

1 **Identification and Characterisation of the CD40-Ligand of *Sigmodon hispidus***

2 Marsha S. Russell¹, Abenaya Muralidharan^{1,3}, Louise Larocque¹, Jingxin Cao², Yvon

3 Deschambault², Jessie Varga², Sathya N. Thulasi Raman¹, Xuguang Li^{1,3*}

4 ¹Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health

5 Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals,

6 Ottawa, ON, Canada.

7 ²National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada

8 ³Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University

9 of Ottawa, Ottawa, Canada

10

11 *To whom correspondence should be addressed. Email: sean.li@canada.ca

12

13

14

15

16

17 **Abstract**

18 Cotton rats are an important animal model to study infectious diseases. They have demonstrated
19 higher susceptibility to a wider variety of human pathogens than other rodents and are also the
20 animal model of choice for pre-clinical evaluations of some vaccine candidates. However, the
21 genome of cotton rats remains to be fully sequenced, with much fewer genes cloned and
22 characterised compared to other rodent species. Here we report the cloning and characterization
23 of CD40 ligand, whose human and murine counterparts are known to be expressed on a range of
24 cell types including activated T cells and B cells, dendritic cells, granulocytes, macrophages
25 and platelets and exerts a broad array of immune responses. The cDNA for cotton rat CD40L
26 we isolated is comprised of 1104 nucleotides with an open reading frame (ORF) of 783bp
27 coding for a 260 amino acid protein. The recombinant cotton rat CD40L protein was recognized
28 by an antibody against mouse CD40L. Moreover, it demonstrated functional activities on
29 immature bone marrow dendritic cells by upregulating surface maturation markers (CD40,
30 CD54, CD80, and CD86), and increasing IL-6 gene and protein expression. The availability of
31 CD40L gene identity could greatly facilitate mechanistic research on pathogen-induced-
32 immunopathogenesis and vaccine-elicited immune responses.

33

34

35

36

37

38 **1. Introduction**

39 The cotton rat (*Sigmodon hispidus*) was first used in polio research in the 1930s [1], and
40 throughout the last century, it has proven to be an excellent model for biomedical research [2] [3]
41 [4]. Historically in biomedical research, the mouse has been exploited as the default animal
42 model. This is in part due to its well defined immunological and genetic information, cost-
43 effectiveness, and abundant inbred strains and research reagents. However, the use of mice as
44 models to study infectious diseases has its limitation since mice are not naturally infected by
45 most human pathogens. On the other hand, cotton rat is susceptible to many human pathogens
46 and is the ideal model of choice for measles (paramyxovirus) [5], herpes simplex (oral and
47 ophthalmic) [6], influenza (orthomyxovirus) [7] [8], HIV-1 [9], RSV (respiratory syncytial virus)
48 [10], adenovirus [11] [12], human parainfluenza [13], and human metapneumovirus [14]. This
49 model has been valuable for adenovirus-based gene replacement therapy research [15] [16] and
50 was also proven to be indispensable in pre-clinical evaluation of the prophylactic antibodies
51 (RespiGam® [17] and Synagis® [18]. Indeed, the cotton rat model was found to be valuable in
52 terms of its biological and immunological relevance, it was deemed unnecessary to test the
53 adenovirus-based gene therapy and the Synagis® prophylactic treatment against RSV disease in
54 non-human primate prior to the human trials [19] [20].

55 A number of methods and reagents have been developed for the analysis of immune
56 responses in cotton rats over the last decade. Up to date, more than 200 genes encoding
57 cytokines, chemokines, cell surface markers and regulatory molecules have been cloned, with
58 various related research reagents being commercially available. As a result, the use of cotton rats

59 in pathogenesis studies addressing mechanistic questions has significantly increased.

60 Nevertheless, the gene encoding CD154 and CD40 ligand (CD40L), remains elusive.

61 CD40L plays a critical role in orchestrating immune responses against pathogens.

62 Depending on the post-translational modification, the murine CD40L is a 32-39 kDa type II

63 membrane glycoprotein that was initially identified as a surface marker exclusive to activated

64 CD4⁺ T cells [21] [22]. It is a member of the TNF superfamily consisting of a sandwiched

65 extracellular structure composed of a β -sheet, α -helix loop, and a β -sheet, allowing for the

66 trimerization of CD40L, an additional feature of the TNF family of ligands [23]. Since its initial

67 discovery, CD40L has been shown to be not only expressed on CD4⁺ T cells, but on dendritic

68 cells (DCs) [24], B cells [25], and platelets [26].

69 It has been shown that upon interacting with its receptor, CD40, CD40L induces profound effects

70 on T cells, DCs, B cells, endothelial cells, as well as many cells of the hematopoietic and non-

71 hematopoietic systems. Moreover, when CD40L engages CD40 on the surface of DCs, it

72 promotes cytokine production, the induction of cell surface co-stimulatory molecules, and

73 facilitates the cross-presentation of antigen by these cells [27], enabling DCs to mature and

74 effectively induce the activation and differentiation of T cells. When CD40L engages CD40 on

75 the surface of B cells, it promotes germinal center formation, immunoglobulin (Ig) isotype

76 switching, somatic hypermutation to enhance antigen affinity, and lastly, the formation of long-

77 lived plasma cells and memory B cells [28]. Various studies have been conducted to utilize gene

78 delivery of CD40L to DCs and tumor cells for tumor immunotherapy. It was found that

79 expression of CD40L in a small proportion of tumor cells was sufficient to generate a long-

80 lasting systemic anti-tumor immune response in mice that was shown to be dependent on
81 cytotoxic T lymphocytes [29] [30].

82 Here we report the successful cloning of the gene encoding cotton rat CD40L (crCD40L); we
83 also expressed and purified the CD40L produced in mammalian cells. Further characterisation of
84 the recombinant cotton rat CD40L revealed its functional activities in promoting DC maturation
85 and cytokine production.

86

87 **2. Materials and Methods**

88

89 **2.1 Animals and Ethics Statement**

90 6–7 weeks old cotton rats were obtained from an inbred colony maintained at Envigo
91 (USA). All animal experiments were conducted in accordance with Health Canada institutional
92 guidelines and the approval of the Animal Care and Use Committee.

93

94 **2.2 Isolation and sequence determination of cotton rat CD40L cDNA**

95

96 The spleens from three naïve cotton rats were removed aseptically and snap frozen in
97 liquid nitrogen. The spleens were homogenized individually with a TissueLyser II (Qiagen) and
98 total RNA extracted using the RNeasy Mini kit (Qiagen) with on-column DNase digestion
99 according to the user's manual. The 3' RACE system (Life Technologies) was then used with to
100 amplify the 3' portion of the cotton rat CD40L from the total RNA according to the
101 manufacturer's instructions. A gene specific primer (5' –
102 GGACTCTATTATGTCTACACCCAAGTCACCTTCTG -3') was derived from a consensus

103 sequence aligning the rat (*Rattus norvegicus* UniProt: Q9Z2V2), mouse (*Mus musculus* UniProt:
104 P27548), and golden hamster (*Mesocricetus auratus* XM_005084522.3). Following first strand
105 cDNA synthesis, the 3' portion of the cotton rat CD40L mRNA was PCR amplified using the
106 consensus sequence derived gene specific primer and the abridged universal amplification primer
107 with an annealing temperature at 56°C. The reverse complementary sequence of this primer was
108 then used as a reverse primer with the forward primer (5' -
109 GATAGAACATACAGCCAACCTTCTCCAGATC -3') to amplify the 5' portion of the
110 cotton rat CD40L mRNA with an annealing temperature of 57°C.

111 All amplified fragments were sequenced with BigDye Terminator v.3.1 Cycle Sequencing kit
112 (ThermoFisher cat # 4336917). Briefly, samples were amplified in a PTC-200 thermal cycle (MJ
113 Research) with the following program: 26 cycles of 1°C/S to 96°C, 96°C for 10 seconds, 1°C/S
114 to 50°C, 50°C for 5 seconds, 1°C/S to 60°C, 60°C for 4 minutes. The samples were cleaned
115 using DyeEx 2.0 Spin kit (Qiagen cat # 63204) and loaded onto a 3130xl Genetic Analyzer
116 (Applied Biosystems). Raw sequencing data was edited by the instrument's software
117 (ThermoFisher 3130xl Genetic Analyzer Data Collection Software v3.0), and then imported into
118 GeneCodes Sequencher v4.6.1 sequencing analysis software for further editing. The final
119 sequenced contigs are then imported to NCBI BLAST (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>)
120 to confirm the identity.

