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 2 

Normal tissue samples are often employed as a control for understanding disease mechanisms, 1 

however, collecting matched normal tissues from patients is difficult in many instances. In cancer 2 

research, for example, the open cancer resources such as TCGA and TARGET do not provide 3 

matched tissue samples for every cancer or cancer subtype. The recent GTEx project has profiled 4 

samples from healthy individuals, providing an excellent resource for this field, yet the feasibility 5 

of using GTEx samples as the reference remains unanswered. 6 

 7 

Methods 8 

We analyze RNA-Seq data processed from the same computational pipeline and systematically 9 

evaluate GTEx as a potential reference resource. We use those cancers that have adjacent 10 

normal tissues in TCGA as a benchmark for the evaluation. To correlate tumor samples and 11 

normal samples, we explore top varying genes, reduced features from principal component 12 

analysis, and encoded features from an autoencoder neural network. We first evaluate whether 13 

these methods can identify the correct tissue of origin from GTEx for a given cancer and then 14 

seek to answer whether disease expression signatures are consistent between those derived 15 

from TCGA and from GTEx. 16 

 17 

Results 18 

Among 32 TCGA cancers, 18 cancers have less than 10 matched adjacent normal tissue 19 

samples. Among three methods, autoencoder performed the best in predicting tissue of origin, 20 

with 12 of 14 cancers correctly predicted. The reason for misclassification of two cancers is that 21 

none of normal samples from GTEx correlate well with any tumor samples in these cancers. This 22 

suggests that GTEx has matched tissues for the majority cancers, but not all. While using 23 

autoencoder to select proper normal samples for disease signature creation, we found that 24 

disease signatures derived from normal samples selected via an autoencoder from GTEx are 25 

consistent with those derived from adjacent samples from TCGA in many cases. Interestingly, 26 
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 3 

choosing top 50 mostly correlated samples regardless of tissue type performed reasonably well 1 

or even better in some cancers.  2 

 3 

Conclusions 4 

Our findings demonstrate that samples from GTEx can serve as reference normal samples for 5 

cancers, especially those do not have available adjacent tissue samples. A deep-learning based 6 

approach holds promise to select proper normal samples. 7 

Background 8 

 9 

Comparing molecular profiles of disease tissue samples and normal tissue samples is often 10 

employed to identify a signature of the disease. The signature defined as differentially expressed 11 

genes between two groups is critical to understanding abnormal disease features and guiding 12 

therapeutic discovery [1-6]. For example, a gene expression signature created from the 13 

comparison of liver cancer tumor samples and adjacent tissue samples was used to discover anti-14 

parasite drugs as therapeutics for liver cancer [7]. Analysis of matched tumor and normal profiles 15 

identified common transcriptional and epigenetic signals shared across cancer types [8]. Large-16 

scale integrative analysis of cancer profiles, cellular response signatures and pharmacogenomics 17 

data suggested that such disease signatures can be widely employed for screening anti-cancer 18 

drugs [9].  19 

 20 

However, there are many lingering issues that hinder these types of analyses. For instance, in 21 

many cancers, adjacent normal tissues are not available in these genomic databases such as 22 

The Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research To Generate 23 

Effective Treatments (TARGET) (Figure 1A). As such, there is an open question on what tissue 24 
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 4 

samples should be selected for these scenarios or whether creation of a proper disease signature 1 

is even possible. The recent Genotype-Tissue Expression (GTEx) project [10] has profiled 2 

samples from healthy individuals, providing an excellent resource. However, their profiles are 3 

generated from different studies and processed under different computational approaches, the 4 

feasibility of using GTEx samples as the reference remains unanswered. Moreover, given the fact 5 

there is heterogeneity within a disease, another goal is to determine a set of normal samples that 6 

are optimal for use as the reference for a group of patient samples. One approach is to choose 7 

normal samples that are similar to disease samples based on their gene expression profiles. As 8 

a substantial number of genes that are lowly expressed or not expressed at all add noises in 9 

similarity measurement, one typical alternative strategy is to utilize the top varying genes across 10 

disease samples as the features for similarity measurement. However, selecting top varying 11 

genes may ignore information of many critical genes.  12 

 13 

In this work, we use the RNA-Seq data processed from the UC Santa Cruz Computational 14 

