were mixed and dependent on group.
550 When comparing within a group, removing *Wolbachia* made the microbiomes of
551 laboratory-reared *Ae. albopictus* and *Cx. quinquefasciatus* more divergent while the
552 microbiomes of field mosquitoes tended to be less different. These findings are
553 consistent with a study by Novakova et al (2016) that found the removal of *Wolbachia*

554 from their analysis led to less distinct differences for field-collected mosquitoes. When
555 comparing groups within a species, exclusion of *Wolbachia* made the comparison of
556 field and laboratory mosquitoes more distinct, likely due to differences in the gut-
557 associated microbiota. Similar to a recently published study (Coon et al., 2016b), we
558 found a small number of *Wolbachia* reads in *Ae. aegypti* mosquitoes collected in G
559 traps. However, we could not confirm the presence of the bacteria with conventional
560 PCR-based approaches, suggesting these results could be a sequencing or laboratory
561 artifact. Should populations of *Ae. aegypti* be naturally infected with *Wolbachia*, this
562 could have important ramifications for biological control strategies being implemented
563 into the field (Bourtzis et al., 2014; Flores and O'Neill, 2018; Hughes and Rasgon, 2014),
564 and as such, further research in this area is warranted.

565
566 Similar to findings in other mosquito species, many bacteria were shared between
567 different mosquito species, and laboratory-reared mosquitoes were seen to have a
568 divergent microbiome from their field counterparts (Boissière et al., 2012; Coon et al.,
569 2016b). These common taxa, particularly those that infect at high abundance, could be
570 candidate bacteria for consideration in novel pan-mosquito microbial control strategies
571 as they would likely be compatible for all three vector species (Saldaña et al., 2017).
572 When focusing specifically on bacterial titers, few bacteria were seen to be significantly
573 different between mosquitoes caught in either traps. In *Culex* mosquitoes, *Pantoea* was
574 more abundant in individuals caught in the G trap. Similar to this finding, *Pantoea* has
575 been found to increase in abundance after a blood meal in *Anopheles* mosquitoes
576 (Wang et al., 2012). When considering pairwise comparisons between species, there

577 were more differentially abundant genera when comparing *Ae. aegypti* to the other two
578 species, which explains the greater divergence of the *Ae. aegypti* microbiome to the
579 microbiome of the other two species. The *Ae. aegypti* samples were collected from a
580 different location than the other two species, thus, it is possible that environmental
581 factors could explain these differences. However, we also saw common changes that
582 were consistent regardless of groups (BG, G and Laboratory), such as *Aeromonas*,
583 *Clostridium*, *Serratia*, *Shewanella* and *Wolbachia*, indicating these bacteria were not
584 greatly influenced by the environment and that other factors affected their presence in
585 the particular mosquito species. Notably, we found that in laboratory-reared mosquitoes,
586 *Culex* harbored significantly higher titers of *Serratia* and *Aeromonas*, compared to *Ae.*
587 *albopictus*, while these bacteria were at low abundance or absent from *Ae. aegypti*.
588 These results suggest there are host and/or bacterial related factors that make this
589 particular strain of *Ae. aegypti* (Galveston) inhospitable for *Serratia* and *Aeromonas* as
590 all three mosquito species were subjected to similar uniform environmental conditions
591 when reared in the insectary.

592

593 Current evidence of microbial interactions within mosquitoes is mainly limited to
594 interactions between *Wolbachia* and other microbiota (Audsley et al., 2017a; Hughes et
595 al., 2014; Rossi et al., 2015; Zink et al., 2015), or between vertically transmitted
596 symbionts in other arthropod systems (Goto et al., 2006; Kondo et al., 2005; Macaluso
597 et al., 2002; Rock et al., 2017). As such, our understanding is generally restricted to
598 inherited symbionts and we have a poor understanding of the scale of interactions
599 between microbes that are associated with insect guts. To address this, we created

600 microbial interaction networks to identify pairwise co-occurrence and co-exclusion
601 patterns. To avoid spurious interactions, which could be due to the presence or absence
602 of a microbe in one environmental condition but not another, we limited our network
603 analysis to within a group for each particular species. Our analysis identified 116 co-
604 occurrence or co-exclusion interactions, substantially increasing the number of bacterial
605 interactions observed in mosquitoes. Bacterial interaction networks generated from *Ae.*
606 *aegypti* mosquitoes were more complex than *Ae. albopictus* or *Cx. quinquefasciatus* in
607 that they had more nodes and connections. Species richness may explain the
608 differences observed in network structure, as in general, the more complex networks
609 had a greater number of OTUs. Other factors that may have influenced the identification
610 of interacting bacteria are the presence of *Wolbachia* in *Ae. albopictus* and *Cx.*
611 *quinquefasciatus*, as well as the differences in sample size between mosquito species.
612 Further studies are warranted to determine why some networks are highly
613 interconnected while others are not.

614
615 Interestingly, in the more complex networks, we saw evidence of hub microbial taxa that
616 were highly interconnected. *Pseudomonas* and bacteria within the *Enterobacteriaceae*
617 appear to be important hub taxa. Some of the interactions observed here have been
618 previously reported in *Ae. triseriatus* and *Ae. japonicus* (Muturi et al., 2016a), including
619 negative interactions between bacteria within the *Burkholderiaceae* and *Pseudomonas*
620 and *Acinetobacter* as well as *Asaia-Enterobacter* and *Asaia-Ralstonia* interactions. The
621 majority of interactions reported in *Ae. triseriatus* and *Ae. japonicus* were negative
622 (Muturi et al., 2016a), whereas here we see a mix of both co-occurrence and co-

623 exclusion patterns. Specific hub microbes that are strongly interconnected have been
624 found in plant microbiomes and these taxa have a profound effect on overall microbiome
625 structure (Agler et al., 2016). In our data, we also saw three-way interactions. Often
626 these were relationships were co-occurring, or were formed by two co-occurring bacteria
627 both co-exclude another bacterium, suggesting the existence of multi-taxa interactions.
628 Further work is required to determine the functionality of these multi-interacting partners
629 and if these interactions represent keystone guilds (Banerjee et al., 2018). The
630 identification of common interaction pairings across several groups indicates that these
631 interactions, and the methods we employed to identify them, are robust and presumably
632 not influenced by physiological state or other environmental conditions.

633
634 It is important to highlight that these network maps represent patterns, and not direct
635 interactions. Many of the observed interactions may be due to microbes sharing a similar
636 ecological niche, and a substantial challenge, particularly for highly interconnected taxa,
637 will be to investigate these interactions further. To undertake initial validation steps and
638 to demonstrate that microbial interactions are an important factor influencing the
639 colonization of gut-associated microbiota, we infected six culturable bacterial taxa into
640 *Ae. aegypti* larvae that either possessed or lacked their resident microbiota. *Serratia* and
641 *Cedecea*, which were isolated from *Ae. albopictus*, poorly infected *Ae. aegypti* when it
642 possessed its native microbiome, however, when mosquitoes lacked their native
643 microbiota, these bacteria infected at a higher titer. Even more striking was the effect on
644 prevalence (number of individuals infected), which changed from 38% and 50% for
645 *Serratia* and *Cedecea-alb*, respectively, in conventionally reared mosquitoes that

646 possessed their resident microbiota, to 100% infection when infected into axenic larvae.

647 This indicated that the poor infection rates were not related to host or bacterial genetics,

648 but to microbial incompatibility. In our networks, *Serratia* and *Cedecea* have several co-

649 exclusionary relationships with dominant bacterial taxa such as *Asaia*, *Pseudomonas*,

650 and *Enterobacter*, which may explain these results, however specific examination of

651 these interactions in adult mosquitoes is required. Importantly, not all of the bacterial

652 taxa artificially infected into larvae increased in prevalence and density suggesting these

653 enhanced colonization effects are not simply due to mosquitoes lacking their microbiota,

654 but rather are specific for each taxa, likely due to specific microbial interactions. Similar

655 to our findings, it has been reported that antibiotic treatment prior to bacterial

656 supplementation in a sugar meal can increase the prevalence of infection of gut

657 microbes in female *Anopheles* and *Aedes* mosquitoes (Ramirez et al., 2014), indicating

658 that resident gut bacteria that are susceptible to antibiotics are antagonistic to the

659 supplemented bacterium. It is important to note that our reinfection study, which

660 exploited the gnotobiotic rearing system, examined interactions in larvae, not adults, and

661 that differences in the gut morphology and function between these two life stages may

662 alter microbial interactions (Engel and Moran, 2013). However, our findings combined

663 with the work of Ramirez et al. (2014), suggest that microbial interactions between gut-

664 associated bacteria occur within mosquitoes and influence symbiont colonization in

665 aquatic and adult life stages, which likely affects microbiome species richness and

666 evenness. These colonization traits and co-exclusionary associations could offer a

667 possible explanation for the variability seen in the mosquito microbiome between

668 individuals, as bacteria that initially infect the gut may impede colonization by other
669 microbes.