121
122 2.3 Sequence and phylogenetic analysis
123 Putative conserved domains, trimer interface, and receptor binding sites were determined by
124 performing a standard protein BLAST (blastp algorithm; <https://blast.ncbi.nlm.nih.gov>). The
125 sequences producing significant alignments were imported into Geneosis software, (Auckland,

126 New Zealand). Multiple alignment was conducted as previously described [31], with
127 phylogenetic analysis using Geneosis Pro 5.6.7.

128

129

130 2.4 Cloning of crCD40L into Vaccina Virus expression system

131 Once the mRNA sequence was confirmed, a construct was designed beginning with a kozak
132 sequence (5'- CACCGCCGCCACC – 3'), followed by a secretion signal consisting of 23 amino
133 acid (aa) (MLLAVLYCLLWSFQTSAGHFPRA) from the human tyrosinase signal peptide as
134 previously described [32]. This is followed by six histidine residues to facilitate protein
135 purification. Following this sequence, a 27-aa fragment from the bacteriophage T4 fibritin
136 trimerization motif was added [33] and finally connected to the full length 783bp open reading
137 frame (ORF) of the cotton rat CD40L sequence at the C terminus. This construct was synthesized
138 and cloned into pUC57 (Biobasic, Markham, ON).

139

140 Generation of a recombinant vaccinia virus expressing cotton rat CD40L protein construct
141 was achieved using a vaccinia virus E3L and K3L double deletion mutant virus as the parental
142 virus and taterapoxvirus K3L as the positive selection marker (Jingxin Cao, unpublished
143 information). Briefly, the recombination plasmid vector for expression of the CD40L construct
144 gene consists of the homologous flanking vaccinia DNA sequences targeting vaccinia A45R
145 gene (SOD homolog); the CD40L construct gene driven by a modified vaccinia H5 promoter
146 (Vaccine 1996, 14:1451), and taterapoxvirus 037 gene driven by vaccinia K3L promoter as the
147 positive selection marker. The recombination vector was transfected into a HeLa PKR knockout
148 cells infected with a vaccinia virus with both E3L and K3L genes deleted. Selection and
149 purification of the recombinant vaccinia virus expressing the CD40L was done in BHK21 cells.

150

151 2.5 Western Blot

152 Expression of the CD40L protein was confirmed by Western blotting using His-tag Ab. Cell
153 monolayers were lysed in sample buffer and homogenized using QIAshredder columns (Qiagen).
154 Western blotting was performed using 4 to 15% TGX gel and Tris/Glycine/SDS running buffer
155 (Bio-Rad Laboratories Inc.), and the protein samples were transferred to Immobilon-FL PVDF
156 membranes (Millipore). Protein was detected with Tetra-HIS Ab (Qiagen) and goat anti-mouse
157 IRDye-800CW (LiCor). Membranes were developed using the Odyssey system (LiCor).

158

159

160 2.6 Expression and Purification of recombinant crCD40L

161 The vaccinia virus carrying the crCD40L gene was propagated in BHK21 cells. The cells
162 were collected and washed with PBS once and then lysed with a denaturing buffer (10 mM Tris–
163 HCl, 100 mM sodium phosphate, 6 M guanidine hydrochloride, 10 mM reduced glutathione, pH
164 8.0) and disrupted by sonication on ice using a Branson sonifier 150 (ThermoFisher, Waltham,
165 MA) at level 1 for two 10sec bursts with 1min rest on ice between. After separation of cell
166 debris, the supernatant was added to a slurry of Ni-NTA resin (Qiagen, Mississauga, ON,
167 Canada) (10 mL resin bed) and stirred at room temperature for 30 min before loading into a
168 column. The column was purified using an AKTA purifier (Amersham Biosciences) with
169 Unicorn 5.3 software (Amersham Biosciences). Refolding was accomplished under oxidative
170 conditions with a gradient of denaturing buffer to buffer B (buffer B: 10 mM Tris–HCl, 100 mM
171 sodium phosphate, pH 7.8) over 10 column volumes (CVs). The column was then washed with
172 three CVs of buffer B + 60 mM imidazole (pH 7.8) to remove unspecific binding. The protein

173 was eluted off the column with buffer B + 250 mM imidazole (pH 7.8). The resulting protein
174 was dialysed against PBS pH 7.5 and then confirmed by western blot.

175
176 2.7 Enzyme-linked immunosorbant assay (ELISA)

177 96-well plates were coated with either recombinant mouse CD40L (R&D Systems) or the
178 recombinant crCD40L protein 2ug/ml in 100 μ l PBS. Plates were washed with wash buffer (PBS-
179 0.1% tween-20) and then blocked with 200 μ l/well blocking buffer (PBS containing 0.1% Tween
180 20 and 3%IgG Free BSA) for 1 hour at 37°C. Plates were washed with wash buffer and
181 incubated at 37°C for 1 hour with 100 μ l/well goat α -mouseCD40L (R&D Systems) 2ug/ml in
182 blocking buffer. Plates were subsequently washed and incubated at 37°C for 1 hour with
183 100 μ l/well with rabbit anti-goat IgG (Zymed). Plates were washed again and incubated for 10
184 min in the dark with 100 μ l/well 3,3'5,5'-tetramethylbenzidine substrate (New England Bio Labs).
185 The reaction was stopped with Stop solution (New England Bio Labs) and absorbance was read
186 at 450nm on a BioTek Synergy 2 plate reader.

187
188 2.8 Maturation and activation analysis of mouse bone marrow DC
189 Primary bone marrow cells from Balb/c mice (Chicago, IL) were thawed and cultured in
190 dendritic cell medium from manufacture (Cell Biologics M7711) supplemented with GMCSF
191 (Cell Biologics) without IL-4 at 4x10⁵cells/well in a volume of 200 μ l. The cells were treated
192 with 0.5 μ g/ml recombinant mouse CD40L (Preprotech, Montreal, QC) or the recombinant
193 crCD40L protein at 0.5 μ g/ml, 5 μ g/ml, or 50 μ g/ml. Forty hours later, flow cytometry was
194 performed on a BD LSRLFortessa cell analyser after 2 x 10⁵cells/tube were stained using CD11c-
195 PE-CF594, CD54-FITC, CD40-BV786, CD80-BV421, and CD86-BV711 antibodies. All

196 antibodies were purchased from BD Biosciences. The resulting spectra were analysed using
197 FACSDiva version 8.0.1 software.

198 To assess IL-6 mRNA production of immature bone marrow murine DCs in response to
199 targeting by recombinant crCD40L, quantitative real-time PCR was conducted on an ABI Prism
200 7500 Fast Sequence detection system (Applied Biosystems). TaqMan assay reagent kits (Applied
201 Biosystems) were used that contain pre-standardized primers and TaqMan MGB probes for IL-6
202 and 18S which were used to normalize the data. Total RNA was isolated from 8×10^5 stimulated
203 bone marrow DCs using the RNeasy Mini Kit (Qiagen) according to manufactures instructions.
204 The isolated RNA was used to make cDNA using the Superscript III First-Strand Synthesis
205 System for RT-PCR (Invitrogen) according to manufacturer's instructions. The cDNA was then
206 subjected to quantitative PCR using the TaqMan Fast Advanced Master Mix (Applied
207 Biosystems) according to manufactures instructions. Samples were run in duplicate and C_t
208 values were obtained. Fold change over unstimulated DCs was calculated using the $2^{-\Delta\Delta CT}$
209 method of relative quantification [34] using 18S as the housekeeping reference gene. To
210 investigate IL-6 secretion by murine bone marrow DCs, supernatant from forty hour stimulated
211 cultures were collected and assayed using the Mouse IL-6 DuoSet ELISA Kit (R & D Systems)
212 following the manufacturer's protocol.

213

214 **3. Results and Discussion**

215 3.1 Sequence determination of the cotton rat CD40L coding sequence

216 The complete mRNA sequence of CD40L was obtained in two steps (Fig 1). A
217 sequence corresponding to nucleotides 535 through to the poly-A tail was obtained using the 3'
218 RACE kit and mRNA as starting material, which was isolated from cotton rat splenocytes and a

219 rodent consensus sequence as a primer. This portion of the sequence has the 3' un-translated
220 region of the mRNA as well as the stop codon. The 5' end of the protein was obtained in the next
221 step by PCR amplification of the cDNA obtained in the first step with the 3' RACE kit and the
222 reverse complement of the consensus sequence primer and a second consensus sequence primer
223 designed to bind to the beginning of the CD40L mRNA. The 783bp ORF encodes 260aa
224 followed by a stop codon.

