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Abstract

The health impacts of endocrine disrupting chemicals (EDCs) remain debated and their tissue and molecular
targets are poorly understood. Here, we leveraged systems biology approaches to assess the target tissues,
molecular pathways, and gene regulatory networks associated with prenatal exposure to the model EDC
Bisphenol A (BPA). Prenatal BPA exposure led to scores of transcriptomic and methylomic aterationsin the
adipose, hypothalamus, and liver tissues in mouse offspring, with cross-tissue perturbationsin lipid metabolism as
well as tissue-specific aterations in histone subunits, glucose metabolism and extracellular matrix. Network
modeling prioritized main molecular targets of BPA, including Pparg, Hnfda, Esrl, Srebfl, and Fasn. Lastly,
integrative anal yses identified the association of BPA molecular signatures with cardiometabolic phenotypesin
mouse and human. Our multi-tissue, multi-omics investigation provides strong evidence that BPA perturbs
diverse molecular networks in central and peripheral tissues, and offersinsights into the molecular targets that

link BPA to human cardiometabolic disorders.
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I ntroduction

A centra concept in the Developmental Origins of Health and Disease (DOHaD) states that adverse
environmental exposure during early developmental stagesis an important determinant for later onset adverse
health outcomes, even in the absence of continuous exposure in adulthood [1-3]. BPA is one of the most prevalent
environmental metabolic disruptors identified to date with widespread exposure in human populations and likely
playsarolein DOHaD. BPA isused in the production of synthetic polymers, including epoxy resins and
polycarbonates [4]. The advantageous mechanical properties of BPA have resulted in its ubiquitous usein
everyday goods such as plastic bottles and inner coating of canned foods [5, 6]. BPA exposure has been
confirmed in the majority of human populations [7] and has been linked to body weight, obesity, insulin
resistance, diabetes, metabolic syndrome (MetS), and cardiovascular diseasesin both human epidemiologic and
animal studies [8-15]. Importantly, it has been suggested that the devel oping fetus is particularly vulnerable to
BPA exposure [8, 16]. Intrauterine growth retardation (IUGR) has been consistently observed after devel opmental
BPA exposure at intake doses below the suggested human safety level and has been associated with low birth
weight, elevated adult fat weight and altered glucose homeostasis[8, 17-20]. As aresult, BPA has been banned
from baby productsin Europe, Canada, and the US. However, BPA is till in usein non-baby products, renewing
concerns with regards to the continuous exposure of populations in addition to the description of its ability to
influence health outcomes, including obesity and MetS, over several generations [21-24]. Together these lines of
evidence support an intriguing hypothesis that BPA may have been a contributing factor to the rise of MetS and

cardiometabolic diseases worldwide in the past decades [25-27].

Despite numerous studies connecting BPA with adverse health outcomes, there remain ample conflicting findings,
as summarized by the European Food Safety Agency [28] and the BPA Joint Emerging Science Working Group
of the US FDA.. Although inconsistencies across studies might be attributable to non-monotonic dose response,

exposure window difference, and varying susceptibility between testing models[13, 29], there are also several
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additional layers of complexity and challenges hindering the full dissection of the biological effects of BPA. First,
previous studies examining BPA in various cell types and tissues suggest a broad impact on biological systems
[23, 30-32]. Second, BPA has been found to modul ate multidimensional molecular events, such as gene
expression and epigenetic changes, that are functionally important for processes such as metabolism and immune
response [33-38]. However, due to most studies being designed to focus on one factor at atime as well as non-
comparable study designs, it is difficult to directly compare effects across tissues or types of molecular datato
derive the molecular rules of sensitivity to BPA exposures. In arecent National Toxicology Program report,
CLARITY-BPA, where multiple organs were examined, evidence of weight gain and cardiac dysfunctions were
observed, however, the study was designed to be solely descriptive and no mechanism of action was proposed.
These research gaps in our understanding of the pleiotropy of EDCs and toxicant biological actions necessitated
the establishment of the NIEHS TaRGET consortium and a more recent call for the research community to
systemically interrogate multiple omics in multiple tissues to accel erate the discovery of key biological

fingerprints of environmental exposure [39].

Here, we address some of the aforementioned limitations of past studies by using a highly integrative approach.
We conducted a multi-tissue, multi-omics systems biology study to examine the systems level influence of

prenatal BPA exposure using modern integrative genomics and network modeling approaches in a mouse model.

Wefirst utilized next-generation sequencing technologies to characterize perturbations in both the transcriptome
and the epigenome across three tissues (white adipose tissue, hypothalamus, liver) in mouse offspring who had
experienced in utero exposure to BPA. Based on mounting evidence that genes operate in highly complex tissue-
specific regulatory networks, we hypothesized that prenatal BPA exposure induces genomic and epigenomic
reprogramming in the offspring by affecting the organization and function of tissue-specific gene networks [40-
43]. Using both transcription factor (TF) networks and Bayesian networks, we modeled the dynamics of
transcriptomic and epigenomic signatures and predicted potential regulators that govern the actions of BPA.

Furthermore, the transcriptome, epigenome, and network information were layered upon metabolic phenotypes
5
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such as body weight, adiposity, circulating lipids, and glucose levels in the mouse offspring to evaluate disease
association. Lastly, to assess the relevance of the BPA molecular targetsidentified in our mouse model for human
diseases, we applied integrative genomics to bridge the mouse molecular signatures and genetic disease
association data from human studies. Our study represents a comprehensive data-driven, systems-level

investigation of the molecular and health impact of BPA.

Results

Prenatal BPA exposureinducesintrauterine growth retardation (IlUGR) and alterationsin

car diometabolic phenotypes

Asshownin Fig 1A, pregnant C57BL/6 mice were exposed to BPA during gestation (day 1 to day 20 post-
conception) via oral gavage at the dosage of 5mg/kg/day, situated below most reported no-observed-adverse-
effect-level (NOAEL) according to toxicity testing
(https://comptox.epa.gov/dashboard/dsstoxdb/results?search=Bisphenol+A). This dosage was typically used in
previous studies [23, 44-46], and was chosen as a proof-of-concept for our systems biology study design and to
facilitate comparison with previous studies. Male and female offspring (n = 9 for control and n = 11 for BPA in
male; n = 9 for control and n = 13 for BPA in female, 2-3 mice from 3-4 litters/group; S1 Fig) of weaning age (3-
weeks) were examined for a spectrum of metabolic phenotypes (detailed below). We chose the weaning age in
order to investigate early molecular and phenotypic changes in the offspring, which may predispose the offspring
to late onset diseases. Compared with the control group, both male and female offspring from the BPA group
showed significantly lower body weight, indicative of IUGR, atrait that is strongly associated with later life
insulin resistance and obesity risk (Fig 1B, D). There were aso significant decreases in serum lipid parameters

and an increase in serum glucose level in males (Fig 1C), but not in females (Fig 1E). The decreases in the lipid
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parameters at this early developmental stage likely reflect the growth retardation phenotype observed and may
provide feedback signals to predispose the exposed offspring to lipid dysregulation later in life. The phenotypic
differences between BPA and control groups are not the results of litter effect, as offspring from different damsin

each group showed similar patterns (S1 Fig).

