

1

2 Proteome and microbiota analysis reveals alterations of liver-gut axis under 3 different stocking density of Peking ducks

4

5 Yuqin Wu,[†] Jianhui Li,[§] Xin Qin,[§] Shiqiang Sun,[†] Zhibin Xiao,[†] Xiaoyu Dong,[†]
6 Muhammad Suhaib Shahid,[†] Dafei Yin,[†] Zhao Lei,[†] Yuming Guo,[†] Jianmin Yuan^{*,†}

7

10 China Agricultural University, Beijing 100193, China

13

14

15 *Corresponding author: Jianmin Yuan

16 Email: yuanjm@cau.edu.cn

17

18

19 **Abstract**

20 The aim of this study was to determine the impact of stocking density on the liver
21 proteome and cecal microbiota of Peking ducks. A total of 1,200 ducks with 21-day old
22 were randomly allotted into 5 stocking density groups of 5, 6, 7, 8 and 9 ducks/m², with
23 6 replicates for each group. At 40 days of age, duck serum and pectorals were collected
24 for biochemical tests; liver and cecal contents of ducks were gathered for proteome and
25 microbiota analysis, respectively. Serum MDA increased while pectorals T-AOC
26 reduced linearly with enhancing stocking density. Duck lipid metabolism was altered
27 under different stocking density as well. Serum LDL-C increased linearly with
28 increasing stocking density. Proteome analysis revealed fatty acid biosynthesis proteins
29 such as acyl-CoA synthetase family member 2 and fatty acid oxidation related proteins
30 including acyl-CoA dehydrogenase long chain and acyl-coenzyme A oxidase were
31 enriched in high stocking density group. Additionally, high stocking density increased
32 oxidative response related proteins such as DDRGK domain containing 1 while
33 diminished anti-oxidant capacity related proteins including regucalcin and catalase. 16S
34 rDNA analysis revealed that higher stocking density was accompanied with decreased
35 microbial diversity, as well as depletion of anti-inflammatory bacterial taxa, including
36 *Bacteroidales*, *Butyricimonas* and *Alistipe*. In addition, decreased bile acid metabolism-
37 associated bacteria such as *Ruminococcaceae*, *Clostridiales* and *Desulfovibrionaceae*
38 were found in the high-density group. Both proteome and 16S rDNA results showed
39 inflammation and chronic liver disease trend in the high-density group, which suggests
40 the involvement of the liver-gut axis in oxidative stress.

41 **Keywords:** Duck; Stocking density; Stress; Proteome; Microbiota

42 **INTRODUCTION**

43 Space is one of the most compromised features in commercial housing systems,
44 limited often in the interests of efficiency and profitability. Increasing stocking density
45 can yield higher profits per kilogram of chicken. However, reduced space limits the
46 ability to rest [1] and has a negative influence on performance [2,3,4,5,6], meat yield
47 [2-4], immune status [7] and gut morphology [8]. In addition, high stocking density is
48 associated with chronic oxidative stress [2].

49 The liver plays an important role in energy metabolism and it is the major site of
50 triglyceride (TG) metabolism which is involved in TG digestion, absorption, synthesis,
51 decomposition and transport. It has been demonstrated that high stocking density has
52 been shown to have a deleterious effect on liver function [9] with increased activities
53 with aspartate aminotransferase and alanine aminotransferase [10]. The gut microbiome
54 is also highly connected to animal energy metabolism and health [11], and it has been
55 frequently suggested that gut microbiota plays a critical role in chronic liver disorders
56 through liver-gut axis [12]. Moreover, high stocking density is associated with adverse
57 effects on the chicken intestinal commensal bacteria [4].

58 The emergence of novel proteomic techniques in recent years has greatly aided in the
59 understanding of biological mechanisms. Tandem mass tag (TMT) [13] and isobaric
60 tags for relative and absolute quantitation (iTRAQ) [14] methods have been widely
61 used for analyzing the hepatic proteome. The TMT method can also be used to

62 characterize liver proteome-wide changes in response to oxidative stress [15]. Further,
63 due to progress in high-throughput next-generation sequencing, 16S rDNA analysis can
64 be used to infer the structure and function of gut microbiota.

65 To characterize the potential mechanism of oxidative stress under high stocking
66 density, TMT-labeled quantitative proteomics combined with 16S rDNA analysis was
67 used to identify changes in the protein profiles and microbiota of Peking ducks under
68 low and high raising density.

69 MATERIALS AND METHODS

70 Ethics approval

71 All of our experiments were approved by the Institutional Animal Care and Use
72 Committee of the China Agricultural University (Beijing, China).

73 Facilities and Experimental Animals

74 A total of 1200 mixed-sex 21-d-old white Peking ducks were randomly assigned to
75 5 stocking density treatments and 6 replicates. Each replicate corresponds one pen with
76 40 ducks (20 males, and 20 females). The raising area in different treatments were 8.20
77 m^2 ($2.50 \times 3.28 \text{ m}$), 6.88 m^2 ($2.50 \times 2.75 \text{ m}$), 5.93 m^2 ($2.50 \times 2.37 \text{ m}$), 5.20 m^2 ($2.50 \times$
78 2.08 m) and 4.65 m^2 ($2.5 \times 1.86 \text{ m}$) and the corresponding stocking density was 5 (low
79 stocking density represent as L group), 6, 7, 8, and 9 (high stocking density represent
80 as H group) ducks/ m^2 , respectively. All ducks were raised in a plastic wire-floor pen
81 and provided water and feed *ad libitum* from 21 to 40 d of age. In the house, lighting,

82 temperature and ventilation programs followed commercial practices. During the
83 experimental period, all ducks were raised with diets based on the NRC (1994) feeding
84 standard.

85 **Growth Performance and Carcass Traits**

86 Initial body weight (BW), final BW and feed intake (FI) were recorded. The weight
87 gain and feed/gain ratio were calculated.

88 **Sample Collection**

89 On day 40, one male duck per pen was randomly selected. Therefore, a total of 6
90 male ducks per treatment were collected. Each duck was sacrificed by stunning after
91 blood collection. The liver samples of ducks from L and H density treatments were
92 collected, flushed with cold PBS, frozen using liquid nitrogen, and stored at -80 °C for
93 and proteomic analysis. Cecum contents of ducks from L and H density treatments were
94 collected, transferred into Eppendorf tubes, and immediately frozen in liquid nitrogen
95 and stored at -80°C for microbiota analyses.

96 Abdominal fat and left pectorals of each duck were removed manually from the
97 carcass and weighed. For each duck, a piece of pectorals fixed position was separated
98 and put on the ice bag immediately, then stored at -80 °C for biochemical analysis.

99 **Serum and Pectorals Biochemical Parameters**

100 Serum levels of malondialdehyde (**MDA**, cat#A003-1), TG (cat#A110-2), total

101 cholesterol (TC, cat#A111-2), high-density lipoprotein cholesterol (**HDL-C**,
102 cat#A112-2), low-density lipoprotein cholesterol (**LDL-C**, cat#A113-2), very low
103 density lipoprotein (**VLDL**, cat#H249), total antioxidant capacity (**T-AOC**, cat#A015-
104 1) and the activities of lactate dehydrogenase (**LDH**, cat#A020-1), creatine kinase (**CK**,
105 cat#A032), glutamic-pyruvic transaminase (**GPT**, cat#C009-1), lipase (cat#A067),
106 lipoprotein lipase (**LPL**, cat#A067) along with MDA, T-AOC, LPL and protein
107 concentration (cat#A045-2) of pectorals were determined by using commercial
108 analytical kits according to the manufacturer's recommendations (Jian Cheng
109 Bioengineering Institute, Nanjing, China).

110 **Statistical analysis.**

111 One-way analysis of variance (ANOVA) models were fitted to assess the
112 relationships between the stocking density groups and serum and pectoral redox and
113 lipid metabolism indices, using SPSS (v.20.0, SPSS Institute, Chicago, IL). Means were
114 compared using Duncan's multiple comparison procedure of SPSS software when
115 density treatment was significant ($P < 0.05$), and curve estimation was used to assess
116 the linear and quadratic effects of increasing stocking density on final body weight,
117 body weight gain, feed gain ratio, and pectorals percentage. $P < 0.05$ was used for
118 statistical significant and results were considered significant trend at $P < 0.1$.

119

120 **Proteome analysis**

121 **Protein extraction**

122 Liver samples (~100mg each) were ground to a powder under liquid nitrogen and
123 then transferred into a centrifuge tube. After that, four times volume of lysis buffer
124 containing 8 M urea (Sigma) and 1% Protease Inhibitor Cocktail (Calbiochem) was
125 added, followed by sonication three times on ice using a high intensity ultrasonic
126 processor (Scientz). And then centrifuged for 10 min at 4 °C and 12,000g. Supernatants
127 containing soluble proteins were collected and the protein concentration was quantified
128 with BCA kit (Beyotime Biotechnology) according to the manufacturer's instructions.

129 **Trypsin digestion**

130 For trypsin digestion, the protein solution was reduced with 5 mM dithiothreitol
131 (Sigma) for 30 min at 56 °C and alkylated with 11 mM iodoacetamide (Sigma) for 15
132 min at room temperature under dark conditions. The protein sample was diluted with
133 100 mM triethylammonium bicarbonate (TEAB, Sigma) to make urea concentration
134 less than 2 M. Finally, the sample was digested with trypsin (Promega) overnight with
135 a 1:50 trypsin-to-protein ratio and then further digested for 4 h with 1:100 w: w trypsin-
136 to-protein ratio (37°C).