Genomics Lab's Toil-based RNA-seq pipeline [11] and systematically evaluate GTEx as a 15 

potential reference resource (Figure 2). We use those cancers that have adjacent normal tissues 16 

in TCGA as the benchmark for the evaluation. We also explore the potential use for state-of-the-17 

art deep learning models, specifically layers of autoencoders, to create reduced features for 18 

similarity measurement. We found that disease signatures derived from normal samples in GTEx 19 

are consistent with those derived from adjacent samples in TCGA in many cases. Our findings 20 

demonstrate that samples from GTEx can serve as reference samples for the majority of cancers, 21 

but not all. Additionally, we show promising results for utilizing deep learning strategies to select 22 

reference tissues.   23 

 24 

 25 
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 5 

Methods 1 

 2 

Datasets 3 

TCGA (https://cancergenome.nih.gov/) is a public repository of genomics data (e.g., gene 4 

expression) for cancer, and sometimes adjacent normal tissues. TARGET is a similar resource 5 

focused on childhood cancers. The GTEx project is a collection of gene expression data for over 6 

7700 healthy individuals for over 50 tissues. In the current study, raw counts data and phenotype 7 

metadata for the analysis were downloaded from UCSC Xena Treehouse 8 

(https://xenabrowser.net/datapages/?cohort=TCGA%20TARGET%20GTEx) and processed into 9 

an R dataframe consisting of studies from TCGA, TARGET, and GTEx, with a total of 58,581 rows 10 

of gene expression raw counts (identified as HUGO gene symbols). Transcript abundance 11 

estimated from STAR and RSEM was used. The Treehouse raw counts data consist of 19,249 12 

samples and, of those, a total of 19,131 tissue samples were annotated with phenotype metadata. 13 

We only used tissue samples with annotated metadata for this analysis. Of the 32 cancers, we 14 

chose cancers that have at least 10 case-control (tumor-adjacent normal) sample pairs (Figure 15 

1).  16 

Workflow 17 

 18 

In our study, we first evaluate whether our approach can identify the correct tissue site from GTEx 19 

for a given cancer (Figure 2). We then ask whether disease signatures are consistent between 20 

those derived from TCGA and from GTEx. First we selected tissues for a particular cancer in the 21 

TCGA dataset and performed quality control by filtering for tumor purity > 0.7 as determined by 22 

ESTIMATE [12]. Tissue outliers were determined by computing the principal component analysis 23 
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 6 

of tissues and filtering out those with absolute z-score of the first component of greater than 3. 1 

Reference normal tissue for the tumor samples were computed using four methods: 2 

a. Random Method: Random selection of 50 GTEx normal tissues.  3 

b. Top Site Method: Compute correlation of GTEx tissue expression to tumor expression 4 

using top 5000 varying genes across all tumors and select all tissue samples from the top 5 

correlating tissue site. Alternatively, compute correlation using the features calculated 6 

from an autoencoder. 7 

c. Top 50 tissues method: Compute correlation of each GTEx tissue expression to tumor 8 

expression and select the site with the tissues of the 50 highest correlation to the tumor 9 

samples.  10 

d. Manual method: For certain tumor tissues where the computed top site did not correspond 11 

to the site of tumor. For example, if esophagus mucosa was chosen for lung 12 

adenocarcinoma, we manually selected GTEx tissue site - lung.   13 

 14 

After the reference GTEx tissues were selected, we again removed tissues for outliers based on 15 

computed first PCA > 3. Then the tumor tissues and reference tissues were normalized using the 16 

RUVg R package library [13]. Differential expression was computed on the normalized samples. 17 

We analyzed each differential expression of the computations by comparing it with differential 18 

expressions computed from case-control set. The signature genes selected for analysis had an 19 

absolute log fold change of greater than 1 and adjusted p-value of less than 0.001.  20 

 21 

First, we performed differential expression analysis by comparing tumor samples and normal 22 

samples using edgeR [14]. While we chose edgeR only to use, our preliminary assessment 23 

showed the conclusions hold using Limma + voom [15] or DESeq [16]. We filtered for cancers 24 

where there were at least 10 pairs of case-control samples. These were Breast Invasive 25 

Carcinoma, Kidney Clear Cell Carcinoma, Thyroid Carcinoma, Lung Adenocarcinoma, Prostate 26 
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 7 

Adenocarcinoma, Liver Hepatocellular Carcinoma, Lung Squamous Cell Carcinoma, Head & 1 

Neck Squamous Cell Carcinoma, Stomach Adenocarcinoma, Kidney Papillary Cell Carcinoma, 2 

Colon Adenocarcinoma, Kidney Chromophobe, Bladder Urothelial Carcinoma, Esophageal 3 