Prenatal BPA exposure induces tissue-specific transcriptomic alterationsin male weaning

offspring

To explore the molecular basis underlying the potential health impact of prenatal BPA exposure, we collected
three key metabolic tissues including white adipose tissue, hypothalamus, and liver from male offspring (due to
the stronger observed phenotypes) at 3 weeks. The hypothalamus is the central regulator of endocrine and
metabolic systems, whereas liver and white adipose tissues are critical for energy and metabolic homeostasis. We
used RNA sequencing (RNA-seq) to profile the transcriptome, and identified 86, 93, and 855 differentially
expressed genes (DEGS) in the adipose tissue, hypothalamus, and liver tissue respectively, at false discovery rate
(FDR) < 0.05 (Fig 2A, S1 Table). This supports the ability of prenatal BPA exposure to induce large-scale
transcriptomic disruptions in offspring, with the impact appearing to be more prominent in liver. The DEGs were
highly tissue-specific, with only 12 out of the 86 adipose DEGs and 16 out of the 93 hypothalamus DEGs being
found in liver. Interestingly, the hypothalamic DEGs are predominantly up-regulated in the BPA group whereas
the other two tissues did not show such direction bias (S2 Table). Only one gene, Cyp51 (sterol 14-alpha
demethylase), was shared across all three tissues but with different directional changes (upregulated in
hypothalamus and liver, downregulated in adipose) (Fig 2B). The Cyp51 protein catalyzes metabolic reactions
including cholesterol and steroid biosynthesis and biological oxidation [47] and isacritical regulator for testicular
spermatogenesis [48]. The consistent alteration of Cyp51 across tissues suggests that this gene is a general target

of BPA, with the potential to ater functions related to cholesterol, hormone, and energy metabolism.
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Functional annotation of DEGsin adipose, hypothalamus, and liver tissues

To better understand the biological implications of the BPA exposure related DEGs in individual tissues, we
evaluated the enrichment of DEGs for known biological pathways and functional categories using the
Mergeomics package [49] (Fig 2C-E, full resultsin S3 Table). We observed strong enrichment for pathways
related to lipid metabolism (lipid transport, fatty acid metabolism, cholesterol biosynthesis) and energy
metabolism (biological oxidation, TCA cycle) across al threetissues. Most of these pathways appeared to be
upregulated in al three tissues, with the exception of downregulation of genesinvolved in biological oxidation in
adiposetissue (Fig 2C-E). Individual tissues also showed perturbations of unique pathways: PPAR signaling and
arachidonic acid pathways were altered in liver; extracellular matrix related processes were enriched among
hypothalamic DEGs; core histone genes were upregulated in adipose DEGs (Fig 2C-E). In addition, triglyceride
biosynthesis and glucose metabolism pathways were also moderatel y enriched among adipose DEGs, whereas

few changes were seen for genesinvolved in adipocyte differentiation (S2 Fig).

Replication of the DEG signaturesusing independent studies

To support the replicability of the differential expression signatures identified in our study, we sought to validate
the signatures using independent expression profiling data deposited on GEO (S1 Text, Supplemental Methods).
We identified three GEO datasets - two from GSE26728 [50] and one from GSE43977 [51] (S3A Fig) - that
characterized the liver transcriptome following BPA exposure during adulthood. Highlighting the novelty of our
study, we were not able to identify other datasets with the same in utero exposure condition tested in our exposure
paradigm, making a direct replication difficult. However, we reasoned that if core mechanisms exist for BPA

regardless of experimental conditions, consistent signals should be derived. We compared the differential
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expression signatures from the three existing liver studies against ours, and found limited consistency in BPA
signatures across datasets, even for the two datasets that were originated from the same study (GSE26728) (S3B
Fig). These results support that BPA has condition-specific activities. Nevertheless, 10% of our DEGs were
replicated in the other GEO datasets (p < 1e-4 compared to random expectation via a permutation analysis, S3C
Fig). Sebfl (Sterol Regulatory Element Binding Transcription Factor 1), akey transcription factor in lipid
metabolism, was consistent across all four datasets, along with numerous additional genes consistent in two or

more studies (S3C Fig).

Next, we compared the enriched pathways among the DEGs from each dataset to evaluate whether distinct study-
specific signatures could converge onto similar biological processes. The replicated pathways across studies
include steroid hormone biosynthesis, retinol metabolism and fatty acid metabolism, suggesting that these
processes were consistently influenced by BPA under varying exposure windows and dosages (S3D Fig). At FDR
< 5%, 56.1% of the significant pathways in our study were replicated in one or more independent studies (p < 1e-
4 compared to random expectation via a permutation test, S3E Fig). Pair-wise comparison revealed relatively
higher overlap ratios between our study and individua independent studies than between the previous studies,
despite the greater similarity in the study design among the previous studies (S3E Fig). Overall, the generally
higher pair-wise replication rates of the biological pathways between our study and independent studies support
the adequate power of our study to reveal core BPA-associated biological pathways implicated in previous

studies.

Prenatal BPA exposure induces tissue-specific epigenetic alterationsin male weaning offspring

Consistent with the observed gene expression disruptions at the transcriptomic level, we observed numerous
methylomic alterations using reduced representation bisulfite sequencing (RRBS), which characterizes DNA
methylation states of millions of potential epigenetic sites at single base resolution. At FDR < 5%, 5136, 104, and

9
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476 differentially methylated CpGs (DM Cs) were found in adipose, hypothalamus, and liver tissues, respectively
(Fig 3A, $4 Table). When comparing our adipose methylation signatures with a previous study [36], we were
ableto replicate 5 out of 7 peak hypomethylated genes, and 6 out of 9 peak hypermethylated genes. Interestingly,
BPA induced local methylation changesin Gm26917 and Yaml, two long non-coding RNASs (IncRNASs) with no
previously known link to BPA, consistently across three tissues (Fig 3B). The mgjority of the DMCs are | ocated
in intergenic regions (32% - 38%), followed by introns (31% - 37%) and exons (13% - 15%), but thereisa
paucity of DM Cs in the promoter region (3% - 5%) ($4 Fig). Contrary to predictions that promoter regions may
be more prone to epigenetic changes, we found that within-gene and intergenic methylation alterationsin DNA
methylation are more prevalent, a pattern consistently observed in previous epigenomic studies[41, 52]. In
addition, 5.0%, 8.6%, and 8.1% DM Cs overlap with repetitive DNA elementsin adipose, hypothalamus, and

liver, respectively, recapitulating previous report of the interaction between BPA and repetitive DNA [53].

