

1 The role of gene flow in rapid and repeated evolution of cave related traits in Mexican tetra,  
2 *Astyanax mexicanus*

3  
4 Adam Herman<sup>1</sup>, Yaniv Brandvain<sup>1</sup>, James Weagley<sup>2,3</sup>, William R. Jeffery<sup>4</sup>, Alex C. Keene<sup>5</sup>,  
5 Thomas J. Y. Kono<sup>6</sup>, Helena Bilandžija<sup>4,7</sup>, Richard Borowsky<sup>8</sup>, Luis Espinasa<sup>9</sup>, Kelly O'Quin<sup>10</sup>,  
6 Claudia P. Ornelas-García<sup>11</sup>, Masato Yoshizawa<sup>12</sup>, Brian Carlson<sup>13</sup>, Ernesto Maldonado<sup>14</sup>, Joshua  
7 B. Gross<sup>15</sup>, Reed A. Cartwright<sup>16, 17</sup>, Nicolas Rohner<sup>18,19</sup>, Wesley C. Warren<sup>20</sup>, Suzanne E.  
8 McGaugh<sup>2</sup>  
9

10 <sup>1</sup>Plant and Microbial Biology, 140 Gortner Lab, 1479 Gortner Ave, University of Minnesota, Saint Paul, MN 55108

11 <sup>2</sup>Ecology, Evolution, and Behavior, 140 Gortner Lab, 1479 Gortner Ave, University of Minnesota, Saint Paul, MN  
12 55108

13 Current address: <sup>3</sup>Center for Genome Sciences and Systems Biology and <sup>4</sup>Center for Gut Microbiome and Nutrition  
14 Research, Washington University in St. Louis, St. Louis, MO 63108 USA

15 <sup>4</sup>Department of Biology, University of Maryland, College Park, Maryland 20742, USA.

16 <sup>5</sup>Department of Biological Sciences, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458

17 <sup>6</sup>Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA

18 <sup>7</sup>Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia

19 <sup>8</sup>Department of Biology, New York University, New York, New York 10003-6688, USA.

20 <sup>9</sup>School of Science, Marist College, Poughkeepsie, New York 12601

21 <sup>10</sup>Department of Biology, Centre College, 600 West Walnut St, Danville, Kentucky 40422, USA.

22 <sup>11</sup>Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Cd. Universitaria,  
23 Tercer Circuito Exterior s/n Edif. D 1er Piso, 04510 Coyoacán

24 <sup>12</sup>Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA

25 <sup>13</sup>Department of Biology, College of Wooster, 1189 Beall Ave, Wooster, OH 44691, USA.

26 <sup>14</sup>Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional  
27 Autónoma de México, Puerto Morelos, Mexico

28 <sup>15</sup>Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA

29 <sup>16</sup>The Biodesign Institute, Arizona State University, Tempe, AZ, USA.

30 <sup>17</sup>School of Life Sciences, Arizona State University, Tempe, AZ, USA.

31 <sup>18</sup>Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.

32 <sup>19</sup>Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS  
33 66160, USA.

34 <sup>20</sup>McDonnell Genome Institute, Washington University, Campus Box 8501, St Louis, Missouri 63108, USA

35 **ABSTRACT**

36 Understanding the molecular basis of repeated evolved phenotypes can yield key insights into  
37 the evolutionary process. Quantifying the amount of gene flow between populations is especially  
38 important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses  
39 have revealed that admixture is more common between diverging lineages than previously  
40 thought. In this study, we resequenced and analyzed nearly 50 whole genomes of the Mexican  
41 tetra from three blind cave populations, two surface populations, and outgroup samples. We  
42 confirmed that cave populations are polyphyletic and two *Astyanax mexicanus* lineages are  
43 present in our dataset. The two lineages likely diverged ~257k generations ago, which, assuming  
44 1 generation per year, is substantially younger than previous mitochondrial estimates of 5-7mya.  
45 Divergence of cave populations from their phylogenetically closest surface population likely  
46 occurred between ~161k - 191k generations ago. The favored demographic model for most  
47 population pairs accounts for divergence with secondary contact and heterogeneous gene flow  
48 across the genome, and we rigorously identified abundant gene flow between cave and surface  
49 fish, between caves, and between separate lineages of cave and surface fish. Therefore, the  
50 evolution of cave-related traits occurred more rapidly than previously thought, and  
51 troglomorphic traits are maintained despite substantial gene flow with surface populations.  
52 After incorporating these new demographic estimates, our models support that selection may  
53 drive the evolution of cave-derived traits, as opposed to the classic hypothesis of disuse and drift.  
54 Finally, we show that a key QTL is enriched for genomic regions with very low divergence  
55 between caves, suggesting that regions important for cave phenotypes may be transferred  
56 between caves via gene flow. In sum, our study shows that shared evolutionary history via gene  
57 flow must be considered in studies of independent, repeated trait evolution.

58 **INTRODUCTION**

59 Repeated adaptation to similar environments offers insight into the evolutionary process  
60 (Agrawal 2017; Gompel & Prud'homme 2009; Losos 2011; Rosenblum *et al.* 2014; Stern 2013;  
61 Stern & Orgogozo 2009). Predictable phenotypes are likely when repeated evolution occurs  
62 through standing genetic variation or gene flow, such that the alleles are identical by descent, and  
63 when populations experience shared, strong selection regimes (Rosenblum *et al.* 2014).  
64 Understanding repeated evolution, however, requires an understanding of the basic parameters of  
65 the evolutionary process, including how long populations have diverged, how many independent  
66 phenotypic origins have occurred, the extent of gene flow between populations, and the strength  
67 of selection needed to shape phenotypes (Roesti *et al.* 2014; Rosenblum *et al.* 2014; Rougemont  
68 *et al.* 2017; Stern 2013; Welch & Jiggins 2014).