Carcinoma. The differential expression computed from these case-control cancer samples were 4 

used as benchmark comparison to the differential expression ran against GTEx tissues as 5 

selected from the workflow (Figure 1B). To evaluate the performance we computed consistency 6 

based on the significance of overlap between signatures and correlation of fold changes of 7 

common signature genes. Further, disease expression using GTEx reference tissues were 8 

computed as in the workflow diagram. All the analyses were performed in R (version 3.4.3). 9 

 10 

Autoencoder 11 

 12 

As an alternative approach to the top site methods, we evaluated the utility of an autoencoder 13 

neural network for computing correlation between cancer and reference tissue expression. Gene 14 

counts in terms of Transcripts Per Kilobase Million (TPM) from 19,260 samples were fed into an 15 

autoencoder implemented using Pytorch (v. 0.1.12_2) (http://pytorch.org/). The following 16 

parameters were used: 64 encoded features, 128 batch size, 100 epochs, 0.0002 learning rate 17 

(Figure 3A). The training took about 30 minutes using one GPU in an Amazon cloud (g3.8xlarge). 18 

Rectifying activation function, dropout and normalization were applied between layers. The loss 19 

function is defined as a mean squared error (MSE) between 60,498 elements (identified as 20 

Ensembl IDs) in the input x and output y. The functions and parameters were detailed on the 21 

PyTorch website (https://pytorch.org/docs/master/ ). Data were split into a training set (80%) and 22 

a test set (20%). Loss converged after 10,000 iterations (Figure 3B). The t-SNE plot of the reduced 23 

dataset shows that batch effect among three databases was minimized (Figure 3C).  Similarly, 24 
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 8 

we performed principal component analysis (PCA) of this datasets and chose top 64 components 1 

as the features. As the top 64 components could explain 92% variation, choosing 64 features for 2 

similarity measurement is reasonable in both autoencoder and PCA. 3 

 4 

Results 5 

 6 

Among 32 TCGA cancers, 18 cancers have less than 10 matched adjacent normal tissue samples 7 

in the Treehouse dataset. Ten cancers do not have any matched adjacent tissue samples at all 8 

(Figure 1). Whereas, GTEx has profiles for 47 tissue sites with at least ten normal samples. This 9 

suggests the significance of exploring GTEx as a source of reference.  10 

Computing tissue of origin 11 

 12 

We first asked if gene expression profiles could be used to identify tissue of origin. We indicated 13 

a site of cancer was correctly identified if the computed tissue was the site of cancer origin or a 14 

very close proximal site (potentially related site) e.g. kidney - cortex for kidney papillary 15 

carcinoma. We indicate unrelated sites as those that are further away from the cancer of origin 16 

(Figure 4). We found that using a minimal number of 100 varying genes, the correlation method 17 

can correctly identify the top tissue site for only 8 of 14 cancers. Increasing the number of varying 18 

genes to 5000 improved correct selection for 11 of 14 cancers. No further improvement on tissue 19 

selection was seen by increasing number of varying genes. The PCA, as a regular dimension 20 

reduction method, was only able to correctly identify 8 of 14 cancers, so we did not examine this 21 
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 9 

method in the following analysis. The best automated method we found for reference tissue 1 

selection was via correlating autoencoder features with 12 of 14 tissues being correctly chosen.  2 

 3 

Further examination of the three misclassified cancers by varying genes methods, Bladder 4 

Urothelial Carcinoma, Lung Squamous Cell Carcinoma and Stomach Adenocarcinoma, revealed 5 

correlation values of 0.549, 0.300, and 0.858, respectively. The low correlation from the bladder 6 

and lung carcinoma may be due to substantial difference in tissue expression between the 7 

computed site, esophagus, and their expected origin site, bladder and lung. Correlation for 8 

stomach adenocarcinoma was quite high, which may be due to similarity between the computed 9 

site, ileum of the small intestine, and the stomach  (Supplementary Table 1).  10 

 11 

Squamous cell carcinomas arise from squamous cells that reside in the cavities and surfaces of 12 

blood vessels and organs. As samples in GTEx were taken from bulk tissues, this may cause the 13 

lower computed correlation between the cancer tissue and site of origin leading to erratic 14 

computational choices. Manual selection of the tissue of origin for lung squamous cell carcinoma 15 

and stomach adenocarcinoma improved the correlation from 0.549 and 0.858 to 0.883 and 0.926 16 

respectively (Supplementary Table 1). For Bladder Urothelial Carcinoma, using the varying genes 17 

method chose esophagus - mucosa as the top site, correlation 0.549, whereas autoencoder 18 

correctly chose the bladder site, correlation. This shows that correct site choices will improve 19 

correlation. 20 

 21 

Interestingly, Kidney Clear Cell Carcinoma, Kidney Papillary Cell Carcinoma and Kidney 22 

