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Abstract 29 

The health impacts of endocrine disrupting chemicals (EDCs) remain debated and their tissue and molecular 30 

targets are poorly understood. Here, we leveraged systems biology approaches to assess the target tissues, 31 

molecular pathways, and gene regulatory networks associated with prenatal exposure to the model EDC 32 

Bisphenol A (BPA). Prenatal BPA exposure led to scores of transcriptomic and methylomic alterations in the 33 

adipose, hypothalamus, and liver tissues in mouse offspring, with cross-tissue perturbations in lipid metabolism as 34 

well as tissue-specific alterations in histone subunits, glucose metabolism and extracellular matrix. Network 35 

modeling prioritized main molecular targets of BPA, including Pparg, Hnf4a, Esr1, Srebf1, and Fasn. Lastly, 36 

integrative analyses identified the association of BPA molecular signatures with cardiometabolic phenotypes in 37 

mouse and human. Our multi-tissue, multi-omics investigation provides strong evidence that BPA perturbs 38 

diverse molecular networks in central and peripheral tissues, and offers insights into the molecular targets that 39 

link BPA to human cardiometabolic disorders. 40 

 41 

 42 
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Introduction 43 

A central concept in the Developmental Origins of Health and Disease (DOHaD) states that adverse 44 

environmental exposure during early developmental stages is an important determinant for later onset adverse 45 

health outcomes, even in the absence of continuous exposure in adulthood [1-3]. BPA is one of the most prevalent 46 

environmental metabolic disruptors identified to date with widespread exposure in human populations and likely 47 

plays a role in DOHaD. BPA is used in the production of synthetic polymers, including epoxy resins and 48 

polycarbonates [4]. The advantageous mechanical properties of BPA have resulted in its ubiquitous use in 49 

everyday goods such as plastic bottles and inner coating of canned foods [5, 6]. BPA exposure has been 50 

confirmed in the majority of human populations [7] and has been linked to body weight, obesity, insulin 51 

resistance, diabetes, metabolic syndrome (MetS), and cardiovascular diseases in both human epidemiologic and 52 

animal studies [8-15]. Importantly, it has been suggested that the developing fetus is particularly vulnerable to 53 

BPA exposure [8, 16]. Intrauterine growth retardation (IUGR) has been consistently observed after developmental 54 

BPA exposure at intake doses below the suggested human safety level and has been associated with low birth 55 

weight, elevated adult fat weight and altered glucose homeostasis [8, 17-20]. As a result, BPA has been banned 56 

from baby products in Europe, Canada, and the US. However, BPA is still in use in non-baby products, renewing 57 

concerns with regards to the continuous exposure of populations in addition to the description of its ability to 58 

influence health outcomes, including obesity and MetS, over several generations [21-24]. Together these lines of 59 

evidence support an intriguing hypothesis that BPA may have been a contributing factor to the rise of MetS and 60 

cardiometabolic diseases worldwide in the past decades [25-27]. 61 

Despite numerous studies connecting BPA with adverse health outcomes, there remain ample conflicting findings, 62 

as summarized by the European Food Safety Agency [28] and the BPA Joint Emerging Science Working Group 63 

of the US FDA. Although inconsistencies across studies might be attributable to non-monotonic dose response, 64 

exposure window difference, and varying susceptibility between testing models [13, 29], there are also several 65 
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additional layers of complexity and challenges hindering the full dissection of the biological effects of BPA. First, 66 

previous studies examining BPA in various cell types and tissues suggest a broad impact on biological systems 67 

[23, 30-32]. Second, BPA has been found to modulate multidimensional molecular events, such as gene 68 

expression and epigenetic changes, that are functionally important for processes such as metabolism and immune 69 

response [33-38]. However, due to most studies being designed to focus on one factor at a time as well as non-70 

comparable study designs, it is difficult to directly compare effects across tissues or types of molecular data to 71 

derive the molecular rules of sensitivity to BPA exposures. In a recent National Toxicology Program report, 72 

CLARITY-BPA, where multiple organs were examined, evidence of weight gain and cardiac dysfunctions were 73 

observed, however, the study was designed to be solely descriptive and no mechanism of action was proposed. 74 

These research gaps in our understanding of the pleiotropy of EDCs and toxicant biological actions necessitated 75 

the establishment of the NIEHS TaRGET consortium and a more recent call for the research community to 76 

systemically interrogate multiple omics in multiple tissues to accelerate the discovery of key biological 77 

fingerprints of environmental exposure [39].  78 

Here, we address some of the aforementioned limitations of past studies by using a highly integrative approach. 79 

We conducted a multi-tissue, multi-omics systems biology study to examine the systems level influence of 80 

prenatal BPA exposure using modern integrative genomics and network modeling approaches in a mouse model.  81 

We first utilized next-generation sequencing technologies to characterize perturbations in both the transcriptome 82 

and the epigenome across three tissues (white adipose tissue, hypothalamus, liver) in mouse offspring who had 83 

experienced in utero exposure to BPA. Based on mounting evidence that genes operate in highly complex tissue-84 

specific regulatory networks, we hypothesized that prenatal BPA exposure induces genomic and epigenomic 85 

reprogramming in the offspring by affecting the organization and function of tissue-specific gene networks [40-86 

43]. Using both transcription factor (TF) networks and Bayesian networks, we modeled the dynamics of 87 

transcriptomic and epigenomic signatures and predicted potential regulators that govern the actions of BPA. 88 

Furthermore, the transcriptome, epigenome, and network information were layered upon metabolic phenotypes 89 
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such as body weight, adiposity, circulating lipids, and glucose levels in the mouse offspring to evaluate disease 90 

association. Lastly, to assess the relevance of the BPA molecular targets identified in our mouse model for human 91 

diseases, we applied integrative genomics to bridge the mouse molecular signatures and genetic disease 92 

association data from human studies. Our study represents a comprehensive data-driven, systems-level 93 

investigation of the molecular and health impact of BPA. 94 

 95 

Results 96 

Prenatal BPA exposure induces intrauterine growth retardation (IUGR) and alterations in 97 

cardiometabolic phenotypes 98 

As shown in Fig 1A, pregnant C57BL/6 mice were exposed to BPA during gestation (day 1 to day 20 post-99 

conception) via oral gavage at the dosage of 5mg/kg/day, situated below most reported no-observed-adverse-100 

effect-level (NOAEL) according to toxicity testing 101 

(https://comptox.epa.gov/dashboard/dsstoxdb/results?search=Bisphenol+A). This dosage was typically used in 102 

previous studies [23, 44-46], and was chosen as a proof-of-concept for our systems biology study design and to 103 

facilitate comparison with previous studies. Male and female offspring (n = 9 for control and n = 11 for BPA in 104 

male; n = 9 for control and n = 13 for BPA in female, 2-3 mice from 3-4 litters/group; S1 Fig) of weaning age (3-105 

weeks) were examined for a spectrum of metabolic phenotypes (detailed below). We chose the weaning age in 106 

order to investigate early molecular and phenotypic changes in the offspring, which may predispose the offspring 107 

to late onset diseases. Compared with the control group, both male and female offspring from the BPA group 108 

showed significantly lower body weight, indicative of IUGR, a trait that is strongly associated with later life 109 

insulin resistance and obesity risk (Fig 1B, D). There were also significant decreases in serum lipid parameters 110 

and an increase in serum glucose level in males (Fig 1C), but not in females (Fig 1E). The decreases in the lipid 111 
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parameters at this early developmental stage likely reflect the growth retardation phenotype observed and may 112 

provide feedback signals to predispose the exposed offspring to lipid dysregulation later in life. The phenotypic 113 

differences between BPA and control groups are not the results of litter effect, as offspring from different dams in 114 

each group showed similar patterns (S1 Fig). 115 

 116 

Prenatal BPA exposure induces tissue-specific transcriptomic alterations in male weaning 117 

offspring 118 

To explore the molecular basis underlying the potential health impact of prenatal BPA exposure, we collected 119 

three key metabolic tissues including white adipose tissue, hypothalamus, and liver from male offspring (due to 120 

the stronger observed phenotypes) at 3 weeks. The hypothalamus is the central regulator of endocrine and 121 

metabolic systems, whereas liver and white adipose tissues are critical for energy and metabolic homeostasis. We 122 

used RNA sequencing (RNA-seq) to profile the transcriptome, and identified 86, 93, and 855 differentially 123 

expressed genes (DEGs) in the adipose tissue, hypothalamus, and liver tissue respectively, at false discovery rate 124 