69 The predictable phenotypic changes observed in cave animals offers one of the most  
70 exciting opportunities in which to study repeated evolution (Elmer & Meyer 2011). Cave animals  
71 also offer advantages over many systems in that the direction of phenotypic change is known  
72 (surface→cave) and coarse selection pressures are defined (e.g., darkness and low nutrient  
73 availability). The cavefish (*Astyanax mexicanus*) in northeastern Mexico have become a central  
74 model for understanding the evolution of diverse developmental, physiological, and behavioural  
75 traits (Keene *et al.* 2015). Many populations of *Astyanax mexicanus* exhibit a suite of traits  
76 common to other cave animals including reduced eyes and pigmentation (Borowsky 2015; Protas  
77 & Jeffery 2012). In addition, many populations possess behavioral and metabolic traits important  
78 for survival in dark, low-nutrient environments (Aspiras *et al.* 2015; Bibliowicz *et al.* 2013;  
79 Duboué *et al.* 2011; Jaggard *et al.* 2017; Jaggard *et al.* 2018; Jeffery 2001, 2009; Protas *et al.*  
80 2008; Riddle *et al.* 2018; Salin *et al.* 2010; Varatharasan *et al.* 2009; Yamamoto *et al.* 2009;  
81 Yoshizawa *et al.* 2010). Over 30 populations of cavefish are documented (Espinasa *et al.* 2001;  
82 Mitchell *et al.* 1977), and conspecific surface populations allow a proxy for the ancestral  
83 conditions to understand repeated adaptation to the cave environment. Thus, *A. mexicanus* offers  
84 an excellent opportunity to evaluate the roles of history, migration, drift, selection and mutation  
85 to the repeated evolution of a convergent suite of phenotypes.

86 Despite evidence for the repeated evolutionary origin of cave-associated traits in *A.*  
87 *mexicanus*, the timing of cave invasions by surface lineages is uncertain, and the extent of  
88 genetic exchange between cavefish and surface fish is under debate (Bradic *et al.* 2012; Bradic *et*  
89 *al.* 2013; Coghill *et al.* 2014; Fumey *et al.* 2018; Gross 2012; Hausdorf *et al.* 2011; Ornelas-  
90 García *et al.* 2008; Porter *et al.* 2007; Strecker *et al.* 2003; Strecker *et al.* 2004; Strecker *et al.*  
91 2012). High amounts of gene flow between cave and surface populations and among cave  
92 populations may complicate conclusions regarding repeated evolution (Ornelas-García &  
93 Pedraza-Lara 2015). For instance, cavefish populations are polyphyletic (Bradic *et al.* 2012;  
94 Bradic *et al.* 2013; Coghill *et al.* 2014; Gross 2012; Ornelas-García *et al.* 2008; Strecker *et al.*  
95 2003; Strecker *et al.* 2012). In principle, this pattern is also consistent with a single invasion of  
96 the cave system, subterranean spread of fish, and substantial gene flow of individual caves with  
97 their nearest respective surface population (suggested by Coghill *et al.* 2014; Espinasa &  
98 Borowsky 2001). Alternatively, gene exchange among caves could result in a shared adaptive  
99 history even if cave populations were founded independently.

100 Here, we conduct an extensive examination of the gene flow between cave populations  
101 and between cave and surface populations of *A. mexicanus* to understand repeated evolutionary  
102 origins of cave-derived phenotypes and the potential for gene flow to enhance or impede  
103 adaptation to caves. Since we employ whole genome resequencing as opposed to reduced

104 representation methods, we were able to calculate absolute measures of divergence ( $d_{XY}$ ),  
105 compare to relative measures (pairwise  $F_{ST}$ ) (reviewed in Cruickshank & Hahn 2014; Ellegren  
106 2014; Lowry *et al.* 2016), and demonstrate that pairwise  $F_{ST}$  is predominantly driven by  
107 heterogeneous diversity across populations which obscured accurate inferences of divergence  
108 and gene flow among populations in past studies (Charlesworth 1998). Our analyses reveal gene  
109 flow between cave populations is much more extensive than previously appreciated, cave and  
110 surface populations regularly exchange genes (Wilkens & Strecker 2003), and surface and cave  
111 populations have diverged recently. We show that given these demographic parameters, repeated  
112 evolution of cave phenotypes may reflect the action, rather than the relaxation of natural selection.  
113 Additionally, we present evidence that at least one region of the genome important for cave-  
114 derived phenotypes may be transferred between caves, suggesting that gene flow among caves  
115 may play a role in the maintenance and/or origin of cave phenotypes.  
116

## 117 **METHODS**

### 118 **Sampling, DNA extractions, and sequencing**

119 We sampled five populations of *Astyanax mexicanus* cave and surface fish from the  
120 Sierra de Guatemala, Tamaulipas, and Sierra de El Abra region, San Luis Potosí, Mexico:  
121 Molino, Pachón, and Tinaja caves and the Rascón and Río Choy surface populations (Figure 1).  
122 Two main lineages of cave and surface populations are often referred to as ‘new’ and ‘old’ in  
123 reference to when the lineages reached northern Mexico, each with independently evolved cave  
124 populations. Populations in Molino cave and Río Choy are considered ‘new’ lineage fish, and the  
125 populations of Pachón cave and Tinaja cave are typically classified as ‘old’ lineage populations  
126 (Bradic *et al.* 2012; Coghill *et al.* 2014; Dowling *et al.* 2002; Ornelas-García *et al.* 2008).