Chromophobe share the same tissue origin--Kidney - Cortex. This confirms that cancer can arise 23 

from different parts of one tissue and raise the question whether we should use all normal samples 24 

from one site as the reference. 25 

 26 
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 10 

Examples of Hepatocellular Carcinoma and Bladder Urothelial 1 

Carcinoma 2 

 3 

 4 

We use two cancers as examples for further in-depth analyses, specifically Hepatocellular 5 

Carcinoma (HCC) and Bladder Urothelial Carcinoma (BUC). In our prior results, we found that 6 

using more genes to compute the correlation generally helped to select the correct tissue site for 7 

the tumor. We ran correlation for each site using increasing number of varying genes as well as 8 

autoencoder features. We normalize the correlation of the cancer site liver (Figure 5A). We found 9 

that as the number of genes used increases all tissues will generally converge to have higher 10 

correlation with the disease tissue, this may be due to including genes of conserved regions or 11 

low expressions. Using all features from the autoencoder allows us to have much better 12 

separation of the site liver from other non-related sites of the cancer, indicating autoencoder 13 

captures the biology of disease sample more specifically (Figure 5B-C).  14 

 15 

For BUC, however, the varying genes method was unable to determine bladder as the best site 16 

instead choosing esophagus (Figure 6A-B). Increasing varying genes from 100 to 40,000 brought 17 

down the correlation of esophagus site relative to bladder, however, it brought up correlation of 18 

other tissue sites relative to bladder (Figure 6A) similar to what we see in Figure 5A. This suggests 19 

that naively increasing varying genes does not help to distinguish tissue site selection. Meanwhile, 20 

the autoencoder method correctly predicts bladder as the top site with great separation between 21 

bladder and esophagus with greater distinction (Figure 6A, Figure 6C). Notably, the correlation in 22 

BUC is lower than that in HCC based on different similarity metrics. This suggests that cell 23 

composition in bladder tissues may be more diverse.  24 

 25 
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 11 

Disease Signature Comparison 1 

 2 

As we have demonstrated that gene expression profiles can be used to identify tissue of origin, 3 

we then asked if these samples sharing the same tissue of origin from GTEx can substitute 4 

adjacent tissues from TCGA to create disease signatures. We employed three approaches to 5 

select samples (Figure 2). We evaluate consistency based on the significance of overlap between 6 

signatures and correlation of fold changes of common signature genes.  7 

 8 

Figure 7 shows the rank-based correlation of differential expression between consensus 9 

transcripts for each cancer from TCGA using GTEx reference tissue vs. TCGA case-control 10 

samples. Using the average of three random tissue site selection as our baseline we see that our 11 

other strategies are superior. The autoencoder produced better correlations overall regardless of 12 

sample selection method. 13 

 14 

For the autoencoder, it seems that choosing all samples from the same tissue of origin performs 15 

slightly better than choosing 25 percentile and above mostly correlated samples from the same 16 

tissue of origin. Interestingly, choosing top 50 mostly correlated samples from any tissue performs 17 

reasonably well or even better in some cancers, where the tissue of origin was misclassified such 18 

as the varying genes method for stomach adenocarcinoma (Supplementary Table 1). This is very 19 

significant because in many cases, where we may have no or an insufficient number of matched 20 

normal tissues, we may use normal samples from other sites. For example, in the three kidney 21 

cancers: Kidney Clear Cell Carcinoma, Kidney Papillary Cell Carcinoma and Kidney 22 

Chromophobe, our analysis suggests three cancers can share the same reference tissue sites 23 

despite the differences of origin within the kidney. 24 

 25 
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 12 

One additional question we assessed is how many normal samples are sufficient for proper 1 

disease signature-related analyses? We found that even a relatively low number of normal 2 

samples may be sufficient for calculating differential expression. For bladder urothelial cancer, for 3 

example, the autoencoder selected the bladder GTEx site which consists of only nine tissue 4 

samples (Figure 1B) for a correlation of 0.924; filtering for tissues above the 25th percentile left 5 

only seven tissue samples for a correlation of 0.926. When we used a strategy that selected more 6 

tissues, i.e. using autoencoder top 50 method, 50 sample tissues were used (9 from bladder and 7 