(FDR) < 0.05 (Fig 2A, S1 Table). This supports the ability of prenatal BPA exposure to induce large-scale 125 

transcriptomic disruptions in offspring, with the impact appearing to be more prominent in liver. The DEGs were 126 

highly tissue-specific, with only 12 out of the 86 adipose DEGs and 16 out of the 93 hypothalamus DEGs being 127 

found in liver. Interestingly, the hypothalamic DEGs are predominantly up-regulated in the BPA group whereas 128 

the other two tissues did not show such direction bias (S2 Table). Only one gene, Cyp51 (sterol 14-alpha 129 

demethylase), was shared across all three tissues but with different directional changes (upregulated in 130 

hypothalamus and liver, downregulated in adipose) (Fig 2B). The Cyp51 protein catalyzes metabolic reactions 131 

including cholesterol and steroid biosynthesis and biological oxidation [47] and is a critical regulator for testicular 132 

spermatogenesis [48]. The consistent alteration of Cyp51 across tissues suggests that this gene is a general target 133 

of BPA, with the potential to alter functions related to cholesterol, hormone, and energy metabolism.  134 
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 135 

Functional annotation of DEGs in adipose, hypothalamus, and liver tissues 136 

To better understand the biological implications of the BPA exposure related DEGs in individual tissues, we 137 

evaluated the enrichment of DEGs for known biological pathways and functional categories using the 138 

Mergeomics package [49] (Fig 2C-E, full results in S3 Table). We observed strong enrichment for pathways 139 

related to lipid metabolism (lipid transport, fatty acid metabolism, cholesterol biosynthesis) and energy 140 

metabolism (biological oxidation, TCA cycle) across all three tissues. Most of these pathways appeared to be 141 

upregulated in all three tissues, with the exception of downregulation of genes involved in biological oxidation in 142 

adipose tissue (Fig 2C-E). Individual tissues also showed perturbations of unique pathways: PPAR signaling and 143 

arachidonic acid pathways were altered in liver; extracellular matrix related processes were enriched among 144 

hypothalamic DEGs; core histone genes were upregulated in adipose DEGs (Fig 2C-E). In addition, triglyceride 145 

biosynthesis and glucose metabolism pathways were also moderately enriched among adipose DEGs, whereas 146 

few changes were seen for genes involved in adipocyte differentiation (S2 Fig). 147 

 148 

Replication of the DEG signatures using independent studies 149 

To support the replicability of the differential expression signatures identified in our study, we sought to validate 150 

the signatures using independent expression profiling data deposited on GEO (S1 Text, Supplemental Methods). 151 

We identified three GEO datasets - two from GSE26728 [50] and one from GSE43977 [51] (S3A Fig) - that 152 

characterized the liver transcriptome following BPA exposure during adulthood. Highlighting the novelty of our 153 

study, we were not able to identify other datasets with the same in utero exposure condition tested in our exposure 154 

paradigm, making a direct replication difficult. However, we reasoned that if core mechanisms exist for BPA 155 

regardless of experimental conditions, consistent signals should be derived. We compared the differential 156 
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expression signatures from the three existing liver studies against ours, and found limited consistency in BPA 157 

signatures across datasets, even for the two datasets that were originated from the same study (GSE26728) (S3B 158 

Fig). These results support that BPA has condition-specific activities. Nevertheless, 10% of our DEGs were 159 

replicated in the other GEO datasets (p < 1e-4 compared to random expectation via a permutation analysis, S3C 160 

Fig). Srebf1 (Sterol Regulatory Element Binding Transcription Factor 1), a key transcription factor in lipid 161 

metabolism, was consistent across all four datasets, along with numerous additional genes consistent in two or 162 

more studies (S3C Fig). 163 

Next, we compared the enriched pathways among the DEGs from each dataset to evaluate whether distinct study-164 

specific signatures could converge onto similar biological processes. The replicated pathways across studies 165 

include steroid hormone biosynthesis, retinol metabolism and fatty acid metabolism, suggesting that these 166 

processes were consistently influenced by BPA under varying exposure windows and dosages (S3D Fig). At FDR 167 

< 5%, 56.1% of the significant pathways in our study were replicated in one or more independent studies (p < 1e-168 

4 compared to random expectation via a permutation test, S3E Fig). Pair-wise comparison revealed relatively 169 

higher overlap ratios between our study and individua independent studies than between the previous studies, 170 

despite the greater similarity in the study design among the previous studies (S3E Fig). Overall, the generally 171 

higher pair-wise replication rates of the biological pathways between our study and independent studies support 172 

the adequate power of our study to reveal core BPA-associated biological pathways implicated in previous 173 

studies. 174 

 175 

Prenatal BPA exposure induces tissue-specific epigenetic alterations in male weaning offspring 176 

Consistent with the observed gene expression disruptions at the transcriptomic level, we observed numerous 177 

methylomic alterations using reduced representation bisulfite sequencing (RRBS), which characterizes DNA 178 

methylation states of millions of potential epigenetic sites at single base resolution. At FDR < 5%, 5136, 104, and 179 
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476 differentially methylated CpGs (DMCs) were found in adipose, hypothalamus, and liver tissues, respectively 180 

(Fig 3A, S4 Table). When comparing our adipose methylation signatures with a previous study [36], we were 181 

able to replicate 5 out of 7 peak hypomethylated genes, and 6 out of 9 peak hypermethylated genes. Interestingly, 182 

BPA induced local methylation changes in Gm26917 and Yam1, two long non-coding RNAs (lncRNAs) with no 183 

previously known link to BPA, consistently across three tissues (Fig 3B). The majority of the DMCs are located 184 

in intergenic regions (32% - 38%), followed by introns (31% - 37%) and exons (13% - 15%), but there is a 185 

paucity of DMCs in the promoter region (3% - 5%) (S4 Fig). Contrary to predictions that promoter regions may 186 

be more prone to epigenetic changes, we found that within-gene and intergenic methylation alterations in DNA 187 

methylation are more prevalent, a pattern consistently observed in previous epigenomic studies [41, 52]. In 188 

addition, 5.0%, 8.6%, and 8.1% DMCs overlap with repetitive DNA elements in adipose, hypothalamus, and 189 

liver, respectively, recapitulating previous report of the interaction between BPA and repetitive DNA [53].  190 

For DMCs that are located within or adjacent to genes, we further tested whether the local genes adjacent to those 191 