For DMCsthat are located within or adjacent to genes, we further tested whether the local genes adjacent to those
DM Cs show enrichment for known functional categories. Unlike DEGs, top processes enriched for DMCs
concentrated on intra- and extra-cellular communication and signaling related pathways such as axon guidance,
extracellular matrix organization and NGF signaling (Fig 3C, full resultsin S5 Table). The affected genesin
these processes are related to cellular structure, cell adhesion, and cell migration, indicating that these functions

may be particularly vulnerable to BPA induced epigenetic modulation.

Potential regulatory role of DM Csin transcriptional regulation of BPA induced DEGs

To explore the role of DMCs in regulating DEGs, we evaluated the connection between transcriptome and
methylome by correlating the expression level of DEGs with the methylation ratio of their local DMCs. For the
DEGsin adipose, hypothalamus and liver tissue, we identified 42, 36, and 278 local DM Cs whose methylation
ratios were significantly correlated with the gene expression. At aglobal level, compared to non-DEGs, DEGs are

10
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more likely to contain local correlated DMCs (S5 Fig). A closer ook into the expression-methylation correlation
by different chromosomal regions further revealed a context dependent correlation pattern (Fig 3D). In adipose
and liver, the 3-5% of DM Csin promoter regions tend to show significant enrichment for negative correlation
with DEGs, whereas gene body methylations for DEGs are more likely to show significant enrichment for
positive correlation with gene expression. In hypothalamus, however, positive correlations between DEGs and
DMCs are more prevalent across different gene regions. In addition, liver DM Cs within INcRNAs were uniquely
enriched for negative correlation with INcRNA expression, although the lack of areliable mouse IncRNA target
database prevented us from further investigating whether downstream targets of the INCRNAs were enriched in the
DEGs. Specific examples of DEGs showing significant correlation with local DM Cs include adipose DEG
Sc25al (Solute Carrier Family 25 Member 1, involved in triglyceride biosynthesis), hypothalamic DEG Mvk
(Mevalonate Kinase, involved in cholesterol biosynthesis), and liver DEG Gm20319 (alncRNA with unknown
function) (S6 Fig and S6 Table). These results support arole of BPA-induced differential methylation in atering

the expression levels of adjacent genes.

Pervasive influence of prenatal BPA exposure on theliver transcription factor network

BPA is known to bind to diverse types of nuclear receptors such as estrogen receptors and peroxisome
proliferator-activated (PPAR) receptors that function as transcription factors (TFs), thus influencing the action of
downstream genes [54, 55]. PPARg in particular has been shown to be atarget of BPA in mouse and human and
mechanistically linking BPA exposure with its associated effect on weight gain and increased adipogenesis [56-
58]. To explore the TF regulatory landscape underlying BPA exposure based on our genome-wide data, we
leveraged tissue-specific TF regulatory networks from the FANTOMDS5 project [59] and integrated it with our BPA
transcriptome profiling data. No TF was found to be differentially expressed in adipose tissue, whereas 1 TF

(Pou3fl) and 14 TFs (such as Esrra, Hnfla, Pparg, Tcf21, Srebf1) were found to be differentially expressed in

11


https://doi.org/10.1101/336214
http://creativecommons.org/licenses/by-nc-nd/4.0/

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

bioRxiv preprint doi: https://doi.org/10.1101/336214; this version posted September 11, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

hypothalamus and liver, respectively. Due to the temporal nature of TF action, changesin TF levels may precede
the downstream target genes and not be reflected in the transcriptomic profiles measured at the time of sacrifice.
Therefore, we further curated the target genes of TFs from FANTOMS networks and tested the enrichment for the
target genes of each TF among our tissue-specific DEGs (S7 Table). Thisanalysis confirmed that BPA perturbs
the activity of the downstream targets for estrogen receptors Esrrg (p = 1.4e-3, FDR = 1.9%) and Esrra (p = 0.03,
FDR = 13%) in liver, aswell as Esrl in both adipose (p = 7.2e-3, FDR = 10.6%) and liver (p = 7.2e-3, FDR =
4.7%). Targets of Pparg were also perturbed in liver (p = 4.1e-3, FDR = 3.8%). Therefore, we demonstrated that
our data-driven network modeling is able to not only recapitul ate results from previous in-vitro and in-vivo studies
showing that BPA influences estrogen signaling and PPAR signaling [55], but also uniquely point to the tissue

specificity of these BPA target TFs.

In addition to these expected TFs, we identified 14 adipose TFs and 61 liver TFs whose target genes were
significantly enriched for BPA DEGs at FDR < 5%. Many of these TFs showed much stronger enrichment for
BPA DEGs among their downstream targets than the estrogen receptors (S7 Table). The adipose TFsinclude
nuclear transcription factor Y subunit alpha (Nfya) and fatty acid synthase (Fasn), both implicated in the
adipocyte energy metabolism [60]. The liver TFs include multiple genes from the hepatocyte nuclear factors
(HNF) family and the CCAAT-enhancer-binding proteins (CEBP) family, which are critical for liver development

and function, suggesting a pervasive influence of BPA on liver TF regulation.

We further extracted the subnetwork containing 89 unique downstream targets of the significant liver TFs that are
also liver DEGs. This subnetwork showed significant enrichment for genesinvolved in metabolic pathways such
as steroid hormone biosynthesis and fatty acid metabolism. The regulatory subnetwork for the top liver TFs (FDR
< 5%) revealed a highly interconnected TF subnetwork that potentially senses BPA exposure and in turn governs
the expression levels of their targets (Fig 4A), with Pparg and Hnf4 among the core TFs. Some of the TFsin this
network, including Esr1, Esrrg, Foxpl, and Tcf711, also had local DM Cs identified in our study, indicating that

BPA may perturb thisliver TF subnetwork vialocal modification of DNA methylation of key TFs.
12
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I dentification of potential non-TF regulator s gover ning BPA induced molecular perturbations

To further identify regulatory genes that mediate the action of BPA on downstream targets through non-TF
mechanisms, we leveraged data-driven tissue-specific Bayesian networks (BNs) generated from multiple
independent human and mouse studies (S8 Table). These data-driven networks are complementary to the TF
networks used above and have proven valuable for accurately predicting gene-gene regulatory relationships and
novel key drivers (KDs) [40-43, 61]. KDs were defined as network nodes whose surrounding subnetworks are
significantly enriched for BPA exposure related DEGs. At FDR < 1%, weidentified 21, 1, and 100 KDs in
adipose, hypothalamus, and liver, respectively (SO Table). The top KDsin adipose (top 5 KDs Acss2, Pc, Agpat2,
Sc25al, Acly), hypothalamus (Fa2h) and liver (top 5 KDs Dher7, Aldh3a2, Fdftl, Mtmrll, Hmgcr) were
involved in cholesterol, fatty acid and glucose metabolism processes. In addition, three KDs, Acss2 (Acetyl-
Coenzyme A Synthetase 2), Acat2 (Acetyl-CoA Acetyltransferase 2), and Fasn (Fatty Acid Synthase), were
involved in the upregulation of DEGs in both adipose and liver, despite the fact that few DEG signatures overlap
acrosstissues (Fig 4B). These KDs are consistent with the observed increased expression of several genes
implicated in lipogenesis, including Fasn, and help explain the liver accumulation of triglycerides when mice are
exposed to BPA [50]. Together, these results indicate that BPA may engage certain common regulators which
have tissue-specific targets. The distinct upregulatory pattern within the subnetworks of individual KDs supports
the potential functional importance of KDs in orchestrating the action of downstream genes. These KDs, along
with the newly identified TFs from the above analysis, may represent novel regulatory targets which transmit the

in vivo biological effects of BPA.
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BPA transcriptomic and methylomic signatures arerelated to metabolic traitsin mice