670

671 In this study, we compared microbial interaction networks from field and laboratory
672 mosquitoes to examine the influence of the general environment but it is possible other
673 factors may influence network structure. In particular, it would be interesting to
674 determine if microbial networks differ between tissues within mosquitoes, such as the
675 salivary glands, germline and the gut. For example, microbial network analysis from the
676 human microbiome project found strong niche specialization in their networks, whereby
677 different body sites had contrasting microbial networks (Faust et al., 2012). In *Anopheles*
678 mosquitoes, salivary glands have a more diverse microbiome compared to the gut
679 (Sharma et al., 2014), and it is conceivable that elevated species richness would allow
680 for greater network interactions. Furthermore, the germlines of male and female
681 *Anopheles* mosquitoes share some common taxa but there are also quantitative
682 differences (Segata et al., 2016). These differing microbial niches could be exploited to
683 determine the influence of species evenness on microbial networks. Performing network
684 analysis on gut samples of *Ae. albopictus* and *Cx. quinquefasciatus* may also overcome
685 any issue with *Wolbachia* sequestering the majority of the reads, as *Wolbachia* primarily
686 resides within the germline in these mosquito species. Here, we assessed whole
687 mosquitoes to give an initial overall picture of microbial interactions, but analysis of
688 distinct tissues may identify interactions of bacteria that are proximal to one another, and
689 these interactions are more likely to reflect true microbe-microbe interactions, rather than
690 patterns associated with environmental exposure. Within a species we collected

691 mosquitoes from a single site, but future studies examining interaction networks should
692 incorporate diverse sites. Common pairwise interactions identified across sites would
693 indicate robust relationships not influenced by environmental factors.

694
695 In summary, we examined the microbiome of three important mosquito vectors, *Ae. aegypti*, *Ae. albopictus*, and *Cx. quinquefasciatus*. While the overall microbiome
696 structure between host-seeking or ovipositing females was similar, we identified specific
697 bacteria that changed in abundance between mosquito species. Our analysis identified a
698 suite of pairwise interactions used for generating microbial interaction networks, and
699 together with re-infection studies we have demonstrated that microbial interactions affect
700 microbiome composition and abundance of specific bacterial taxa. These findings add to
701 our understanding of microbiome community structure of mosquitoes and factors that
702 influence microbiome acquisition and maintenance in these important disease vectors.
703

704 **Acknowledgements.**

705 We thank the UTMB insectary core for providing the laboratory mosquitoes. GLH is
706 supported by NIH grants (R21AI124452 and R21AI129507), a University of Texas Rising
707 Star award, the John S. Dunn Foundation Collaborative Research Award, the Robert J.
708 Kleberg, Jr. and Helen C. Kleberg Foundation, and the Centers for Disease Control and
709 Prevention (CDC) (Cooperative Agreement Number U01CK000512). The paper's
710 contents are solely the responsibility of the authors and do not necessarily represent the
711 official views of the CDC or the Department of Health and Human Services. This work
712 was also supported by a James W. McLaughlin postdoctoral fellowship at the University of
713 Texas Medical Branch to SH, a NIH T32 fellowship (2T32AI007526) to MAS and a Marie
714 Curie Fellowship (within the 7th European Community Framework Programme; project
715 no. 330136) to EAH.

716

717 **References**

718

719 Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-T., Weigel, D., et al. (2016).
720 Microbial hub taxa link host and abiotic factors to plant microbiome variation. *PLoS*
721 *Biol* 14, e1002352–31. doi:10.1371/journal.pbio.1002352.

722 Anderson, M. J. (2014). *Permutational Multivariate Analysis of Variance*
723 (PERMANOVA). 3rd ed. Chichester, UK: John Wiley & Sons, Ltd
724 doi:10.1002/9781118445112.stat07841.

725 Ariani, C. V., Smith, S. C. L., Osei-Poku, J., Short, K., Juneja, P., and Jiggins, F. M.
726 (2015). Environmental and genetic factors determine whether the mosquito *Aedes*
727 *aegypti* lays eggs without a blood meal. *Am J Trop Med Hyg* 92, 715–721.
728 doi:10.4269/ajtmh.14-0471.

729 Audsley, M. D., Seleznev, A., Joubert, D. A., Woolfit, M., O'Neill, S. L., and McGraw, E.
730 A. (2017a). Wolbachia infection alters the relative abundance of resident bacteria in
731 adult *Aedes aegypti* mosquitoes, but not larvae. *Mol Ecol* 27, 297–309.
732 doi:10.1111/mec.14436.

733 Audsley, M. D., Ye, Y. H., and McGraw, E. A. (2017b). The microbiome composition of
734 *Aedes aegypti* is not critical for Wolbachia-mediated inhibition of dengue virus. *PLoS*
735 *Negl Trop Dis* 11, e0005426. doi:10.1371/journal.pntd.0005426.

736 Baldo, L., Hotopp, J. C. D., Jolley, K. A., Bordenstein, S. R., Biber, S. A., Choudhury, R.
737 R., et al. (2006). Multilocus sequence typing system for the endosymbiont *Wolbachia*
738 *piplentis*. *Appl Environ Microbiol* 72, 7098–7110. doi:10.1128/AEM.00731-06.

739 Banerjee, S., Schlaeppi, K., and Heijden, M. G. A. (2018). Keystone taxa as drivers of
740 microbiome structure and functioning. *Nat Rev Micro*, 15, 579. doi:10.1038/s41579-
741 018-0024-1.

742 Barberán, A., Bates, S. T., Casamayor, E. O., and Fierer, N. (2012). Using network
743 analysis to explore co-occurrence patterns in soil microbial communities. *ISME J* 6,
744 343–351. doi:10.1038/ismej.2011.119.

745 Boissière, A., Tchioffo, M. T., Bachar, D., Abate, L., Marie, A., Nsango, S. E., et al.
746 (2012). Midgut microbiota of the malaria mosquito vector *Anopheles gambiae* and
747 interactions with *Plasmodium falciparum* infection. *PLoS Pathog* 8, e1002742.
748 doi:10.1371/journal.ppat.1002742.

749 Bourtzis, K., Dobson, S. L., Xi, Z., Rasgon, J. L., Calvitti, M., Moreira, L. A., et al. (2014).
750 Harnessing mosquito-Wolbachia symbiosis for vector and disease control. *Acta Trop*
751 132 Suppl, S150–63. doi:10.1016/j.actatropica.2013.11.004.

752 Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities of
753 Southern Wisconsin. *Ecological Monographs* 27, 325–349. doi:10.2307/1942268.

754 Buck, M., Nilsson, L. K. J., Brunius, C., Dabiré, R. K., Hopkins, R., and Terenius, O.
755 (2016). Bacterial associations reveal spatial population dynamics in *Anopheles*
756 *gambiae* mosquitoes. *Sci Rep* 6, 22806. doi:10.1038/srep22806.

757 Burkhardt, N. Y., Baldridge, G. D., Williamson, P. C., Billingsley, P. M., Heu, C. C.,
758 Felsheim, R. F., et al. (2011). Development of shuttle vectors for transformation of
759 diverse *Rickettsia* species. *PLoS ONE* 6, e29511.
760 doi:10.1371/journal.pone.0029511.

761 Calvitti, M., Marini, F., Desiderio, A., Puggioli, A., and Moretti, R. (2015). *Wolbachia*
762 density and cytoplasmic incompatibility in *Aedes albopictus*: concerns with using
763 artificial *Wolbachia* infection as a vector Suppression Tool. *PLoS ONE* 10,
764 e0121813. doi:10.1371/journal.pone.0121813.

765 Casiraghi, M., Bain, O., Guerrero, R., Martin, C., Pocacqua, V., Gardner, S. L., et al.
766 (2004). Mapping the presence of *Wolbachia pipiensis* on the phylogeny of filarial
767 nematodes: evidence for symbiont loss during evolution. *Int J Parasitol* 34, 191–203.
768 doi:10.1016/j.ijpara.2003.10.004.

769 Chaffron, S., Rehrauer, H., Pernthaler, J., and Mering, von, C. (2010). A global network
770 of coexisting microbes from environmental and whole-genome sequence data.
771 *Genome Res* 20, 947–959. doi:10.1101/gr.104521.109.

772 Chambers, G. M., and Klowden, M. J. (1994). Nutritional reserves of autogenous and
773 anautogenous selected strains of *Aedes albopictus* (Diptera: Culicidae). *J Med
774 Entomol* 31, 554–560.

775 Chen, S., Bagdasarian, M., and Walker, E. D. (2015). *Elizabethkingia anophelis*:
776 molecular manipulation and interactions with mosquito hosts. *Appl Environ Microbiol*
777 81, 2233–2243. doi:10.1128/AEM.03733-14.

778 Coon, K. L., Brown, M. R., and Strand, M. R. (2016a). Gut bacteria differentially affect
779 egg production in the anautogenous mosquito *Aedes aegypti* and facultatively
780 autogenous mosquito *Aedes atropalpus* (Diptera: Culicidae). *Parasit Vectors* 9, 375.
781 doi:10.1186/s13071-016-1660-9.

782 Coon, K. L., Brown, M. R., and Strand, M. R. (2016b). Mosquitoes host communities of
783 bacteria that are essential for development but vary greatly between local habitats.
784 *Mol Ecol* 25, 5806–5826. doi:10.1111/mec.13877.

785 Coon, K. L., Vogel, K. J., Brown, M. R., and Strand, M. R. (2014). Mosquitoes rely on
786 their gut microbiota for development. *Mol Ecol* 23, 2727–2739.
787 doi:10.1111/mec.12771.

788 Cover, T. M., and Thomas, J. A. (2012). Elements of information theory. Somerset:
789 Wiley.

790 David, M. R., Santos, L. M. B. D., Vicente, A. C. P., and Maciel-de-Freitas, R. (2016).
791 Effects of environment, dietary regime and ageing on the dengue vector microbiota:
792 evidence of a core microbiota throughout *Aedes aegypti* lifespan. *Mem Inst Oswaldo
793 Cruz* 111, 577–587. doi:10.1590/0074-02760160238.

794 Demaio, J., Pumpuni, C. B., Kent, M., and Beier, J. C. (1996). The midgut bacterial flora
795 of wild *Aedes triseriatus*, *Culex pipiens*, and *Psorophora columbiae* mosquitoes. *Am
796 J Trop Med Hyg* 54, 219–223.