127 Rascón was selected because *cytochrome b* sequences are most similar to old lineage  
128 cave populations (Ornelas-García *et al.* 2008) and it is part of the river system of Rio Gallinas,  
129 which ends at the 105 m vertical waterfall of Tamul into Rio Santa María/Tampaon. It is  
130 hypothesized that new lineage surface fish could not overcome the 105 m waterfall and could not  
131 colonize the Gallinas river (e.g. Rascón population). Thus, Rascón likely has remained cut off  
132 from nearby surface streams inhabited by new lineage populations.

133 Fin clips were collected from fish in Spring 2013 from Pachón cave, Río Choy (surface),  
134 and a drainage ditch near the town of Rascón in San Luis Potosí, Mexico. Samples from Molino  
135 cave were collected by W. Jeffery, B. Hutchins, and M. Porter in 2005, and Pecos drainage in  
136 Texas in 1994 by W. Jeffery and C. Hubbs. Samples from Tinaja cave were collected in 2002  
137 and 2009 by R. Borowsky.

138 We complemented our sequencing of these populations with three additional individuals.  
139 First, we sequenced an *A. mexicanus* sample from a Texas surface population. While this  
140 population is not of direct interest to this study, it has been the focus of many Quantitative Trait  
141 Loci (QTL) studies (e.g., O’Quin *et al.* 2015), and therefore its evolutionary relationship to our  
142 populations is of interest. Second, we aimed to sequence an outgroup to polarize mutations in *A.*  
143 *mexicanus*. To do so, we first sequenced two samples of a close congener *Astyanax aeneus*  
144 (Mitchell *et al.* 1977; Ornelas-García & Pedraza-Lara 2015) from Guerrero, Mexico. However,  
145 despite being separated from the sampled *Astyanax mexicanus* populations by the Trans-Mexican  
146 Volcanic Belt (Mitchell *et al.* 1977; Ornelas-García & Pedraza-Lara 2015), we found a complex  
147 history of gene flow between *Astyanax aeneus* and *Astyanax mexicanus*. We therefore sequenced  
148 a more distant outgroup, the white skirt tetra (long-finned) *Gymnocorymbus ternetzi*.  
149 *Gymnocorymbus ternetzi* was used only for polarizing 2D site frequency spectra.

150 DNA was extracted using the Genomic-Tip Tissue Midi kits and DNEasy Blood and  
151 Tissue kit (Qiagen). We performed whole genome resequencing with 100bp paired-end reads on  
152 an Illumina HiSeq2000 at The University of Minnesota Genomics Center. Samples were  
153 prepared for Illumina sequencing by individually barcoding each sample and processing with the  
154 Illumina TruSeq Nano DNA Sample Prep Kit using v3 reagents. Five barcoded samples were  
155 pooled and sequenced in two lanes. In total, 45 samples were sequenced across 18 lanes. We  
156 resequenced nine Pachón cavefish, ten Tinaja cavefish, nine Molino cavefish, six Rascón surface  
157 fish, nine Río Choy surface fish and two *Astyanax aeneus* samples. We also made use of the  
158 *Astyanax* genome project to add another sample from the Pachón population, and obtain  
159 genotype information for the reference sequence. For this reference sample, we used the first  
160 read (R1) from all of the 100bp paired-end reads that were sequenced using an Illumina  
161 HiSeq2000 and aligned to the reference genome (McGaugh *et al.* 2014). The Texas population  
162 and the white skirt tetra were barcoded, pooled, and sequenced across two lanes of 125bp paired-  
163 end reads from a HiSeq2500 in High Output run mode using v3 reagents.

164 For all raw sequences, we trimmed and cleaned sequence data with Trimmomatic v0.30  
165 (Lohse *et al.* 2012) and cutadapt v1.2.1 (Martin 2011) using the adapters specific to the barcoded  
166 individual, allowing a quality score of 30 across a 6bp sliding window, and removing all reads <  
167 30 nucleotides in length after processing. When one read of a pair failed QC, its mate was  
168 retained as a single-end read for alignment. Post-processing coverage statistics were generated  
169 by the Fastx toolkit v0.0.13 ([http://hannonlab.cshl.edu/fastx\\_toolkit/](http://hannonlab.cshl.edu/fastx_toolkit/)) and ranged from 6.8 to  
170 11.9 fold coverage (mean = 8.87 fold coverage; median = 8.65 fold coverage Table 1, S1, S2),  
171 assuming a genome size estimate of 1.19 Gb (McGaugh *et al.* 2014) for the Illumina Hi-Seq  
172 2000 samples. For the Pachón reference genome sequence, which was excluded from the  
173 measures above, the coverage was 16.68 fold. All new Illumina sequence reads were submitted  
174 to NCBI's Sequence Read Archive (Table S3). We expect some heterozygosity drop-out with  
175 this relatively low level of coverage, but we sought to balance number of samples and depth of  
176 coverage in a cost-effective manner. Heterozygosity drop out would lower our diversity  
177 estimates, and if directional (e.g., due to reference sequence bias) could increase divergence  
178 between populations and lower estimates of gene flow. As detailed below, our data estimate  
179 more recent divergence times and higher estimates of gene flow than past studies.  
180

### 181 **Alignment to reference and variant calling**

182 The *Astyanax mexicanus* genome v1.0.2 (McGaugh *et al.* 2014) was downloaded through  
183 NCBI genomes FTP. Alignments of Illumina data to the reference genome were generated with  
184 the BWA-mem algorithm (Li 2013) in *bwa-0.7.1* (Li & Durbin 2009, 2010). Both Genome  
185 Analysis Toolkit v3.3.0 (GATK) and Picard v1.83 (<http://broadinstitute.github.io/picard/>) were  
186 used for downstream manipulation of alignments, according to GATK Best Practices and forum  
187 discussions (Auwerda *et al.* 2013; DePristo *et al.* 2011; McKenna *et al.* 2010). Alignments of  
188 paired-end and orphaned reads for each individual were sorted and merged using Picard.  
189 Duplicate reads that may have arisen during PCR were marked using Picard's MarkDuplicates  
190 tool and filtered out of downstream analyses. GATK's IndelRealigner and  
191 RealignerTargetCreator tools were then used to realign reads that may have been errantly  
192 mapped around indels (insertions/deletions). Additional details are in Supplemental Methods.