To assess the relationship between the BPA molecular signatures and metabolic traits in the mouse model, the
DEGs and DMCs from individual tissues were tested for correlation with the measured metabolic traits: body
weight, free fatty acids (FFA), total cholesterol (TC), high density lipoprotein cholesterol (HDL), triglycerides
(TG) and blood glucose. At p < 0.05, over two thirds of tissue-specific DEGs and over 60% DMCs were
identified to be correlated with at least one metabolic trait (Fig 5A, B). Notably, liver DEGs exhibited stronger
correlation with free fatty acid and triglycerides, whereas adipose DEGs were uniquely associated with glucose
level, which is consistent with the pathway annotation results for these tissues. On the other hand, liver DMCs

showed stronger correlations with metabolic traits than those from adipose and hypothalamus tissues.

Cross-examination of correlation across gene expression, DNA methylation, and metabolic traits revealed 35
consistent DEG-DMC-trait associations (3 in adipose, 4 in hypothalamus, and 28 in liver) (S10 Table). For
example, in adipose tissue, Fasn (also a perturbed TF hotspot in adipose, and a shared KD in adipose and liver)
was correlated with its exonic DMC at chr11:120816457, and both were correlated with triglyceride level; in
hypothalamus, I1gflr (Insulin Like Growth Factor 1 Receptor) was correlated with itsintronic DMC at
chr7:68072768, and both were correlated with blood glucose level; in liver, Adhl (Alcohol Dehydrogenase 1A)
was correlated with itsintronic DMC at chr3:138287690, and both were correlated with body weight (Fig 5C).
These results suggest that BPA aterslocal DMCs of certain genesto regulate gene expression, which may in turn

regulate distinct metabolic traits.

Relevance of BPA signature to human complex traits/diseases

Human observational studies have associated devel opmental BPA exposure with a wide variety of human
diseases ranging from cardiometabolic diseases to neuropsychiatric disorders [14, 15, 62]. Large-scale human

genome-wide association studies offer an unbiased view of the genetic architecture for various human
14
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traits/diseases, and intersections of the molecular footprints of BPA in our mouse study with human disease risk
genes can help infer the potential disease-causing properties of BPA in humans. From the GWAS Catalog [63],
we collected associated genes for 161 human traits/diseases (traits with fewer than 50 associated genes were
excluded), and evaluated the enrichment for the trait associated genes among DEG and DMC signatures. At FDR
< 5%, no trait was found to be significantly enriched for BPA DEGs. Surprisingly, despite the difference between
tissue-specific DMCs (Fig 3B), 19 out the 161 traits showed consistently strong enrichment for DMCs across all
threetissues at FDR < 1%. The top traits include body mass index (BMI) and type 2 diabetes (Table 1). As DNA
methylation status is known to determine long-term gene expression pattern instead of immediate dynamic gene
regulation, the BMI and diabetes associated genes may be under long-term programming by BPA-induced

differential methylation, thereby affecting later disease risks.

The above anaysis involving the GWAS catalog focused only on small sets of the top candidate genes for various
diseases and may have limited statistical power. To improve the statistical power, we curated the full summary
statistics from 61 human GWAS that are publicly available (covering millions of SNP-trait associations in each
GWAYS), which enabled us to extend the assessment of disease association by considering additional human
disease genes with moderate to low effect sizes (M ethods). This analysis showed that DEGs from al three tissues
exhibited consistent enrichment for genes associated with lipid traits such astriglycerides, LDL, and HDL (Fig
6A-C). Interestingly, enrichment for birth weight and birth length was also observed for hypothalamus and liver
signatures, respectively. Liver DEGs were also significantly associated with coronary artery disease,
inflammatory bowel disease, Alzheimer’s disease, and schizophrenia. Top DEGs driving the inflammatory bowel
disease association involve immune and inflammatory response genes (PSMB9, TAPL, TNF), whereas association
with Alzheimer’ s disease and schizophreniainvolve genes related to cholesterol homeostasis (APOA4, ABCGS,
SOAT2) and mitochondrial function (GCDH, PDPR, SHMT?2), respectively. These results suggest that tissue-
specific targets of BPA are connected to diverse human complex diseases through both the central nervous system

and peripheral tissues.
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Discussion

This multi-tissue, multi-omics integrative study represents one of the first systems biology investigations of
prenatal BPA exposure. By integrating systematic profiling of the transcriptome and methylome of multiple
metabolic tissues with phenotypic trait measurements, large-scale human association datasets, and network
analysis, we uncovered insights into the molecular regulatory mechanisms underlying the health effect of prenatal
BPA exposure. Specifically, weidentified tens to hundreds of tissue-specific DEGs and DMCs involved in
diverse biological functions such as metabolic pathways (oxidative phosphorylation/TCA cycle, faity acid,
cholesterol, glucose metabolism, and PPAR signaling), extracellular matrix, focal adhesion, and inflammation
(arachidonic acid), with DMCs partially explaining the regulation of DEGs. Network analysis helped reved
potential regulatory circuits post BPA exposure and pinpointed both tissue-specific and cross-tissue regul ators of
BPA activities, including TFs such as estrogen receptors, PPARg, and HNF1A, and non-TF key drivers such as
FASN. Furthermore, the BPA gene signatures and the predicted regulators were found to be linked to awide

spectrum of disease-related traits in both mouse and human.

The large-scale disruption we observed in the transcriptome and methylome in adipose and liver was consistent
with previous reports [33, 36, 64, 65]. Although our multi-tissue, multi-omics design limits the number of
biological replicates we could have for each group, comparison of our results with previously published BPA
studies with various study designs reveal ed consistent signals such as S ebfl in liver and a generally higher
replication rate of the biological pathways between our study and the other studies than replication between the
previoudly studies. Additionally, we focused our analyses on evaluating the aggregated behavior of BPA
signatures using both pathway analysis and network modeling to reduce the potential noise and fal se positives at
individual gene level, because the random chance to have multiple genesin the same pathway to be false positives
ismuch lower. At the pathway level, we demonstrate the robustness of our results against published studies,
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supporting that relatively small sample size did not hinder our ability to uncover reliable biology despite variation
at theindividual signature level across studies. Moreover, our unique study design of examining multi-omicsin
multiple tissuesin parallel yields higher comparability when integrating the results between data types and across
tissues, as they were from the same set of animals and were profiled in the same conditions. Of note, the low
consistency of DEGs across independent BPA studies points to the complexity of BPA actions under varying
conditions, and warrants future large-scal e coordinated investigations by the research community to

systematically evaluate the molecular footprints of BPA.