DMCs show enrichment for known functional categories. Unlike DEGs, top processes enriched for DMCs 192 

concentrated on intra- and extra-cellular communication and signaling related pathways such as axon guidance, 193 

extracellular matrix organization and NGF signaling (Fig 3C, full results in S5 Table). The affected genes in 194 

these processes are related to cellular structure, cell adhesion, and cell migration, indicating that these functions 195 

may be particularly vulnerable to BPA induced epigenetic modulation. 196 

 197 

Potential regulatory role of DMCs in transcriptional regulation of BPA induced DEGs 198 

To explore the role of DMCs in regulating DEGs, we evaluated the connection between transcriptome and 199 

methylome by correlating the expression level of DEGs with the methylation ratio of their local DMCs. For the 200 

DEGs in adipose, hypothalamus and liver tissue, we identified 42, 36, and 278 local DMCs whose methylation 201 

ratios were significantly correlated with the gene expression. At a global level, compared to non-DEGs, DEGs are 202 
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more likely to contain local correlated DMCs (S5 Fig). A closer look into the expression-methylation correlation 203 

by different chromosomal regions further revealed a context dependent correlation pattern (Fig 3D). In adipose 204 

and liver, the 3-5% of DMCs in promoter regions tend to show significant enrichment for negative correlation 205 

with DEGs, whereas gene body methylations for DEGs are more likely to show significant enrichment for 206 

positive correlation with gene expression. In hypothalamus, however, positive correlations between DEGs and 207 

DMCs are more prevalent across different gene regions. In addition, liver DMCs within lncRNAs were uniquely 208 

enriched for negative correlation with lncRNA expression, although the lack of a reliable mouse lncRNA target 209 

database prevented us from further investigating whether downstream targets of the lncRNAs were enriched in the 210 

DEGs. Specific examples of DEGs showing significant correlation with local DMCs include adipose DEG 211 

Slc25a1 (Solute Carrier Family 25 Member 1, involved in triglyceride biosynthesis), hypothalamic DEG Mvk 212 

(Mevalonate Kinase, involved in cholesterol biosynthesis), and liver DEG Gm20319 (a lncRNA with unknown 213 

function) (S6 Fig and S6 Table). These results support a role of BPA-induced differential methylation in altering 214 

the expression levels of adjacent genes. 215 

 216 

Pervasive influence of prenatal BPA exposure on the liver transcription factor network 217 

BPA is known to bind to diverse types of nuclear receptors such as estrogen receptors and peroxisome 218 

proliferator-activated (PPAR) receptors that function as transcription factors (TFs), thus influencing the action of 219 

downstream genes [54, 55]. PPARg in particular has been shown to be a target of BPA in mouse and human and 220 

mechanistically linking BPA exposure with its associated effect on weight gain and increased adipogenesis [56-221 

58]. To explore the TF regulatory landscape underlying BPA exposure based on our genome-wide data, we 222 

leveraged tissue-specific TF regulatory networks from the FANTOM5 project [59] and integrated it with our BPA 223 

transcriptome profiling data. No TF was found to be differentially expressed in adipose tissue, whereas 1 TF 224 

(Pou3f1) and 14 TFs (such as Esrra, Hnf1a, Pparg, Tcf21, Srebf1) were found to be differentially expressed in 225 
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hypothalamus and liver, respectively. Due to the temporal nature of TF action, changes in TF levels may precede 226 

the downstream target genes and not be reflected in the transcriptomic profiles measured at the time of sacrifice. 227 

Therefore, we further curated the target genes of TFs from FANTOM5 networks and tested the enrichment for the 228 

target genes of each TF among our tissue-specific DEGs (S7 Table). This analysis confirmed that BPA perturbs 229 

the activity of the downstream targets for estrogen receptors Esrrg (p = 1.4e-3, FDR = 1.9%) and Esrra (p = 0.03, 230 

FDR = 13%) in liver, as well as Esr1 in both adipose (p = 7.2e-3, FDR = 10.6%) and liver (p = 7.2e-3, FDR = 231 

4.7%). Targets of Pparg were also perturbed in liver (p = 4.1e-3, FDR = 3.8%). Therefore, we demonstrated that 232 

our data-driven network modeling is able to not only recapitulate results from previous in-vitro and in-vivo studies 233 

showing that BPA influences estrogen signaling and PPAR signaling [55], but also uniquely point to the tissue 234 

specificity of these BPA target TFs. 235 

In addition to these expected TFs, we identified 14 adipose TFs and 61 liver TFs whose target genes were 236 

significantly enriched for BPA DEGs at FDR < 5%. Many of these TFs showed much stronger enrichment for 237 

BPA DEGs among their downstream targets than the estrogen receptors (S7 Table). The adipose TFs include 238 

nuclear transcription factor Y subunit alpha (Nfya) and fatty acid synthase (Fasn), both implicated in the 239 

adipocyte energy metabolism [60]. The liver TFs include multiple genes from the hepatocyte nuclear factors 240 

(HNF) family and the CCAAT-enhancer-binding proteins (CEBP) family, which are critical for liver development 241 

and function, suggesting a pervasive influence of BPA on liver TF regulation.  242 

We further extracted the subnetwork containing 89 unique downstream targets of the significant liver TFs that are 243 

also liver DEGs. This subnetwork showed significant enrichment for genes involved in metabolic pathways such 244 

as steroid hormone biosynthesis and fatty acid metabolism. The regulatory subnetwork for the top liver TFs (FDR 245 

< 5%) revealed a highly interconnected TF subnetwork that potentially senses BPA exposure and in turn governs 246 

the expression levels of their targets (Fig 4A), with Pparg and Hnf4 among the core TFs. Some of the TFs in this 247 

network, including Esr1, Esrrg, Foxp1, and Tcf7l1, also had local DMCs identified in our study, indicating that 248 

BPA may perturb this liver TF subnetwork via local modification of DNA methylation of key TFs.  249 
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 250 

Identification of potential non-TF regulators governing BPA induced molecular perturbations 251 

To further identify regulatory genes that mediate the action of BPA on downstream targets through non-TF 252 

mechanisms, we leveraged data-driven tissue-specific Bayesian networks (BNs) generated from multiple 253 

independent human and mouse studies (S8 Table). These data-driven networks are complementary to the TF 254 

networks used above and have proven valuable for accurately predicting gene-gene regulatory relationships and 255 

novel key drivers (KDs) [40-43, 61]. KDs were defined as network nodes whose surrounding subnetworks are 256 

significantly enriched for BPA exposure related DEGs. At FDR < 1%, we identified 21, 1, and 100 KDs in 257 

adipose, hypothalamus, and liver, respectively (S9 Table). The top KDs in adipose (top 5 KDs Acss2, Pc, Agpat2, 258 

Slc25a1, Acly), hypothalamus (Fa2h) and liver (top 5 KDs Dhcr7, Aldh3a2, Fdft1, Mtmr11, Hmgcr) were 259 

involved in cholesterol, fatty acid and glucose metabolism processes. In addition, three KDs, Acss2 (Acetyl-260 

Coenzyme A Synthetase 2), Acat2 (Acetyl-CoA Acetyltransferase 2), and Fasn (Fatty Acid Synthase), were 261 

involved in the upregulation of DEGs in both adipose and liver, despite the fact that few DEG signatures overlap 262 

across tissues (Fig 4B). These KDs are consistent with the observed increased expression of several genes 263 

implicated in lipogenesis, including Fasn, and help explain the liver accumulation of triglycerides when mice are 264 

exposed to BPA [50].  Together, these results indicate that BPA may engage certain common regulators which 265 

have tissue-specific targets. The distinct upregulatory pattern within the subnetworks of individual KDs supports 266 

the potential functional importance of KDs in orchestrating the action of downstream genes. These KDs, along 267 

with the newly identified TFs from the above analysis, may represent novel regulatory targets which transmit the 268 

in vivo biological effects of BPA. 269 

 270 
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BPA transcriptomic and methylomic signatures are related to metabolic traits in mice 271 