193 The HaplotypeCaller tool in GATK v3.3.0 was used to generate GVCFs of genotype  
194 likelihoods for each individual. The GenotypeGVCFs tool was used to generate a multi-sample  
195 variant call format (VCF) of raw variant calls for all samples. Hard filters were applied

196 separately to SNPs and indels/mixed sites using the VariantFiltration and SelectVariants tools  
197 (Table S4). Filtering variants was performed to remove low confidence calls from the dataset.  
198 The filters removed calls that did not pass thresholds for base quality, depth of coverage, and  
199 other metrics of variant quality.

200 Alleles with 0.5 frequency appeared to be overrepresented in the site frequency spectra,  
201 and the depth of coverage for alleles with 0.5 frequency was greater than the coverage at other  
202 frequencies. Upon examination, every individual was heterozygous and these alleles occurred in  
203 small tracts throughout the genome. We concluded these were likely paralogous regions (teleost  
204 fish have an ancient genome duplication, Hoegg *et al.* 2004; Meyer & Van de Peer 2005).  
205 Molino was the most severely impacted population, likely due to Molino's low diversity  
206 allowing for collapsing of paralogs (see below). To be conservative, we identified sites where  
207 100% of individuals in any population were heterozygotes and excluded these sites in all  
208 analyses.

209 We generated a VCF file with variant and invariant sites, and subset it to include biallelic  
210 only SNPs where applicable. We excluded sites that were defined as repetitive regions from a  
211 Repeat Modeler analysis in McGaugh *et al.* (2014). Next, we removed sites that had less than six  
212 individuals genotyped in all populations. We also scanned for indels in the VCF file and  
213 removed the indel as well as 3 bp +/- around the indel. In total, 171,841,976 bp were masked  
214 from downstream analyses. Lastly, all sites that were tri or tetra-allelic were removed. Thus, sites  
215 were either invariant or biallelic. To reduce issues of non-independence induced by linkage  
216 disequilibrium, we analyzed a thinned set of biallelic SNPs by retaining a single SNP in each  
217 non-overlapping window of 150 SNPs for the ADMIXTURE, TreeMix, and  $F_3$  and  $F_4$  analyses,  
218 resulting in approximately 119,000 SNPs for those analyses.  
219

## 220 Population phylogeny and divergence

221 We generated a phylogenetic reconstruction to understand population relationships using  
222 47 sampled individuals (excluding white skirt tetra, but including *A. aeneus* and Texas *A. mexicanus*). The population phylogeny estimation was implemented in RAxML v8.2.8 with the  
223 two *A. aeneus* specified as the outgroups. We converted the VCF to fasta format alignments by  
224 passing through the mvf format using MVFtools v3 (Pease & Rosenzweig 2015). This was done  
225 to preserve ambiguity codes at sites polymorphic in individuals. Sites with greater than 40%  
226 missing data were removed using TrimAl v1.2 (Capella-Gutiérrez *et al.* 2009). We performed  
227 100 rapid bootstrapping replicates followed by an ML search from two separate parsimony trees.  
228 The ML tree with bootstrap support was drawn using the ape package v3.5 (Paradis *et al.* 2004)  
229 in R v3.2.1 (Team 2014) using the *A. aeneus* samples as the outgroup, however, our results are  
230 consistent even if the outgroup is left unspecified and this decision is justified by the observation  
231 that *A. aeneus* is more distant from all *A. mexicanus* populations than any are to one another, as  
232 measured by the mean number of pairwise sequence differences.  
233

## 235 Intra- and inter-population average pairwise nucleotide differences

236 Average pairwise nucleotide diversity values ( $\pi$ ) reflect the history of coalescence events  
237 within and among populations (Hudson 1990; Nei 1987) and are directly informative about the  
238 history and relationships of a sample. Here, we use the following notation for inter- and  
239 intrapopulation average pairwise nucleotide diversity values: intrapopulation values are  
240 designated with  $\pi$ , while interpopulation values are designated with  $d_{XY}$  where X and Y are

241 different populations (e.g.,  $d_{\text{Rascón-Pachón}}$ ). Pairwise nucleotide diversity estimates for fourfold  
242 degenerate sites were calculated for 46 individuals (excluding Texas *A. mexicanus* and white  
243 skirt tetra) from unphased genomic data using the VCF file with invariant and variant sites unless  
244 otherwise noted. Additional details for each analysis (e.g., window size, site class used) are given  
245 supplemental methods. We also performed windowed estimates along the entire genome to  
246 understand the fine-scale apportionment of ancestry.

247 We use these levels of diversity and divergence to estimate the difference in coalescent  
248 times between and within populations. In the absence of gene flow, this excess between  
249 populations can be translated into an estimate of divergence time ( $d_{\text{XY}} - \pi_{\text{anc}} = 2\mu\text{T}$  (Brandvain *et*  
250 *al.* 2014; Hudson *et al.* 1987), where T is the population split time, and using a diversity in  
251 surface population as a stand in for  $\pi_{\text{anc}}$ ). After removing early generation hybrids identified by  
252 ADMIXTURE, we use this approach to estimate this excess coalescent time between pairs of  
253 populations. However, given extensive evidence for gene exchange (below), this estimate will be  
254 more recent than the true divergence time, which we estimate with model-based approaches  
255 below.