Across all three tissues at the transcriptome level, we found that lipid metabolism and energy homeostasis rel ated
processes were consistently perturbed, with the scale of perturbation being strongest in liver. This aligns well with
the significant changesin the plasmallipid profiles we observed in the offspring, the reported perturbation of lipid
metabolismin fetal murine liver [65], and the reported susceptibility for nonal coholic fatty liver diseases
following BPA exposure [66-68]. The only shared gene across tissues, Cyp51, isinvolved in cholesterol and sterol
biosynthesis and beta oxidation, and the only liver signature replicated across our and three previous studies and a
top ranked TF regulator in our TF analysis, Srebfl, isamain regulator of lipid homeostasis, again supporting that
metabolism is a central target of BPA. We also revealed an intriguing link between BPA and IncRNAS across
tissues, whose functional importance in developmental processes, disease progression, and response to BPA
exposure was increasingly recognized yet underexplored [69]. Our molecular data providesintriguing INCRNA

candidates such as Gm20319, Gm26917, and Yaml for future in-depth functional analyses.

For adipose tissue, clusters of genes responsible for core histones were found to be uniquely atered. Along with
the strong adipose-specific differentia methylation status, our results revealed gonadal adipose tissues as an
especially vulnerable site for BPA induced epigenetic reprogramming. Besides, developmental BPA exposure has
been previously suggested to influence white adipocyte differentiation [70-72]. However, the adipocyte
differentiation pathway was not significantly enriched in our study. Thisis consistent with the report by Angel et

al. [72], where increased adipocyte number is only found in mouse offspring with prenatal BPA exposure at
17
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5ug/kg/day and 500ug/kg/day, but not 5mg/kg/day. Additionally, we found significant enrichment for triglyceride
biosynthesis and glucose metabolism genes at the differential methylation sites, suggesting that prenatal BPA
exposure may affect fat storage and glucose homeostasis in the adipose tissue. Although here we mainly
investigate gonadal adipose tissue as a surrogate for abdominal fat in the context of metabolic disorders, the

information may be useful for exploring the relationship between this fat depot and the gonad.

With regards to the hypothalamus, our study isthe first to investigate the effect of BPA on the hypothalamic
transcriptome and DNA methylome. Hypothalamusis an essential brain region that regulates the endocrine
system, peripheral metabolism, and numerous brain functions. We identified BPA-induced DEGs and DMCs that
were enriched for extracellular matrix related processes such as axon guidance, focal adhesion, and various
metabolic processes. These hypothalamic pathways have been previously associated with metabolic [41, 42] and
neurodegenerative diseases [41, 73], and they could underlie the reported disruption of hypothalamic
melanaocortin circuitry after BPA exposure [74]. Our study highlights the hypothalamus as another critical yet

under-recognized target for BPA.

By interrogating both the transcriptome and DNA methylome in matching tissues, we were able to directly assess
both global and specific correlative relationships between DEGs and DMCs (S5 Fig, Fig 3D). Specificaly, we
found that DEGs are more likely to have correlated DM Cs in the matching tissue, atrend that persistsin non-
promoter regions. Our results corroborate previous findings regarding the importance of gene body methylationin
disease etiology [ 75, 76]. Given that over 90% of DM Cs were found in non-promoter regions, closer investigation

of the regulatory circuits involving these regions may unveil new insights into BPA response [52].

Known as an endocrine disrupting chemical, BPA has been speculated to exert its primary biological action by
modifying the activity of hormone receptors, including estrogen receptors, PPARg and glucocorticoid receptors
[55]. Indeed, the activity for the downstream targets of Pparg and three estrogen and estrogen-related receptors

were found to be disrupted in liver by prenatal BPA exposure. More importantly, our unbiased data-driven
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analysis revealed many novel transcription factors and non-TF regulatory genesthat also likely mediate BPA
effects. In fact, many of the newly identified TF targets of BPA, such as Fasn, Srebf1, and several hepatic nuclear
factors, showed much higher ranking in our regulator prediction analyses. In liver, atightly inter-connected TF
subnetwork was highly concentrated with BPA affected genes involved in metabolic processes such as
cytochrome P450 system (Cyp3a25, Cyp2al2, Cypla2), lipid (Apoad, Abcgb, Soat2) and glucose (Hnfla,
Adralb, Gck) regulation, with extensive footprints of altered methylation status in the TFs and other subnetwork
genes (Fig 4A). Therefore, our results support awidespread impact of BPA on liver transcriptional regulation, and
the convergence of differential methylation and gene expression in this TF subnetwork implies that BPA perturbs
this subnetwork via epigenetic regulation of the TFs, which in turn trigger transcriptomic alterationsin
downstream genes. In adipose, we discovered aregulatory axis governed by Nfya and Fasn that are known
regulators of fatty acid metabolism and adipogenesis. NF-Y A is a histone-fold domain protein that binds to the
inverted CCAAT element in the Fasn promoter [60, 77], and both Nfya and Fasn were found to significantly
perturbed by BPA in our study. Moreover, Fasn also serves as a cross-tissue KD, governing distinct groups of up-
regulated lipid metabolism genesin adipose and liver post-BPA exposure (Fig 4B), supporting itsrolein
mediating the BPA-induced lipid dysregulation at the systemic level. The significant correlation of gene
expression and methylation for Fasn with triglyceride level furthers implicatesits role as a network-level
regulator and biomarker for BPA induced lipid dysregulation. Our observation of Fasn is consistent with
evidences suggesting its susceptibility to methylation perturbation under obesogenic feeding [ 78] and its causal
functional importance for fatty liver diseases [43, 79]. These novel regulators warrant future experimental testing
of their causal regulatory role in BPA activities via genetic manipulation studies, such as knocking down or

overexpressing Fasn to examine the modulation of BPA activities.

One unique aspect of this study is the linking of the molecular landscape of prenatal BPA exposure to
traits/diseases in both mouse and human. In our mouse study, the observed changesin body weight, lipid profiles,

and glucose level are highly concordant with the functions of the molecular targets. For instance, prenatal BPA
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exposure perturbs both the expression levels and the local DNA methylation status of Fasn, Igflr, and Adhl.
These DEGs and their local DM Cs also significantly correl ate with phenotypic outcomes, thus serving as
examples of how DNA methylation and gene regulation bridge the gap between BPA exposure and phenotypic
manifestation. To further enhance the trandatability of our findings from mouse to human, we searched for
human diseases linked to the BPA-affected genes. An intriguing discovery is the prominent overrepresentation of
differential methylation signalsin adipose, hypothalamus, and liver within known genes related to obesity and
type 2 diabetes, supporting that BPA may impact obesity and diabetes risk through systemic reprogramming of
DNA methylation. More sophisticated analysis incorporating the BPA differential gene expression and the full
statistics of human genome-wide association studies corroborated the observed connection between prenatal BPA
exposure and lipid homeostasis [80], birth weight [81], and coronary artery disease [14] reported in observational
studies. Moreover, our findings suggest the involvement of prenatal BPA exposure in the development of
inflammatory bowel syndrome, schizophrenia, and Alzheimer’ s disease. These associations warrant future

investigations.