41 from other top correlated sites), which produced a slight drop of correlation to 0.847. This 8 

indicates that even a relatively low number of reference tissue samples may provide a robust 9 

match.  10 

 11 

Finally, we assessed whether it is a better strategy overall to select all samples from the same 12 

tissue site as the cancer of interest or only those that are correlated to the tumor sample. We 13 

found that the samples producing the best performance are sites where the tumor developed or 14 

a closely related site. However, when it is not possible to use such sites (e.g., when there are no 15 

available data), it is feasible to use top correlated tissues as seen from the top 50 methods. 16 

However, we found that for some cancers, even choosing top correlated sites can still produce 17 

erratic results, such as in the case of lung squamous cell cancer. In this case, the correlations for 18 

all non-random methods were between 0.1 - 0.3 was not even able to beat the random tissue 19 

selection (Supplementary Table 1). Along these lines, we evaluated differential expression 20 

similarity using samples from a different origin than the cancer of interest. For example, in two 21 

kidney cancers, Kidney Papillary Carcinoma and Kidney Chromophobe the kidney cortex were 22 

computed as the top site, for Head and Neck carcinoma the esophagus-mucosa was the top site. 23 

Their high correlation with case-control >0.8 indicates that choosing sites at different origin but 24 

proximal to the cancer will provide good disease signature (Supplementary Table 1).   25 

 26 
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 13 

Assign normal tissues for cancers with low case-control pairs 1 

 2 

Since there were 18 cancers with insufficient number of adjacent normal tissues, we use our 3 

computational approach to assign a primary site for each. Of the 18 cancers, the autoencoder 4 

method was able to determine 10 correct sites, whereas using the top 5000 varying genes only 5 

produced 4 correct sites (Figure 8). This suggests an autoencoder can select proper samples to 6 

create disease signatures for those cancers. 7 

Conclusions 8 

In the current study, we evaluated the nuances of proper reference tissue selection for disease 9 

signature-related analyses. Furthermore, we assessed the benefit of using state-of-the-art 10 

methodologies, namely deep learning via an autoencoder strategy, to enhance performance of 11 

identifying ideal reference tissues for cancers of interest.  12 

 13 

The findings from our study will significantly enhance probing disease biology through gene 14 

signatures. As the cost of sequencing is rapidly decreasing, it becomes very common to profile 15 

disease samples of interest, however, collecting matched normal tissues from patients is difficult 16 

in many instances. Our analysis confirms that GTEx, the largest cohort of normal samples, can 17 

serve as a source of reference normal tissues in cancer research. In the current study, we chose 18 

to focus on cancer because we have plenty of adjacent tissues that can be used as a benchmark. 19 

We expect that the methods and findings from our study can be extended for cancer subtypes or 20 

other non-cancer research as well. However, a few caveats have to be considered. First, all RNA-21 

Seq data have to be processed in the same pipeline in order to mitigate batch effects. Second, 22 

some disease samples may have no relevant normal tissue samples because of diverse cellular 23 
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composition. This limitation may be addressed by using cellular decomposition techniques or 1 

single cell data.  2 

 3 

Based on the success of this study, we have some future works that we are exploring. Although 4 

we show the potential of using autoencoder for feature selection, we have not fully optimized the 5 

model for tissue selection. In our exploratory studies, we found that encoded features are very 6 

sensitive to network architecture and parameters, although it does not affect the results in the 7 

computation of tissue of origin. For example, when we changed learning rate from 0.0002 to 8 

0.005, batch size from 128 to 64, dropout rate from 0.2 to 0.1, LeakyReLU negative slope from 9 

0.2 to 0.1, respectively, the average correlation between the new features and the default features 10 

changed to 0.219, 0.069, 0.354, and 0.219 (Supplementary Table 2). Interestingly, while a new 11 

layer was added into the network, the average correlation even decreased to -0.01. However, 12 

while using new features to compute tissue of origin, we observed that all new features could 13 

clearly separate the first top site and the second top site. For example,  in liver and bladder 14 

cancers, liver and bladder are predicted as the top site respectively, and the correlation with the 15 

top site is much higher than that with the second site (Supplementary Table 2). Surprisingly, when 16 

the feature size was reduced from 64 and 32 or two new layers were added,  the top site of 17 

bladder cancer was incorrectly predicted. In short, given the complexity of neural networks, 18 

additional effort should be made to optimize the model, nevertheless, we indeed demonstrate the 19 

superiority of deep learning models in this work.  20 

 21 

Furthermore, in addition to using gene expression as features, we will explore adding other cancer 22 

specific features including presence of mutations and copy number variation. The autoencoder 23 

strategy would be able to manage such diverse feature types. We also plan to determine whether 24 

changing the order of workflow, such as removing outliers first, might improve this analysis.  In 25 

addition, as adjacent cancer normal tissues are sampled near the cancer site, some of these 26 
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 15 

tissues may contain cancer cells and thus have some expression of cancer[17], which may require 1 

further investigation. We will further explore our approach to study pediatric cancers (available in 2 