137 **TMT Labeling**

138 After trypsin digestion, the peptides were desalted in a Strata X C18 SPE column
139 (Phenomenex) and vacuum dried. The peptide was dissolved in 1 M TEAB and

140 processed according to the manufacturer's protocol for TMT kit. Briefly, one unit of
141 TMT reagent (defined as the amount of reagent requirement for labeling 100 µg of
142 protein) was thawed and dissolved in acetonitrile (Fisher Chemical). The peptide
143 mixtures were then incubated for 2 h at room temperature, pooled, desalted and dried
144 by vacuum centrifugation.

145 **HPLC fractionation**

146 Peptides were fractionated by high pH reverse-phase HPLC with an Agilent 300
147 Extend C18 column (5 µm particles, 4.6 mm ID, 250 mm length). Briefly, peptides
148 were firstly separated by 8% to 32% acetonitrile (pH 9.0) over 60 minutes into 60
149 fractions. Subsequently, the peptides were combined into 18 fractions and dried by
150 vacuum centrifugation.

151 **Mass Spectrometry and TMT Data Analysis**

152 Peptides were dissolved in 0.1% formic acid (Fluka), and separated by EASY-nLC
153 1000 UPLC system. Solvent A is an aqueous solution containing 0.1% formic acid and
154 2% acetonitrile; solvent B is an aqueous solution containing 0.1% formic acid and 90%
155 acetonitrile. Liquid-phase gradient using a linearly increasing gradient of 5% to 24%
156 solvent B for 38 min, 24% to 35% solvent B for 14 min, then climbing to 80% in 4 min,
157 and then maintaining at 80% for the last 4 min, all at a constant flow rate of 800 nl/min.

158 The peptides results were subjected to nano electrospray ionization (NSI) source
159 followed by tandem mass spectrometry (MS/MS) in Q Exactive PlusTM (Thermo

160 Fisher Scientific) coupled to the UPLC. The electrospray voltage applied was 2.0 kV.
161 For MS scans, the m/z scan range was 350 to 1800. Intact peptides were detected in the
162 orbitrap at a resolution of 70,000. Peptides were then selected for MS/MS in the orbitrap
163 at a resolution of 17,500. Fixed first mass was set as 100 m/z. A data-dependent
164 procedure that alternated between one MS scan followed by 20 MS/MS scans. In order
165 to improve the effective utilization of mass spectrometry, the automatic gain control
166 (AGC) is set to 5E4, the signal threshold is set to 10000 ions/s, the maximum injection
167 time is set to 200 ms, and the dynamic exclusion time of the tandem mass scan is set to
168 30 seconds to avoid the repeat the scan of parent ion.

169 **Database Search**

170 The resulting MS/MS data were processed using Maxquant with an integrated
171 Andromeda search engine (v.1.5.2.8). Tandem mass spectra were searched against the
172 uniprot *Anas platyrhynchos* database concatenated with reverse decoy database.
173 Trypsin/P was specified as cleavage enzyme allowing up to 2 missing cleavages. The
174 mass tolerance for precursor ions was set as to 10 ppm in First search and 5 ppm in
175 Main search, and the mass tolerance was set as 0.02 Da for fragment ions. TMT 10-
176 plex was selected for protein quantification. False discovery rate (FDR) was adjusted
177 to < 1% for protein identification.

178 **TMT quantification**

179 For TMT quantification, the ratios of the TMT reporter ion intensities in MS/MS

180 spectra (m/z 126–131) from raw data sets were used to calculate fold changes between
181 samples. For each sample, the quantification was mean-normalized at peptide level to
182 center the distribution of quantitative values. Protein quantitation were then calculated
183 as the median ratio of corresponding unique or razor peptides for a given protein. Two-
184 sample, two-sided T-tests were used to compare expression of proteins. A significance
185 level of $P < 0.05$ was used for statistical testing and results were considered significant
186 trend at $P < 0.1$.

187 **Gene Ontology (GO) annotation**

188 GO annotation proteome was derived from the UniProt-GOA database ([www.](http://www.ebi.ac.uk/GOA/)
189 <http://www.ebi.ac.uk/GOA/>). Firstly, Converting identified protein ID to UniProt ID
190 and then mapping to GO IDs by protein ID. If some identified proteins were not
191 annotated by UniProt-GOA database, the InterProScan soft would be used to annotated
192 protein's GO functional based on protein sequence alignment method. Then proteins
193 were classified by Gene Ontology annotation based on three categories: biological
194 process, cellular component and molecular function.

195 **16S rDNA sequencing**

196 DNA was extracted from 180-220 mg of the cecal samples using a QIAampTM Fast
197 DNA Stool Mini Kit (Qiagene, No. 51604) according to the manufacturer's instructions.
198 Total DNA was quantified using a Thermo NanoDrop 2000 UV microscope
199 spectrophotometer and 1% agarose gel electrophoresis. 16S rDNA high-throughput

200 sequencing was performed by Realbio Genomics Institute (Shanghai, China) using the
201 Illumina Hiseq PE250 platform. The V3-V4 region of the 16S rDNA gene was
202 amplified using the universal primers, 341F (CCTACGGGRSGCAGCAG) and 806R
203 (GGACTACVVGGGTATCTAATC). The raw pair-end reads were merged and
204 quality-filtered to remove tags with lengths < 220 nt, an average quality score of <20,
205 and tags containing >3 ambiguous bases using PANDAseq (v2.9) [16]. Singletons and
206 chimeras were removed, and the resulting quality-filtered sequences were clustered into
207 97% operational taxonomic units (OTUs) using USEARCH (v7.0.1090) in QIIME
208 software. The Ribosomal Database Project (RDP) algorithm trained on the Greengenes
209 database was used to classify each OTU (<http://greengenes.lbl.gov>). The open source
210 software package QIIME (<http://qiime.org>) was used to measure alpha diversity
211 (including the chao1, observed species and PD whole tree indices).

212 16S rDNA analysis

213 For 16S rDNA, the Wilcoxon rank sum test to evaluate changes in alpha diversity
214 between H and L groups. Venn diagrams were constructed in R v3.1.0 using the Venn
215 Diagram package. Principal component analysis (**PCA**) was used to assess the
216 relationships between samples based on composition of the microbiota [17]. Linear
217 discriminant analysis effect size (**LEfSe**), a metagenomic biomarker discovery
218 approach, was used to identify differentially abundant taxa between H and L groups by
219 using a Kruskal-Wallis rank sum test *P*-value threshold of 0.05 and a log-transformed
220 linear discriminant analysis (**LDA**) score threshold of 2.

221 **RESULTS**

222 **Duck performance and carcass traits**

223 In our study, both the final body weight and the body weight gain over the study
224 period decreased linearly with the increase of stocking density (Fig 1a, 1b). The
225 feed/gain ratio increased linearly with increasing density (Fig 1c). Pectorals percentage
226 was affected by stocking density as well, decreasing linearly with increasing stocking
227 density (Fig 1d).

228

229 **Fig 1. Duck performance and carcass traits.** Data presented as means \pm SE. n=6.

230

231 **Biochemical indices of serum and pectorals**

232 Both redox and lipid metabolism indices from serum and pectoral samples were
233 affected by stocking density.

234 In redox indices, raising density was significantly associated serum MDA and LDH,
235 as well as pectoral T-AOC (Table 1). Serum MDA increased linearly, while pectoral T-
236 AOC decreased linearly with increasing stocking density (Table 1).

237

238

239

240 **Table 1 Redox related biochemical indices in serum and pectorals**

density/m ²	Pectorals		Serum		
	T-AOC	MDA	T-AOC	MDA	LDH
5	0.71±0.15 ^{AB}	2.12±0.60	15.79±2.30	7.39±0.54 ^B	9186.19±888.64 ^A
6	0.50±0.14 ^{AB}	1.42±0.59	13.03±5.35	7.47±0.51 ^B	9224.32±195.84 ^A
7	0.48±0.28 ^{AB}	1.74±0.77	10.77±5.51	7.10±0.58 ^B	10192.19±732.17 ^A
8	0.46±0.16 ^{AB}	1.37±0.44	14.55±1.23	8.68±0.05 ^{AB}	7864.87±814.26 ^B
9	0.22±0.08 ^B	1.87±0.46	11.51±3.95	9.57±1.56 ^A	9225.23±273.26 ^A
<i>P</i> -value					
ANOVA	0.015	0.176	0.278	0.008	0.001
Linear	0.023	0.490	0.253	0.038	0.238
Quadratic	0.069	0.148	0.269	0.068	0.470

241 Note: Total antioxidant capacity (T-AOC), malondialdehyde (MDA), lactate dehydrogenase (LDH).

242

243 Stocking density was also significantly altered lipid metabolism indices including
244 serum LPL, TG, TC, HDL-C and LDL-C, as well as pectoral LPL (Table 2).
245 Additionally, serum LDL-C increased linearly, and HDL-C had a linear increasing
246 trend with increasing density. Serum TG and pectoral LPL had quadratic trends
247 associated with stocking density (Table 2).