To assess the relationship between the BPA molecular signatures and metabolic traits in the mouse model, the 272 

DEGs and DMCs from individual tissues were tested for correlation with the measured metabolic traits: body 273 

weight, free fatty acids (FFA), total cholesterol (TC), high density lipoprotein cholesterol (HDL), triglycerides 274 

(TG) and blood glucose. At p < 0.05, over two thirds of tissue-specific DEGs and over 60% DMCs were 275 

identified to be correlated with at least one metabolic trait (Fig 5A, B). Notably, liver DEGs exhibited stronger 276 

correlation with free fatty acid and triglycerides, whereas adipose DEGs were uniquely associated with glucose 277 

level, which is consistent with the pathway annotation results for these tissues. On the other hand, liver DMCs 278 

showed stronger correlations with metabolic traits than those from adipose and hypothalamus tissues. 279 

Cross-examination of correlation across gene expression, DNA methylation, and metabolic traits revealed 35 280 

consistent DEG-DMC-trait associations (3 in adipose, 4 in hypothalamus, and 28 in liver) (S10 Table). For 281 

example, in adipose tissue, Fasn (also a perturbed TF hotspot in adipose, and a shared KD in adipose and liver) 282 

was correlated with its exonic DMC at chr11:120816457, and both were correlated with triglyceride level; in 283 

hypothalamus, Igf1r (Insulin Like Growth Factor 1 Receptor) was correlated with its intronic DMC at 284 

chr7:68072768, and both were correlated with blood glucose level; in liver, Adh1 (Alcohol Dehydrogenase 1A) 285 

was correlated with its intronic DMC at chr3:138287690, and both were correlated with body weight (Fig 5C). 286 

These results suggest that BPA alters local DMCs of certain genes to regulate gene expression, which may in turn 287 

regulate distinct metabolic traits. 288 

 289 

Relevance of BPA signature to human complex traits/diseases  290 

Human observational studies have associated developmental BPA exposure with a wide variety of human 291 

diseases ranging from cardiometabolic diseases to neuropsychiatric disorders [14, 15, 62]. Large-scale human 292 

genome-wide association studies offer an unbiased view of the genetic architecture for various human 293 
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traits/diseases, and intersections of the molecular footprints of BPA in our mouse study with human disease risk 294 

genes can help infer the potential disease-causing properties of BPA in humans. From the GWAS Catalog [63], 295 

we collected associated genes for 161 human traits/diseases (traits with fewer than 50 associated genes were 296 

excluded), and evaluated the enrichment for the trait associated genes among DEG and DMC signatures. At FDR 297 

< 5%, no trait was found to be significantly enriched for BPA DEGs. Surprisingly, despite the difference between 298 

tissue-specific DMCs (Fig 3B), 19 out the 161 traits showed consistently strong enrichment for DMCs across all 299 

three tissues at FDR < 1%. The top traits include body mass index (BMI) and type 2 diabetes (Table 1). As DNA 300 

methylation status is known to determine long-term gene expression pattern instead of immediate dynamic gene 301 

regulation, the BMI and diabetes associated genes may be under long-term programming by BPA-induced 302 

differential methylation, thereby affecting later disease risks. 303 

The above analysis involving the GWAS catalog focused only on small sets of the top candidate genes for various 304 

diseases and may have limited statistical power. To improve the statistical power, we curated the full summary 305 

statistics from 61 human GWAS that are publicly available (covering millions of SNP-trait associations in each 306 

GWAS), which enabled us to extend the assessment of disease association by considering additional human 307 

disease genes with moderate to low effect sizes (Methods). This analysis showed that DEGs from all three tissues 308 

exhibited consistent enrichment for genes associated with lipid traits such as triglycerides, LDL, and HDL (Fig 309 

6A-C). Interestingly, enrichment for birth weight and birth length was also observed for hypothalamus and liver 310 

signatures, respectively. Liver DEGs were also significantly associated with coronary artery disease, 311 

inflammatory bowel disease, Alzheimer’s disease, and schizophrenia. Top DEGs driving the inflammatory bowel 312 

disease association involve immune and inflammatory response genes (PSMB9, TAP1, TNF), whereas association 313 

with Alzheimer’s disease and schizophrenia involve genes related to cholesterol homeostasis (APOA4, ABCG8, 314 

SOAT2) and mitochondrial function (GCDH, PDPR, SHMT2), respectively. These results suggest that tissue-315 

specific targets of BPA are connected to diverse human complex diseases through both the central nervous system 316 

and peripheral tissues. 317 
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 318 

Discussion 319 

This multi-tissue, multi-omics integrative study represents one of the first systems biology investigations of 320 

prenatal BPA exposure. By integrating systematic profiling of the transcriptome and methylome of multiple 321 

metabolic tissues with phenotypic trait measurements, large-scale human association datasets, and network 322 

analysis, we uncovered insights into the molecular regulatory mechanisms underlying the health effect of prenatal 323 

BPA exposure. Specifically, we identified tens to hundreds of tissue-specific DEGs and DMCs involved in 324 

diverse biological functions such as metabolic pathways (oxidative phosphorylation/TCA cycle, fatty acid, 325 

cholesterol, glucose metabolism, and PPAR signaling), extracellular matrix, focal adhesion, and inflammation 326 

(arachidonic acid), with DMCs partially explaining the regulation of DEGs. Network analysis helped reveal 327 

potential regulatory circuits post BPA exposure and pinpointed both tissue-specific and cross-tissue regulators of 328 

BPA activities, including TFs such as estrogen receptors, PPARg, and HNF1A, and non-TF key drivers such as 329 

FASN. Furthermore, the BPA gene signatures and the predicted regulators were found to be linked to a wide 330 

spectrum of disease-related traits in both mouse and human. 331 

The large-scale disruption we observed in the transcriptome and methylome in adipose and liver was consistent 332 

with previous reports [33, 36, 64, 65]. Although our multi-tissue, multi-omics design limits the number of 333 

biological replicates we could have for each group, comparison of our results with previously published BPA 334 

studies with various study designs revealed consistent signals such as Srebf1 in liver and a generally higher 335 

replication rate of the biological pathways between our study and the other studies than replication between the 336 

previously studies.  Additionally, we focused our analyses on evaluating the aggregated behavior of BPA 337 

signatures using both pathway analysis and network modeling to reduce the potential noise and false positives at 338 

individual gene level, because the random chance to have multiple genes in the same pathway to be false positives 339 

is much lower. At the pathway level, we demonstrate the robustness of our results against published studies, 340 
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supporting that relatively small sample size did not hinder our ability to uncover reliable biology despite variation 341 

at the individual signature level across studies. Moreover, our unique study design of examining multi-omics in 342 

multiple tissues in parallel yields higher comparability when integrating the results between data types and across 343 

tissues, as they were from the same set of animals and were profiled in the same conditions. Of note, the low 344 

consistency of DEGs across independent BPA studies points to the complexity of BPA actions under varying 345 

conditions, and warrants future large-scale coordinated investigations by the research community to 346 

systematically evaluate the molecular footprints of BPA. 347 

Across all three tissues at the transcriptome level, we found that lipid metabolism and energy homeostasis related 348 

processes were consistently perturbed, with the scale of perturbation being strongest in liver. This aligns well with 349 

the significant changes in the plasma lipid profiles we observed in the offspring, the reported perturbation of lipid 350 

metabolism in fetal murine liver [65], and the reported susceptibility for nonalcoholic fatty liver diseases 351 

following BPA exposure [66-68]. The only shared gene across tissues, Cyp51, is involved in cholesterol and sterol 352 

biosynthesis and beta oxidation, and the only liver signature replicated across our and three previous studies and a 353 

top ranked TF regulator in our TF analysis, Srebf1, is a main regulator of lipid homeostasis, again supporting that 354 

metabolism is a central target of BPA. We also revealed an intriguing link between BPA and lncRNAs across 355 

tissues, whose functional importance in developmental processes, disease progression, and response to BPA 356 

exposure was increasingly recognized yet underexplored [69]. Our molecular data provides intriguing lncRNA 357 

candidates such as Gm20319, Gm26917, and Yam1 for future in-depth functional analyses.  358 