TARGET), where adjacent normal tissues are even more scarce.  3 

 4 

List of abbreviations 5 

PCA = Principal Component Analysis, TCGA = The Cancer Genome Atlas, TARGET = 6 

Therapeutically Applicable Research To Generate Effective Treatments, GTEx = Genotype-7 

Tissue Expression project, RNA-seq = RNA sequencing, HCC = Hepatocellular Carcinoma, BUC 8 

= Bladder Urothelial Carcinoma 9 
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Figures 20 

Figure 1: Distribution of TCGA cancer samples and pairs of case-control tissues in the dataset. 21 

Controls are adjacent tumor normal tissues.  22 

  23 

Figure 2: Workflow diagram.  24 

 25 
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 19 

 1 

Figure 3: Applying an autoencoder for representing gene expression profiles. A. Schema and 2 

parameters. Both encoder and decoder have one layer in addition to the input/output layer. The 3 

input of encoder and the output of decoder are the expression of 60498 transcripts. The objective 4 

function is to minimize the difference between the output and input.  64 encoded features are 5 

used to represent expression profiles. Between layers, the following functions Leaky ReLU 6 

activation, batch normalization, and drop out are applied.  Both network architecture and 7 

parameters can be changed. B. MSE loss for the training and test set. Lower MSE loss means 8 

the output is more similar to the input. C. t-SNE distribution of all samples using encoded features 9 

from an autoencoder. Dots were colored by data resources. 10 

 11 

Figure 4: Computing tissue of origin. Top site chosen by using varying genes, PCA, and 12 

autoencoder method.  13 

 14 

Figure 5: Tissue correlation between GTEx sites and HCC. A. Median correlation between tissue 15 

sites and cancer normalized by median liver site correlation values. B. Correlations between 16 

GTEx tissue sites and HCC tumor samples using top 40,000 varying genes. C. Correlations 17 

between GTEx tissue sites and HCC tumor samples using autoencoder features.  18 

 19 

Figure 6: Tissue correlation between GTEx sites and BUC. A. Median correlation between tissue 20 

sites and cancer normalized by median bladder site correlation values. B. Correlations between 21 

GTEx tissue sites and BUC tumor samples using top 40,000 varying genes. C. Correlations 22 

between GTEx tissue sites and BUC tumor samples using autoencoder features.  23 

 24 

 25 
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 20 

Figure 7: Comparing signatures from multiple methods. Auto.TopSite: choose all samples from 1 

the same tissue of origin based on autoencoder choice,  Auto.25 and VarGenes.25: choose 25th 2 

percentile and above mostly correlated samples from the same tissue of origin as computed by 3 

autoencoder and varying genes, and Auto.Top50 and VarGenes.Top50: choose top 50 mostly 4 

correlated samples from all tissues as computed by autoencoder and varying genes. RandomAve: 5 

Randomly select 50 samples from all tissues. Site NA means no specified site. 6 

 7 

Figure 8: Putative site computed for cancers with low case-control pairs using 5,000 varying 8 

genes and autoencoder features. 9 

 10 

 11 

Tables 12 

 13 

None 14 

Additional Files 15 

Supplemental Table 1: Consensus sequence and gene rank correlation with case-control pairs 16 

using different methods.   Differentially expressed genes were selected using adjusted p < 0.001 17 

and absolute log fold change > 1. Consensus sequences are defined as overlapping differential 18 

expression sequences with same directionality in log fold change. Rank correlation is the 19 

Spearman’s rank correlation of differential expression (fold change) between the consensus 20 

sequences computed from multiple methods (see workflow) and case-control pairs. Unless 21 

otherwise stated all rank correlation have p values < 0.01.    22 

 23 
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 21 

Supplemental Table 2: Autoencoder architecture and parameter evaluation. New encoded 1 

features were used to compute tissue of origin. A better separation between the first top site and 2 

the second top site indicates a better model.    3 
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