248

249 **Table 2 Lipid metabolism related biochemical indices**

Group	Pectorals		Serum				
	LPL	LPL	TG	TC	HDL-C	LDL-C	
5	0.67±0.10 ^{BC}	2.76±0.62 ^A	1.01±0.22 ^C	4.14±0.32 ^B	4.01±0.30	3.24±0.60 ^B	
6	0.99±0.23 ^{AB}	1.15±0.17 ^B	1.54±0.07 ^B	4.17±0.30 ^B	4.76±0.68	3.59±0.59 ^B	
7	1.13±0.27 ^A	2.67±0.39 ^A	1.31±0.12 ^{BC}	4.13±0.15 ^B	4.41±0.83	4.83±0.73 ^A	
8	0.84±0.30 ^{ABC}	2.52±0.79 ^{AB}	2.09±0.20 ^A	5.03±0.36 ^A	5.10±0.84	4.88±0.85 ^A	
9	0.55±0.09 ^C	2.80±0.36 ^A	1.58±0.16 ^B	4.74±0.10 ^A	5.30±0.11	5.02±0.69 ^A	
<i>P</i> -value							

ANOVA	0.003	<0.001	<0.001	<0.001	0.111	0.001
Linear	0.990	0.311	0.089	0.118	0.095	<0.001
Quadratic	0.098	0.506	0.050	0.302	0.250	<0.001

250 Note: lipoprotein lipase (LPL) triglyceride (TG), total cholesterol (TC), high-density lipoprotein
251 cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C).

252

253 Proteins identification and comparison

254 In GO analysis, the most striking different pathways between H and L group were
255 small molecule metabolic process, organic acid metabolic process, oxoacid metabolic
256 process and carboxylic acid metabolic process. Pathways including oxidation-reduction
257 process, cellular amino acid metabolic process and fatty acid metabolic process were
258 significant altered as well (Fig 2). Many proteins involved in redox, lipid metabolism,
259 protein turnover, DNA repair, and immunity were associated with stocking density
260 (Table 3).

261

262 **Fig 2. GO pathways enriched by H group.** Log-transformed P-value is indicated the
263 degree of difference between H group and L group.

264

265

266

267

268 **Table 3. Differentially expressed proteins identified under different stocking**
269 **density**

Accession ID ^a	Annotation	Gene	H:L ^b	P-value
Redox related proteins				
U3I9D6	DDRGK domain containing 1	DDRGK	1.218	0.010
MT	Metallothionein	N/A	1.332	0.014
U3ID81	Regucalcin	RGN	0.706	0.025
R0M3U9	Catalase	Anapl_09675	0.882	0.051
Lipid metabolism related proteins				
U3IAY7	Acyl-CoA dehydrogenase, long chain	ACADL	1.154	0.040
U3I7T9	Acyl-CoA synthetase family member 2	ACSF2	1.103	0.032
U3J928	Acyl-coenzyme A oxidase	ACOX1	1.098	0.007
U3I7I1	2-hydroxyacyl-CoA lyase 1	HACL1	1.143	0.095
Protein turnover related proteins				
U3I9U9	Pyridoxal kinase	PDXK	1.324	0.011
U3IHG9	Ribosomal protein S20	RPS20	1.103	0.045
U3I350	Aspartyl-tRNA synthetase	DARS	1.119	0.096
U3J7Z7	Asparaginyl-tRNA synthetase	NARS	0.904	0.068
DNA repair related proteins				
U3IUN7	RNA binding motif protein, X-linked	RBMX	1.136	0.068
U3IUB7	Lamin B2	LMNB2	1.119	0.076
Immunity related proteins				
R0K747	Macrophage mannose receptor 1	Anapl_08603	1.170	0.004
Q6JWQ2	MHC class I antigen alpha chain	Anapl-U	0.785	0.021

271 Antioxidant related proteins such as regucalcin and catalase were downregulated in
272 H group. Oxidative response related proteins like DDRGK domain containing 1 and
273 metallothionein were enhanced in H group.

274 Fatty acid synthesis protein acyl-CoA synthetase family member 2 (ACSF2) was
275 enriched in high stockind density. Fatty acid oxidation connected proteins including
276 acyl-CoA dehydrogenase long chain (ACADL), acyl-coenzyme A oxidase (ACOX1)
277 and 2-hydroxyacyl-CoA lyase 1 (HACL1) were enriched in the H group.

278 Protein turnover related proteins including Ribosomal protein S20, Pyridoxal kinase
279 and aspartyl-tRNA synthetase (DARS2) were elevated while Asparaginyl-tRNA
280 synthetase was reduced in H group.

281 In DNA repair involved proteins, Both RNA-binding motif protein X-linked (RBMX)
282 and Lamin B2 showed enhancing trends in H group. The immunity associated
283 macrophage mannose receptor (MR) 1 was elevated, while Major histocompatibility
284 complex (MHC) class I antigen α chain was decreased in the H group.

285 **16S rDNA analysis of cecal microbiota**

286 Microbiota PCA analysis showed a clear separation of samples from the H group and
287 samples from the L group (Fig 3a). The H group and L group had 290 bacterial taxa in
288 common, while the H group and L group had 35 and 13 unique taxa, respectively (Fig
289 3b).

290

291 **Fig. 3 PCA and Veen chart of microbiota.** a, PCA diagram; b, Veen chart.

292

293 LEfSe analysis, revealed higher relative abundance of *Firmicutes* and

294 *Phascolarctobacterium* in the H group, while *Bacteroidia*, *Bacteroidales*,

295 *Thermoplasmata*, *Methanomassiliicoccales*, *Methanomassiliicoccus* and

296 *Methanomassiliicoccaceae* were more abundant in the L group (Fig 4a, 4b).

297 Additionally, the H group had elevated *Lachnospiraceae* and *Ruminococcaceae* lower

298 abundance of *Butyricimonas*, *Desulfovibrionaceae*, *Alistipes* and *Clostridiales* (Fig 5).

299 Overall, the ratio of *Firmicutes* to *Bacteroidetes* in the H group was higher than in the

300 L group ($P = 0.058$).

301

302 **Fig 4. Bacterial taxa in H or L groups by LEfSe analysis.** Phylogenetic relationships

303 among significant bacterial biomarkers are indicated in the cladogram (top). Log-

304 transformed linear discriminant analysis (LDA) scores of the significant biomarkers are

305 indicated the bar chart (bottom).

306 **Fig 5. Relative abundance of anti-inflammatory bacterial taxa in H or L groups.**

307

308 **DISCUSSION**

309 Previous studies have indicated that that high raising density has negative influences

310 on physiology and overall meat production [2-4]. This study showed a linear decrease

311 of BW with increasing stocking density. Similarly, breast muscle was depressed by
312 increasing stocking density. Which was consistent with the formerly research that
313 increasing stocking density decreased breast fillet weight and its relative yield [18].

314 Increased density is associated with impaired antioxidant capacity, including
315 decreasing total glutathione concentration and the glutathione (GSH): oxidized
316 glutathione (GSSG) ratio [2]. Liver antioxidants including superoxide dismutase (SOD),
317 catalase (CAT), GSH have previously been found to be reduced under high raising
318 density [19]. In this study, enhancing stocking density increased serum MDA and
319 decreased pectoral T-AOC. In proteomic analysis of this study, regucalcin and catalase
320 expression was reduced in high density group. Catalases are involved in protecting cells
321 from the damaging effects of ROS [20], while regucalcin is a calcium-binding protein
322 with multiple roles that include calcium homeostasis, anti-oxidative, anti-apoptosis, and
323 anti-proliferation [21]. Decreases in these proteins indicates that high stocking density
324 may reduce duck anti-oxidant capacity.

325 High stocking density increases blood oxidative stress, including acute phase
326 proteins, heat shock protein 70, and circulating corticosterone [22]. In current study,
327 high stocking density had higher expressions of DDRGK domain containing 1,
328 metallothionein, DARS2 and RBMX. DDRGK domain containing 1 and
329 metallothionein were enriched in high density group. DDRGK1 is an endoplasmic
330 reticulum membrane protein and plays an important role in maintaining the homeostasis
331 of endoplasmic reticulum [23]. Metallothionein is an essential protein for the protection
332 of cells against reactive oxygen species (ROS) [24]. Therefore, metallothionein can

333 neutralize ROS and protect host from oxidative stress. A previous study found that loss
334 of mitochondrial DARS2 leads to the activation of various stress responses in a tissue-
335 specific manner independently of respiratory chain deficiency [25]. The RBMX is a
336 nuclear protein that is involved in alternative splicing of RNA [26]. It is able to confer
337 resistance to DNA damage [27]. Enhancement of these proteins suggests oxidative
338 stress of Peking ducks under high stocking density.

339 Lipid storage is essential for protection against ROS toxicity [28]. The lipogenesis
340 occurs in liver most exclusively, especially to waterfowls [29]. High stocking density
341 was previously associated higher hepatic TG storage [30]. This study showed serum
342 LDL-C increased with density incrementing. Moreover, high density group elevated
343 ACSF2 expression. Acetyl-CoA synthetase catalyzes the formation of acetyl-CoA from
344 acetate, CoA and ATP and participates in various metabolic pathways, including fatty
345 acid and cholesterol synthesis and the tricarboxylic acid cycle [31]. ACSF2 belongs to
346 the acyl-CoA synthetase family, activating fatty acids by forming a thioester bond with
347 CoA [32]. Therefore, the increasing lipid biosynthesis may be the self-protection
348 mechanism of Peking ducks under oxidative stress.