797 Dennett, J. A., Vessey, N. Y., and Parsons, R. E. (2004). A comparison of seven traps
798 used for collection of *Aedes albopictus* and *Aedes aegypti* originating from a large
799 tire repository in Harris County (Houston), Texas. *J Am Mosq Control Assoc.* 20,
800 342-349

801 Dennett, J. A., Wuithiranyagool, T., Reyna-Nava, M., Bala, A., Tesh, R. B., Parsons, I. R.
802 E., et al. (2007). Description and use of the Harris County gravid trap for West Nile
803 virus surveillance 2003-06. *J Am Mosq Control Assoc* 23, 359–362.
804 doi:10.2987/8756-971X(2007)23[359:DAUOTH]2.0.CO;2.

805 Dennison, N. J., Jupatanakul, N., and Dimopoulos, G. (2014). The mosquito microbiota
806 influences vector competence for human pathogens. *Curr Opin Insect Sci* 3, 6–13.
807 doi:10.1016/j.cois.2014.07.004.

808 Dennison, N. J., Saraiva, R. G., Cirimotich, C. M., Mlambo, G., Mongodin, E. F., and
809 Dimopoulos, G. (2016). Functional genomic analyses of *Enterobacter*, *Anopheles*
810 and *Plasmodium* reciprocal interactions that impact vector competence. *Malar J* 15,
811 425. doi:10.1186/s12936-016-1468-2.

812 Dickson, L. B., Jiolle, D., Minard, G., Moltini-Conclois, I., Volant, S., Ghozlane, A., et al.
813 (2017). Carryover effects of larval exposure to different environmental bacteria drive
814 adult trait variation in a mosquito vector. *Science Advances* 3, e1700585.
815 doi:10.1126/sciadv.1700585.

816 Duguma, D., Rugman-Jones, P., Kaufman, M. G., Hall, M. W., Neufeld, J. D.,
817 Stouthamer, R., et al. (2013). Bacterial communities associated with *Culex* mosquito
818 larvae and two emergent aquatic plants of bioremediation importance. *PLoS ONE* 8,
819 e72522. doi:10.1371/journal.pone.0072522.

820 Engel, P., and Moran, N. A. (2013). The gut microbiota of insects - diversity in structure
821 and function. *FEMS Microbiol Rev* 37, 699–735. doi:10.1111/1574-6976.12025.

822 Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models. *Nat Rev
823 Micro* 10, 538–550. doi:10.1038/nrmicro2832.

824 Faust, K., and Raes, J. (2016). CoNet app: inference of biological association networks
825 using Cytoscape. *F1000Res* 5, 1519. doi:10.12688/f1000research.9050.2.

826 Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N., Gevers, D., Raes, J., et al.
827 (2012). Microbial co-occurrence relationships in the human microbiome. *PLoS*
828 *Comput Biol* 8, e1002606–17. doi:10.1371/journal.pcbi.1002606.

829 Flores, H. A., and O'Neill, S. L. (2018). Controlling vector-borne diseases by releasing
830 modified mosquitoes. *Nat Rev Micro*, Epub ahead of print. doi:10.1038/s41579-018-
831 0025-0

832 Figuerola, J., Muñoz, J., Soriguer, R., Roussel, M., Roiz, D., and Ruiz, S. (2012).
833 Efficacy of mosquito traps for collecting potential West Nile mosquito vectors in a
834 natural Mediterranean wetland. *Am J Trop Med Hyg* 86, 642–648.
835 doi:10.4269/ajtmh.2012.11-0326.

836 Gimmonneau, G., Tchioffo, M. T., Abate, L., Boissière, A., Awono-Ambene, P. H., Nsango,
837 S. E., et al. (2014). Composition of *Anopheles coluzzii* and *Anopheles gambiae*
838 microbiota from larval to adult stages. *Infect Genet Evol* 28, 715–724.
839 doi:10.1016/j.meegid.2014.09.029.

840 Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J. (2017).
841 Microbiome datasets are compositional: and this is not optional. *Front Microbiol* 8,
842 57–6. doi:10.3389/fmicb.2017.02224.

843 Gonçalves, C. M., Melo, F. F., Bezerra, J. M. T., Chaves, B. A., Silva, B. M., Silva, L. D.,
844 et al. (2014). Distinct variation in vector competence among nine field populations of
845 *Aedes aegypti* from a Brazilian dengue-endemic risk city. *Parasit Vectors* 7, 320.
846 doi:10.1186/1756-3305-7-320.

847 Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., et al.
848 (2014). Human genetics shape the gut microbiome. *Cell* 159, 789–799.
849 doi:10.1016/j.cell.2014.09.053.

850 Goto, S., Anbutsu, H., and Fukatsu, T. (2006). Asymmetrical interactions between
851 *Wolbachia* and *Spiroplasma* endosymbionts coexisting in the same insect host. *Appl*
852 *Environ Microbiol* 72, 4805–4810. doi:10.1128/AEM.00416-06.

853 Gusmão, D. S., Santos, A. V., Marini, D. C., Bacci, M., Berbert-Molina, M. A., and
854 Lemos, F. J. A. (2010). Culture-dependent and culture-independent characterization
855 of microorganisms associated with *Aedes aegypti* (Diptera: Culicidae) (L.) and
856 dynamics of bacterial colonization in the midgut. *Acta Trop* 115, 275–281.
857 doi:10.1016/j.actatropica.2010.04.011.

858 Gusmão, D. S., Santos, A. V., Marini, D. C., Russo, E. de S., Peixoto, A. M. D., Bacci
859 Júnior, M., et al. (2007). First isolation of microorganisms from the gut diverticulum of

860 *Aedes aegypti* (Diptera: Culicidae): new perspectives for an insect-bacteria
861 association. *Mem Inst Oswaldo Cruz* 102, 919–924.

862 Hegde, S., Rasgon, J. L., and Hughes, G. L. (2015). The microbiome modulates
863 arbovirus transmissionin mosquitoes. *Current Opinion in Virology* 15, 97–102.
864 doi:10.1016/j.coviro.2015.08.011.

865 Hughes, G. L., and Rasgon, J. L. (2014). Transinfection: a method to investigate
866 *Wolbachia*-host interactions and control arthropod-borne disease. *Insect Mol Biol* 23,
867 141–151. doi:10.1111/imb.12066.

868 Hughes, G. L., Dodson, B. L., Johnson, R. M., Murdock, C. C., Tsujimoto, H., Suzuki, Y.,
869 et al. (2014). Native microbiome impedes vertical transmission of *Wolbachia* in
870 *Anopheles* mosquitoes. *PNAS* 111, 12498–12503. doi:10.1073/pnas.1408888111.

871 Isoe, J., Collins, J., Badgandi, H., Day, W. A., and Miesfeld, R. L. (2011). Defects in
872 coatomer protein I (COPI) transport cause blood feeding-induced mortality in Yellow
873 Fever mosquitoes. *PNAS* 108, E211–7. doi:10.1073/pnas.1102637108.

874 Iturbe-Ormaetxe, I., Walker, T., and Neill, S. L. O. (2011). *Wolbachia* and the biological
875 control of mosquito-borne disease. *EMBO Rep* 12, 508–518.
876 doi:10.1038/embor.2011.84.

877 Jadin, J., Vincke, I. H., Dunjic, A., Delville, J. P., Wery, M., Bafort, J., et al. (1966). Role
878 of *Pseudomonas* in the sporogenesis of the hematozoon of malaria in the mosquito.
879 *Bull Soc Pathol Exot Filiales* 59, 514–525.

880 Jupatanakul, N., Sim, S., and Dimopoulos, G. (2014). The insect microbiome modulates
881 vector competence for arboviruses. *Viruses* 6, 4294–4313. doi:10.3390/v6114294.

882 Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., et al. (2012).
883 Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-
884 generation sequencing-based diversity studies. *Nucleic Acids Res* 41, gks808–e1.
885 doi:10.1093/nar/gks808.

886 Kondo, N., Shimada, M., and Fukatsu, T. (2005). Infection density of *Wolbachia*
887 endosymbiont affected by co-infection and host genotype. *Biol Lett* 1, 488–491.
888 doi:10.1098/rsbl.2005.0340.

889 Kullback, S., and Leibler, R. A. (1951). On information and sufficiency. *The Annals of
890 Mathematical Statistics* 22, 79–86. doi:10.1016/j.transproceed.2017.12.043.

891 Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J., and Barillas-Mury, C. (2010). A
892 peroxidase/dual oxidase system modulates midgut epithelial immunity in *Anopheles*
893 *gambiae*. *Science* 327, 1644–1648. doi:10.1126/science.1184008.

894 Lindh, J. M., Borg-Karlsson, A.-K., and Faye, I. (2008). Transstadial and horizontal
895 transfer of bacteria within a colony of *Anopheles gambiae* (Diptera: Culicidae) and
896 oviposition response to bacteria-containing water. *Acta Trop* 107, 242–250.
897 doi:10.1016/j.actatropica.2008.06.008.

898 Macaluso, K. R., Sonenshine, D. E., Ceraul, S. M., and Azad, A. F. (2002). *Rickettsial*
899 infection in *Dermacentor variabilis* (Acar: Ixodidae) inhibits transovarial transmission
900 of a second *Rickettsia*. *J Med Entomol* 39, 809–813.

901 Maciel-de-Freitas, R., Eiras, A. E., and Lourenco-De-Oliveira, R. (2006). Field evaluation
902 of effectiveness of the BG-Sentinel, a new trap for capturing adult *Aedes aegypti*
903 (Diptera: Culicidae). *Mem Inst Oswaldo Cruz* 101, 321–325.