For adipose tissue, clusters of genes responsible for core histones were found to be uniquely altered. Along with 359 

the strong adipose-specific differential methylation status, our results revealed gonadal adipose tissues as an 360 

especially vulnerable site for BPA induced epigenetic reprogramming. Besides, developmental BPA exposure has 361 

been previously suggested to influence white adipocyte differentiation [70-72]. However, the adipocyte 362 

differentiation pathway was not significantly enriched in our study. This is consistent with the report by Angel et 363 

al. [72], where increased adipocyte number is only found in mouse offspring with prenatal BPA exposure at 364 
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5ug/kg/day and 500ug/kg/day, but not 5mg/kg/day. Additionally, we found significant enrichment for triglyceride 365 

biosynthesis and glucose metabolism genes at the differential methylation sites, suggesting that prenatal BPA 366 

exposure may affect fat storage and glucose homeostasis in the adipose tissue. Although here we mainly 367 

investigate gonadal adipose tissue as a surrogate for abdominal fat in the context of metabolic disorders, the 368 

information may be useful for exploring the relationship between this fat depot and the gonad. 369 

With regards to the hypothalamus, our study is the first to investigate the effect of BPA on the hypothalamic 370 

transcriptome and DNA methylome. Hypothalamus is an essential brain region that regulates the endocrine 371 

system, peripheral metabolism, and numerous brain functions. We identified BPA-induced DEGs and DMCs that 372 

were enriched for extracellular matrix related processes such as axon guidance, focal adhesion, and various 373 

metabolic processes. These hypothalamic pathways have been previously associated with metabolic [41, 42] and 374 

neurodegenerative diseases [41, 73], and they could underlie the reported disruption of hypothalamic 375 

melanocortin circuitry after BPA exposure [74]. Our study highlights the hypothalamus as another critical yet 376 

under-recognized target for BPA. 377 

By interrogating both the transcriptome and DNA methylome in matching tissues, we were able to directly assess 378 

both global and specific correlative relationships between DEGs and DMCs (S5 Fig, Fig 3D). Specifically, we 379 

found that DEGs are more likely to have correlated DMCs in the matching tissue, a trend that persists in non-380 

promoter regions. Our results corroborate previous findings regarding the importance of gene body methylation in 381 

disease etiology [75, 76]. Given that over 90% of DMCs were found in non-promoter regions, closer investigation 382 

of the regulatory circuits involving these regions may unveil new insights into BPA response [52]. 383 

Known as an endocrine disrupting chemical, BPA has been speculated to exert its primary biological action by 384 

modifying the activity of hormone receptors, including estrogen receptors, PPARg and glucocorticoid receptors 385 

[55]. Indeed, the activity for the downstream targets of Pparg and three estrogen and estrogen-related receptors 386 

were found to be disrupted in liver by prenatal BPA exposure. More importantly, our unbiased data-driven 387 
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analysis revealed many novel transcription factors and non-TF regulatory genes that also likely mediate BPA 388 

effects. In fact, many of the newly identified TF targets of BPA, such as Fasn, Srebf1, and several hepatic nuclear 389 

factors, showed much higher ranking in our regulator prediction analyses. In liver, a tightly inter-connected TF 390 

subnetwork was highly concentrated with BPA affected genes involved in metabolic processes such as 391 

cytochrome P450 system (Cyp3a25, Cyp2a12, Cyp1a2), lipid (Apoa4, Abcg5, Soat2) and glucose (Hnf1a, 392 

Adra1b, Gck) regulation, with extensive footprints of altered methylation status in the TFs and other subnetwork 393 

genes (Fig 4A). Therefore, our results support a widespread impact of BPA on liver transcriptional regulation, and 394 

the convergence of differential methylation and gene expression in this TF subnetwork implies that BPA perturbs 395 

this subnetwork via epigenetic regulation of the TFs, which in turn trigger transcriptomic alterations in 396 

downstream genes. In adipose, we discovered a regulatory axis governed by Nfya and Fasn that are known 397 

regulators of fatty acid metabolism and adipogenesis. NF-YA is a histone-fold domain protein that binds to the 398 

inverted CCAAT element in the Fasn promoter [60, 77], and both Nfya and Fasn were found to significantly 399 

perturbed by BPA in our study. Moreover, Fasn also serves as a cross-tissue KD, governing distinct groups of up-400 

regulated lipid metabolism genes in adipose and liver post-BPA exposure (Fig 4B), supporting its role in 401 

mediating the BPA-induced lipid dysregulation at the systemic level. The significant correlation of gene 402 

expression and methylation for Fasn with triglyceride level furthers implicates its role as a network-level 403 

regulator and biomarker for BPA induced lipid dysregulation. Our observation of Fasn is consistent with 404 

evidences suggesting its susceptibility to methylation perturbation under obesogenic feeding [78] and its causal 405 

functional importance for fatty liver diseases [43, 79]. These novel regulators warrant future experimental testing 406 

of their causal regulatory role in BPA activities via genetic manipulation studies, such as knocking down or 407 

overexpressing Fasn to examine the modulation of BPA activities. 408 

One unique aspect of this study is the linking of the molecular landscape of prenatal BPA exposure to 409 

traits/diseases in both mouse and human. In our mouse study, the observed changes in body weight, lipid profiles, 410 

and glucose level are highly concordant with the functions of the molecular targets. For instance, prenatal BPA 411 
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exposure perturbs both the expression levels and the local DNA methylation status of Fasn, Igf1r, and Adh1. 412 

These DEGs and their local DMCs also significantly correlate with phenotypic outcomes, thus serving as 413 

examples of how DNA methylation and gene regulation bridge the gap between BPA exposure and phenotypic 414 

manifestation.  To further enhance the translatability of our findings from mouse to human, we searched for 415 

human diseases linked to the BPA-affected genes. An intriguing discovery is the prominent overrepresentation of 416 

differential methylation signals in adipose, hypothalamus, and liver within known genes related to obesity and 417 

type 2 diabetes, supporting that BPA may impact obesity and diabetes risk through systemic reprogramming of 418 