349 ROS are considered to be involved in the progression of non-alcoholic fatty liver
350 disease (NAFLD) [33]. Interestingly, fatty liver production in waterfowls are fairly
351 similar to human NAFLD [34]. Therefore, waterfowls can be a good model for liver
352 steatosis research. In current study, ACADL, ACOX1 and HACL1 were enriched in
353 high stocking density group. ACADL is a key enzyme participating in fatty acid
354 oxidation [35]. Similary, ACOX1 are involved in β -oxidation in the liver [36]. HACL1

355 has two important roles in α -oxidation, the degradation of phytanic acid and shortening
356 of 2-hydroxy long-chain fatty acids so that they can be degraded further by β -oxidation
357 [37]. It has been reported that inhibition of β -oxidation decreases NADPH levels and
358 increases ROS levels [38]. Therefore, elevation of these proteins may protect ducks
359 from oxidative stress. It is increasingly recognized that the composition of the gut
360 microbiota plays a critical role in influencing predisposition to chronic liver disorders
361 such as NAFLD [12]. Samples from high stocking density had high levels of
362 *Lachnospiraceae*. Interestingly, high *Lachnospiraceae* abundance was observed in
363 patients with nonalcoholic steatohepatitis [39]. *Ruminococcaceae* and *Alistipes* were
364 depleted in the high density group. Cirrhotic patients were previously shown to have
365 lower *Ruminococcaceae* (7 α -dehydroxylating bacteria) abundance compared to healthy
366 patients [40]. In addition, *Alistipes* was significantly more abundant in the gut
367 microbiota of healthy subjects compared to NAFLD patients [41].

368 Immunity can be regulated by oxidative stress. A decreased broiler bursa weight was
369 previously reported to be associated with higher stocking densities [2]. DDRGK
370 domain-containing protein 1 and Macrophage mannose receptor (MR) expression was
371 higher in high density compared to the low density group. DDRGK1 is also an
372 important regulatory protein of NF- κ B [42]. Recent study found MR can protect against
373 ROS burst [43]. Increase of these proteins reflects the immune response status Peking
374 ducks under high stocking density. MHC class I antigen α chain was decreased under
375 high stocking density. MHC class I plays a crucial role in immunity by capturing
376 peptides for presentation to T cells and natural killer (NK) cells [44]. Dysregulation of

377 MHC class I was correlated with unfolded protein response (UPR) and endoplasmic
378 reticulum (ER) stress [45]. Upregulation of these proteins in the high density group
379 suggests the immune adaption to high stocking. Moreover, high stocking density has
380 been previously associated with adverse effects on the chicken intestinal commensal
381 bacteria [4]. In the current study, *Phascolarctobacterium* was enriched, while
382 *Bacteroidales*, *Butyricimonas* and *Alistipe* are depleted in high density group. A
383 previous study found that *Phascolarctobacterium* was significantly correlated with
384 systemic inflammatory cytokines [46]. Besides, depletion of *Bacteroidales* has
385 previously been associated with disease status [47]. Additionally, reduction in
386 *Butyricimonas* is associated with increased proinflammatory gene expression [48].
387 Studies confirm that patients with IBD and *Clostridium difficile* infection have a lower
388 abundance of *Alistipe* than their healthy counterparts [49]. The current study showed
389 higher *Firmicutes* to *Bacteroidetes* ratio in high density group. The microbiota of
390 irritable bowel syndrome (IBS) patients, compared with controls, had a 2-fold increased
391 ratio of the *Firmicutes* to *Bacteroidetes* [50]. Bile acids (BAs) are important metabolites
392 of the microbiome and can modulate the composition of the gut microbiota directly or
393 indirectly through activation of the innate immune system [51]. Bile acid plays a crucial
394 role in control of inflammation and NAFLD [52]. Samples from the high stocking
395 density group had higher levels of *Ruminococcaceae* and lower abundance of
396 *Desulfovibrionaceae*, and *Clostridiales* compared to low density group. Cholesterol 7α-
397 hydroxylase (CYP7A1) is the enzyme responsible for catalyzing the first and rate-
398 limiting step in the classical bile acid synthetic pathway [53]. Furthermore, an inverse

399 relationship between Cyp7a1 expression and *Ruminococcaceae* abundance has been
400 previously demonstrated [19]. A study found enriched *Desulfovibrionaceae* was
401 accompanied by increased hepatic taurine-conjugated cholic acid and β -muricholic acid,
402 which were the main constituent of bile acid pool [54]. *Clostridiale* was positively
403 correlated with muricholic acid as well [19]. A loss of bacteria belonging to the
404 *Clostridiales* order was correlated with a disturbance in the bile-microbial axis [55].
405 Therefore, alternations of bacteria showed a decrease trend in bile acid synthesis.

406 In conclusion, high stocking density caused oxidative stress, which involved in
407 alternation of gut-liver axis (Fig 6).

408

409 **Fig 6. Graphic summary of liver proteome and gut microbiota alternations under**
410 **high stocking density.**

411

412 **Acknowledgements**

413 This research was supported by the System for Poultry Production Technology,
414 Beijing Agriculture Innovation Consortium (Project Number: BAIC04-2017).

415

416

417

418

References:

420 1. Buijs S, Keeling LJ, Vangestel C, Baert J, Vangeyte J, et al. (2010) Resting or hiding?
421 Why broiler chickens stay near walls and how density affects this. *Applied Animal*
422 *Behaviour Science* 124: 97-103.

423 2. Simitzis PE, Kalogeraki E, Goliomytis M, Charismiadou MA, Triantaphyllopoulos
424 K, et al. (2012) Impact of stocking density on broiler growth performance, meat
425 characteristics, behavioural components and indicators of physiological and oxidative
426 stress. *Br Poult Sci* 53: 721-730.

427 3. Xie M, Jiang Y, Tang J, Wen ZG, Huang W, et al. (2014) Effects of stocking density
428 on growth performance, carcass traits, and foot pad lesions of White Pekin ducks.
429 *Poult Sci* 93: 1644-1648.

430 4. Cengiz O, Koksal BH, Tatli O, Sevim O, Ahsan U, et al. (2015) Effect of dietary
431 probiotic and high stocking density on the performance, carcass yield, gut microflora,
432 and stress indicators of broilers. *Poult Sci* 94: 2395-2403.

433 5. Yin LY, Wang ZY, Yang HM, Xu L, Zhang J, et al. (2017) Effects of stocking density
434 on growth performance, feather growth, intestinal development, and serum
435 parameters of geese. *Poult Sci* 96: 3163-3168.

436 6. Zhang YR, Zhang LS, Wang Z, Liu Y, Li FH, et al. (2018) Effects of stocking density
437 on growth performance, meat quality and tibia development of Pekin ducks. *Anim.*
438 *Sci. J.* 00:1-6.

439 7. Tong HB, Lu J, Zou JM, Wang Q, Shi SR (2012) Effects of stocking density on
440 growth performance, carcass yield, and immune status of a local chicken breed. *Poult*

441 Sci 91: 667-673.

442 8. Li JH, Miao ZQ, Tian WX, Yang Y, Wang JD, et al. (2017) Effects of different
443 rearing systems on growth, small intestinal morphology and selected indices of
444 fermentation status in broilers. Animal Science Journal 88: 900-908.

445 9. Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A (2017) Effects of chronic high
446 stocking density on liver proteome of rainbow trout (*Oncorhynchus mykiss*). Fish
447 Physiol Biochem 43: 1373-1385.

448 10. Kpundeh MD, Xu P, Yang H, Qiang J, He J (2013) Stocking densities and chronic
449 zero culture water exchange stress' effects on biological performances, hematological
450 and serum biochemical indices of GIFT tilapia juveniles (*Oreochromis niloticus*). J.
451 Aquac. Res. Development 4: 189.

452 11. Yeoman CJ, White BA (2014) Gastrointestinal tract microbiota and probiotics in
453 production animals. Annu Rev Anim Biosci 2: 469-486.

454 12. Leung C, Rivera L, Furness JB, Angus PW (2016) The role of the gut microbiota
455 in NAFLD. Nat Rev Gastroenterol Hepatol 13: 412-425.

456 13. Shen LF, Chen YJ, Liu KM, Haddad A, Song IW, et al. (2017) Role of S-
457 Palmitoylation by ZDHHC13 in Mitochondrial function and Metabolism in Liver. Sci
458 Rep 7: 2182.

459 14. Tang J, Hegeman MA, Hu J, Xie M, Shi W, et al. (2017) Severe riboflavin
460 deficiency induces alterations in the hepatic proteome of starter Pekin ducks. Br J
461 Nutr 118: 641-650.

462 15. Whitson JA, Wilmarth PA, Klimek J, Monnier VM, David L, et al. (2017)

463 Proteomic analysis of the glutathione-deficient LEGSKO mouse lens reveals
464 activation of EMT signaling, loss of lens specific markers, and changes in stress
465 response proteins. *Free Radic Biol Med* 113: 84-96.

466 16. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012)
467 PANDAseq: paired-end assembler for illumina sequences. *BMC Bioinformatics* 13:
468 31.

469 17. Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, et al. (2015) Baleen
470 whales host a unique gut microbiome with similarities to both carnivores and
471 herbivores. *Nat Commun* 6: 8285.

472 18. Dozier WR, Thaxton JP, Purswell JL, Olanrewaju HA, Branton SL, et al. (2006)
473 Stocking density effects on male broilers grown to 1.8 kilograms of body weight.
474 *Poult Sci* 85: 344-351.

475 19. Liu H, Rocha CS, Dandekar S, Wan YY (2016) Functional analysis of the
476 relationship between intestinal microbiota and the expression of hepatic genes and
477 pathways during the course of liver regeneration. *J Hepatol* 64: 641-650.

478 20. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an
479 essential factor in the pathogenesis of gastrointestinal mucosal diseases. *Physiol Rev*
480 94: 329-354.