904 Mandal, S., Van Treuren, W., White, R. A., Eggesbø, M., Knight, R., and Peddada, S. D.
905 (2015). Analysis of composition of microbiomes: a novel method for studying
906 microbial composition. *Microbial Ecology in Health & Disease* 26, 1–7.
907 doi:10.3402/mehd.v26.27663.

908 Minard, G., Tran, F. H., Dubost, A., Tran-Van, V., Mavingui, P., and Moro, C. V. (2014).
909 Pyrosequencing 16S rRNA genes of bacteria associated with wild tiger mosquito
910 *Aedes albopictus*: a pilot study. *Front Cell Infect Microbiol* 4, 59.
911 doi:10.3389/fcimb.2014.00059.

912 Minard, G., Tran, F.-H., Van Tran Van, Goubert, C., Bellet, C., Lambert, G., et al. (2015).
913 French invasive Asian tiger mosquito populations harbor reduced bacterial
914 microbiota and genetic diversity compared to Vietnamese autochthonous relatives.
915 *Front Microbiol* 6, e2836. doi:10.3389/fmicb.2015.00970.

916 Muturi, E. J., Bara, J. J., Rooney, A. P., and Hansen, A. K. (2016a). Midgut fungal and
917 bacterial microbiota of *Aedes triseriatus* and *Aedes japonicus* shift in response to
918 La Crosse virus infection. *Mol Ecol* 25, 4075–4090. doi:10.1111/mec.13741.

919 Muturi, E. J., Kim, C.-H., Bara, J., Bach, E. M., and Siddappaji, M. H. (2016b). *Culex*
920 *pipiens* and *Culex restuans* mosquitoes harbor distinct microbiota dominated by few
921 bacterial taxa. *Parasit Vectors* 9, 18. doi:10.1186/s13071-016-1299-6.

922 Muturi, E. J., Ramirez, J. L., Rooney, A. P., and Kim, C.-H. (2017). Comparative analysis
923 of gut microbiota of mosquito communities in central Illinois. *PLoS Negl Trop Dis* 11,
924 e0005377–18. doi:10.1371/journal.pntd.0005377.

925 Novakova, E., Woodhams, D. C., Rodríguez-Ruano, S. M., Brucker, R. M., Leff, J. W.,
926 Maharaj, A., et al. (2017). Mosquito microbiome dynamics, a background for
927 prevalence and seasonality of West Nile virus. *Front Microbiol* 8, 688–17.
928 doi:10.3389/fmicb.2017.00526.

929 Olejníček, J., and Gelbic, I. (2000). Autogeny in *Culex pipiens quinquefasciatus* say. *J*

930 *Vector Ecol* 25, 118–122.

931 Oliveira, J. H. M., Gonçalves, R. L. S., Lara, F. A., Dias, F. A., Gandara, A. C. P.,
932 Menna-Barreto, R. F. S., et al. (2011). Blood meal-derived heme decreases ROS
933 levels in the midgut of *Aedes aegypti* and allows proliferation of intestinal microbiota.
934 *PLoS Pathog* 7, e1001320. doi:10.1371/journal.ppat.1001320.

935 Osei-Poku, J., Mbogo, C. M., Palmer, W. J., and Jiggins, F. M. (2012). Deep sequencing
936 reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. *Mol*
937 *Ecol* 21, 5138–5150. doi:10.1111/j.1365-294X.2012.05759.x.

938 O'Neill, S. L., Giordano, R., Colbert, A. M., Karr, T. L., and Robertson, H. M. (1992). 16S
939 rRNA phylogenetic analysis of the bacterial endosymbionts associated with
940 cytoplasmic incompatibility in insects. *Proc Natl Acad Sci USA* 89, 2699–2702.

941 Pang, X., Xiao, X., Liu, Y., Zhang, R., Liu, J., Liu, Q., et al. (2016). Mosquito C-type
942 lectins maintain gut microbiome homeostasis. *Nat. Microbiol* 1, 16023.
943 doi:10.1038/nmicrobiol.2016.23.

944 Pearson, K. (1895). Note on regression and inheritance in the case of two parents. *Proc*
945 *Biol Sci* 58, 240–242. doi:10.2307/115794.

946 Pollock, J., Glendinning, L., Wisedchanwet, T., and Watson, M. (2018). The madness of
947 microbiome: attempting to find consensus “best practice” for 16S microbiome
948 studies. *Appl Environ Microbiol*, AEM.02627–17–28. doi:10.1128/AEM.02627-17.

949 Pumpuni, C. B., Demaio, J., Kent, M., Davis, J. R., and Beier, J. C. (1996). Bacterial
950 population dynamics in three anopheline species: the impact on *Plasmodium*
951 sporogonic development. *Am J Trop Med Hyg* 54, 214–218.

952 Quackenbush, J. (2002). Microarray data normalization and transformation. *Nature*
953 *Genet* 32 Suppl, 496–501. doi:10.1038/ng1032.

954 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The
955 SILVA ribosomal RNA gene database project: improved data processing and web-
956 based tools. *Nucleic Acids Res* 41, D590–6. doi:10.1093/nar/gks1219.

957 Ramirez, J. L., Short, S. M., Bahia, A. C., Saraiva, R. G., Dong, Y., Kang, S., et al.
958 (2014). *Chromobacterium Csp_P* reduces malaria and dengue infection in vector
959 mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. *PLoS*
960 *Pathog* 10, e1004398. doi:10.1371/journal.ppat.1004398.

961 Rao, R. U., Atkinson, L. J., Ramzy, R. M. R., Helmy, H., Farid, H. A., Bockarie, M. J., et
962 al. (2006). A real-time PCR-based assay for detection of *Wuchereria bancrofti* DNA
963 in blood and mosquitoes. *Am J Trop Med Hyg* 74, 826–832.

964 Reiter, P., Jakob, W. L., Francy, D. B., and Mullenix, J. B. (1986). Evaluation of the CDC
965 gravid trap for the surveillance of St. Louis encephalitis vectors in Memphis,
966 Tennessee. *J Am Mosq Control Assoc* 2, 209–211.

967 Riehle, M. A., Moreira, C. K., Lampe, D., Lauzon, C., and Jacobs-Lorena, M. (2007).
968 Using bacteria to express and display anti-*Plasmodium* molecules in the mosquito
969 midgut. *Int J Parasitol* 37, 595–603. doi:10.1016/j.ijpara.2006.12.002.

970 Rock, D. I., Smith, A. H., Joffe, J., Albertus, A., Wong, N., O'Connor, M., et al. (2017).
971 Context-dependent vertical transmission shapes strong endosymbiont community
972 structure in the pea aphid, *Acyrtosiphon pisum*. *Mol Ecol*. doi:10.1111/mec.14449.

973 Rossi, P., Ricci, I., Cappelli, A., Damiani, C., Ulissi, U., Mancini, M. V., et al. (2015).
974 Mutual exclusion of *Asaia* and *Wolbachia* in the reproductive organs of mosquito
975 vectors. *Parasit Vectors* 8, 278. doi:10.1186/s13071-015-0888-0.

976 Saldaña, M. A., Hegde, S., and Hughes, G. L. (2017). Microbial control of arthropod-
977 borne disease. *Mem Inst Oswaldo Cruz* 112, 81–93. doi:10.1590/0074-
978 02760160373.

979 Scott, T. W., Clark, G. G., Lorenz, L. H., Amerasinghe, P. H., Reiter, P., and Edman, J.
980 D. (1993). Detection of multiple blood feeding in *Aedes aegypti* (Diptera: Culicidae)
981 during a single gonotrophic cycle using a histologic technique. *J Med Entomol* 30,
982 94–99.

983 Sedgwick, P. (2014). Spearman's rank correlation coefficient. *BMJ* 349, g7327–g7327.
984 doi:10.1136/bmj.g7327.

985 Segata, N., Baldini, F., Pompon, J., Garrett, W. S., Truong, D. T., Dabiré, R. K., et al.
986 (2016). The reproductive tracts of two malaria vectors are populated by a core
987 microbiome and by gender- and swarm-enriched microbial biomarkers. *Sci Rep* 6,
988 24207. doi:10.1038/srep24207.

989 Shannon, C. E. (2001). A mathematical theory of communication. *ACM SIGMOBILE
990 Mobile Computing and Communications Review* 5, 3–55.
991 doi:10.1145/584091.584093.

992 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003).
993 Cytoscape: a software environment for integrated models of biomolecular interaction
994 networks. *Genome Res* 13, 2498–2504. doi:10.1101/gr.1239303.

995 Sharma, P., Sharma, S., Maurya, R. K., De, Das, T., Thomas, T., Lata, S., et al. (2014).
996 Salivary glands harbor more diverse microbial communities than gut in *Anopheles
997 culicifacies*. *Parasit Vectors* 7, 235. doi:10.1186/1756-3305-7-235.

998 Short, S. M., Mongodin, E. F., MacLeod, H. J., Talyuli, O. A. C., and Dimopoulos, G.

999 (2017). Amino acid metabolic signaling influences *Aedes aegypti* midgut microbiome
1000 variability. *PLoS Negl Trop Dis* 11, e0005677–29. doi:10.1371/journal.pntd.0005677.

1001 Simhadri, R. K., Fast, E. M., Guo, R., Schultz, M. J., Vaisman, N., Ortiz, L., et al. (2017).
1002 The gut commensal microbiome of *Drosophila melanogaster* is modified by the
1003 endosymbiont *Wolbachia*. *mSphere* 2, e00287–17–16. doi:10.1128/mSphere.00287-
1004 17.

1005 Stathopoulos, S., Neafsey, D. E., Lawniczak, M. K. N., Muskavitch, M. A. T., and
1006 Christophides, G. K. (2014). Genetic dissection of *Anopheles gambiae* gut epithelial
1007 responses to *Serratia marcescens*. 10, e1003897.
1008 doi:10.1371/journal.ppat.1003897.s015.