One limitation of our work is the restriction of study scope to weaning age male mice with in utero BPA exposure
below the NOAEL (5mg/kg/d) as a proof-of-concept for our systems biology framework. Considering that the
effects of early-life exposureto BPA is highly variable and dependent on factors such as the dose, window, route,
and frequency of exposure as well as genetic background, age, and sex [13], future studies testing these additional
variables using large sample sizes are necessary to generate a comprehensive understandings of BPA risks under

various exposure conditions.

Conclusions

Our study represents the first multi-tissue, multi-omics integrative investigation of prenatal BPA exposure. The

systems biology framework we applied revealed how BPA triggers cascades of regulatory circuits involving
20
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numerous transcription factors and non-TF regulators that coordinate diverse molecular processes within and
across core metabolic tissues, thereby highlighting that BPA exertsits biological functions via much more diverse
targets than previously thought. As such, our findings offer a comprehensive systems-level understanding of
tissue sensitivity and molecular perturbations elicited by prenatal BPA exposure, and offer promising novel
candidates for targeted mechanistic investigation as well as much-needed network-level biomarkers of prior BPA
exposure. The strong influence of BPA on metabolic pathways and cardiometabolic phenotypes merits it

characterization as a genera metabolic disruptor posing systemic health risks.

M ethods

Ethics statement

All animal experiments were performed in accordance with the Ingtitutional Animal Care and Use Committee
(IACUC) guidelines. Animal studies and procedures were approved by the Chancellor's Animal Research

Committee of the University of California, Los Angeles (Protocol #2012-059-21).

Mouse model of prenatal BPA exposure

Inbred C57BL/6 mice were maintained on aspecial diet 5V01 (LabDiet), certified to contain less than 150ppm
estrogenic isoflavones, and housed under standard housing conditions (room temperature 22—24°C) with 12:12 hr
light:dark cycle before mating at 8-10 weeks of age. Upon mating, female mice were randomly assigned to either
the BPA treatment group or the control group. From 1-day post-conception (dpc) to 20 dpc, BPA (Sigma-Aldrich,
St. Louis, MO) dissolved in corn oil was administered to pregnant female mice via oral gavage (mimicking
common exposure route in humans) at 5Smg/kg/day on adaily basis. Control mice were fed the same amount of
empty vehicle. BPA exposure was restricted to experimental manipulation through the use of polycarbonate-free

water bottles and cages. Offspring from each treatment were maintained on a standard chow diet (Newco
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Distributors Inc, Rancho Cucamonga, CA). Offspring in the vehicle- and BPA-treated groups were derived from 3

and 4 litters by different dams, respectively, to help assess and adjust for litter effects.

Characterization of cardiometabolic phenotypes and tissue collection

Body weight of offspring was measured daily from postnatal day 5 up to the weaning age of 3 weeks. Mice were
fasted overnight before sacrifice, and plasma samples were collected through retro-orbital bleeding. Serum lipid
and glucose traits including total cholesterol, HDL, un-esterified cholesteral (UC), TG, FFA, and glucose were
measured by enzymatic colorimetric assays at UCLA GTM Mouse Transfer Core as previously described [41].
Gonadal white adipose tissue, hypothalamus, and liver tissues were collected from each animal, flash frozen in
liquid nitrogen, and stored at —80°C. For white adipose tissue, we chose the gonadal depot mainly dueto its
similarity to abdominal fat, established relevance to cardiometabolic risks, tissue abundance, and the fact that it is
the most well-studied adipose tissue in mouse models. All mouse experiments were conducted in accordance with

and approved by the Institutional Animal Care and Use Committee at University of California, Los Angeles.

RNA sequencing (RNA-seq) and data analysis

A total of 18 RNA samples wereisolated from gonadal adipose, hypothalamus and liver tissues (n = 3 per group
per tissue; for each group, mice were randomly selected from litters of different dams in independent cages) from
male offspring using the AllPrep DNA/RNA Mini Kit (QIAGEN GmbH, Hilden, Germany). We focused on
profiling male tissues because of stronger phenotypes observed in males (Fig 1B-E). Samples were processed for
library preparation using TruSeq RNA Library Preparation Kit (Illumina, San Diego, CA) for poly-A selection,
fragmentation, and reverse transcription using random hexamer-primers to generate first-strand cDNA. Second-
strand cDNA was generated using RNase H and DNA polymerases, and sequencing adapters were ligated using
the Illumina Paired-End sample prep kit. Library products of 250-400bp fragments were isolated, amplified, and
sequenced with [Ilumina Hiseg2500 System. After quality control using FastQC [82], the HISAT-StringTie
pipeline [83] was used for sequence alignment and transcript assembly. Identification of DEGs were conducted
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using DEseg2 [84]. To account for multiple testing, we used the g-value method [85]. After excluding genes with
extremely low expression levels (FPKM < 1), only DEGs demonstrating differential expression comparing the
BPA and control groups per tissue at an FDR < 5% were used for biological pathway analysis, network analysis,

and phenotypic data integration, as described below.

Reduced representation bisulfite sequencing (RRBS) and data analysis

We constructed RRBS libraries for 18 DNA samples from adipose, hypothalamus and liver tissues from male
offspring (n = 3 per group per tissue from the same set of tissues chosen for transcriptome analysis described
above). The DNA samples were quantified using the dsDNA BR assay (Qubit, Waltham, MA) and 100ng of DNA
was used for library preparation. After digestion of the DNA with the Mspl enzyme, samples underwent an end-
repair and adenylation process, followed by adapter ligation using the Truseq barcode adapter (Illumina, San
Diego, CA), size selection using AMPure Beads (Beckman Coulter, Brea, CA), and bisulfite treatment using the
Epitect Kit (Qiagen, Germantown, MD). Bisulfite-treated DNA was then amplified using the Truseq Library Prep
Kit (Illumina, San Diego, CA) and sequenced with the lllumina Hiseq2500 System. Bisulfite-converted reads
were processed and aligned to the reference mouse genome (GRCm38/mm10 build) using the bisulfite aligner
BSMAP [86]. Wethen used MOAB [87] for methylation ratio calling and identification of DMCs. FDR was
estimated using the g-value approach. Loci with methylation level changes of > 5% between BPA and control
groups and FDR < 0.05 for each tissue were considered statistically significant DMCs. To annotate the locations
of the identified DMCsin relation to gene regions and repetitive DNA elements accessed from UCSC genome
browser, we used the Bioconductor package “annotatr” [88]. Specifically, gene regions were categorized into 1)
1-5kb upstream of the transcription start site (TSS), 2) promoter (< 1kb upstream of the TSS), 3) 5’ untranslated
region (UTR), 4) exons, 5) introns, and 6) 3'UTR. The “annotatr” package was a so used to annotate DM Cs for
known IncRNAs based on GENCODE Release M16. Over-representation of DM Cs within each category was

calculated using Fisher’s exact test. We further evaluated the link between DEGs and their local DMCs (DMCs
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annotated as any of the 6 above mentioned gene regions) by correlating the methylation ratio of DM Cs with the

expression level of DEGs.