481 21. Pillai H, Parmar MS, Shende AM, Thomas J, Kartha HS, et al. (2017) Effect of
482 supplementation of recombinant Regucalcin in extender on cryopreservation of
483 spermatozoa of water buffalo (*Bubalus bubalis*). *Mol Reprod Dev* 84: 1133-1139.

484 22. Najafi P, Zulkifli I, Jajuli NA, Farjam AS, Ramiah SK, et al. (2015) Environmental

485 temperature and stocking density effects on acute phase proteins, heat shock protein

486 70, circulating corticosterone and performance in broiler chickens. *Int J Biometeorol*

487 59: 1577-1583.

488 23. Liu J, Wang Y, Song L, Zeng L, Yi W, et al. (2017) A critical role of DDRGK1 in

489 endoplasmic reticulum homoeostasis via regulation of IRE1 alpha stability. *Nat*

490 *Commun* 8:14186.

491 24. Carrera G, Paternain JL, Carrere N, Folch J, Courtade-Saidi M, et al. (2003) Hepatic

492 metallothionein in patients with chronic hepatitis C: Relationship with severity of

493 liver disease and response to treatment. *Am J Gastroenterol* 98: 1142-1149.

494 25. Dogan SA, Pujol C, Maiti P, Kukat A, Wang S, et al. (2014) Tissue-Specific Loss

495 of DARS2 Activates Stress Responses Independently of Respiratory Chain

496 Deficiency in the Heart. *Cell Metab.* 19: 458-469.

497 26. Dai M, Liu Y, Nie X, Zhang J, Wang Y, et al. (2015) Expression of RBMX in the

498 Light-Induced Damage of Rat Retina In Vivo. *Cell Mol Neurobiol* 35: 463-471.

499 27. Adamson B, Smogorzewska A, Sigoillot FD, King RW, Elledge SJ (2012) A

500 genome-wide homologous recombination screen identifies the RNA-binding protein

501 RBMX as a component of the DNA-damage response. *Nat Cell Biol* 14: 318-328.

502 28. Bensaad K, Favaro E, Lewis CA, Peck B, Lord S, et al. (2014) Fatty acid uptake

503 and lipid storage induced by HIF-1alpha contribute to cell growth and survival after

504 hypoxia-reoxygenation. *Cell Rep* 9: 349-365.

505 29. Mourot J, Guy G, Lagarrigue S, Peiniau P, Hermier D (2000) Role of hepatic

506 lipogenesis in the susceptibility to fatty liver in the goose (*Anser anser*). *Comp*

507 Biochem Physiol B Biochem Mol Biol 126: 81-87.

508 30. Menezes C, Ruiz-Jarabo I, Antonio Martos-Sitcha J, Toni C, Salbego J, et al. (2015)

509 The influence of stocking density and food deprivation in silver catfish (*Rhamdia*

510 *quelen*): A metabolic and endocrine approach. Aquaculture 435: 257-264.

511 31. Fujino T, Kondo J, Ishikawa M, Morikawa K, Yamamoto TT (2001) Acetyl-CoA

512 synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J

513 Biol Chem 276: 11420-11426.

514 32. Yu S, Wei W, Xia M, Jiang Z, He D, et al. (2016) Molecular characterization,

515 alternative splicing and expression analysis of ACSF2 and its correlation with egg-

516 laying performance in geese. Anim Genet 47: 451-462.

517 33. Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, et al. (2015) Adaptation of

518 hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in

519 steatohepatitis. Cell Metab 21: 739-746.

520 34. Ray K (2013) NAFLD-the next global epidemic. Nat Rev Gastroenterol Hepatol

521 10: 621.

522 35. Chen T, Liu J, Li N, Wang S, Liu H, et al. (2015) Mouse SIRT3 attenuates

523 hypertrophy-related lipid accumulation in the heart through the deacetylation of

524 LCAD. PLoS One 10: e118909.

525 36. Osumi T, Hashimoto T, Ui N (1980) Purification and properties of acyl-CoA

526 oxidase from rat liver. J Biochem 87: 1735-1746.

527 37. Lonsdale D (2015) Thiamine and magnesium deficiencies: keys to disease. Med

528 Hypotheses 84: 129-134.

529 38. Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M (2011) Inhibition of fatty acid
530 oxidation by etomoxir impairs NADPH production and increases reactive oxygen
531 species resulting in ATP depletion and cell death in human glioblastoma cells.
532 *Biochim Biophys Acta* 1807: 726-734.

533 39. Del CF, Nobili V, Vernocchi P, Russo A, Stefanis C, et al. (2017) Gut microbiota
534 profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by
535 an integrated meta-omics-based approach. *Hepatology* 65: 451-464.

536 40. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, et al. (2013)
537 Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. *J Hepatol* 58:
538 949-955.

539 41. Jiang W, Wu N, Wang X, Chi Y, Zhang Y, et al. (2015) Dysbiosis gut microbiota
540 associated with inflammation and impaired mucosal immune function in intestine of
541 humans with non-alcoholic fatty liver disease. *Sci Rep* 5: 8096.

542 42. Xi P, Ding D, Zhou J, Wang M, Cong YS (2013) DDRGK1 regulates NF-kappaB
543 activity by modulating IkappaBalphalpha stability. *PLoS One* 8: e64231.

544 43. Hagert C, Sareila O, Kelkka T, Jalkanen S, Holmdahl R (2018) The Macrophage
545 Mannose Receptor Regulate Mannan-Induced Psoriasis, Psoriatic Arthritis, and
546 Rheumatoid Arthritis-Like Disease Models. *Front Immunol* 9: 114.

547 44. Pym P, Illing PT, Ramarathinam SH, O'Connor GM, Hughes VA, et al. (2017)
548 MHC-I peptides get out of the groove and enable a novel mechanism of HIV-1 escape.
549 *Nat Struct Mol Biol* 24: 387-394.

550 45. Osorio F, Tavernier SJ, Hoffmann E, Saeys Y, Martens L, et al. (2014) The

551 unfolded-protein-response sensor IRE-1alpha regulates the function of CD8alpha+
552 dendritic cells. *Nat Immunol* 15: 248-257.

553 46. Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, et al. (2016) Important
554 Metabolic Pathways and Biological Processes Expressed by Chicken Cecal
555 Microbiota. *Appl Microbiol Biotechnol* 82: 1569-1576.