256 In this and all other estimates of divergence time, below, we assume a neutral mutation  
257 rate of  $3.5 \times 10^{-9}$ /bp/generation which is estimated using parent-offspring trios in cichlids  
258 (Malinsky *et al.* 2017). Though generation time in the wild has not been measured, in the  
259 laboratory, *Astyanax* is sexually mature as early as six months under optimal conditions, though  
260 this varies across laboratories (Borowsky 2008a; Jeffery 2001). Since conditions in the wild are  
261 rarely as optimal as in the laboratory, we assume generation time is one year, though, our general  
262 conclusions are consistent if generation time is only six months.

263

## 264 **Genome-wide tests for gene flow**

265 *ADMIXTURE*

266 We estimated admixture (cluster membership) proportions for the individuals comprising  
267 the five populations studied, as well as *A. aeneus* samples, using ADMIXTURE v1.3.0  
268 (Alexander & Lange 2011; Alexander *et al.* 2009). We conducted 10 independent runs for each  
269 value of K (the number of ancestral population clusters) from K = 2 to K = 6 and present results  
270 for the run with the K = 6 (i.e., the number of sampled biological populations).

271

## 272 *F<sub>3</sub>* and *F<sub>4</sub>* statistics

273 After removing early generation hybrids, we used *F<sub>3</sub>* and *F<sub>4</sub>*-statistics (as implemented in  
274 TreeMix v1.12 (Pickrell & Pritchard 2012)) to test for historical gene flow. For computational  
275 feasibility, we calculated a standard error for each statistic using a block jackknife with blocks of  
276 500 SNPs, assessing significance by a Z-score from the ratio of *F<sub>4</sub>* to its standard error.

277 The *F<sub>3</sub>* statistic (Peter 2016; Reich *et al.* 2009), represented as  $F_3(X; A, B)$ , is calculated  
278 as  $E[(p_X - p_A)(p_X - p_B)]$ , where X is the population being tested for admixture, A and B are treated  
279 as the source populations, and  $p_X$ ,  $p_A$ ,  $p_B$  are the allele frequencies. Without introgression, *F<sub>3</sub>* is  
280 positive, and a negative value occurs when this expectation is overwhelmed by a non-treelike  
281 history of three populations. Importantly, complex histories of mixture in populations A and/or B  
282 do not result in significantly negative *F<sub>3</sub>* values (Patterson *et al.* 2012; Reich *et al.* 2009).

283  $F_4$  tests assess ‘treeness’ among a quartet of populations (Reich *et al.* 2009).  
284  $F_4(P1,P2;P3,P4)$  is calculated as  $E[(p_1 - p_2)(p_3 - p_4)]$ , and serves as a powerful test of  
285 introgression when P1, P2 and P3, P4 are sisters on an unrooted tree. A significantly positive  $F_4$   
286 value means that P1 and P3 are more similar to one another than expected under a non-reticulate  
287 tree — a result consistent with introgression between P1 and P3, or between P2 and P4.  
288 Alternatively, a significantly negative  $F_4$  value is consistent with introgression between P1 and  
289 P4 or between P2 and P3. Regardless of the sign of this test,  $F_4$  values may reflect introgression  
290 events involving sampled, unsampled, or even extinct populations.  
291

## 292 *TreeMix*

293 We used the Treemix program v1.12 (Pickrell & Pritchard 2012) to visualize all  
294 migration events after removing early generation hybrids. Rather than representing population  
295 relationships as a bifurcating tree, TreeMix models population relationships as a graph in which  
296 lineages can be connected by migration edges. We used the same thinned biallelic SNPs as  
297 above. As with  $F_3$  and  $F_4$ , we removed early generation hybrids from this analysis. We first  
298 inferred the maximum-likelihood tree and then successively added single migration events until  
299 the proportion of variance explained by the model plateaued (Pickrell & Pritchard 2012).  
300

## 301 **Demographic modeling**

302 We modeled the demographic history of pairs of populations to further elucidate their  
303 relationships and migration rates. To conduct demographic modeling, we generated unfolded  
304 joint site frequency spectra (2D SFS) from the invariant sites VCF using a custom Python script.  
305 Detailed explanation of parameters and a user-friendly guide is available here:  
306 [https://github.com/TomJKono/CaveFish\\_Demography/wiki](https://github.com/TomJKono/CaveFish_Demography/wiki)

307 White skirt tetra (*Gymnophorus ternetzi*) was used as the estimated ancestral state for  
308 all 10 pairwise combinations of Río Choy surface, Molino cave, Pachón cave, Rasón surface,  
309 and Tinaja cave. Recently admixed individuals were excluded from the comparisons. To reduce  
310 the effect of paralogous alignment from the ancient teleost genome duplication, sites at 50%  
311 frequency in both populations were masked from the demographic modeling analysis. Sites were  
312 excluded if they were heterozygous in the representative outgroup sample or had any missing  
313 information in either of the populations being analyzed. In addition, sites were excluded due to  
314 indels or repetitive regions as described above. Aside from these exclusions, all other sites,  
315 including invariant sites were included in all 2D SFS and the length of these sites make up locus  
316 length.