225

226 **Figure 1: Cotton Rat CD40L mRNA sequence.** The sequence was determined using 3' RACE
227 of mRNA extracted from the spleen of a cotton rat.

228

229 Comparison of the sequenced CD40L gene revealed that the crCD40L coding sequence
230 shares 93%, 89%, and 83%, identity with golden hamster, rat, and mouse, respectively. At the
231 amino acid (aa) level, the corresponding identities are 91%, 82%, and 82%, Fig 2a. At both the
232 mRNA and aa levels, the crCD40L shared the closest similarity with *Peromyscus maniculatus*
233 *bairdii* (or deer mouse) at 93% and 92% respectively. When sequence homology analysis is
234 performed, crCD40L clusters with other members of the Cricetidae family Fig 2b.

235

236 **Fig 2: Sequence alignment of Cotton Rat CD40L.** (A) The Clustal Omega sequence alignment
237 program from EMBL-EBI was used to align the protein sequence of crCD40L with those of
238 other closely related species. Rat (*Rattus norvegicus* UniProt: Q9Z2V2), Mouse (*Mus musculus*
239 UniProt: P27548), Golden Hamster (*Mesocricetus auratus* XM_005084522.3), and Deer Mouse
240 (*Peromyscus maniculatus bairdii* (Accession: XP_006992033). An * (asterisk) indicates positions
241 which have a single, fully conserved residue. A : (colon) indicates conservation between groups

242 of strongly similar properties - scoring > 0.5 in the Gonnet PAM 250 matrix. A . (period)
243 indicates conservation between groups of weakly similar properties - scoring $=< 0.5$ in the
244 Gonnet PAM 250 matrix. (B) Alignment tree was produced using Geneosis software and
245 multiple alignment was conducted with phylogenetic analysis.

246

247 We next examined the functional domains in crCD40L in comparison with other
248 known CD40L. As shown in Fig 3a, crCD40L has a putative tumor necrosis factor (TNF)
249 superfamily domain (aa 137-260) and a 23 aa putative transmembrane domain (aa 23-45). Amino
250 acids 124, 169, 171, 223, 228, 254, and 258 comprise the putative trimer interface, while amino
251 acids 140, 141, 146, 189, 196, and 200 comprise the putative receptor binding sites.

252

253 **Fig 3: Cotton Rat CD40L putative conserved domains.** (A) (-) A line below the sequence
254 indicates the putative TNF superfamily domain. (*) Putative trimer interface on conserved
255 domain TNF. (^) Putative receptor binding sites on conserved domain TNF. The putative
256 transmembrane domain is shown in blue. The putative ecto domain from aa 115 through to aa
257 260 is shown in red. (B) Image of monomer of Cotton Rat CD40L putative ectodomain
258 conserved regions. The putative TNF superfamily domain is shown in red. (*) Putative trimer
259 interface on conserved TNF superfamily domain residues are shown in green. (^) Putative
260 receptor binding sites on conserved TNF superfamily domain are shown in light blue.

261

262 Using EZmol software [35], we predicted folding of the protein as shown in Fig 3b.
263 The cotton rat CD40L cDNA that we have isolated was a 1104 nucleotide sequence with a poly-
264 A tail containing an ORF of 783bp which coded for a 260 aa protein. The homology of cotton rat

265 CD40L, at both the amino acid and nucleic acid level, is closer to members of the Cricetidae
266 family (hamster and deer mouse) than to those of the Muridae family (rat and mouse) as shown
267 in Fig 2b. As with other known CD40L proteins, there is a putative TNF superfamily domain, a
268 transmembrane domain, trimerization sites, and receptor binding sites [36].

269 TNF superfamily members include TNF (TNF-alpha), LT (lymphotoxin-alpha, TNF-
270 beta), CD40 ligand, Apo2L (TRAIL), Fas ligand, and osteoprotegerin (OPG) ligand, among
271 others [37]. The TNF superfamily is composed of 19 ligands and 29 receptors, in which each has
272 vastly diversified roles in the body and exhibit pro-inflammatory activity, partly via activation of
273 NF-kB [37]. Members of this family generally have an intracellular N-terminal domain, a short
274 transmembrane segment, an extracellular stalk, and a globular TNF-like extracellular domain of
275 about 150 residues [23]. They initiate apoptosis by binding to related receptors, some of which
276 have intracellular death domains [38]. These proteins typically form homo- or hetero- trimeric
277 complexes and bind one elongated receptor molecule along each of three clefts formed by
278 neighboring monomers of the trimer and ligand trimerization is for receptor binding [23] [39]
279 [40]. All seven known conserved residues that constitute the trimer interface on the conserved
280 TNF domain [23] [40] were mapped to the putative crCD40L protein sequence. Additionally, all
281 six known conserved receptor binding sites on the conserved TNF domain [23] [40] were
282 mapped to the crCD40L protein sequence.

283

284 3.2 Expression of recombinant cotton rat CD40L in Vaccinia Virus

285 In order to further evaluate the crCD40L deduced sequence, the full 783bp ORF of the
286 crCD40L was cloned into a vaccinia virus vector. The crCD40L construct was designed to carry
287 a secretion signal, histidine tag, and a trimerization motif (Fig 4a). Selection and purification of

288 the recombinant vaccinia virus expressing the CD40L construct was conducted in BHK21 cells.
289 Western blot with anti-histidine antibody (Ab) was used to confirm expression of the CD40L
290 protein construct Fig 4b. The resulting 36 kDa protein product was found in both the cell lysate
291 and supernatant (faint band - 48 hours only). Since the highest expression was found in the cell
292 lysate, it was used for further purification of the protein. It should be noted that the protein was
293 only able to be detected under reducing conditions. Under non-reducing conditions, the protein
294 was unable to be detected by the anti-histidine Ab, even in the cell lysate (data not shown). This
295 indicates that the histidine tag is folded within the trimer and is unavailable in the native form for
296 purification. This is an additional reason for the need to purify the protein from the cell lysate
297 under harsh denaturing conditions followed by protein refolding. The reason we utilized a
298 mammalian expression system to produce the protein rather than a bacterial system is to facilitate
299 its proper folding into its native structure, trimerization, and glycosylation. The aa backbone
300 predicts a protein of 29 kDa, yet initial studies of the CD40L protein suggested a molecular mass
301 of 39 kDa, and on most cell types the molecular mass of CD40L is 32-33kDa, consistent with
302 extensive post-translation modification [36].

303

304 **Fig 4: crCD40L construct and protein expression and secretion.** (A) Schematic
305 representation of the vv-crCD40L construct. Where “S” is the secretion signal, “6H” is a six
306 histidine residue, and “Tri” is the trimerization motif. (B) In vitro protein expression in BHK21
307 cell lysate and supernatant collected 24h and 48h post infection. Protein expression is confirmed
308 by Western blot using an anti-histidine Ab.

309

310

311 3.3 Purification and verification of cotton rat CD40L

312 The BHK21 cells expressing the crCD40L construct were collected and lysed with 6 M
313 guanidine hydrochloride with reduced glutathione and sonication. The lysate was bound to a
314 nickel resin and the protein was refolded on the column. Since CD40L biological activity is
315 dependent on a homo-trimer configuration [23], the protein was refolded by gradient, on column
316 buffer exchanges, of a 6M guanidine hydrochloride and phosphate buffer to facilitate gradual
317 removal of the denaturing agent. The resulting bound protein was subsequently eluted with
318 imidazole. The resulting fractions that showed a peak were pooled and dialysed against PBS.

319 The purified protein was confirmed in ELISA. Since the cotton rat CD40L protein
320 sequence shared 82% identity with the mouse CD40L protein sequence, an Ab known to detect
321 mouse CD40L was used to identify the purified crCD40L protein. The purified recombinant
322 crCD40L was used as a coating antigen, and was detected with an Ab generated against the
323 mouse CD40L Fig 5. Uncoated controls were performed in parallel and were negative for
324 CD40L in ELISA.

325

326 **Fig 5: crCD40L is detected by mouse CD40L.** crCD40L was expressed in vaccinia virus and
327 purified from infected BHK21 cell lysate on a nickel column. The purified protein was detected
328 by ELISA using a mouse Ab against CD40L.