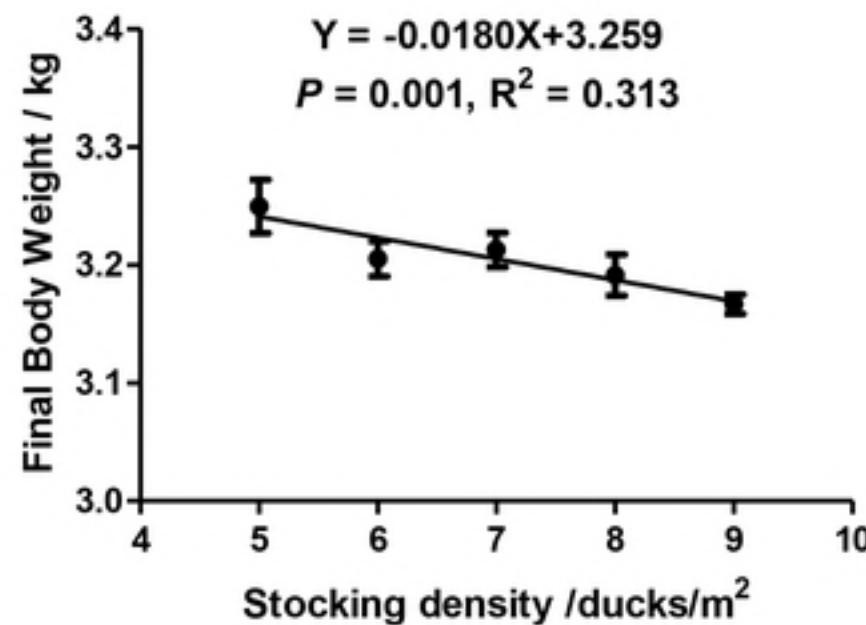
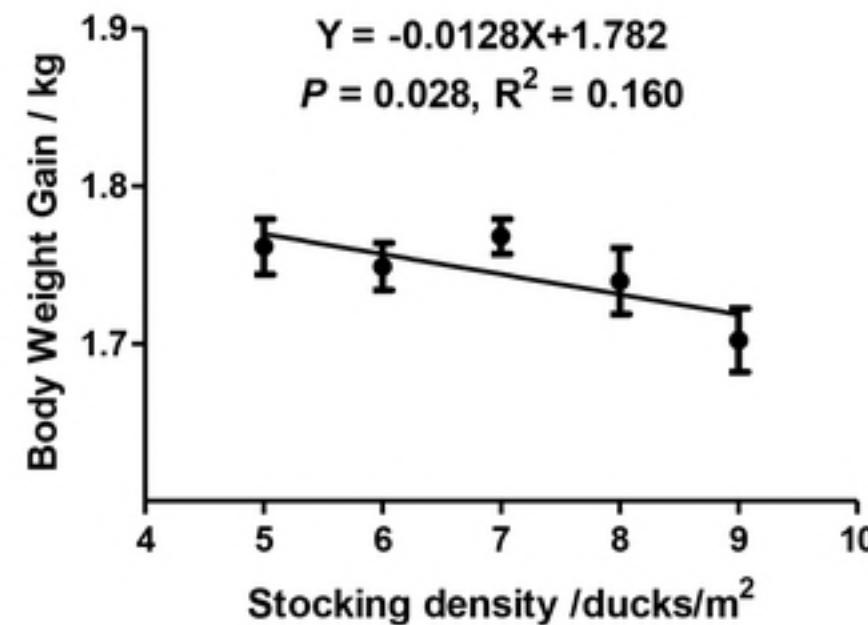
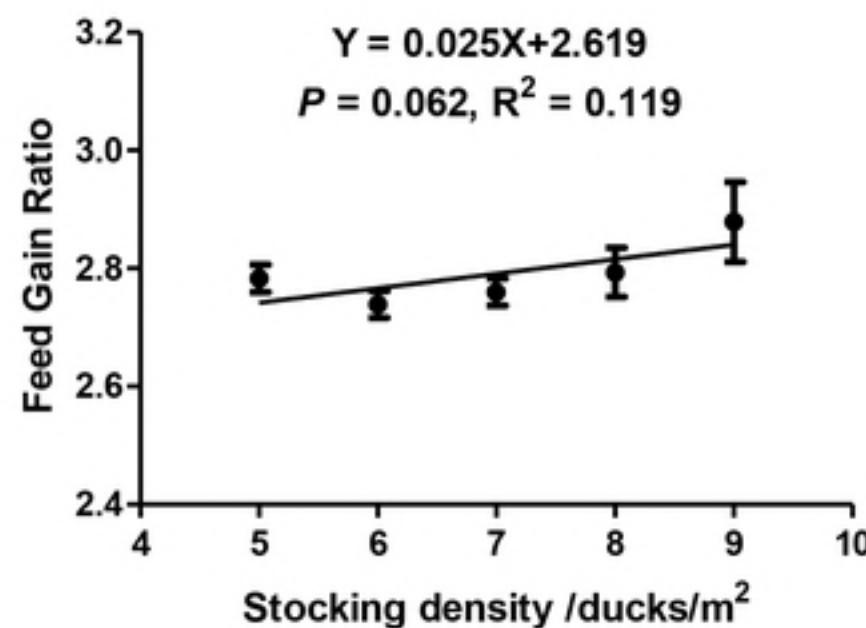
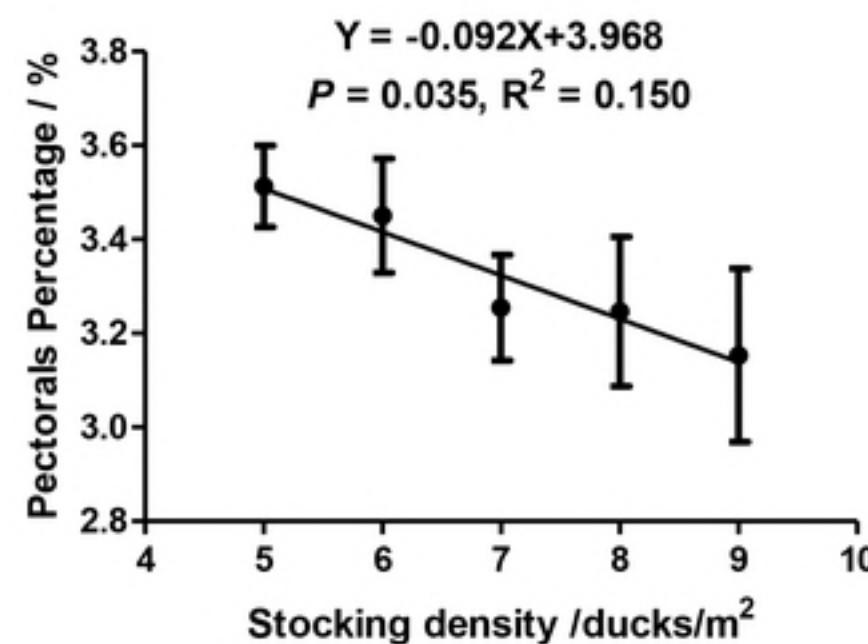
556 47. Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, et al.
557 (2014) The Treatment-Naive Microbiome in New-Onset Crohn's Disease. *Cell Host
558 Microbe*. 15: 382-392.

559 48. Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, et al. (2016) Alterations of the
560 human gut microbiome in multiple sclerosis. *Nat Commun* 7: 12015.

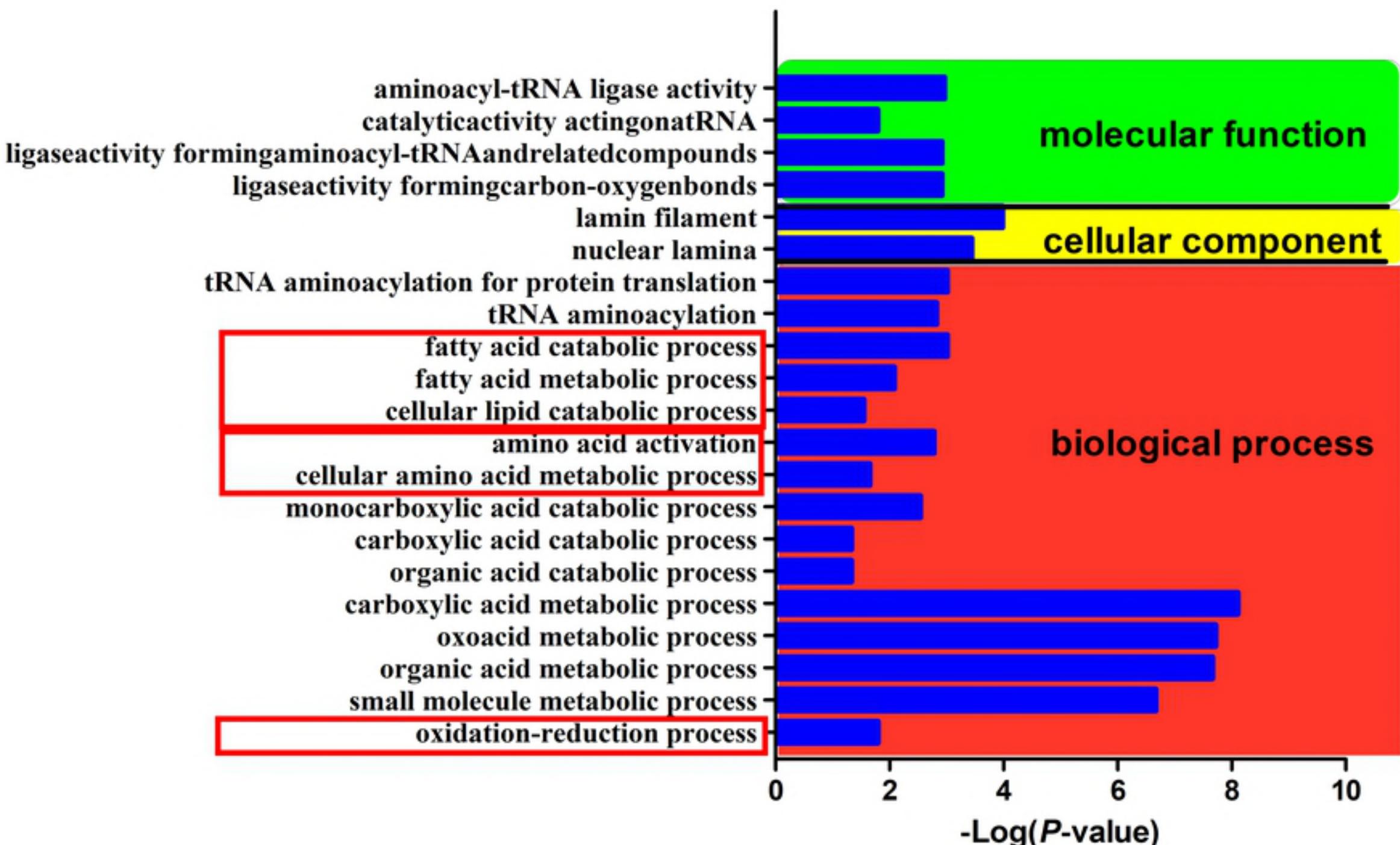
561 49. Mancabelli L, Milani C, Lugli GA, Turroni F, Cocconi D, et al. (2017) Identification
562 of universal gut microbial biomarkers of common human intestinal diseases by meta-
563 analysis. *FEMS Microbiol. Ecol.* 93: fix153.