1009 Terenius, O., Lindh, J. M., Eriksson-Gonzales, K., Bussière, L., Laugen, A. T., Bergquist,
1010 H., et al. (2012). Midgut bacterial dynamics in *Aedes aegypti*. *FEMS Microbiol Ecol*
1011 80, 556–565. doi:10.1111/j.1574-6941.2012.01317.x.

1012 Tourlousse, D. M., Yoshiike, S., Ohashi, A., Matsukura, S., Noda, N., and Sekiguchi, Y.
1013 (2017). Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon
1014 sequencing. *Nucleic Acids Res* 45, e23. doi:10.1093/nar/gkw984.

1015 Trpis, M. (1977). Autogeny in diverse populations of *Aedes aegypti* from East Africa.
1016 *Tropenmed Parasitol* 28, 77–82.

1017 Vázquez-martínez, M. G., Rodriguez, M. H., Arredondo-Jiménez, J. I., Méndez-Sánchez,
1018 J. D., Bond-Compeán, J. G., and Gold-Morgan, M. (2009). Cyanobacteria associated
1019 with *Anopheles albimanus* (Diptera: Culicidae) larval habitats in Southern Mexico. *J
1020 Med Entomol*, 825–832. doi:10.1603/0022-2585(2002)039[0825:CAWAAD]2.0.CO;2.

1021 Walker, T., Song, S., and Sinkins, S. P. (2009). *Wolbachia* in the *Culex pipiens* group
1022 mosquitoes: introgression and superinfection. *J Hered* 100, 192–196.
1023 doi:10.1093/jhered/esn079.

1024 Wang, S., Ghosh, A. K., Bongio, N., Stebbings, K. A., Lampe, D. J., and Jacobs-Lorena,
1025 M. (2012). Fighting malaria with engineered symbiotic bacteria from vector
1026 mosquitoes. *PNAS* 109, 12734–12739. doi:10.1073/pnas.1204158109.

1027 Wang, Y., Gilbreath, T. M., III, Kukutla, P., Yan, G., and Xu, J. (2011). Dynamic gut
1028 microbiome across life history of the malaria mosquito *Anopheles gambiae* in Kenya.
1029 *PLoS ONE* 6, e24767. doi:10.1371/journal.pone.0024767.

1030 Werren, J. H., and Windsor, D. M. (2000). *Wolbachia* infection frequencies in insects:
1031 evidence of a global equilibrium? *Proc Biol Sci* 267, 1277–1285.
1032 doi:10.1098/rspb.2000.1139.

1033 Xia, Y., and Zwiebel, L. J. (2006). Identification and characterization of an odorant

1034 receptor from the West Nile virus mosquito, *Culex quinquefasciatus*. *Insect Biochem*
1035 *Mol Biol* 36, 169–176. doi:10.1016/j.ibmb.2005.12.003.

1036 Xiao, X., Yang, L., Pang, X., Zhang, R., Zhu, Y., Wang, P., et al. (2017). A Mesh-Duox
1037 pathway regulates homeostasis in the insect gut. *Nat. Microbiol* 2, 17020.
1038 doi:10.1038/nmicrobiol.2017.20.

1039 Ye, Y. H., Seleznev, A., Flores, H. A., Woolfit, M., and McGraw, E. A. (2017). Gut
1040 microbiota in *Drosophila melanogaster* interacts with *Wolbachia* but does not
1041 contribute to *Wolbachia*-mediated antiviral protection. *J Invertebr Pathol* 143, 18–25.
1042 doi:10.1016/j.jip.2016.11.011.

1043 Zhao, B., Lucas, K. J., Saha, T. T., Ha, J., Ling, L., Kokoza, V. A., et al. (2017).
1044 MicroRNA-275 targets sarco/endoplasmic reticulum Ca²⁺ adenosine triphosphatase
1045 (SERCA) to control key functions in the mosquito gut. *PLoS Genet* 13, e1006943–
1046 19. doi:10.1371/journal.pgen.1006943.

1047 Zhou, W., Rousset, F., and O'Neill, S. L. (1998). Phylogeny and PCR-based
1048 classification of *Wolbachia* strains using wsp gene sequences. *Proc Biol Sci* 265,
1049 509–515.

1050 Zink, S., Van Slyke, G., Palumbo, M., Kramer, L., and Ciota, A. (2015). Exposure to
1051 West Nile virus increases bacterial diversity and immune gene expression in *Culex*
1052 *pipiens*. *Viruses* 7, 5619–5631. doi:10.3390/v7102886.

1053

1054

1055 **Data accessibility**

1056

1057 The NCBI accession number for the raw sequencing data reported here is
1058 PRJNA422599.

1059

1060

1061 **Author Contributions**

1062

1063 SH, KK, LA, JAD, EAH, YF, and GLH designed the experiments. GCM, CLF, JAD and
1064 MD oversaw the fieldwork. SH and MP completed the experiments. KK, MMR, LA, SH,
1065 EAH and GLH undertook analysis. SH, KK, JAD, MD, and GLH wrote and edited the
1066 manuscript and all authors agreed to the final version. YF and GLH acquired funding
1067 and supervised the work.

1068

1069 **Figure legends.**

1070

1071 **Figure 1.** Shannon diversity indices at the OTU level for all mosquito species (A) or for
1072 each group within a species (B). A Kruskal-Wallis test with a Dunn's multiple comparison
1073 test was used to determine significance (* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, ****
1074 $p < 0.0001$) within a species (black) or group (grey). Abbreviations: Aeg - *Ae. aegypti*, Alb
1075 - *Ae. albopictus*, Cq - *Cx. quinquefasciatus*. Bars on the box plots show maximum to
1076 minimum range. Sample size for species and group is indicated by the numbers above
1077 the box-plots and in Table S1.

1078

1079 **Figure 2.** Principal Coordinates Analysis (OTU level) using Bray-Curtis dissimilarity,
1080 comparing identified OTUs within a group (A) or species (B). PERMANOVA significance
1081 values for pairwise comparison are reported in the lower right corner for each analysis.
1082 For A and B, upper plots include *Wolbachia* while *Wolbachia* has been computationally
1083 excluded in the lower plots.

1084

1085 **Figure 3.** Common and differentially abundant bacteria (genus level) within mosquitoes.
1086 Venn diagram showing number of common bacterial genera between mosquito groups
1087 and species (A). Pairwise comparison of bacterial density between each mosquito
1088 species within each group (B). Pairwise comparison of bacterial density for mosquito
1089 caught in the G trap compared the BG trap (*Ae. aegypti* – Aeg, *Ae. albopictus* – Alb, *Cx.*
1090 *quinquefasciatus* - Cq.) (C). Log₂ values indicated fold change in bacterial density. List of
1091 common taxa for each species and group are presented in Table S3.

1092

1093 **Figure 4.** Total bacterial load of mosquitoes. Comparison of bacterial load for each
1094 species (left) or within each group for each mosquito species (right). Bacterial load is
1095 represented as a ratio between 16S rRNA gene copies to S7 copies (*Ae. aegypti* and
1096 *Cx. quinquefasciatus*) or actin (*Ae. albopictus*) genes. The density of *Wolbachia* was
1097 estimated for *Ae. albopictus* (*Wolbachia* 16s:Actin) and *Cx. quinquefasciatus* (ftsZ:S7). A
1098 Kruskal-Wallis test with a Dunn's multiple comparison test was used to determine
1099 significance (* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $p < 0.0001$) of total bacterial loads
1100 within a species. Bars on the box plots show maximum to minimum range. Sample size
1101 for all species and groups is described in Table S1.

1102

1103 **Figure 5.** Microbial interaction networks for mosquitoes. Interaction networks were built
1104 using CoNet. Node colors represent unique taxonomy identifiers. Red edges represent
1105 co-exclusion/negative correlation, green edges represent co-occurrence/positive
1106 correlation interactions between relative abundance profiles. Multiple edges connecting
1107 the same nodes indicate significance from more than one metric (Bray-Curtis
1108 dissimilarity, Kullback-Leibler divergence, mutual information, Spearman correlation, and
1109 Pearson correlation). Undetermined interactions have been removed from the network.

1110

1111 **Figure 6.** Infection density and prevalence of bacteria inoculated into conventionally
1112 reared or axenic mosquitoes. As such, gnotobiotic reared lines (GB) only possessed the

1113 inoculated bacteria while conventionally reared lines (C) possess their native microbiota
1114 in addition to the inoculated strain. Inoculated bacteria possessed a plasmid expressing
1115 antibiotic resistance and mCherry fluorescent protein. The bacterial load was quantified
1116 by counting mCherry colonies on selective plates. *Serratia*, *Cedecea-alb* and
1117 *Enterobacter* were isolated from *Ae. albopictus* (Galveston) while *Pantoae*, *Asaia* and
1118 *Cedecea-aeg* were isolated from *Ae. aegypti* (Galveston). A Mann-Whitney test with a
1119 Dunn's multiple comparison test was used to determine significance (**** is $P<0.0001$).
1120 Pie charts indicate prevalence of infection (Fisher's exact test, **** $P<0.0001$, ***
1121 $P<0.0002$).
1122

1123 **Supplementary figures**

1124

1125 **Figure S1.** Map of Houston, Texas, indicating the field collection sites.

1126

1127 **Figure S2.** Shannon entropy rarefied at intervals between 0 and 100,000 reads in each
1128 sample from different groups (G, BG, Laboratory) in all three mosquito species.