317 A total of seven demographic models were fit to each 2D SFS to infer the timing of  
318 population divergence, effective migration rates, and effective population sizes using  $\hat{\theta}\hat{a}\hat{\theta}$  1.7.0  
319 (Gutenkunst *et al.* 2009). The seven models were derived from previously published  
320 demographic modeling analysis (Tine *et al.* 2014). Briefly, the seven models are as follows: SI -  
321 strict isolation, SC - secondary contact, IM - isolation with migration, AM - ancestral migration,  
322 SC2M - secondary contact with two migration rates, IM2M - isolation with migration with two  
323 migration rates, and AM2M - ancestral migration with two migration rates (see Figure S9 of Tine  
324 *et al.* 2014). Two migration rates within the genome appeared to fit the data better in previous  
325 work (Tine *et al.* 2014), as this approach allows for heterogeneous genomic divergence (M  
326 which is most often the largest migration rate within the genome,  $M_i$  which is usually the lowest

327 migration rate within the genome). Descriptions of the parameters and parameter starting values  
328 are given in Table S5 and Supplementary Methods. For each replicate, Akaike Information  
329 Criterion (AIC) values for each model were converted into Akaike weights. The model with the  
330 highest mean Akaike weight across all 50 replicates was chosen as the best-fitting model  
331 (Rougeux *et al.* 2017; Table S6; similar to Wagenmakers & Farrell 2004).

332 The best-fitting demographic model for each 2D SFS comparison was used to generate  
333 estimates of the population parameters. Scaling from estimated parameters to real-value  
334 parameters was done assuming a mutation rate ( $\mu$ ) of  $3.5 \times 10^{-9}$  per bp per generation (Malinsky  
335 *et al.* 2017) and a locus length (L) of the number of sites used to generate the 2D SFS. For  
336 effective population size estimates, we estimated the reference population size,  $N_{ref}$ , as the mean  
337 “theta” value from all 50 replicates of the best-fitting model multiplied by  $1/(4\mu L)$ . The effective  
338 population sizes of the study populations were then estimated as a scaling of  $N_{ref}$ . To estimate  
339 the per-generation proportion of migrants, we scaled the mean total migration rates from  $\partial a \partial i$  by  
340  $1/(2N_{ref})$ . Total times since divergence for pairs of populations were estimated as the sum of the  
341 split time (“Ts”) and time since secondary contact commenced (“Tsc”) estimates for each  
342 population pair.

343

#### 344 **Modeling of selection needed for cave alleles to reach high frequency**

345 With demographic estimates provided by our whole genome sequencing and  $\partial a \partial i$ , we  
346 estimated the selection coefficients needed to bring alleles associated with the cave phenotype to  
347 high frequency. We implemented the 12-locus additive alleles model by Cartwright *et al.* (2017)  
348 with the parameters estimated for Molino cave, as this is the population where selection would  
349 need to be strongest to overcome the effects of drift. We estimated the one-way mutation rate of  
350 loci ( $\mu$ ) to be on the order of  $1 \times 10^{-6}$  (c.f.  $3.5 \times 10^{-9}$ /bp/generation \* 1170bp, which is the median  
351 gene length across the genome). Other parameters were  $N = 7,335$  (Molino Ne),  $h = 0.5$  (additive  
352 alleles),  $k = 12$  (number of loci), and  $Q = 0.1$  (surface allele frequency of cave-favored alleles).  
353 The simulation model was adapted from Cartwright *et al.* (2017) with the addition that the cave  
354 population was isolated for a period of time before becoming connected again with the surface.  
355 Consistent with our demographic models for Molino and Río Choy, migration rates spanned  
356 between  $10^{-6} - 10^{-5}$  with 91,000 generations of isolation followed by 71,000 generations of  
357 connection. We also conducted simulations with the parameters from Tinaja cave as this is the  
358 cave population where selection would need to be weakest to overcome the effects of drift. All  
359 parameters were the same as above except  $N = 30,522$  (Tinaja Ne), and 170,000 generations of  
360 isolation were followed by 20,000 generations of connection.

361

#### 362 **Candidate regions introgressed between caves**

363 To identify regions of the genome that were likely transferred between cave populations  
364 or between cave and surface populations and were linked to cave-associated phenotypes, we  
365 implemented an outlier approach incorporating pairwise sequence differences and  $F_{ST}$ . To  
366 determine potential candidate regions, we utilized 5kb  $d_{XY}$  windows using all biallelic sites, not  
367 just four-fold degenerate, since so few sites would be available. We first phased the biallelic  
368 variant sites for all samples using BEAGLE (version 4.1; Browning & Browning 2007). We then  
369 determined the number of invariant sites (from the full genome VCF) and variant sites in each

370 5kb window to calculate average pairwise diversity. We then identified 5kb regions in which  $d_{XY}$   
371 was in the lower 5% tail of the genomic distribution of  $d_{XY}$  for all three pairwise combinations of  
372 cave populations.

373 We identified genes with low  $d_{XY}$  across all caves (lowest 5% of  $d_{XY}$  values genome-  
374 wide across all three pairwise comparisons) but substantial divergence with either surface  
375 population as measured by  $F_{ST}$  or  $d_{XY}$ . For  $F_{ST}$  outliers, we required that  $\pi$  per gene for both  
376 surface fish populations must be greater than the lowest 500  $\pi$  values for genes across the  
377 genome. This requirement protects, in part, against including regions that are low diversity  
378 across all populations due to a feature of the genome.

379 To put the results in context of phenotypes mapped to the genome, we created a database  
380 of prior QTL from several key studies (Kowalko *et al.* 2013a; Kowalko *et al.* 2013b; O'Quin *et*  
381 *al.* 2013; Protas *et al.* 2007; Protas *et al.* 2008; Yoshizawa *et al.* 2015; Yoshizawa *et al.* 2012b)  
382 and used overlapping markers between studies to position QTL relative to the linkage map in  
383 O'Quin *et al.* (2013). For markers in (Kowalko *et al.* 2013b), we used Blastn to place the marker  
384 on a genomic scaffold and placed the QTL from (Kowalko *et al.* 2013b) in our database as  
385 locating to the entire scaffold. Our QTL database is given in Table S7.