DNA methylation. More sophisticated analysis incorporating the BPA differential gene expression and the full 419 

statistics of human genome-wide association studies corroborated the observed connection between prenatal BPA 420 

exposure and lipid homeostasis [80], birth weight [81], and coronary artery disease [14] reported in observational 421 

studies. Moreover, our findings suggest the involvement of prenatal BPA exposure in the development of 422 

inflammatory bowel syndrome, schizophrenia, and Alzheimer’s disease. These associations warrant future 423 

investigations.  424 

One limitation of our work is the restriction of study scope to weaning age male mice with in utero BPA exposure 425 

below the NOAEL (5mg/kg/d) as a proof-of-concept for our systems biology framework. Considering that the 426 

effects of early-life exposure to BPA is highly variable and dependent on factors such as the dose, window, route, 427 

and frequency of exposure as well as genetic background, age, and sex [13], future studies testing these additional 428 

variables using large sample sizes are necessary to generate a comprehensive understandings of BPA risks under 429 

various exposure conditions. 430 

 431 

Conclusions 432 

Our study represents the first multi-tissue, multi-omics integrative investigation of prenatal BPA exposure. The 433 

systems biology framework we applied revealed how BPA triggers cascades of regulatory circuits involving 434 
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numerous transcription factors and non-TF regulators that coordinate diverse molecular processes within and 435 

across core metabolic tissues, thereby highlighting that BPA exerts its biological functions via much more diverse 436 

targets than previously thought. As such, our findings offer a comprehensive systems-level understanding of 437 

tissue sensitivity and molecular perturbations elicited by prenatal BPA exposure, and offer promising novel 438 

candidates for targeted mechanistic investigation as well as much-needed network-level biomarkers of prior BPA 439 

exposure. The strong influence of BPA on metabolic pathways and cardiometabolic phenotypes merits it 440 

characterization as a general metabolic disruptor posing systemic health risks. 441 

Methods 442 

Ethics statement 443 

All animal experiments were performed in accordance with the Institutional Animal Care and Use Committee 444 

(IACUC) guidelines. Animal studies and procedures were approved by the Chancellor's Animal Research 445 

Committee of the University of California, Los Angeles (Protocol #2012-059-21). 446 

Mouse model of prenatal BPA exposure  447 

Inbred C57BL/6 mice were maintained on a special diet 5V01 (LabDiet), certified to contain less than 150ppm 448 

estrogenic isoflavones, and housed under standard housing conditions (room temperature 22–24°C) with 12:12 hr 449 

light:dark cycle before mating at 8-10 weeks of age. Upon mating, female mice were randomly assigned to either 450 

the BPA treatment group or the control group. From 1-day post-conception (dpc) to 20 dpc, BPA (Sigma-Aldrich, 451 

St. Louis, MO) dissolved in corn oil was administered to pregnant female mice via oral gavage (mimicking 452 

common exposure route in humans) at 5mg/kg/day on a daily basis. Control mice were fed the same amount of 453 

empty vehicle. BPA exposure was restricted to experimental manipulation through the use of polycarbonate-free 454 

water bottles and cages. Offspring from each treatment were maintained on a standard chow diet (Newco 455 
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Distributors Inc, Rancho Cucamonga, CA). Offspring in the vehicle- and BPA-treated groups were derived from 3 456 

and 4 litters by different dams, respectively, to help assess and adjust for litter effects.  457 

Characterization of cardiometabolic phenotypes and tissue collection 458 

Body weight of offspring was measured daily from postnatal day 5 up to the weaning age of 3 weeks. Mice were 459 

fasted overnight before sacrifice, and plasma samples were collected through retro-orbital bleeding. Serum lipid 460 

and glucose traits including total cholesterol, HDL, un-esterified cholesterol (UC), TG, FFA, and glucose were 461 

measured by enzymatic colorimetric assays at UCLA GTM Mouse Transfer Core as previously described [41]. 462 

Gonadal white adipose tissue, hypothalamus, and liver tissues were collected from each animal, flash frozen in 463 

liquid nitrogen, and stored at –80°C. For white adipose tissue, we chose the gonadal depot mainly due to its 464 

similarity to abdominal fat, established relevance to cardiometabolic risks, tissue abundance, and the fact that it is 465 

the most well-studied adipose tissue in mouse models. All mouse experiments were conducted in accordance with 466 

and approved by the Institutional Animal Care and Use Committee at University of California, Los Angeles.  467 

RNA sequencing (RNA-seq) and data analysis 468 

A total of 18 RNA samples were isolated from gonadal adipose, hypothalamus and liver tissues (n = 3 per group 469 

per tissue; for each group, mice were randomly selected from litters of different dams in independent cages) from 470 

male offspring using the AllPrep DNA/RNA Mini Kit (QIAGEN GmbH, Hilden, Germany). We focused on 471 

profiling male tissues because of stronger phenotypes observed in males (Fig 1B-E). Samples were processed for 472 

library preparation using TruSeq RNA Library Preparation Kit (Illumina, San Diego, CA) for poly-A selection, 473 

fragmentation, and reverse transcription using random hexamer-primers to generate first-strand cDNA. Second-474 

strand cDNA was generated using RNase H and DNA polymerases, and sequencing adapters were ligated using 475 

the Illumina Paired-End sample prep kit. Library products of 250-400bp fragments were isolated, amplified, and 476 

sequenced with Illumina Hiseq2500 System. After quality control using FastQC [82], the HISAT-StringTie 477 

pipeline [83] was used for sequence alignment and transcript assembly. Identification of DEGs were conducted 478 
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using DEseq2 [84]. To account for multiple testing, we used the q-value method [85]. After excluding genes with 479 

extremely low expression levels (FPKM < 1), only DEGs demonstrating differential expression comparing the 480 

BPA and control groups per tissue at an FDR < 5% were used for biological pathway analysis, network analysis, 481 

and phenotypic data integration, as described below. 482 

Reduced representation bisulfite sequencing (RRBS) and data analysis 483 

We constructed RRBS libraries for 18 DNA samples from adipose, hypothalamus and liver tissues from male 484 

offspring (n = 3 per group per tissue from the same set of tissues chosen for transcriptome analysis described 485 

above). The DNA samples were quantified using the dsDNA BR assay (Qubit, Waltham, MA) and 100ng of DNA 486 

was used for library preparation. After digestion of the DNA with the MspI enzyme, samples underwent an end-487 

repair and adenylation process, followed by adapter ligation using the Truseq barcode adapter (Illumina, San 488 

Diego, CA), size selection using AMPure Beads (Beckman Coulter, Brea, CA), and bisulfite treatment using the 489 

Epitect Kit (Qiagen, Germantown, MD). Bisulfite-treated DNA was then amplified using the Truseq Library Prep 490 

Kit (Illumina, San Diego, CA) and sequenced with the Illumina Hiseq2500 System. Bisulfite-converted reads 491 

were processed and aligned to the reference mouse genome (GRCm38/mm10 build) using the bisulfite aligner 492 

BSMAP [86]. We then used MOAB [87] for methylation ratio calling and identification of DMCs. FDR was 493 

estimated using the q-value approach. Loci with methylation level changes of > 5% between BPA and control 494 

groups and FDR < 0.05 for each tissue were considered statistically significant DMCs. To annotate the locations 495 

of the identified DMCs in relation to gene regions and repetitive DNA elements accessed from UCSC genome 496 

browser, we used the Bioconductor package “annotatr” [88]. Specifically, gene regions were categorized into 1) 497 

1-5kb upstream of the transcription start site (TSS), 2) promoter (< 1kb upstream of the TSS), 3) 5’ untranslated 498 

region (UTR), 4) exons, 5) introns, and 6) 3’UTR. The “annotatr” package was also used to annotate DMCs for 499 

known lncRNAs based on GENCODE Release M16. Over-representation of DMCs within each category was 500 

calculated using Fisher’s exact test. We further evaluated the link between DEGs and their local DMCs (DMCs 501 
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annotated as any of the 6 above mentioned gene regions) by correlating the methylation ratio of DMCs with the 502 

expression level of DEGs. 503 

Pathway, network, and disease association analyses of DEGs and DMCs using the Mergeomics R 504 

package 505 

To investigate the functional connections among the BPA-associated DEGs or DMCs (collectively referred to as 506 

molecular signatures of BPAs) and to assess the potential association of BPA affected genes with diseases in 507 

human populations, we utilized the Mergeomics package [49], an open-source bioconductor package 508 