1129

1130 **Figure S3.** Heat maps indicating bacterial relative abundance for the three mosquito
1131 species. OTUs were grouped to genus level or higher ranks (when genus was
1132 ambiguous) and the relative abundance indicated by color for each individual (column) is
1133 shown. The upper heat map is with *Wolbachia* present while the lower has *Wolbachia*
1134 excluded. The dendrogram/clustering of the bacteria is generated based on their relative
1135 abundance correlation across samples.

1136

1137 **Figure S4.** Shannon diversity of *Ae. albopictus* and *Cx. quinquefasciatus* with and
1138 without *Wolbachia*. For analysis of samples without the endosymbiont, *Wolbachia* reads
1139 were computationally excluded from the analysis and then Shannon diversity was
1140 recalculated.

1141

1142 **Figure S5.** Relative abundance of *Serratia* and *Aeromonas* from high-throughput
1143 sequencing in *Cx. quinquefasciatus*, *Ae. albopictus* and *Ae. aegypti* mosquitoes reared
1144 in the lab. Data were analyzed using a one-way ANOVA using Tukeys method for
1145 pairwise comparisons (**** is P<0.0001).

1146

1147 **Figure S6.** Examples of co-occurrence and co-exclusion microbial pairs identified in the
1148 interaction networks. Scatterplots of relative abundance profiles displaying statistically
1149 significant co-occurrence and co-exclusion patterns in mosquito groups. Points
1150 represent the relative abundance values of the pair in each sample.

1151

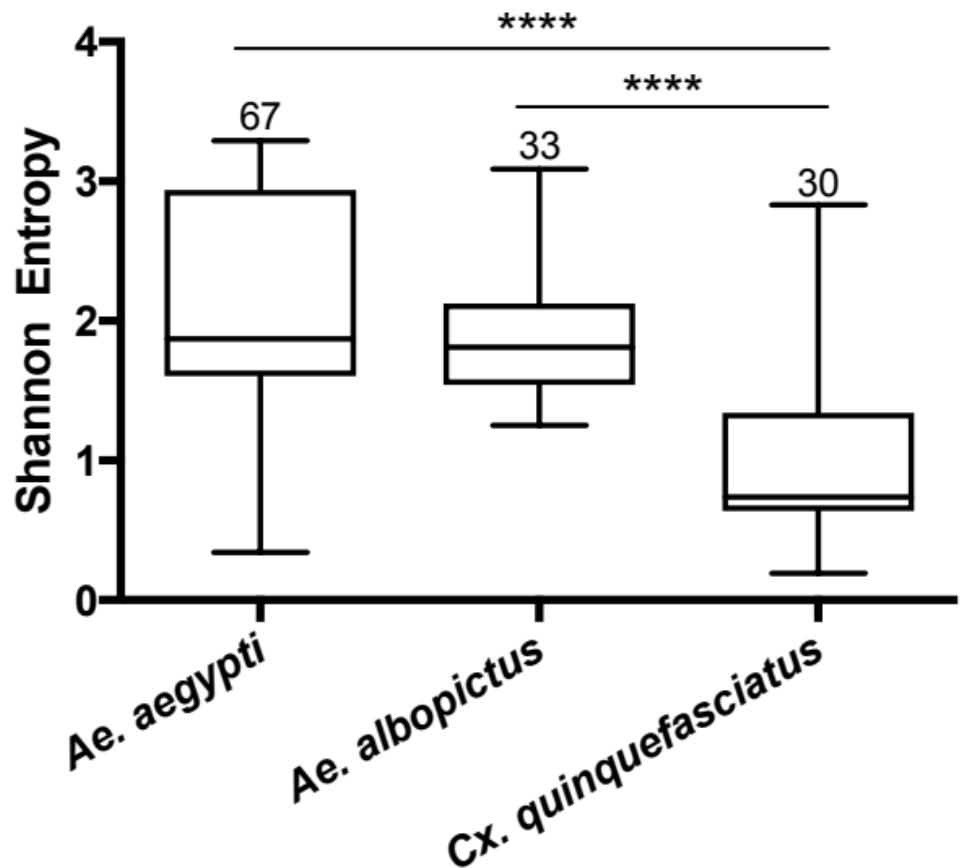
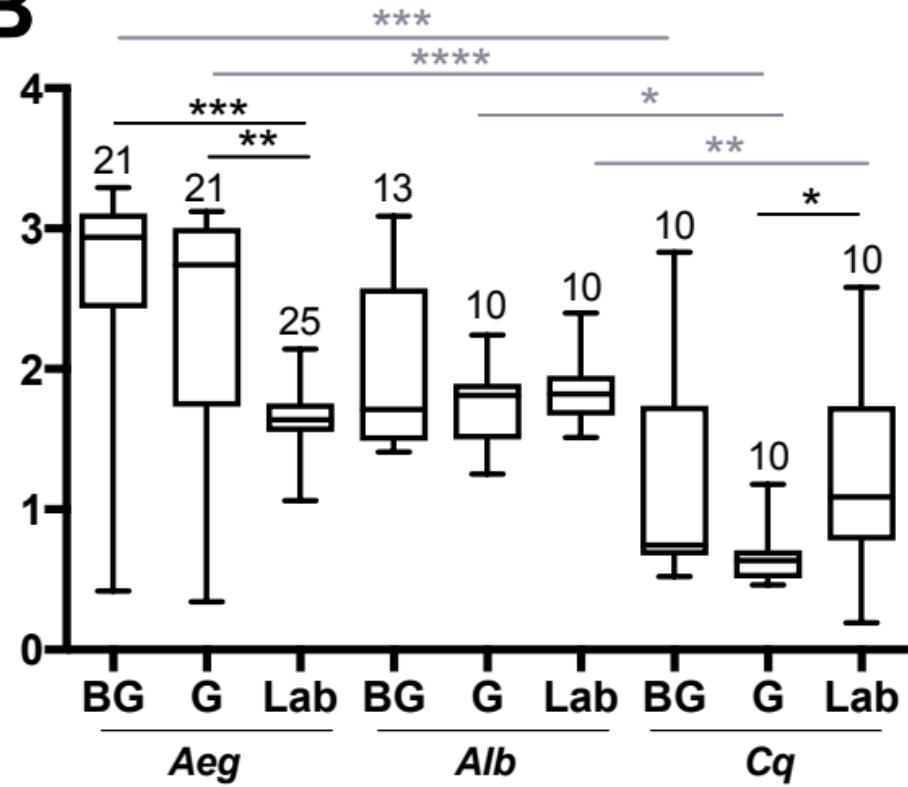
1152

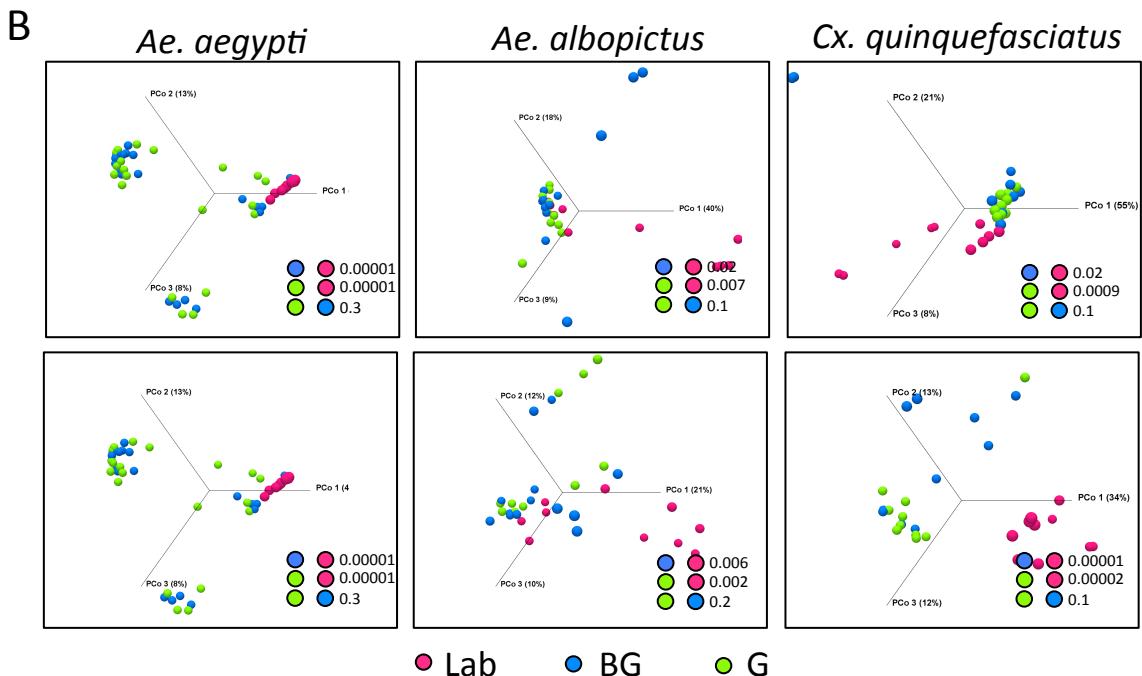
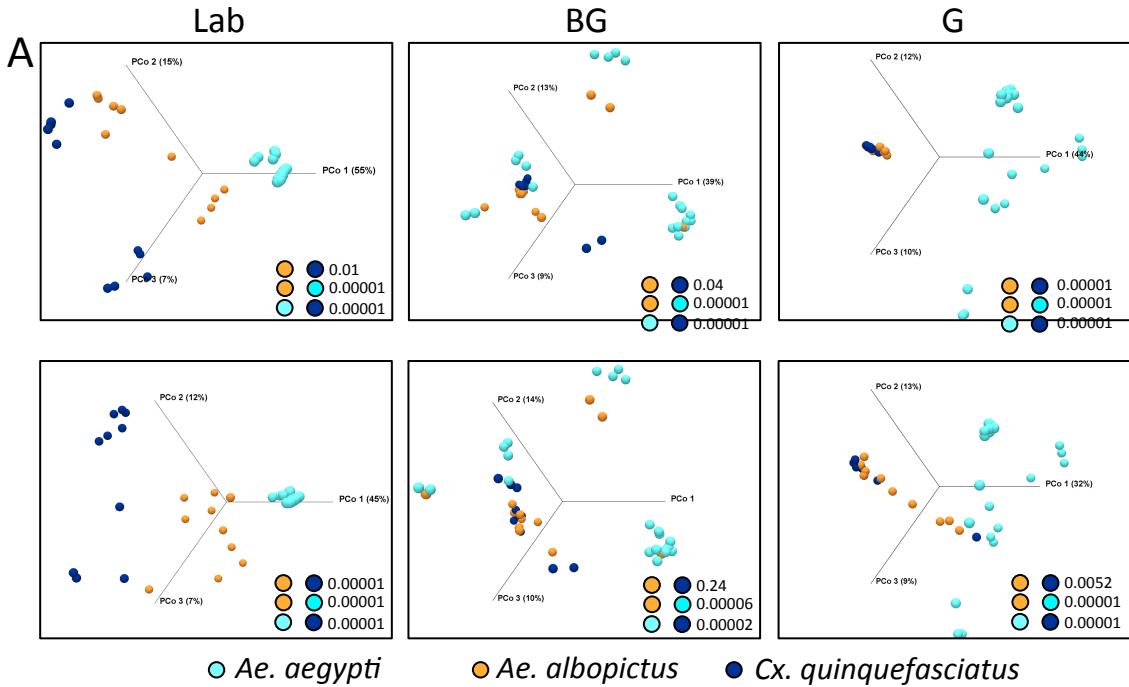
1153 **Supplemental tables.**