329

330 3.4 Functional activity of the recombinant crCD40L

331 Since the cotton rat CD40L protein sequence shared 82% identity with the mouse CD40L
332 protein sequence with similar functional domains, we evaluated the biological activity of the
333 recombinant crCD40L on immature murine bone marrow DCs. We conducted experiments based
334 on known functional activities of CD40L in other animal species. Specifically, maturation of
335 immature DCs after exposure to antigen is known to play a crucial role in their immunity-
336 stimulating function [36], while trimeric recombinant CD40L has been shown to stimulate DC
337 immunomodulating functions [41]. When CD40L engages CD40 on the surface of DCs, it
338 promotes cytokine production, the induction of cell surface co-stimulatory molecules, and
339 facilitates the cross-presentation of antigen by these cells [27]. In addition, CD11c is a DC
340 integrin marker and upon stimulation, is down-regulated [42]. Intracellular adhesion marker
341 CD54, along with co-stimulatory markers CD40, CD80, and CD86 are all upregulated upon
342 stimulation with CD40L [43] [44]. Moreover, mouse I-A^d major histocompatibility complex is
343 also up-regulated upon stimulation with CD40L [44]. When our recombinant crCD40L was used
344 to stimulate immature murine bone marrow DCs, we observed similar results to that when
345 murine CD40L is used (Table1). CD11c was down regulated in both median florescence
346 intensity and the percentage of positive cells. The co-stimulatory molecules CD54, CD40, CD80,
347 and CD86 were all up-regulated in both median fluorescence intensity and the percentage of
348 positive cells. The Mouse I-A^d major histocompatibility complex was upregulated in median
349 fluorescence intensity but not up-regulated in terms of the overall percentage of positive cells.
350 We speculate this to be due to the species incompatibility since we are stimulating mouse bone
351 marrow cells with cotton rat CD40L. Nevertheless, the crCD40L was able to promote up-
352 regulation of key co-stimulatory markers on immature DCs promoting DC maturation.

353 **Table 1: crCD40L induces expression of mouse DC maturation markers.**

Marker	Median Fluorescence Intensity			Percentage Positive Cells				
	U/T	mCD40L 3ug/ml	crCD40L 3ug/ml	crCD40L 30ug/ml	U/T	mCD40L 3ug/ml	crCD40L 3ug/ml	crCD40L 30ug/ml
CD11c	12,131	9,921	11,515	8,960	28	13	23	9
CD54	2,742	2,944	3,052	2,997	0	4	0	2
CD40	347	794	296	544	57	78	52	69
CD80	754	1,021	743	939	59	71	58	71
CD86	308	1,409	260	748	36	68	34	66
I-A ^d	2,516	3,797	2,255	2,970	94	95	93	93

354 U/T: Unstimulated; data are a representative of three separate experiments

355 CD40-induced activation of cytokine gene expression in DCs by CD40L is an important
356 process in the initiation of primary immune responses and is critical for DC maturation and the
357 generation of antigen-specific T cell responses [45]. IL-6 is a highly pleiotropic cytokine in that
358 it stimulates the activation, proliferation, and survival of T cells, and furthermore, modifies DC
359 function and survival [46] [47] [48] [49]. We tested if the recombinant crCD40L could induce
360 IL-6 gene expression (Fig 6a) and production of the cytokine (Fig 6b) by immature murine bone
361 marrow DCs. The results indicate that a significant increase in both IL-6 gene expression and
362 cytokine production in immature murine bone marrow DCs was observed forty hours after
363 stimulation with the crCD40L. Collectively, the observation that both the upregulation of
364 immature DC cell surface maturation markers and increased IL-6 gene expression and cytokine
365 production provide strong evidence of the biological activity of crCD40L.

366

367 **Fig 6: crCD40L induces IL-6 production in immature mouse dendritic cells.** Immature
368 mouse dendritic cells were stimulated with either recombinant mouse CD40L, or purified
369 recombinant crCD40L for forty hours. (A) IL-6 gene expression was evaluated using quantitative

370 real-time PCR using 18S to normalize the data. Data are presented as normalized fold change
371 values over unstimulated DCs. (B) IL-6 cytokine levels in the corresponding supernatant were
372 evaluated using ELISA (n=2). These data are a representative of three separate experiments.

373

374

375 In summary, the cotton rat CD40L cDNA that we isolated was a 1104 nucleotide
376 sequence with a poly-A tail containing an ORF of 783 bp which coded for a 260 aa protein. The
377 recombinant cotton rat CD40L was recognized by an Ab against mouse CD40L in direct ELISA,
378 and showed biological activity by upregulating maturation markers (CD40, CD54, CD80, and
379 CD86) as well as I-A^d on immature bone marrow murine DCs and moreover, inducing
380 upregulation of IL-6 gene and cytokine expression in these cells.

381 The isolation of the cotton rat CD40L sequence and availability of CD40L has the
382 potential to positively impact basic immunological research and vaccine development, given the
383 critical importance of this protein in orchestrating immune responses [50] [51].

384

385

386 **Acknowledgement:** We would like to thank Michele Lemieux, Derek Hodgson for technical
387 assistance. **Funding:** This work is funded by the Government of Canada (Genomics Research
388 and Development Initiatives).

389

390

391 **References**

392

- [1] C. Armstrong, "The Experimental Transmission of Poliomyelitis to the Eastern Cotton Rat, *Sigmodon hispidus hispidus*," *Public Health Reports*, vol. 54, no. 38, pp. 1719-1721, 1939.
- [2] R. Faith, C. Montgomery, W. Durfee, E. Aguilar-Cordova and P. Wyde, "The cotton rat in biomedical research," *Lab Anim. Sci.*, vol. 47, p. 337-345, 1997.
- [3] S. Niewiesk and G. Prince, "Diversifying animal models: the use of hispid cotton rats (*Sigmodon hispidus*) in infectious diseases," *Lab Anim*, vol. 36, no. 4, pp. 357-372, 2002.
- [4] M. Green, D. Huey and S. Niewiesk, "The cotton rat (*Sigmodon hispidus*) as an animal model for respiratory tract infections with human pathogens," *Lab Anim (NY)*, vol. 42, no. 5, pp. 170-176, 2013.
- [5] P. R. Wyde, K. J. Stittelaar, A. D. Osterhaus, E. Guzman and B. E. Gilbert, "Use of cotton rats for preclinical evaluation of measles vaccines," *Vaccine*, vol. 19, no. 1, pp. 42-53, 2000.
- [6] M. Boukhvalova, J. McKay, A. Mbaye, H. Sanford-Crane, J. C. Blanco, A. Huber and B. C. Herold, "Efficacy of the Herpes Simplex Virus 2 (HSV-2) Glycoprotein D/AS04 Vaccine against Genital HSV-2 and HSV-1 Infection and Disease in the Cotton Rat *Sigmodon hispidus* Model," *J Virol*, vol. 89, no. 19, pp. 9825-9840, 2015.
- [7] M. G. Ottolini, J. C. Blanco, M. C. Eichelberger, D. D. Porter, L. Pletneva, J. Y. Richardson and G. A. Prince, "The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis," *J Gen Virol.*, vol. 86, no. 10, pp. 2823-2830, 2005.
- [8] M. C. Eichelberger, "The cotton rat as a model to study influenza pathogenesis and immunity," *Viral Immunol.*, vol. 20, no. 2, pp. 243-249, 2007.
- [9] R. J. Langley, G. A. Prince and H. S. Ginsberg, "HIV type-1 infection of the cotton rat (*Sigmodon fulviventer* and *S. hispidus*)," *Proc Natl Acad Sci U S A.*, vol. 95, no. 24, p. 14355-14360, 1998.
- [10] M. S. Boukhvalova and J. C. Blanco, "The cotton rat *Sigmodon hispidus* model of respiratory syncytial virus infection," *Curr Top Microbiol Immunol.*, vol. 372, pp. 347-358, 2013.
- [11] G. A. Prince, D. D. Porter, A. B. Jenson, R. L. Horswood, R. M. Chanock and H. S. Ginsberg, "Pathogenesis of adenovirus type 5 pneumonia in cotton rats (*Sigmodon hispidus*)," *J Virol.*, vol. 67, no. 1, pp. 101-111, 1993.
- [12] J. C. Tsai, G. Garlinghouse, P. J. McDonnell and M. D. Trousdale, "An experimental animal model of adenovirus-induced ocular disease. The cotton rat," *Arch Ophthalmol.*, vol. 110, no. 8, pp. 1167-1170, 1992.