Pathway, networ k, and disease association analyses of DEGs and DM Cs using the Mergeomics R

package

To investigate the functional connections among the BPA-associated DEGs or DM Cs (collectively referred to as
molecular signatures of BPAS) and to assess the potential association of BPA affected genes with diseasesin
human populations, we utilized the Mergeomics package [49], an open-source bioconductor package

(https://bioconductor.org/packages/devel /bioc/html/Mergeomics.html) designed to perform various integrative

analyses in multi-omics studies. Mergeomics consists of two main libraries, Marker Set Enrichment Analysis
(MSEA) and Weighted Key Driver Analysis (WKDA). In the current study, we used M SEA to assess 1) whether
known biological processes, pathways or transcription factor targets were enriched for BPA molecular signatures
as ameans to annotate the potential functions or regulators of the molecular signatures, and 2) whether the BPA
signatures demonstrate enrichment for disease associations identified in human genome-wide association studies
(GWAYS) of various complex diseases (S7 Fig). wKDA leverages gene network topology (interactions or
regulatory relations among genes) and edge weight (strength or reliability of interactions and regulatory relations)
information of graphical gene networks to predict potentia key regulators of a given group of genes, in this case,
the BPA-associated DEGs (S8 Fig). Both MSEA and wKDA were built around a chi-square like statistics (S1
Text) that yields robust findings that have been experimentally validated [42, 43, 49]. Details of each usage of the

Mergeomics package are discussed below.

Functional annotation of DEGsand DM Cs

To infer the functions of the DEGs and DMCs affected by BPA, we used M SEA to annotate the DEGs or local
genes adjacent to the DM Cs with known biologica pathways curated from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) [89] and Reactome [90]. In brief, we extracted the differential expression p-values of genesin
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each pathway from the differential expression or methylation analyses and compared these p-values against the
null distribution of p-values from random gene sets with matching gene numbers. If genesin a given pathway
collectively show more significant differential expression or differential methylation p-values compared to
random genes based on a chi-square like statistic, we annotate the DEGs or DM Cs using that pathway (S1 Text).

DEGs and DM Cs can have multiple over-represented pathways.

I dentification of transcription factor hotspots perturbed by BPA

To dissect the regulatory cascades of BPA, we first assessed whether BPA -associ ated DEGs were downstream
targets of specific transcription factors. The hypothesis behind this analysisis that BPA first affects TFswhichin
turn regulate the expression of downstream genes. We used TF regulatory networks for adipose, brain, and liver
tissue retrieved from the FANTOMbS database [59]. Note that only awhole brain (instead of hypothalamus) TF
network was available, which may only partially represent hypothalamic gene regulation. Each TF network was
processed to keep the edges with high confidence (S1 Text). To identify TFs whose targets were perturbed by
BPA, the downstream nodes of each TF in the network were pooled as the target genes for that TF. We then
assessed the enrichment for BPA exposure related DEGs among the target genes of each TF using MSEA. TFs
with FDR < 5% were considered statistically significant. Cytoscape software was used for TF network

visualization [91].

Bayesian network and Weighted Key Driver Analysis (WKDA) to identify potential non-TF

regulators

To further identify non-TF regulators that sense BPA and then perturb downstream genes, we used Bayesian
networks (BN) of adipose, hypothalamus and liver tissues constructed from genetic and transcriptomic data from
several large-scale mouse and human studies (S1 Text and S8 Table). wKDA was used to identify network key
drivers (KDs), which are defined as network nodes whose neighboring subnetworks are significantly enriched for

BPA-associated DEGs. Briefly, wKDA takes gene set G (i.e. BPA DEGs) and directional gene network N (i.e.
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BNs) asinputs. For every gene K in network N, neighboring genes within 1-edge distance were tested for
enrichment of genesin G using a chi-square like statistics followed by FDR assessment by permutation (S1 Text

and S8 Fig). Network genes that reached FDR < 0.05 were reported as potential KDs.

Association of BPA DEGs and DM Cswith mouse phenotypes and human diseased/traits

To assess whether the BPA molecular signatures were related to phenotypes examined in the mouse offspring, we
calculated the Pearson correlation coefficient among expression level of DEGs, methylation ratio of DMCs, and
the measurement of metabolic traits. For human diseases or traits, we accessed the GWAS catal og database [63]
and collected the lists of candidate genes reported to be associated with 161 human traits/diseases (P < 1e-5).
These genes were tested for enrichment of the BPA DEGs and DMCsin our mouse study using MSEA. We
further curated all publicly available full summary statistics for 61 human traits/diseases from various public
repositories (S1 Text and S11 Table). Thisallowed usto apply MSEA to comprehensively assess the enrichment
for human disease association among BPA transcriptomic signatures using the full-spectrum of large-scale human
GWAS. For each tissue-specific gene signature, we used the SNPs within a 50kb chromosomal distance as the
representing SNPs for that gene. The trait/disease association p-values of the SNPs were then extracted from each
GWAS and compared to the p-values of SNPs of random sets of genes to assess whether the BPA signatures were
more likely to show stronger disease association in human GWAS (S1 Text and S7 Fig). This strategy has been
successfully used in our previous animal model studies to assess the connection of genes affected by

environmental perturbations such as diets and traumato various human diseases [41, 92].
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Supporting infor mation captions

S1 Text. Supplemental Methods.

S1 Fig. Body weight of male and femal e offspring mice at weaning age by litters. Red arrows indicate offspring

male mice selected for molecular profiling.

S2 Fig. Prenatal BPA exposure induced expression change for genes from the adipocyte differentiation,
triglyceride biosynthesis, glucose metabolism, and core histone genes in the adipose tissue. P-values for
enrichment of pathway genes among DEGs (shown in parenthesis in each panel heading) were determined by
MSEA. *p < 0.05 in differential expression tests for individual genes by DEseq2; **FDR < 5% in differential

expression tests for individual genes by DEseq2.

S3 Fig. Comparison of the liver DEGs and their functional annotations against published datasetsin GEO. (A)
Descriptions of the study design of different datasets. (B) Venn Diagram of the DEGs identified in different
datasets. DEGs were determined by Limmaat p < 0.01. (C) The percentage of DEGs (from the datasets in each
row header) that are replicated (by the datasets in each column header). Numbersin parenthesis indicate the
percentage of DEGs that are replicated by at |east one independent study, and the significance of the replication
percentage determined by permutation test. (D) Venn Diagram of the functional annotations for the DEGs
identified in different datasets. Functional annotations were determined by MSEA at FDR < 5%. (E) The
percentage of functional annotations (from the datasets in each row header) that are replicated (by the datasetsin
each column header). Numbersin parenthesis indicate the percentage of annotations that are replicated by at least

one independent study, and the significance of the replication percentage determined by permutation test.