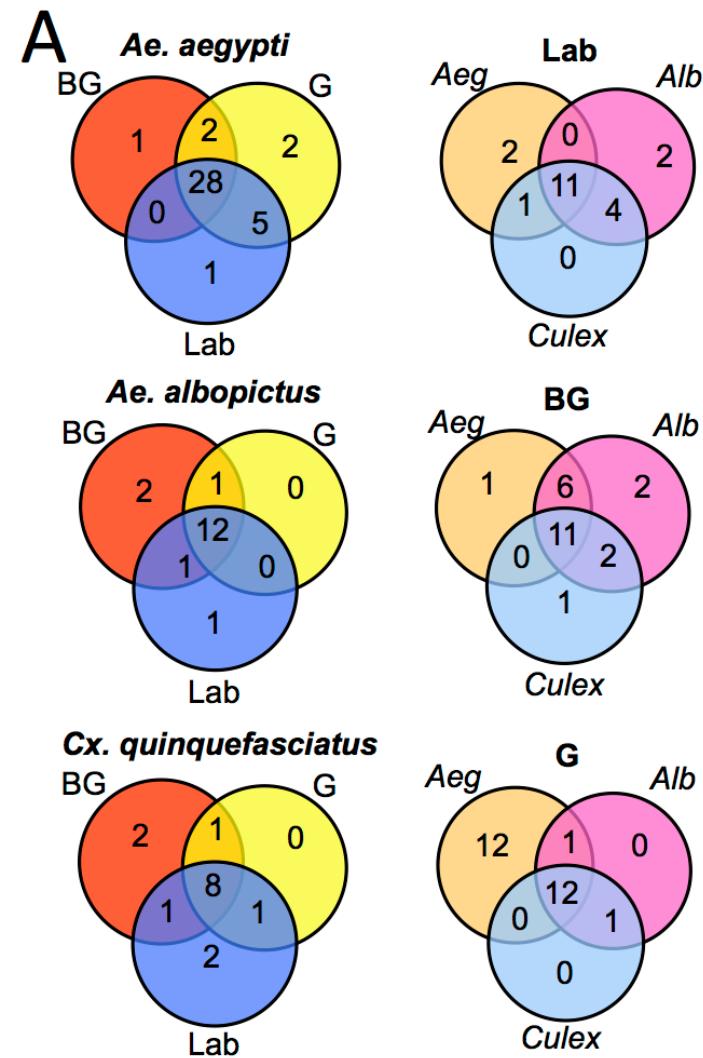
1154

1155 **Table S1.** Number of samples used in the study and their division into groups by
1156 metadata.

1157



1158 **Table S2.** Complete and filtered to 0.1% OTU table with read counts from each
1159 individual mosquito (*Ae. aegypti*, *Ae. albopictus* *Cx. quinquefasciatus*). Each library was
1160 constructed from a single female mosquito.

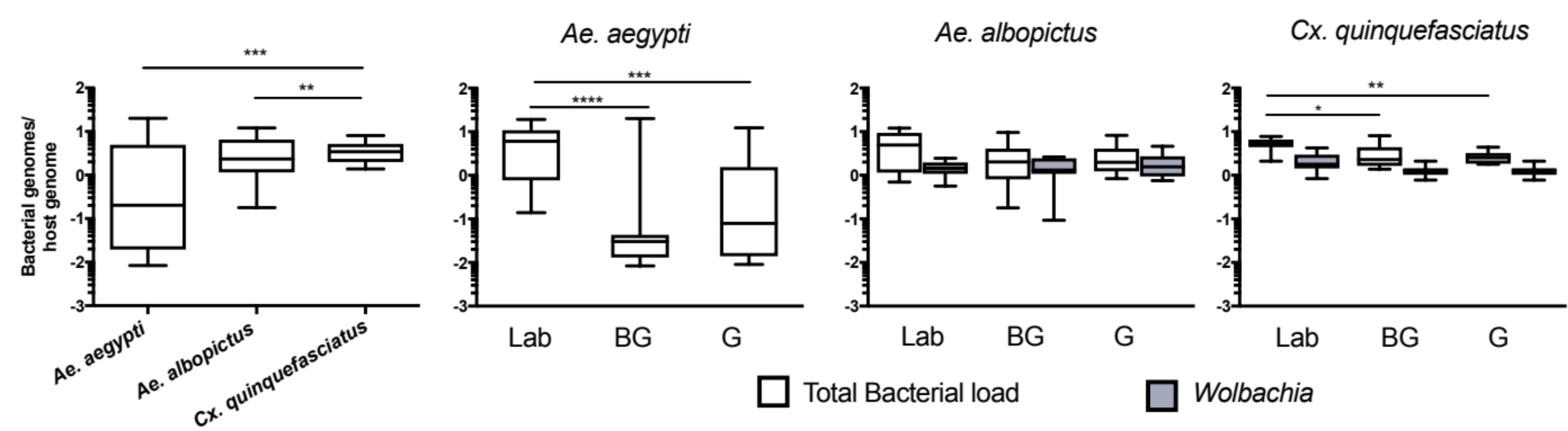


1161


1162 **Table S3.** List of the bacterial taxa present or absent within each species and group
1163 which was used to create Venn diagrams (Figure 3A).

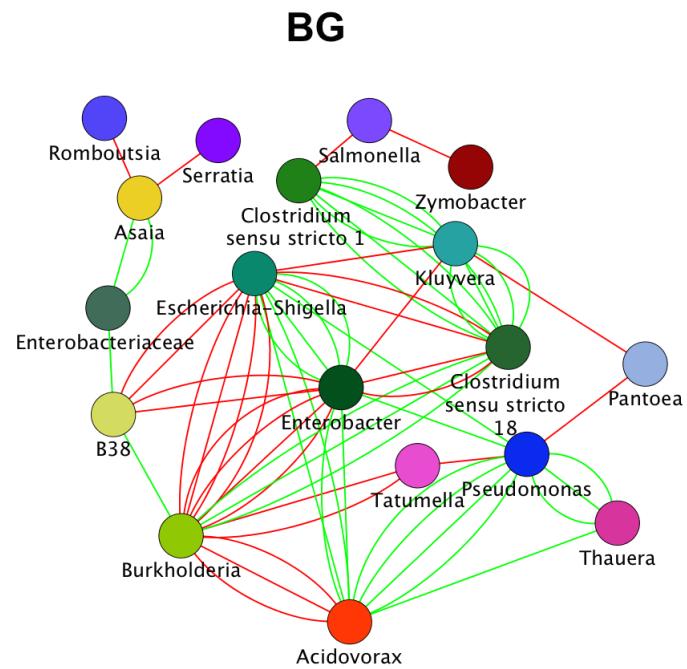
1164

1165 **Table S4.** OTU tables (relative abundance profiles) used in CoNet analysis. Relative
1166 abundance of each OTU in a sample was calculated by dividing number of reads by total
1167 number of reads of the sample and OTUs with read counts below 0.1% across all
1168 mosquito samples were excluded from analysis. OTU relative abundance profiles were
1169 summed based on lowest common taxonomy, down to genus level. When building
1170 networks for each mosquito group (*Ae. aegypti* BG, G or Lab, *Ae. albopictus* BG, G or
1171 Lab, or *Cx. quinquefasciatus* BG, G or Lab), abundance profiles present (non-zero
1172 abundance) in less than 5 samples were excluded from analysis.