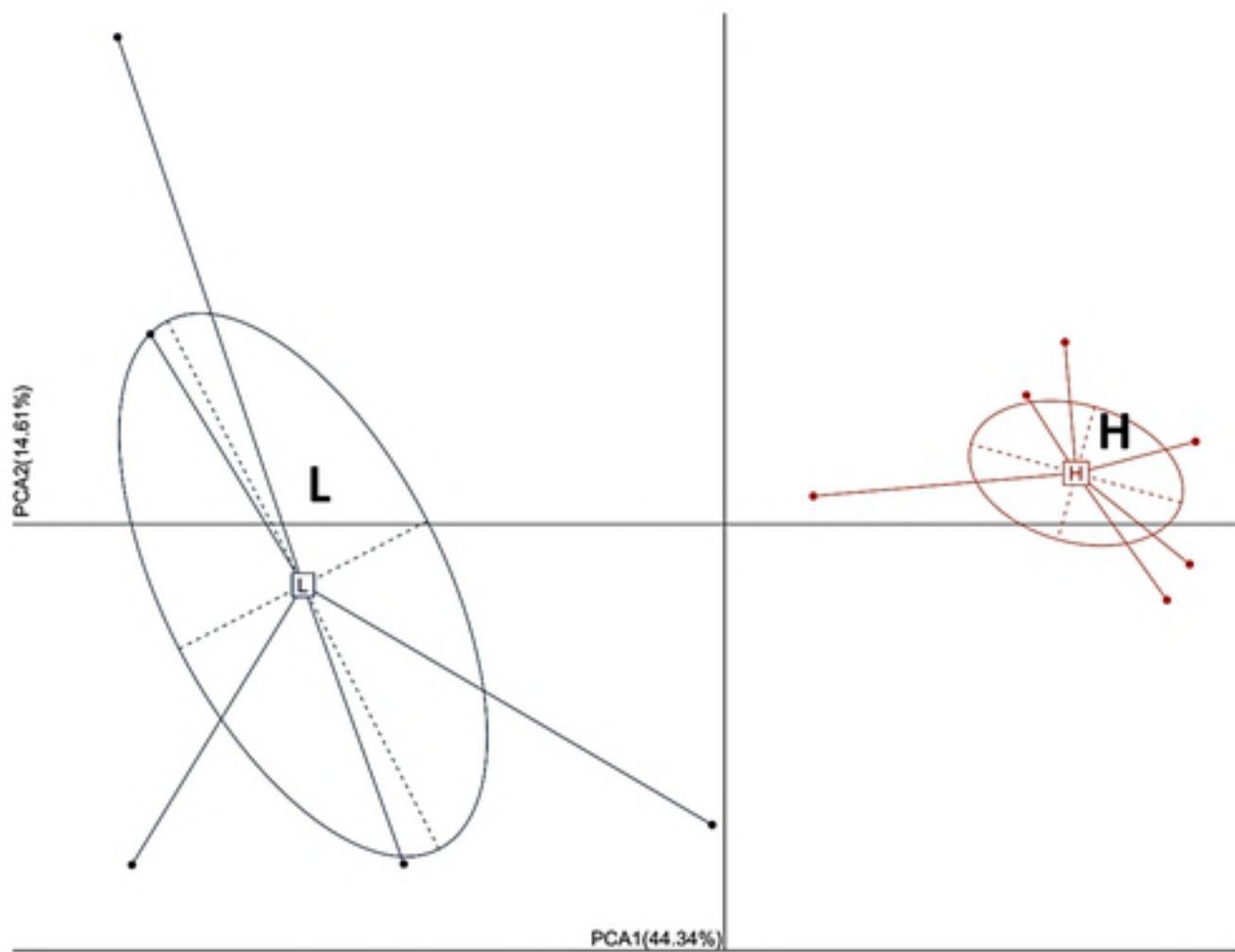
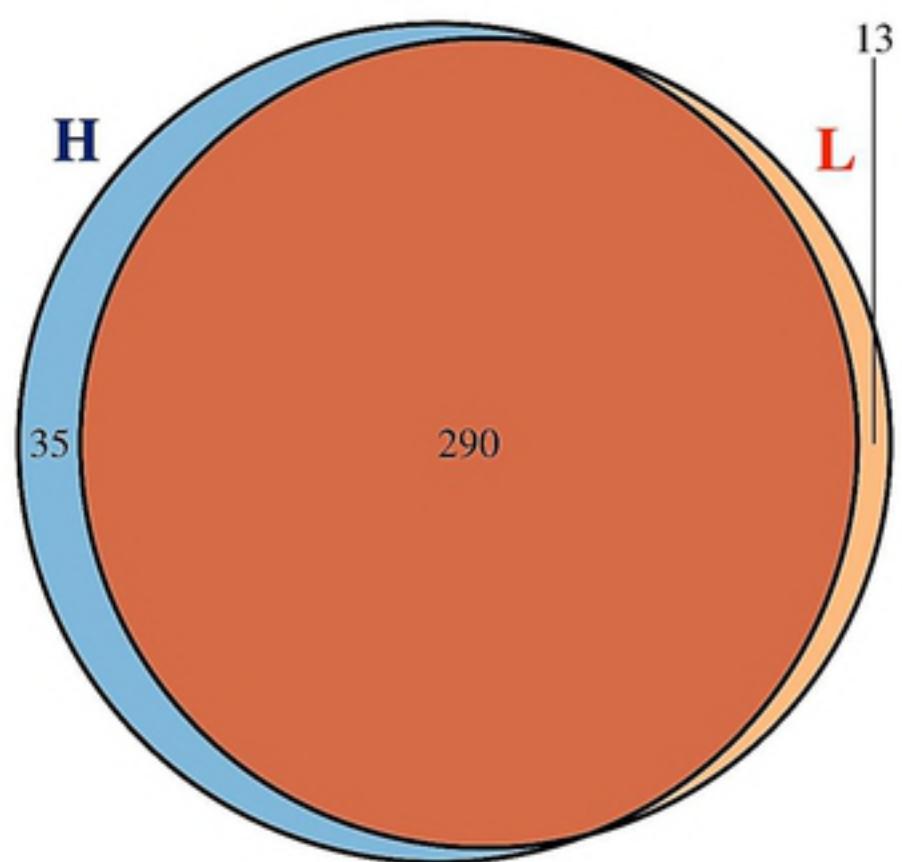
564 50. Rajilic-Stojanovic M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, et al. (2011)
565 Global and deep molecular analysis of microbiota signatures in fecal samples from
566 patients with irritable bowel syndrome. *Gastroenterology* 141: 1792-1801.

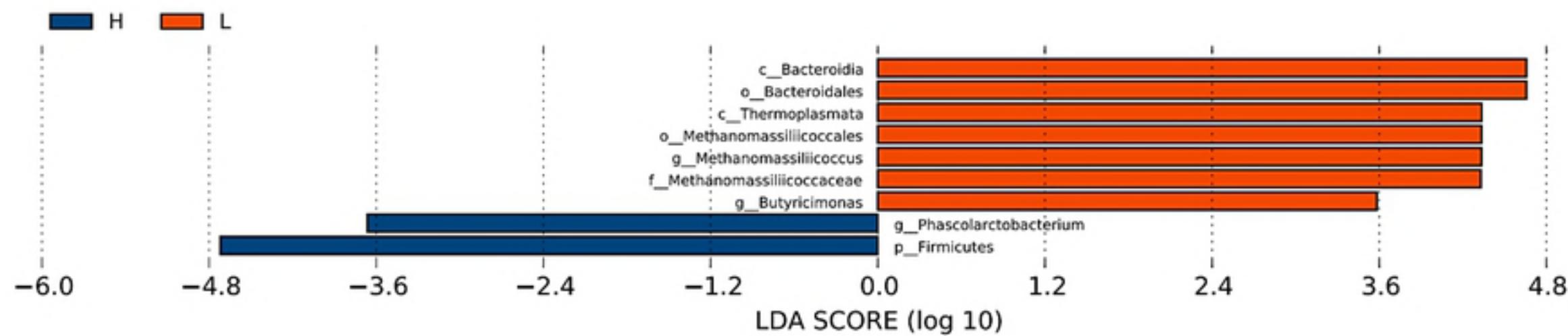
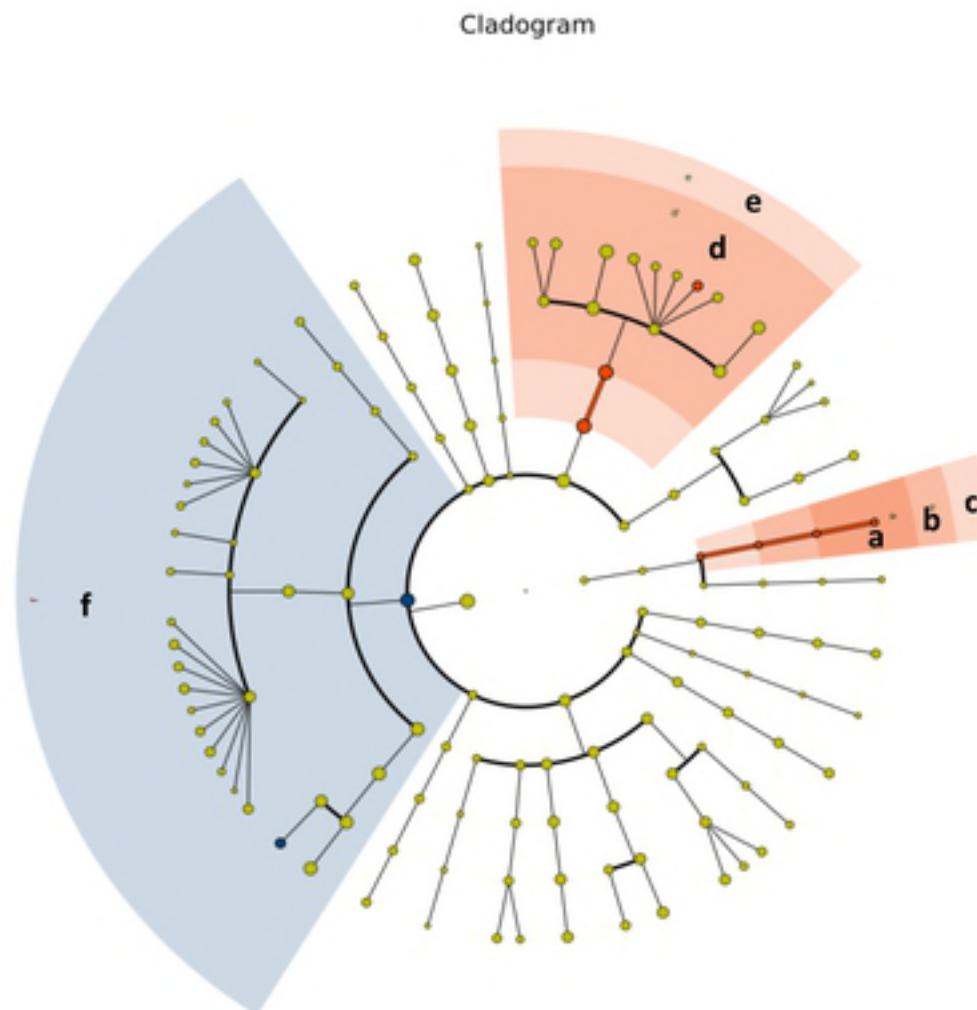
567 51. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS (2014) Bile acids and the gut
568 microbiome. *Curr Opin Gastroenterol* 30: 332-338.