4 Fig. Gene body location distribution for hyper- and hypo- methylated DMC s in adipose, hypothalamus, and

liver.
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S5 Fig. Quantile-quantile plots for the absolute Pearson correlation with local DM C for DEGs and Non DEGsin
adipose, hypothalamus, and liver tissue. Statistical difference of the distribution of correlation value between

DEGs (FDR < 5%) and non DEGs is determined by the Kolmogorov—Smirnov test.

S6 Fig. Scatter plots of correlations between DEG expression levels and DMC methylation ratios for 9c25al in

adipose, Mvk in hypathalamus, and Gm20319 in liver.

S7 Fig. Schematic illustration of MSEA

S8 Fig. Schematic illustration (A) and key driver identification algorithms (B) of wKDA.

S1 Table. List of DEGs with p < 0.05 in adipose, hypothalamus and liver tissue following prenatal exposure to

BPA.

S2 Table. Count of DEGs in adipose, hypothalamus and liver tissue following prenatal exposure to BPA.

S3 Table. Results of functional annotation of DEGs in in adipose, hypothalamus and liver tissue following

prenatal exposure to BPA

4 Table. Count of differentially methylated regions in hypothalamus and liver tissue following prenatal exposure

to BPA.

S5 Table. Results of functional annotation of DMCsin in adipose, hypothalamus and liver tissue following

prenatal exposure to BPA.

S6 Table. List of pairs of DEGs and local DM Cs with significant correlation (p < 0.05) in expression level and

methylation ratio

S7 Table. List of transcription factors whose downstream targets were significantly enriched for DEGs (p < 0.05).

S8 Table. Dataresources and references for the construction of Bayesian gene-gene regulatory networks.

SO Table. List of tissue-specific key driverswith FDR < 1%
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S10 Table. List of DEGs with significant correl ation between expression level, methylation ratio of local DMCs,

and cardiometabolic traits (p < 0.05).

S11 Table. Source of publicly available full summary-level statistics from human genome-wide association

studies.
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816 Tables

817 Tablel. Top 5 human traits whose associated genes in genome-wide association studies are enriched for

818 differentially methylated CpGs (DM Cs) across adipose, hypothalamus and liver at FDR < 1% in MSEA.

) Adipose Hypothalamus Liver
Human trait
P FDR P FDR P FDR
Obesity-related traits 1.28E-16 0.00% 3.03E-15 0.00% 271619 0.00%
Body mass index 1.30E-13 0.00% 3.74E-07 0.00% 966E-12  0.00%
Post brO”Cho‘:!t?:r FEVIRVC 51700 0.00% 1.45E-08 0.00% 367E-07  0.00%
Type 2 diabetes 1.21E-05 0.03% 8.97E-09 0.00% 0001243 0.92%
Platelet distribution width 8.16E-08 0.00% 7.62E-05 0.16% 52005  0.12%
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821 Fig 1. Overall study design and the measurements of metabolic traitsin male and female offspring. (A) Framework of multi-omics

822  approachesto investigate the impact of prenatal BPA exposure. B-C) Comparison of body weight, serum lipids and glucose level in male mice at
823  weaning age. D-E) Comparison of body weight, serum lipids and glucose level in female mice at weaning age. FFA: free fatty acid; HDL: high-
824  density lipoprotein cholesterol; TC: total cholesterol; TG: triglyceride; UC: unesterified cholesterol. * p < 0.05, ** p < 0.01, *** p < 0.001 by two-

825  sided Student’s T-test. N=9-13 mice (3-4 litters from different dams)/group.
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Fig 2. Prenatal BPA exposureinduced transcriptomic alterationsin adipose, hypothalamus and liver. (A)
Heatmap of expression changes in adipose, hypothalamus and liver for the top 100 differentially expressed genes
(DEGs) affected by BPA. Color indicates fold change of expression, with red and blue indicating upregulation
and downregulation by BPA. (B) Venn Diagram demonstrating tissue-specific and shared DEGs between tissues.
(C-E) Significantly enriched pathways (FDR < 5%) among DEGs from each tissue. Enrichment p-vaue (shownin
parenthesis following the name of functional annotation) is determined by MSEA. The fold change and statistical
significance for the top 5 differentially expressed genes in each pathway are shown. *, p < 0.05; **, FDR <5%in

differential expression analysis using DEseg?2.
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Fig 3. Prenatal BPA exposureinduced methylomic level alteration in adipose, hypothalamus and liver. (A)
Heatmap of methylation level changes for the top 100 differentially methylated CpGs (DMCs). Color indicates
change in methylation ratio, with red and blue indicating upregulation and downregulation by BPA. (B) Venn
Diagram of geneswith local DM Cs between tissues shows tissue-specific and shared genes mapped to DMCs. (C)
Significantly enriched pathways that satisfied FDR < 1% across DM Cs from adipose, hypothalamus, and liver
tissues. Enrichment p-value is determined by MSEA.. (D) Fold enrichment for positive correlations (red bars) or
negatively correlations (blue bars) between DMCs and local DEGs, assessed by different generegions. *, p <

0.05; **, p< 0.01; *** p < 0.0001; enrichment p-values were determined using Fisher’s exact test.
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845  regulatory networks for the top ranked transcription factors (FDR < 5%) based on enrichment of liver DEGs among TF downstream targets.

846  Network topology was based on FANTOMS. For TFs with > 20% overlapping downstream targets, only the TF with the lowest FDR is shown. (B)

847  Gene-generegulatory subnetworks (Bayesian networks) for cross-tissue key drivers. Network topology was based on Bayesian network modeling
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2 datasets were available for a
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2 studies).

given tissue, a network for each dataset was constructed and a consensus network was derived by keeping only the high confidence network edges

of each tissue using genetic and transcriptome datasets from mouse and human populations. For each tissue, if >

between genes (edges appearing in >
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Fig 5. Correlation between gene expression, methylation and metabalic traits. (A) Percentage of tissue-
specific DEGs that are correlated with metabolic traits (p < 0.05). (B) Percentage of tissue-specific DMCsthat are
correlated with metabolic traits (p < 0.05). (A-B) p-values were determined using Pearson correlation test. (C)
Pair-wise correlation between expression level, methylation ratio and metabolic profiles (triglyceride, glucose
level, body weight) for Fasn, Igflr and Adhl. P_cor, p-value was determined using Pearson correction test;
P_DEG was determined using differential expression test; P_DMC was determined using differential methylation

test. Each dot represents a mouse.
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860 Fig 6. Association of differential expression signatures from adipose (A), hypothalamus (B) and liver (C)
861  with 61 human traits/diseases, color coded into nine primary categories. P-values are determined using
862 MSEA. Red dashed line indicates the cutoff for Bonferroni-corrected p = 0.05. Names of traits/diseases whose p-

863  vauesdidn’t pass Bonferroni-corrected cutoff were not shown.
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