- [13] D. D. Porter, G. A. Prince, V. G. Hemming and H. G. Porter, "Pathogenesis of human parainfluenza virus 3 infection in two species of cotton rats: *Sigmodon hispidus* develops bronchiolitis, while *Sigmodon fulviventer* develops interstitial pneumonia," *J. Virol.*, vol. 65, pp. 103-111, 1991.
- [14] J. V. Williams, S. J. Tollefson, J. E. Johnson and J. E. J. Crowe, "The cotton rat (*Sigmodon hispidus*) is a permissive small animal model of human metapneumovirus infection, pathogenesis, and protective immunity," *J. Virol.*, vol. 79, p. 10944–10951, 2005.
- [15] M. A. Rosenfeld, W. Siegfried, K. Yoshimura, K. Yoneyama, M. Fukayama, L. E. Stier, P. K. Pääkkö, P. Gilardi, L. D. Stratford-Perricaudet and M. Perricaudet, "Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo," *Science*, vol. 252, no. 5004, pp. 431-434, 1991.
- [16] M. A. Rosenfeld, K. Yoshimura, B. C. Trapnell, K. Yoneyama, E. R. Rosenthal, W. Dalemans, M. Fukayama, J. Bargon, L. E. Stier and L. Stratford-Perricaudet, "In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium," *Cell*, vol. 68, no. 1, pp. 143-155, 1992.
- [17] M. G. Ottolini, D. D. Porter, V. G. Hemming, M. N. Zimmerman, N. M. Schwab and G. A. Prince, "Effectiveness of RSVIG prophylaxis and therapy of respiratory syncytial virus in an immunosuppressed animal model," *Bone Marrow Transplant*, vol. 24, pp. 41-45, 1999.
- [18] M. G. Ottolini, S. R. Curtis, A. Mathews, S. R. Ottolini and G. A. Prince, "Palivizumab is highly effective in suppressing respiratory syncytial virus in an immunosuppressed animal model," *Bone Marrow Transplantation*, vol. 29, pp. 117-120, 2002.
- [19] R. G. Crystal, "Adenovirus: The First Effective In Vivo Gene Delivery Vector," *Hum Gene Ther*, vol. 25, no. 1, pp. 3-11, 2014.
- [20] X. Sáez-Llorens, E. Castaño, D. Null, J. Steichen, P. J. Sánchez, O. Ramilo, F. H. J. Top and E. Connor, "Safety and pharmacokinetics of an intramuscular humanized monoclonal antibody to respiratory syncytial virus in premature infants and infants with bronchopulmonary dysplasia. The MEDI-493 Study Group," *Pediatr Infect Dis J.*, vol. 17, no. 9, pp. 787-791, 1998.
- [21] R. J. W. C. F. L. S. T. A. S. K. N. C. B. M. M. D. M. A. S. D. G. T. D.-S. C. R. M. Armitage, "Molecular and biological characterization of a murine ligand for CD40," *Nature*, vol. 357, no. 6373, pp. 80-82, 1992.
- [22] R. J. M. R. D. M. S. I. S. J. A. L. A. A. Noelle, "A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells," *Proc. Natl. Acad. Sci. USA*, vol. 89, no. 14, pp. 6550-6554, 1992.
- [23] M. Karpusas, Y. M. Hsu, J. H. Wang, J. Thompson, S. Lederman, L. Chess and D. Thomas, "2A crystal structure of an extracellular fragment of human CD40 ligand," *Structure*, vol. 3, no. 10, pp. 1031-

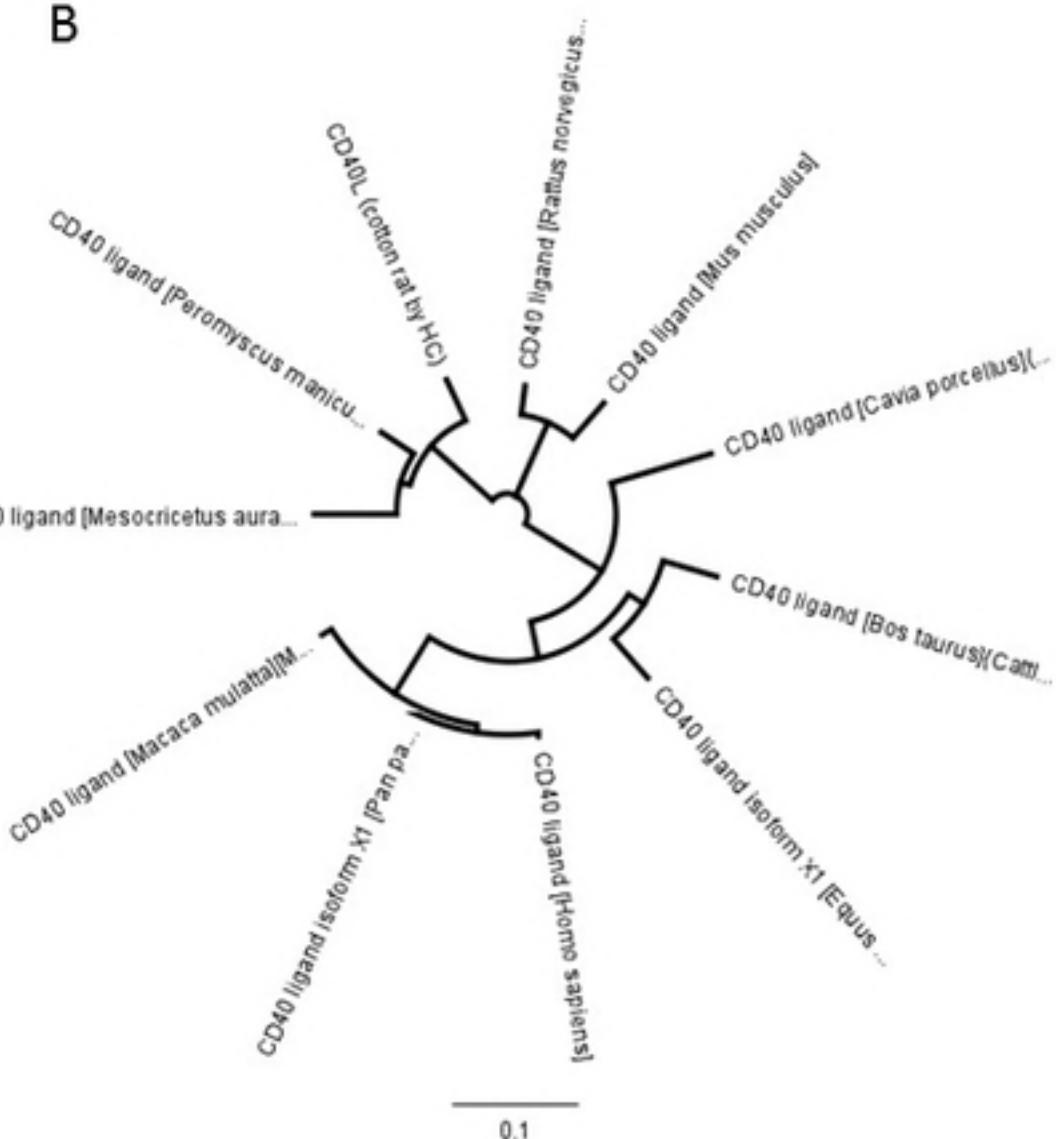
1039, 1995.

- [24] L. M. Pinchuk, S. J. Klaus, D. M. Magaletti, G. V. Pinchuk, J. P. Norsen and E. A. Clark, "Functional CD40 ligand expressed by human blood dendritic cells is up-regulated by CD40 ligation," *J Immunol*, vol. 157, no. 10, pp. 4363-4370, 1996.
- [25] A. C. Grammer, M. C. Bergman, Y. Miura, K. Fujita, L. S. Davis and P. E. Lipsky, "The CD40 ligand expressed by human B cells costimulates B cell responses," *J Immunol*, vol. 154, no. 10, pp. 4996-5010, 1995.
- [26] V. Henn, J. R. Slupsky, M. Gräfe, I. Anagnostopoulos, R. Förster, G. Müller-Berghaus and R. A. Krocze, "CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells," *Nature*, vol. 391, no. 6667, pp. 591-594, 1998.
- [27] S. A. Quezada, L. Z. Jarvinen, E. F. Lind and R. J. Noelle, "CD40/CD154 interactions at the interface of tolerance and immunity," *Annu Rev Immunol.*, vol. 22, pp. 307-328, 2004.
- [28] S. M. F. C. Danese S, "The CD40/CD40L costimulatory pathway in inflammatory bowel disease," *Gut*, vol. 53, no. 7, pp. 1035-1043, 2004.
- [29] G. J. van Mierlo, A. T. den Boer, J. P. Medema, E. I. van der Voort, M. F. Fransen, R. Offringa, C. J. Melief and R. E. Toes, "CD40 stimulation leads to effective therapy of CD40(-) tumors through induction of strong systemic cytotoxic T lymphocyte immunity," *Proc Natl Acad Sci U S A.*, vol. 99, no. 8, pp. 5561-5566, 2002.
- [30] M. E. Grossmann, M. P. Brown and M. K. Brenner, "Antitumor responses induced by transgenic expression of CD40 ligand," *Hum Gene Ther.*, vol. 8, no. 16, pp. 1935-1943, 1997.
- [31] C. Gravel, C. Elmgren, A. Muralidharan, A. M. Hashem, B. Jaentschke, K. Xu, J. Widdison, K. Arnold, A. Farnsworth, A. Rinfret, G. Van Domselaar, J. Wang, C. Li and X. Li, "Development and applications of universal H7 subtype-specific antibodies for the analysis of influenza H7N9 vaccines," *Vaccine*. 2015 Feb 25;33(9):1129-34, vol. 33, no. 9, pp. 1129-1134, 2015.
- [32] H. Hauser, L. Shen, Q. L. Gu, S. Krueger and S. Y. Chen, "Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines," *Gene Ther*, vol. 11, no. 11, pp. 924-932, 2004.
- [33] A. M. Hashem, C. Gravel, Z. Chen, Y. Yi, M. Tocchi, B. Jaentschke, X. Fan, C. Li, M. Rosu-Myles, A. Pereboev, R. He, J. Wang and X. Li, "CD40 ligand preferentially modulates immune response and enhances protection against influenza virus," *J Immunol*, vol. 193, no. 2, pp. 722-734, 2014.
- [34] K. J. Livak and T. D. Schmittgen, "Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method," *Methods*, vol. 25, no. 4, pp. 402-408, 2001.