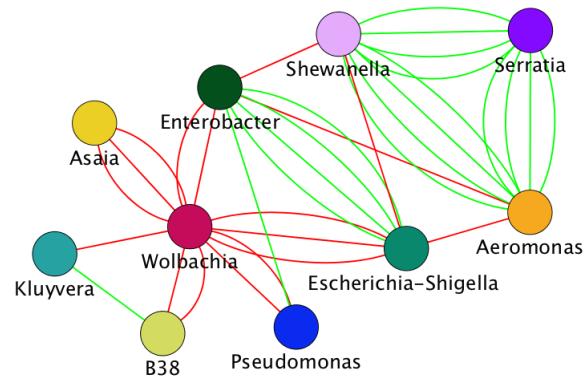
A**B**

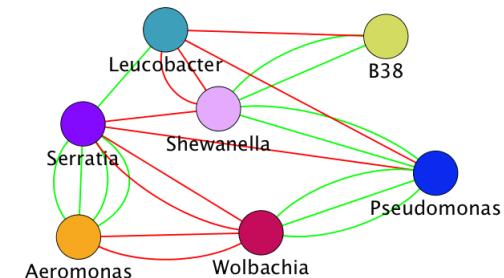
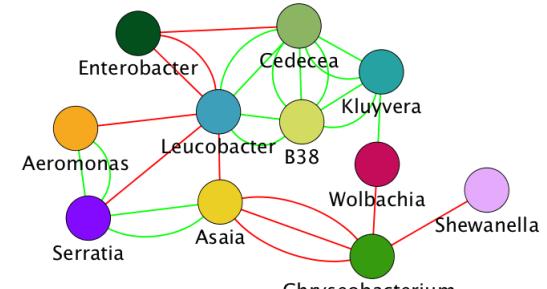
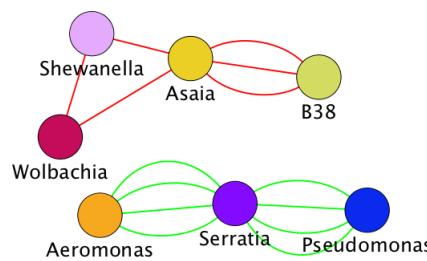
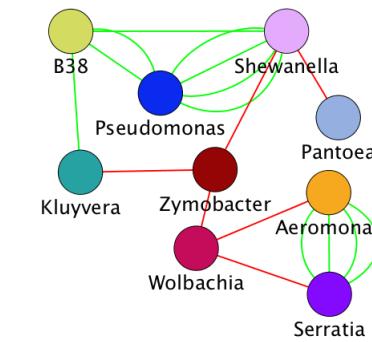
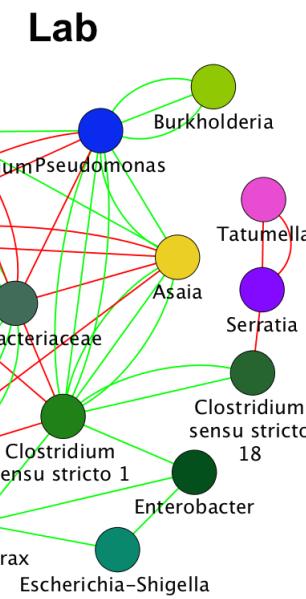
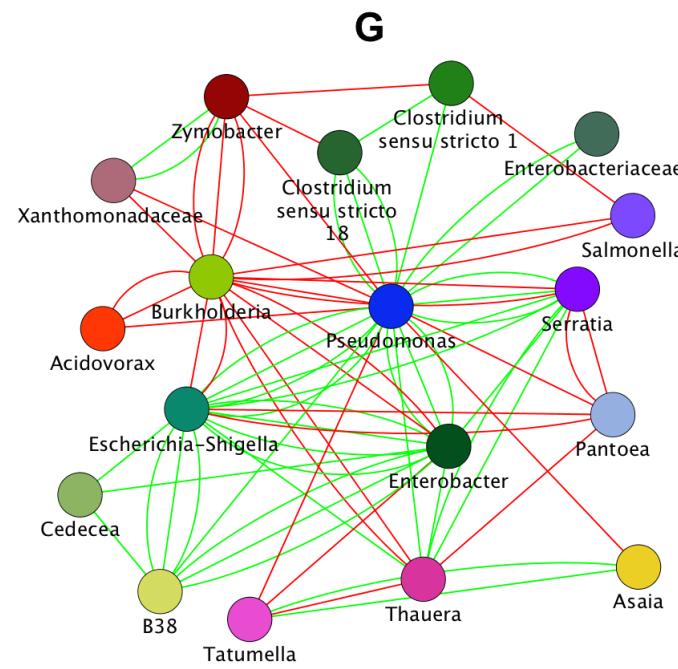
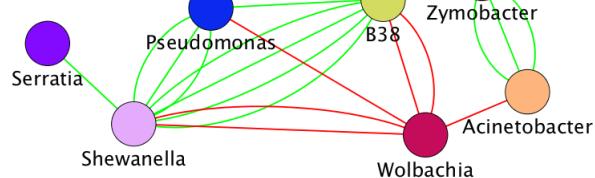


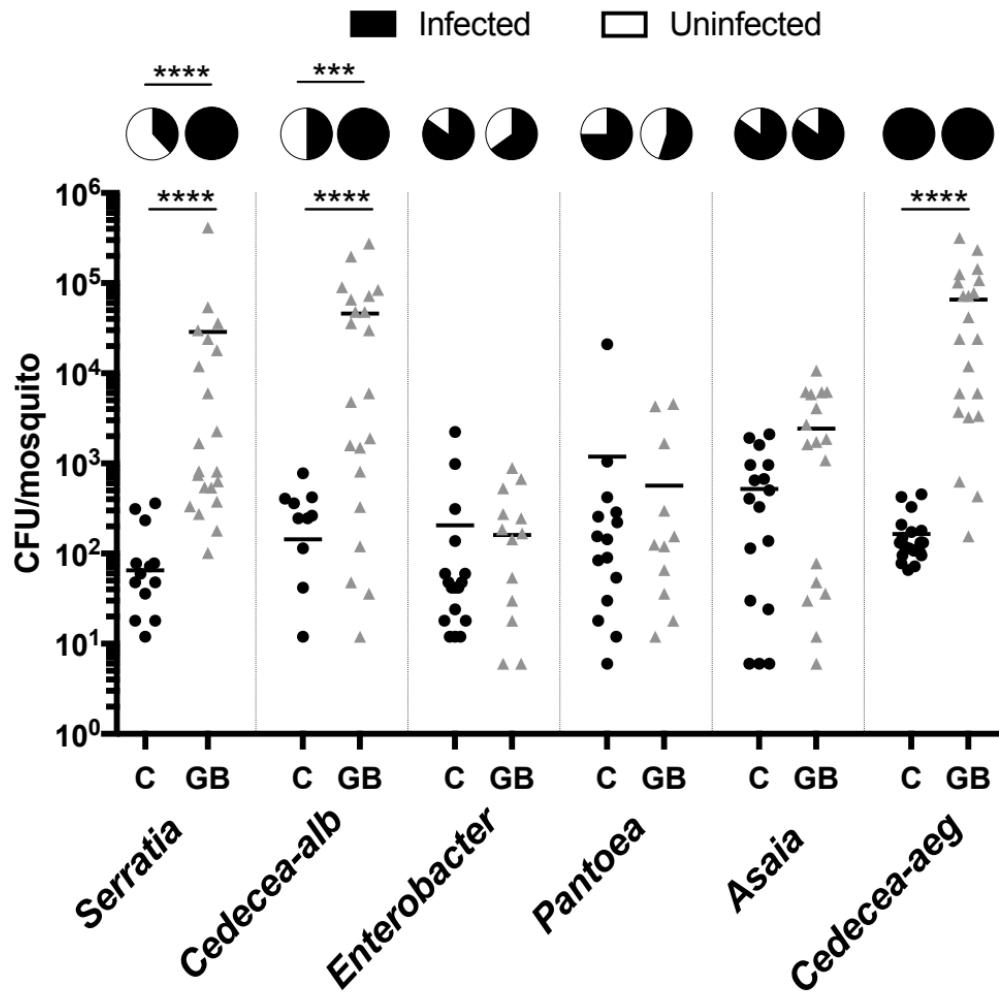
B


Name	Aeg vs Alb			Aeg vs Cul			Cul vs Alb		
	Lab	BG	G	Lab	BG	G	Lab	BG	G
Acinetobacter						15.3			
Aeromonas	12.9	11.5	12.4	15.8	10.3	10.7	2.9		
Asaia	-2.7			-6.6					
Burkholderia	-8.3			-8.3					
Cedecea	-7.2			-16.1					
Chryseobacterium	11.7								
<i>Clostridium.sensu.stricto.1</i>	-11.4	-3.5	-15.7	-11.4	-17.1	-15.7			
<i>Clostridium.sensu.stricto.18</i>	-11.4	-2.6	-15.4	-11.4	-16.3	-15.4			
Enterobacter				-11.1			-9.5	-12.0	
Escherichia/Shigella				-3.1	-11.3		-9.2	-12.6	
Kluyvera				-5.1		-8.4			
Leucobacter		14.5				15.0			
Pantoea									
Pseudomonas									
Romboutsia				-10.2		-10.2			
Serratia	6.3	4.1	2.8	9.1	4.2	0.6	2.8		
Shewanella	13.5	13.7	13.5	10.5	16.0	13.5			
Sphingobacterium					14.9			9.4	
Tatumella									
Thauera				-5.2					
uncultured							16.1		
uncultured.bacterium.1	-5.6	-1.3		-12.6					
uncultured.bacterium.2	-7.1			-15.5					
Wolbachia	14.7	10.1	5.4	14.7	10.4	5.5			0.1

C


Name	G vs BG		
	Aeg	Alb	Cq
Acinetobacter			13.0
Pantoea			-12.9
Pseudomonas		3.3	3.3
Tatumella	1.2		11.1
uncultured			16.1
uncultured bacterium-1			1.6
uncultured bacterium-2			5.1
Wolbachia			-0.4








Ae. aegypti



Ae. albopictus

C. quinquefasciatus