386

## 387 **RESULTS**

### 388 **Population phylogenetic reconstruction**

389 We inferred the population phylogeny using half the nuclear genome (invariant and variant sites,  
390 but no mitochondrial sites) in the program RAxML. Our phylogenetic tree clearly demarcates  
391 two lineages and indicates that the Rascón surface population and the Tinaja and Pachón cave  
392 populations form a monophyletic clade (Figure 1; often referred to as 'old lineage'). Similarly,  
393 the Río Choy surface and Molino cave populations form a monophyletic clade (referred to as  
394 'new lineage'). Thus, this phylogeny indicates that many cavefish traits may be polyphyletic  
395 (i.e., evolved through repeated evolution).

396 Branch lengths illustrate the low diversity in cave populations as compared to surface  
397 populations. In agreement with a previous study, diversity is lower in the Molino cave population  
398 than other populations tested (Badic *et al.* 2013). While all populations and the two lineages  
399 have high bootstrap support ( $\geq 99$ ), bootstrap support with genomic-scale data provides little  
400 information about the evolutionary processes or the distribution of alternative topologies across  
401 the genome (Yang & Rannala 2012), thus, we use a series of tests below to explore this further.

402

### 403 **Diversity and divergence**

404 Patterns of diversity within populations,  $\pi$ , and interpopulation divergence,  $d_{XY}$ , provide a  
405 broad summary of the coalescent history within and between populations. We present pairwise  
406 sequence differences at fourfold degenerate sites between all pairs of individuals (Figure 2). The  
407 'striped' individuals in Figure 2B correspond to early generation hybrids as inferred by  
408 ADMIXTURE (Figure 2A). We removed these putative early generation hybrids from our  
409 summary of diversity within and divergence between populations presented in Table 2.

410 Genome-wide average diversity within cave populations ( $\pi_{4\text{fold degen}}$ : Molino = 0.00074,  
411 Tinaja = 0.00129, Pachón = 0.00100; Table 2) is substantially lower than diversity within surface  
412 populations ( $\pi_{4\text{fold degen}}$ : Río Choy = 0.00300, Rascón = 0.00207), reflecting a decrease in  
413 effective population size in caves (sensu Avise & Selander 1972). Molino cave is the most

414 homogenous. These results are consistent with the short branches in cave populations observed  
415 in the phylogenetic tree produced by RAxML (Figure 1). In contrast, the surface population Río  
416 Choy is the most diverse in our sample — so much so that two Río Choy fish may be more  
417 divergent than fish compared between any of the old lineage populations (e.g., Tinaja and  
418 Rascón).

419 Genome-wide average divergence between two lineages ( $d_{XY}$  4fold degen = 0.00340 -  
420 0.00374, Table 2) exceeds divergence between cave and surface populations within lineages ( $d_{XY}$   
421 4fold degen Molino-Río Choy = 0.00332; Tinaja-Rascón = 0.00285; Pachón-Rascón = 0.00298;  
422 Table 2). Thus, old and new lineages diverged prior to (or have experienced less genetic  
423 exchange than) any of the cave-surface population pairs. The two old lineage caves are the least  
424 diverged populations in our sample ( $d_{XY}$  4fold degen: Pachón-Tinaja = 0.00225). These results are  
425 consistent with both the observation of monophyly of old and new lineages and the observation  
426 that old lineage cave populations are sister taxa in the RAxML tree (Figure 1).

427 Divergence between populations suggests that a simple bifurcating tree does not fully  
428 capture the history of these populations. For example, divergence between the new lineage cave  
429 population (Molino) and the geographically closer old lineage cave population (Pachón) is less  
430 than divergence between Molino and the geographically further old lineage populations (Tinaja  
431 and Rascón; Table 2). Likewise, all old lineage populations are closer to Molino cave than they  
432 are to Río Choy. These results suggest gene flow between Molino cave and the old lineage  
433 populations, which is supported by additional analyses.

434

### 435 **Genome-wide tests suggest substantial historical and contemporary gene flow**

436 **ADMIXTURE**

437 We focus our discussion on  $K = 6$ , the case where the number of clusters matches our  
438 presumed number of populations (Figure 2A), and additional cluster sizes are presented in  
439 (Figure S1). While, individuals largely cluster exclusively with others from their sampled  
440 population, we also observe contemporary gene flow between cave and surface populations, as  
441 well between new and old lineage taxa (Figure 2A, S1).

442 Specifically, there appears to be reciprocal gene exchange between the Tinaja cave and  
443 the old lineage surface population (a Tinaja individual shares 22% cluster membership with  
444 Rascon surface and a Rascon individual shares 29% membership with Tinaja; Figure 2A, S1,  
445 S2). Another Tinaja sample appears to be an early generation hybrid with the new lineage  
446 surface population (a Tinaja individual with 14% membership with Río Choy). One new lineage  
447 surface sample appears to have recent shared ancestry with samples from Pachón (i.e., Río Choy  
448 individual with 12% cluster membership with Pachón).

449 Although unsupervised clustering algorithms may show signs of admixture even when  
450 none has occurred (Falush *et al.* 2016), corroboration of ADMIXTURE results with supporting  
451 patterns of pairwise sequence divergence (Figure 2, S1, S2) in putatively admixed samples  
452 (Rascón 6, Tinaja 6, Choy 14, Tinaja E) strongly suggests that early generation hybrids between  
453 cave and surface populations and old and new lineages are present in current-day populations.

454 While the existence of early generation hybrids is consistent with long-term genetic  
455 exchange, such hybrids do not provide evidence for historical introgression. We, therefore,  
456 rigorously characterize the history of gene flow in this group, while removing putative recent

457 hybrids identified from ADMIXTURE and pairwise sequence divergence to ensure that our  
458 historical claims are not driven by a few recent events.