- [35] C. R. Reynolds, S. A. Islam and M. J. E. Sternberg, "EzMol: A web server wizard for the rapid visualisation and image production of protein and nucleic acid structures," *J Mol Biol*.
- [36] C. van Kooten and J. Banchereau, "CD40-CD40 ligand," *J Leuk Biol*, vol. 67, pp. 2-17, 2000.
- [37] B. B. Aggarwal, S. C. Gupta and J. Kim, "Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey," *Blood*, vol. 119, no. 3, p. 651–665, 2012.
- [38] P. Fiumara and A. Younes, "CD40 ligand (CD154) and tumour necrosis factor-related apoptosis inducing ligand (Apo-2L) in haematological malignancies," *British Journal of Haematology*, vol. 113, pp. 265-274, 2001.
- [39] Y. Song and P. Buchwald, "TNF Superfamily Protein–Protein Interactions: Feasibility of Small-Molecule Modulation," *Current Drug Targets*, vol. 16, no. 4, pp. 393-408, 2015.
- [40] M. C. Peitsch and C. V. Jongeneel, "A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors," *Int. Immunol*, vol. 5, pp. 233-238, 1993.
- [41] A. E. Morris, R. L. Remmelle Jr., R. Klinke, B. M. Macduff, W. C. Fanslow and R. J. Armitage, "Incorporation of an isoleucine zipper motif enhances the biological activity of soluble CD40L (CD154)," *J. Biol. Chem.*, vol. 274, pp. 418-423, 1999.
- [42] H. Singh-Jasuja, A. Thiolat, M. Ribon, M. C. Boissier, N. Besis, H. G. Rammensee and P. Decker, "The mouse dendritic cell marker CD11c is down-regulated upon cell activation through Toll-like receptor triggering," *Immunobiol*, vol. 218, no. 1, pp. 28-39, 2013.
- [43] B. J. Masten, J. L. Yates, M. Pollard Koga A and M. F. Lipscomb, "Characterization of accessory molecules in murine lung dendritic cell function: roles for CD80, CD86, CD54, and CD40L," *Am J Respir Cell Mol Biol*, vol. 16, pp. 335-342, 1997.
- [44] D. Y. Ma and E. A. Clark, "The role of CD40 and CD40L in Dendritic Cells," *Semin Immunol*, vol. 21, no. 5, p. 265–272, 2009.
- [45] J. Mann, F. Oakley, P. W. M. Johnson and D. A. Mann, "CD40 Induces Interleukin-6 Gene Transcription in Dendritic Cells," *J Biol Chem*, vol. 277, no. 19, p. 17125–17138, 2002.
- [46] J. Van Snick, "Interleukin-6: An Overview," *Annu Rev Immunol*, vol. 8, pp. 253-278, 1990.
- [47] S. Akira, T. Taga and T. Kishimoto, "Interleukin-6 in Biology and Medicine," *Adv. Immunol.*, vol. 54, pp. 1-78, 1993.
- [48] J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.-J. Liu and K. Palucka, "Immunobiology of Dendritic Cells," *Annu. Rev. Immunol.*, vol. 18, p. 767–811, 2000.

- [49] U. Grohmann, F. Fallarino, R. Bianchi, M. L. Belladonna, C. Vacca, C. Orabona, C. Uyttenhove, M. C. Fioretti and P. Puccetti, "In vivo priming of T cells against cryptic determinants by dendritic cells exposed to interleukin 6 and native antigen," *J Immunol*, vol. 167, p. 708–714, 2001.
- [50] S. Gurunathan, K. R. Irvine, C. Y. Wu, J. I. Cohen, E. Thomas, C. Prussin, N. P. Restifo and R. A. Seder, "CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge," *J Immunol*, vol. 161, p. 4563–4571, 1998.
- [51] R. J. Noelle, M. Mackey, T. Foy, J. Buhlmann and C. Burns, "CD40 and its ligand in autoimmunity.,," *Ann NY Acad Sci*, vol. 815, p. 384–391, 1997.

5'-


ATGATAGAACATACAGCCAACCTTCTCCCCGATCCGTGGCTACTGGGCTGCCGTCAGCATGAAAATTTTATGTATT
ACTTACTGTTCTTCATCACCCAGATGATTGGGTAGTGCTTATGCTGTATCTTATAGAAGACTGGACAAGGTAG
AAGAGGAAGTAAGCCTTCATGAAGATTGTATTCTAAAAAGCTACAGAGATGCATCAAAGGAGAAGGATCCTCAT
CCTGCTGAAGTGTGAGGAGGTGAGAAGGCGATATGAAGACCCGTCAAGGATATAAGGTTAAACAAAGAAGATAAA
AAAGAAATCAGCTATGAAATGCAAAAAGGTGATGAGGAGCCTCAAATTGCAGTACATGTTGTAAGTGAGGCCAACAG
CAAAACAAACATCTGTTCTACAGTGGCCAAGAAAGGATATTATACCATGAAAAACAACTTGGTAATGCTGAAAGTGGT
AAACAGCTGACTATTAAAAGACAAGGACTCTATTATATCTACACCCAAAGTCACCTCTGTTCTAATCAGGAACCTACGAG
TAAAGATCCATTAGTCAGCCTCTGCTGAAGTCCACCAAGTGGATCTGAGAGAATCTGCTCAGGGCAGCAAACAC
CCACAGTTCCCTCCAAGCCCTGTGGCCAACAGTCGGTTCTTGGAGGAGTATTGAATTACAAGAAGATTCTCTTG
TTCGTCAACGTGACTGATGCAAGCCAAGTGATCCATGGAATCGGCTTACATCTTGGCTTACTCAAACCTGAACAG
TGTGCTGTCCTAGGCTGCAGCAGGGCTGATGCTGGCAGTCTCCAAAACAGCAAATCAGTTAGGACCCGCCCTGT
TGAAC TGCTATTATAACCCCTGGACCCCTCACAGAGAACTATTATTATACCCCAAGGAAATAAGAAATAAGAG
AATTACAGGGCAGGCAAAATCTAATGGACCCGTCCATAAGAGCTTACATCTTAAATAGCAAACCTACTGATGCAT
ACAACCAGAGAGCCCTAGGAAAAGACAAAGCCATAATGTACAGATGACAGAGCTCCAATGAAACAGCAGATAATTGA
CCAAAAAAA - 3'