(https://bioconductor.org/packages/devel/bioc/html/Mergeomics.html) designed to perform various integrative 509 

analyses in multi-omics studies. Mergeomics consists of two main libraries, Marker Set Enrichment Analysis 510 

(MSEA) and Weighted Key Driver Analysis (wKDA). In the current study, we used MSEA to assess 1) whether 511 

known biological processes, pathways or transcription factor targets were enriched for BPA molecular signatures 512 

as a means to annotate the potential functions or regulators of the molecular signatures, and 2) whether the BPA 513 

signatures demonstrate enrichment for disease associations identified in human genome-wide association studies 514 

(GWAS) of various complex diseases (S7 Fig). wKDA leverages gene network topology (interactions or 515 

regulatory relations among genes) and edge weight (strength or reliability of interactions and regulatory relations) 516 

information of graphical gene networks to predict potential key regulators of a given group of genes, in this case, 517 

the BPA-associated DEGs (S8 Fig). Both MSEA and wKDA were built around a chi-square like statistics (S1 518 

Text) that yields robust findings that have been experimentally validated [42, 43, 49]. Details of each usage of the 519 

Mergeomics package are discussed below. 520 

Functional annotation of DEGs and DMCs 521 

To infer the functions of the DEGs and DMCs affected by BPA, we used MSEA to annotate the DEGs or local 522 

genes adjacent to the DMCs with known biological pathways curated from the Kyoto Encyclopedia of Genes and 523 

Genomes (KEGG) [89] and Reactome [90]. In brief, we extracted the differential expression p-values of genes in 524 
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each pathway from the differential expression or methylation analyses and compared these p-values against the 525 

null distribution of p-values from random gene sets with matching gene numbers. If genes in a given pathway 526 

collectively show more significant differential expression or differential methylation p-values compared to 527 

random genes based on a chi-square like statistic, we annotate the DEGs or DMCs using that pathway (S1 Text). 528 

DEGs and DMCs can have multiple over-represented pathways. 529 

Identification of transcription factor hotspots perturbed by BPA 530 

To dissect the regulatory cascades of BPA, we first assessed whether BPA-associated DEGs were downstream 531 

targets of specific transcription factors. The hypothesis behind this analysis is that BPA first affects TFs which in 532 

turn regulate the expression of downstream genes. We used TF regulatory networks for adipose, brain, and liver 533 

tissue retrieved from the FANTOM5 database [59]. Note that only a whole brain (instead of hypothalamus) TF 534 

network was available, which may only partially represent hypothalamic gene regulation. Each TF network was 535 

processed to keep the edges with high confidence (S1 Text). To identify TFs whose targets were perturbed by 536 

BPA, the downstream nodes of each TF in the network were pooled as the target genes for that TF. We then 537 

assessed the enrichment for BPA exposure related DEGs among the target genes of each TF using MSEA. TFs 538 

with FDR < 5% were considered statistically significant. Cytoscape software was used for TF network 539 

visualization [91]. 540 

Bayesian network and Weighted Key Driver Analysis (wKDA) to identify potential non-TF 541 

regulators 542 

To further identify non-TF regulators that sense BPA and then perturb downstream genes, we used Bayesian 543 

networks (BN) of adipose, hypothalamus and liver tissues constructed from genetic and transcriptomic data from 544 

several large-scale mouse and human studies (S1 Text and S8 Table). wKDA was used to identify network key 545 

drivers (KDs), which are defined as network nodes whose neighboring subnetworks are significantly enriched for 546 

BPA-associated DEGs. Briefly, wKDA takes gene set G (i.e. BPA DEGs) and directional gene network N (i.e. 547 
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BNs) as inputs. For every gene K in network N, neighboring genes within 1-edge distance were tested for 548 

enrichment of genes in G using a chi-square like statistics followed by FDR assessment by permutation (S1 Text 549 

and S8 Fig). Network genes that reached FDR < 0.05 were reported as potential KDs.  550 

Association of BPA DEGs and DMCs with mouse phenotypes and human diseases/traits 551 

To assess whether the BPA molecular signatures were related to phenotypes examined in the mouse offspring, we 552 

calculated the Pearson correlation coefficient among expression level of DEGs, methylation ratio of DMCs, and 553 

the measurement of metabolic traits. For human diseases or traits, we accessed the GWAS catalog database [63] 554 

and collected the lists of candidate genes reported to be associated with 161 human traits/diseases (P < 1e-5). 555 

These genes were tested for enrichment of the BPA DEGs and DMCs in our mouse study using MSEA. We 556 

further curated all publicly available full summary statistics for 61 human traits/diseases from various public 557 

repositories (S1 Text and S11 Table). This allowed us to apply MSEA to comprehensively assess the enrichment 558 

for human disease association among BPA transcriptomic signatures using the full-spectrum of large-scale human 559 

GWAS. For each tissue-specific gene signature, we used the SNPs within a 50kb chromosomal distance as the 560 

representing SNPs for that gene. The trait/disease association p-values of the SNPs were then extracted from each 561 

GWAS and compared to the p-values of SNPs of random sets of genes to assess whether the BPA signatures were 562 

more likely to show stronger disease association in human GWAS (S1 Text and S7 Fig). This strategy has been 563 

successfully used in our previous animal model studies to assess the connection of genes affected by 564 

environmental perturbations such as diets and trauma to various human diseases [41, 92].   565 
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Supporting information captions 770 

S1 Text. Supplemental Methods. 771 

S1 Fig. Body weight of male and female offspring mice at weaning age by litters. Red arrows indicate offspring 772 

male mice selected for molecular profiling. 773 

S2 Fig. Prenatal BPA exposure induced expression change for genes from the adipocyte differentiation, 774 

triglyceride biosynthesis, glucose metabolism, and core histone genes in the adipose tissue. P-values for 775 

enrichment of pathway genes among DEGs (shown in parenthesis in each panel heading) were determined by 776 

MSEA. *p < 0.05 in differential expression tests for individual genes by DEseq2; **FDR < 5% in differential 777 

expression tests for individual genes by DEseq2. 778 

S3 Fig. Comparison of the liver DEGs and their functional annotations against published datasets in GEO. (A) 779 

Descriptions of the study design of different datasets. (B) Venn Diagram of the DEGs identified in different 780 

datasets. DEGs were determined by Limma at p < 0.01. (C) The percentage of DEGs (from the datasets in each 781 

row header) that are replicated (by the datasets in each column header). Numbers in parenthesis indicate the 782 

percentage of DEGs that are replicated by at least one independent study, and the significance of the replication 783 

percentage determined by permutation test. (D) Venn Diagram of the functional annotations for the DEGs 784 

identified in different datasets. Functional annotations were determined by MSEA at FDR < 5%. (E) The 785 

percentage of functional annotations (from the datasets in each row header) that are replicated (by the datasets in 786 

each column header). Numbers in parenthesis indicate the percentage of annotations that are replicated by at least 787 

one independent study, and the significance of the replication percentage determined by permutation test. 788 

S4 Fig. Gene body location distribution for hyper- and hypo- methylated DMC s in adipose, hypothalamus, and 789 

liver. 790 
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S5 Fig. Quantile-quantile plots for the absolute Pearson correlation with local DMC for DEGs and Non DEGs in 791 

adipose, hypothalamus, and liver tissue. Statistical difference of the distribution of correlation value between 792 