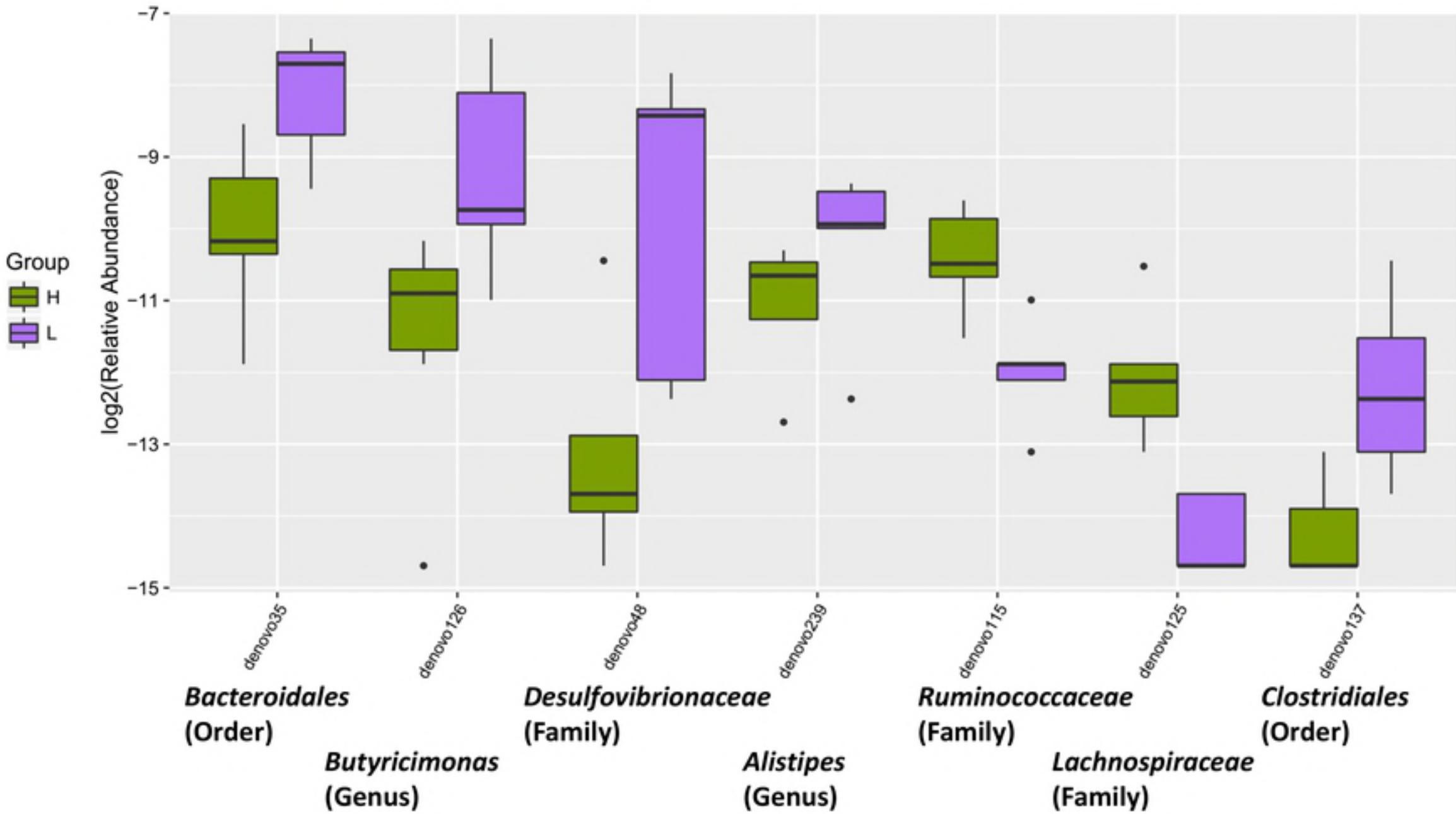




569 52. Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B (2017) Bile Acid Control of
570 Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and
571 Nonalcoholic Fatty Liver Disease. *Gastroenterology* 152: 1679-1694.

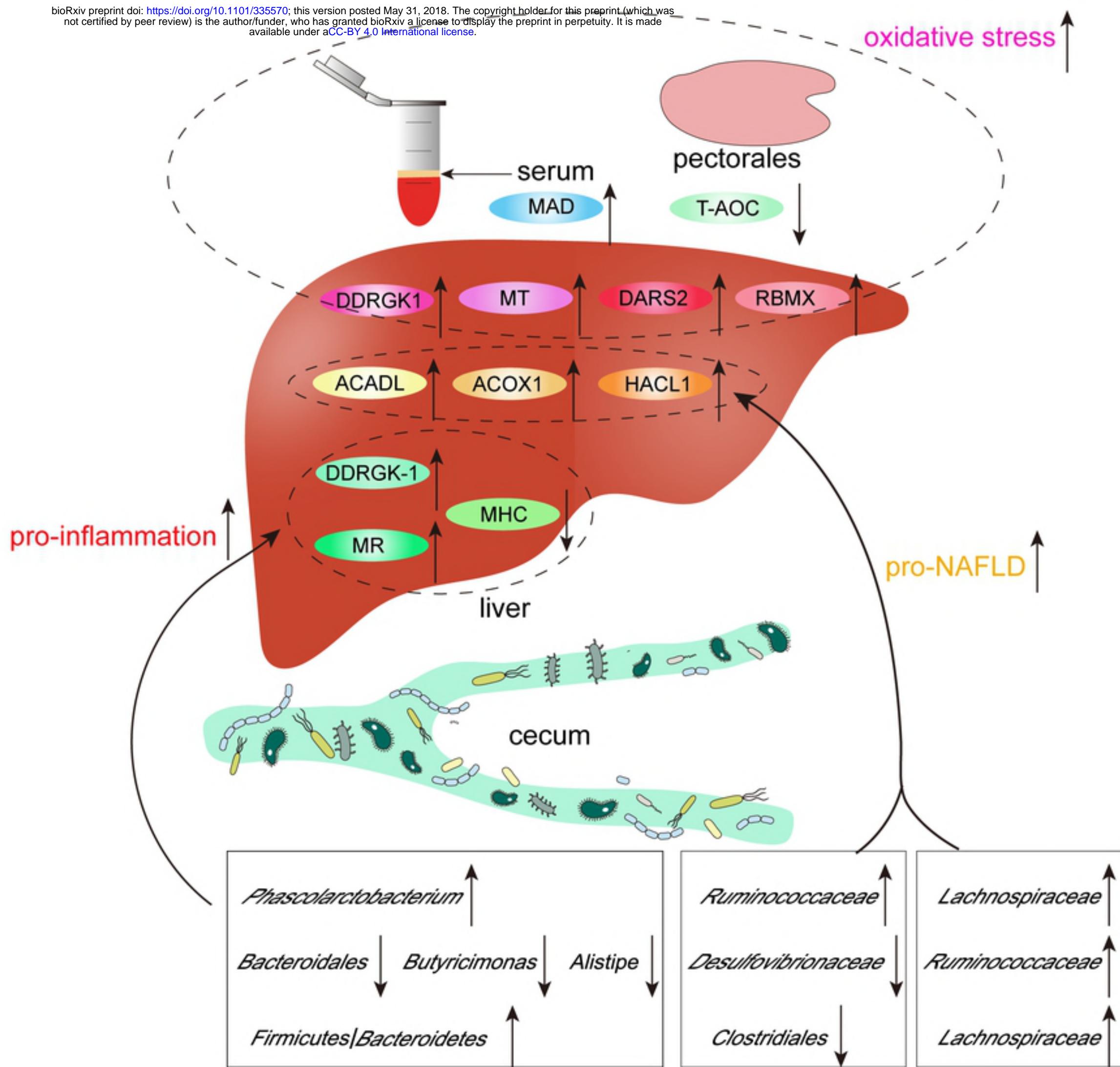
572 53. Luo J, Ko B, Elliott M, Zhou M, Lindhout DA, et al. (2014) A nontumorigenic


573 variant of FGF19 treats cholestatic liver diseases. *Sci Transl Med* 6: 100r-247r.



574 54. Sheng L, Jena PK, Liu HX, Kalanetra KM, Gonzalez FJ, et al. (2017) Gender
575 Differences in Bile Acids and Microbiota in Relationship with Gender Dissimilarity
576 in Steatosis Induced by Diet and FXR Inactivation. *Sci Rep* 7: 1748.



577 55. Pereira-Fantini PM, Bines JE, Lapthorne S, Fouhy F, Scurre M, et al. (2016) Short
578 bowel syndrome (SBS)-associated alterations within the gut-liver axis evolve early
579 and persist long-term in the piglet model of short bowel syndrome. *J Gastroenterol
580 Hepatol* 31: 1946-1955.


a**b****c****d**


GO pathways enrichment

a**b**