A

CLUSTAL 0(1.2.4) multiple sequence alignment

Rat	MIETYSQSPRSVATGLPASHKIFMYLLTVFLITQMIGSVPAVYLHRRLDKVEEEASLH	60
Mouse	MIETYSQSPRSVATGLPASHKIFMYLLTVFLITQMIGSVPAVYLHRRLDKVEEEVN LH	60
Hamster	MIETYSQSPRSVPAGLPVSMKIFMYLLTVFLITQMIGSVLYAVYLHRRLDKVEEEASLR	60
Cotton	MIETYSQSPRSVATGLPVS MKIFMYLLTVLLITQMIGSVLYAVYLHRRLDKVEEEVSLH	60
DeerMouse	MIETYSQSPRSVTTGLPMS MKIFMYLLTVFLITQMIGSVLYAVYLHRRLDKVEEEASLR	60
	***** : *** *****:***** :***** :***** . . :	
Rat	EDFVFVKKLKRCNKGEGLSLLNCEEMRRQFEDLVKDISLNKEEKKEKS FEMQRGDED P Q	120
Mouse	EDFVFVKKLKRCNKGEGLSLLNCEEMRRQFEDLVKDTLNKEEKKE NS FEMQRGDED P Q	120
Hamster	EDFIFIKKLQRCIKEEGTLPLINCKDLKRO YEDPVKDIRLNTEEKKE NS YEMOKGDED P Q	120
Cotton	EDFVFVKKLQRCIKEGSSSLLNCEEVRRRYEDPVKDIRLNKEEKKE ISYEMOKGDE E P Q	120
DeerMouse	EDFVFVKKLQRCMKGEESLSSLLNCEEVRRRYENPVKDIMLNKEEKKE IVYEMOKGDED P Q	120
	::*** * * : * :***:***:***: *** *** . * :***:***:***	
Rat	IAAHVVSEANSNAASV LQWAKKGGYT MKS NLV LENG RQL TVKREG LYYV YTQV TFC SNR	180
Mouse	IAAHVVSEANSNAASV LQWAKKGGYT MKS NLV LENG KQL TVKREG LYYV YTQV TFC SNR	180
Hamster	IAAHVVSEANRKTA SVLQWAKKGGYT MKN NLV MLESGKOLTIKRO QGL LYYV YTQV TFC SNQ	180
Cotton	IAAHVVSEANSKTT SVLQWAKKGGYT MKN NLV MLESGKOLTIKRO QGL LYYV YTQV TFC SNQ	180
DeerMouse	IAAHVVSEANSKTA SVLHWAKKGGYT MKN NLV LENG KQLTIKRO QGL LYYV YTQV TFC SNQ	180
	.** : :***:*****.*** *** . * :***:***:*****:	
Rat	EPLSQRPFIVSLWLKPSSG SERILLRAA NTHSSSKLCEQQSIHLGGFELQAGASV FVN V	240
Mouse	EPSSQRPFIVGLWLKPSSG SERILLKAAN NTHSSSQLCEQQSVHLGGFELQAGASV FVN V	240
Hamster	EPSSKDPFLVSLCLKSTSGSERILLRAA NTHSSSKPCGQQSVHLGGFELQEDSSL FVN V	240
Cotton	EPTSKDPFLVSLCLKSTSGSERILLRAA NTHSSSKPCGQQSVHLGGFELQEDSSL FVN V	240
DeerMouse	EPSSKDPFLVSLCLKSTSGSERILLRAA NTHSSSKPCGQQSVHLGGFELQEDSSL FVN V	240
	** *: ***:*** * * :*****:*****: * ***:***** . :*:***	
Rat	TEASQVIH GIGFSSIGLLKL	260
Mouse	TEASQVIH RVG FSSFG LLKL	260
Hamster	TDASQVIH GIGFTSFGLLKL	260
Cotton	TDASQVIH GIGFTSFGLLKL	260
DeerMouse	TDASQVIH GIGFTSFGLLRL	260
	:** :***:***:***	