DEGs (FDR < 5%) and non DEGs is determined by the Kolmogorov–Smirnov test. 793 

S6 Fig. Scatter plots of correlations between DEG expression levels and DMC methylation ratios for Slc25a1 in 794 

adipose, Mvk in hypothalamus, and Gm20319 in liver. 795 

S7 Fig. Schematic illustration of MSEA 796 

S8 Fig. Schematic illustration (A) and key driver identification algorithms (B) of wKDA. 797 

S1 Table. List of DEGs with p < 0.05 in adipose, hypothalamus and liver tissue following prenatal exposure to 798 

BPA. 799 

S2 Table. Count of DEGs in adipose, hypothalamus and liver tissue following prenatal exposure to BPA. 800 

S3 Table. Results of functional annotation of DEGs in in adipose, hypothalamus and liver tissue following 801 

prenatal exposure to BPA 802 

S4 Table. Count of differentially methylated regions in hypothalamus and liver tissue following prenatal exposure 803 

to BPA. 804 

S5 Table. Results of functional annotation of DMCs in in adipose, hypothalamus and liver tissue following 805 

prenatal exposure to BPA. 806 

S6 Table. List of pairs of DEGs and local DMCs with significant correlation (p < 0.05) in expression level and 807 

methylation ratio 808 

S7 Table. List of transcription factors whose downstream targets were significantly enriched for DEGs (p < 0.05). 809 

S8 Table. Data resources and references for the construction of Bayesian gene-gene regulatory networks. 810 

S9 Table. List of tissue-specific key drivers with FDR < 1% 811 
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S10 Table. List of DEGs with significant correlation between expression level, methylation ratio of local DMCs, 812 

and cardiometabolic traits (p < 0.05). 813 

S11 Table. Source of publicly available full summary-level statistics from human genome-wide association 814 

studies. 815 
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Tables 816 

Table 1. Top 5 human traits whose associated genes in genome-wide association studies are enriched for 817 

differentially methylated CpGs (DMCs) across adipose, hypothalamus and liver at FDR < 1% in MSEA. 818 

Human trait 
Adipose Hypothalamus Liver 

P FDR P FDR P FDR 

Obesity-related traits 1.28E-16 0.00% 3.03E-15 0.00% 2.71E-19 0.00% 

Body mass index 1.30E-13 0.00% 3.74E-07 0.00% 9.66E-12 0.00% 
Post bronchodilator FEV1/FVC 

ratio 
8.17E-09 0.00% 1.45E-08 0.00% 3.67E-07 0.00% 

Type 2 diabetes 1.21E-05 0.03% 8.97E-09 0.00% 0.001243 0.92% 

Platelet distribution width 8.16E-08 0.00% 7.62E-05 0.16% 5.20E-05 0.12% 
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Figures 819 

 820 

Fig 1. Overall study design and the measurements of metabolic traits in male and female offspring. (A) Framework of multi-omics 821 

approaches to investigate the impact of prenatal BPA exposure. B-C) Comparison of body weight, serum lipids and glucose level in male mice at 822 

weaning age. D-E) Comparison of body weight, serum lipids and glucose level in female mice at weaning age. FFA: free fatty acid; HDL: high-823 

density lipoprotein cholesterol; TC: total cholesterol; TG: triglyceride; UC: unesterified cholesterol. * p < 0.05, ** p < 0.01, *** p < 0.001 by two-824 

sided Student’s T-test. N=9-13 mice (3-4 litters from different dams)/group.825 
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Fig 2. Prenatal BPA exposure induced transcriptomic alterations in adipose, hypothalamus and liver. (A) 827 

Heatmap of expression changes in adipose, hypothalamus and liver for the top 100 differentially expressed genes 828 

(DEGs) affected by BPA. Color indicates fold change of expression, with red and blue indicating upregulation 829 

and downregulation by BPA. (B) Venn Diagram demonstrating tissue-specific and shared DEGs between tissues. 830 

(C-E) Significantly enriched pathways (FDR < 5%) among DEGs from each tissue. Enrichment p-value (shown in 831 

parenthesis following the name of functional annotation) is determined by MSEA. The fold change and statistical 832 

significance for the top 5 differentially expressed genes in each pathway are shown. *, p < 0.05; **, FDR < 5% in 833 

differential expression analysis using DEseq2.834 
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Fig 3. Prenatal BPA exposure induced methylomic level alteration in adipose, hypothalamus and liver. (A) 836 

Heatmap of methylation level changes for the top 100 differentially methylated CpGs (DMCs). Color indicates 837 

change in methylation ratio, with red and blue indicating upregulation and downregulation by BPA. (B) Venn 838 

Diagram of genes with local DMCs between tissues shows tissue-specific and shared genes mapped to DMCs. (C) 839 

Significantly enriched pathways that satisfied FDR < 1% across DMCs from adipose, hypothalamus, and liver 840 

tissues. Enrichment p-value is determined by MSEA. (D) Fold enrichment for positive correlations (red bars) or 841 

negatively correlations (blue bars) between DMCs and local DEGs, assessed by different gene regions. *, p < 842 

0.05; **, p < 0.01; ***, p < 0.0001; enrichment p-values were determined using Fisher’s exact test.843 
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Fig 4. Transcription factors and key drivers orchestrate BPA induced gene expression level changes. (A) Liver transcription factor 844 

regulatory networks for the top ranked transcription factors (FDR < 5%) based on enrichment of liver DEGs among TF downstream targets. 845 

Network topology was based on FANTOM5. For TFs with > 20% overlapping downstream targets, only the TF with the lowest FDR is shown. (B) 846 

Gene-gene regulatory subnetworks (Bayesian networks) for cross-tissue key drivers. Network topology was based on Bayesian network modeling 847 
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of each tissue using genetic and transcriptome datasets from mouse and human populations. For each tissue, if >= 2 datasets were available for a 848 

given tissue, a network for each dataset was constructed and a consensus network was derived by keeping only the high confidence network edges 849 

between genes (edges appearing in >= 2 studies).850 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted S
eptem

ber 11, 2018. 
; 

https://doi.org/10.1101/336214
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/336214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

48 

 
 851 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2018. ; https://doi.org/10.1101/336214doi: bioRxiv preprint 

https://doi.org/10.1101/336214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

49 

 

Fig 5. Correlation between gene expression, methylation and metabolic traits. (A) Percentage of tissue-852 

specific DEGs that are correlated with metabolic traits (p < 0.05). (B) Percentage of tissue-specific DMCs that are 853 

correlated with metabolic traits (p < 0.05). (A-B) p-values were determined using Pearson correlation test. (C) 854 

Pair-wise correlation between expression level, methylation ratio and metabolic profiles (triglyceride, glucose 855 

level, body weight) for Fasn, Igf1r and Adh1. P_cor, p-value was determined using Pearson correction test; 856 

P_DEG was determined using differential expression test; P_DMC was determined using differential methylation 857 

test.  Each dot represents a mouse.858 
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 859 

Fig 6. Association of differential expression signatures from adipose (A), hypothalamus (B) and liver (C) 860 

with 61 human traits/diseases, color coded into nine primary categories. P-values are determined using 861 

MSEA. Red dashed line indicates the cutoff for Bonferroni-corrected p = 0.05. Names of traits/diseases whose p-862 

values didn’t pass Bonferroni-corrected cutoff were not shown. 863 
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