B

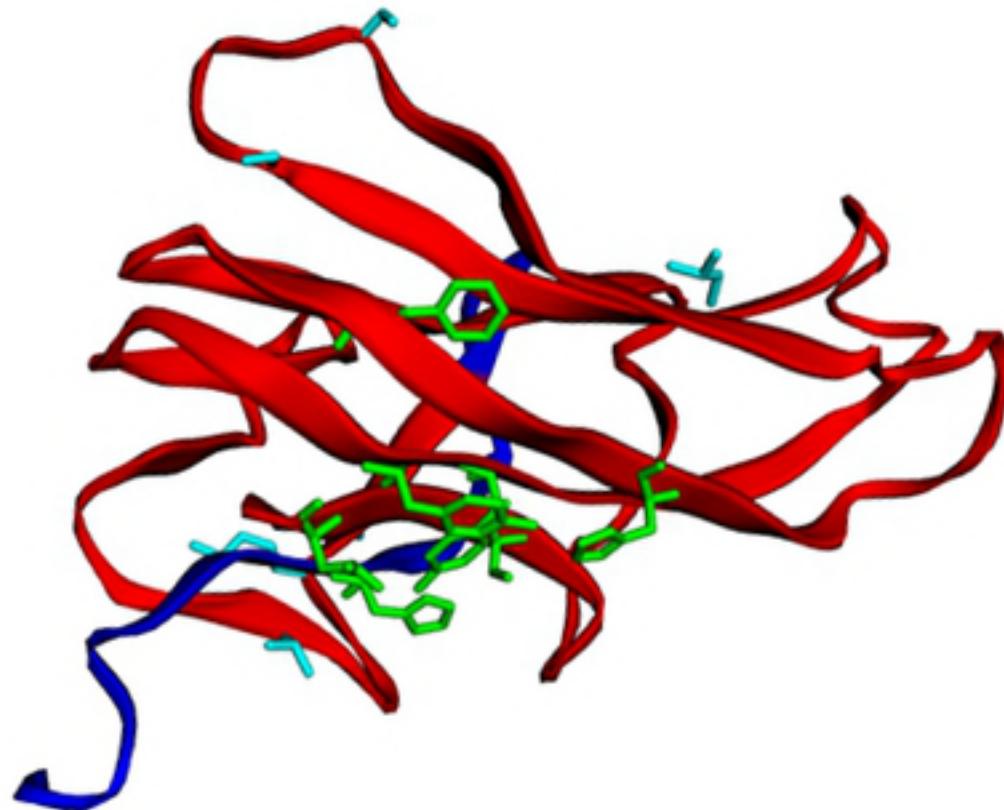
MIETYSQPSPRSVATGLPVSMK**IFMYLLTVLLITQMIGSVLYAVY**LHRRRLDKVEEVSLHEDFVFIKKLQRCIK

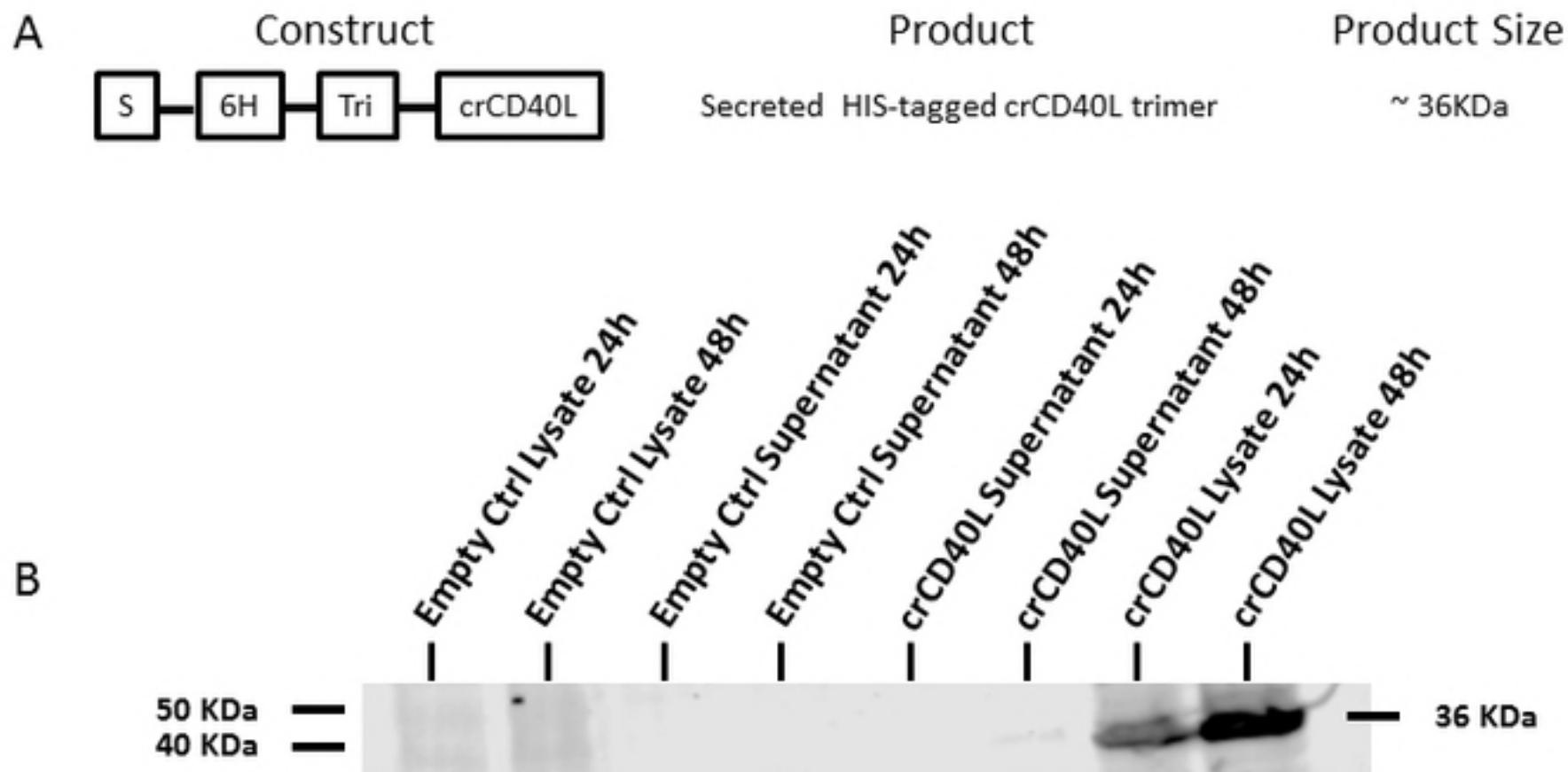
A

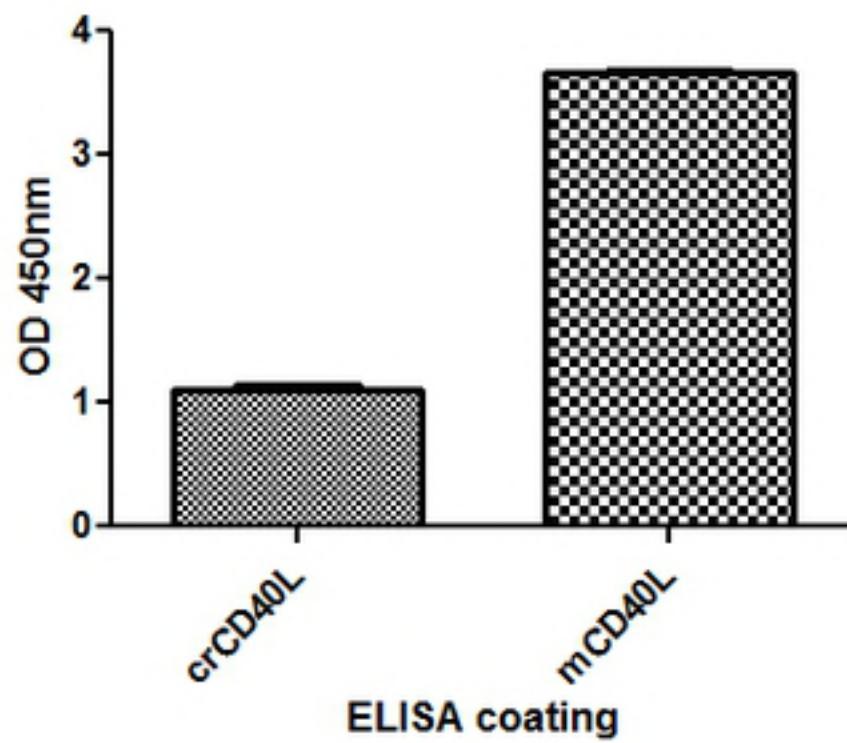
GEGSSSLNCEEVRRRYEDPVKDIRLNKEDKKEISYEMQKGDEEPQIAVHVSEANSKTTSVLQWAKKGYY

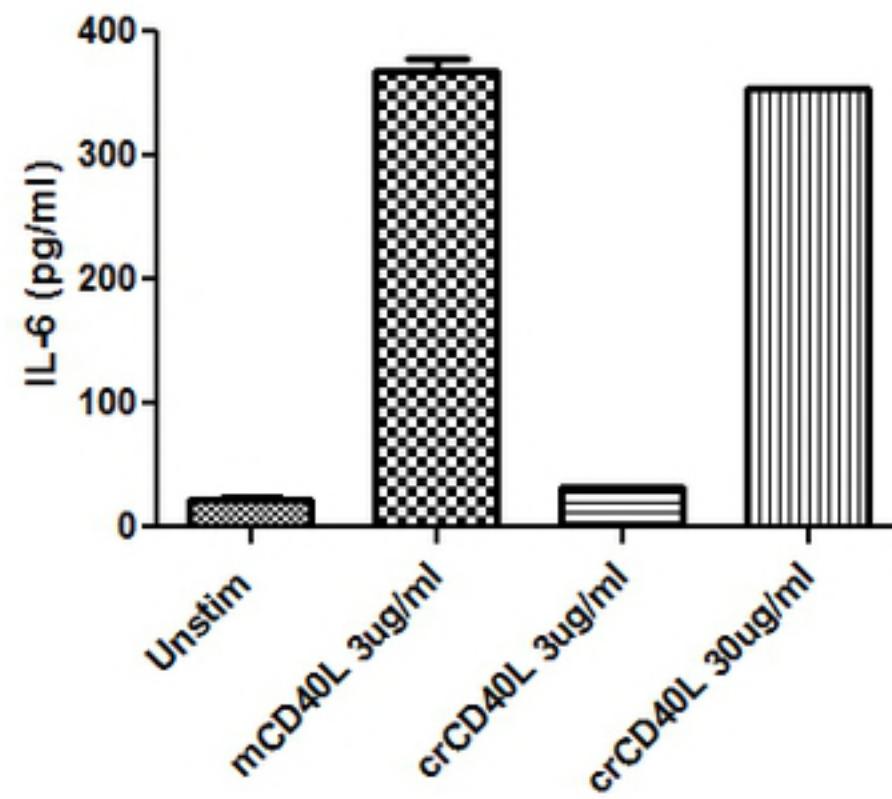
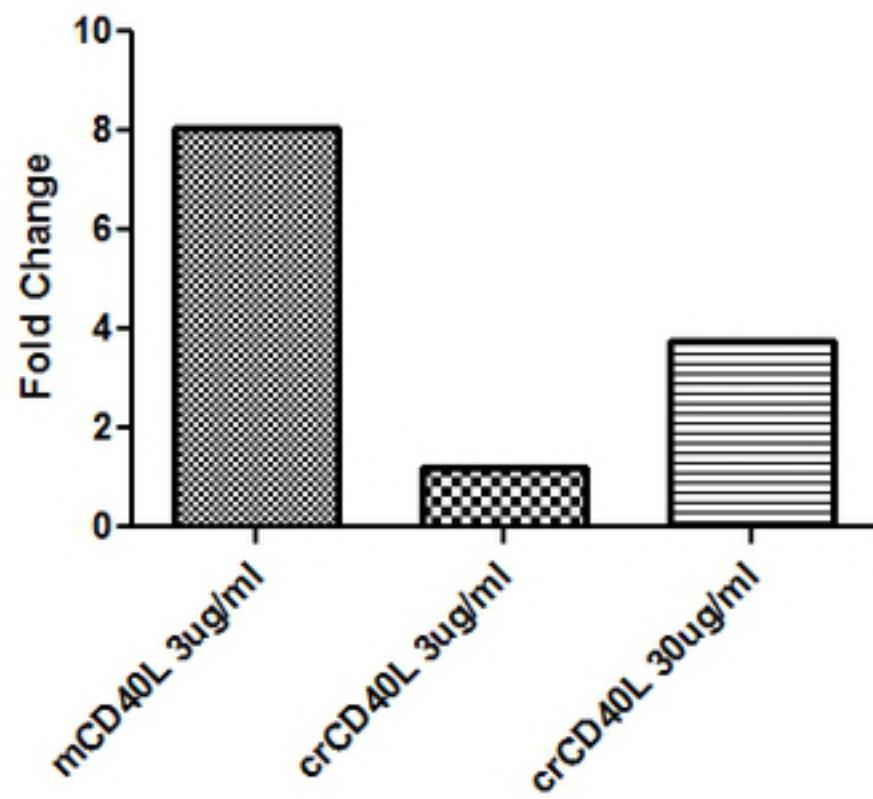
* ^ ^

TMKNNLVMLESGKQLTIKRQGLYYIYTQVTFCSNQEPTSKDPFLVSLCLKSTSGSERILLRAANTHSSSKPCG


^ * * ^ ^ ^ ^


QQSVHLGGVFELQEDSSLFVNVTTEASQVIHGIGFTSFGLLKL


* * * *



- TNF Superfamily domain
- * Putative Trimer Interface
- ^ Putative Receptor Binding Site

B