459

#### 460 *F*<sub>3</sub> and *F*<sub>4</sub> statistics

461 To test for historic genetic exchange, we calculated *F*<sub>3</sub> and *F*<sub>4</sub> “tree imbalance tests,” after  
462 removing early generation hybrids identified by ADMIXTURE. Throughout the section below,  
463 gene flow is supported by *F*<sub>4</sub> statistics between the two underlined taxa and/or the two non-  
464 underlined taxa in the four-taxon tree. Further, we interpret the *F*<sub>4</sub> statistics in relation to the  
465 ranking of the *F*<sub>4</sub> scores. Extreme *F*<sub>4</sub> scores may be the result of both pairs (e.g., A-C and B-D)  
466 exchanging genes, amplifying the *F*<sub>4</sub> score beyond what the score would be if gene flow  
467 occurred only between a single pair within the quartet.

468 *F*<sub>3</sub> and *F*<sub>4</sub> tests convincingly show that Rascón, the old lineage surface population, has  
469 experienced gene flow with a lineage more closely related to *A. aeneus* than to the other  
470 individuals in our sample (Table 3). This claim is supported by numerous observations including  
471 the observations that, while all *F*<sub>3</sub> tests including Rascón are significantly negative (i.e.,  
472 supporting admixture), the most extreme *F*<sub>3</sub> statistic is from a test with Rascón as the target  
473 population and *A. aeneus* and Tinaja as admixture sources, reflecting that both *A. aeneus* and  
474 Tinaja have likely hybridized extensively with Rascón. Further, as measured by  $d_{XY}$ , Rascón is  
475 more closely related to *A. aeneus* than other populations (Table 2). Additionally, all *F*<sub>4</sub> tests of  
476 the form (*A. aeneus*, new lineage; old lineage cave, Rascón) are significantly negative, meaning  
477 that Rascón is genetically closer to *A. aeneus* than expected given a simple tree (Figure S3).  
478 Therefore, *A. aeneus* is an imperfect outgroup to *A. mexicanus*.

479 Our results also show that the new lineage surface population, Río Choy, experienced  
480 gene flow with an unsampled outgroup. A significantly negative *F*<sub>3</sub> value demonstrates Río Choy  
481 (the new lineage surface population) is an admixture target with Molino (new lineage cave) and  
482 *A. aeneus* as admixture sources (Table 3). This claim is bolstered by significantly positive *F*<sub>4</sub>  
483 values in all comparisons of the form (*A. aeneus*, old lineage; Río Choy, Molino) in Figure S3.  
484 However, because  $d_{XY}$  between *A. aeneus* and both new lineage populations are equivalent, we  
485 suggest this is an example of “the outgroup case” for *F*<sub>3</sub> (Patterson *et al.* 2012) in which  
486 admixture is attributed to an uninvolved outgroup (in this case, *A. aeneus*) rather than the  
487 unsampled admixture source.

488 We uncover evidence for admixture between the old lineage cave population, Pachón,  
489 and both new lineage populations (Molino cave and Río Choy surface), as observed in early  
490 generation hybrids in ADMIXTURE. Specifically, the significantly negative *F*<sub>4</sub> values for (*A.*  
491 *aeneus*, new lineage; Pachón, Tinaja) (Figure S3) are consistent with gene flow between both  
492 new lineage populations and the old lineage Pachón cave, and/or gene flow between Tinaja and  
493 *A. aeneus*. Because no other evidence suggests gene flow between Tinaja and *A. aeneus*, we  
494 argue that this result reflects gene flow between Pachón and the new lineage populations. This  
495 claim is further supported by the observation that  $d_{XY}$  between new lineage populations and  
496 Pachón is consistently lower than  $d_{XY}$  between new lineage populations and the other old lineage  
497 populations (Table 2).

498 Additionally, our analyses are consistent with gene flow between the old lineage Tinaja  
499 cave and the old lineage surface population, Rascón. Again, this result complements the

500 discovery of two early generation hybrids between these populations in our ADMIXTURE  
501 analysis. This claim is supported by the significantly positive  $F_4$  value for (*A. aeneus*, Rascón;  
502 Pachón, Tinaja). Since we lack evidence of Pachón - *A. aeneus* admixture, this significant  $F_4$   
503 statistic is likely driven by Rascón - Tinaja admixture.

504 Despite gene flow among most population pairs, there is one case in which tree  
505 imbalance tests failed to reject the null hypothesis of a bifurcating tree:  $F_4$  tests of the form (new  
506 lineage, new lineage; old lineage, old lineage) (Figure S3). This result is counter to both our  
507 observation of early generation hybrids (between the new and old lineages observed in  
508 ADMIXTURE), and the rampant gene flow observed in other  $F_4$  - statistics, as well as TreeMix  
509 (Figures 3, S4),  $d_{XY}$  nearest neighbor proportions (Figures S5-S7) and Phylonet (Figure S8). In  
510 these cases, it is also plausible that  $F_4$  scores that do not differ from zero may reflect opposing  
511 admixture events that cancel out a genome-wide signal, rather than an absence of introgression  
512 (see Reich *et al.* 2009).

513

#### 514 *TreeMix*

515 TreeMix allows us to visualize population relationships as a graph depicting directional  
516 admixture given a number of migration events, and uses the covariance structure of allele  
517 frequencies among populations rather than allele frequency difference correlations (e.g.,  $F_3$  and  
518  $F_4$ ). By examining multiple runs with different levels of migration, the TreeMix run with five  
519 migration events best explains the sample covariance (Figure S4).

520 TreeMix illustrates gene flow from the ancestral new lineage into both Rascón surface  
521 and Pachón cave (Figure 3; also suggested by  $F_3$  and  $F_4$  statistics), while providing evidence for  
522 gene flow from the lineage leading to *A. aeneus* samples to the Río Choy and Rascón lineages  
523 (also suggested by  $F_3$  and  $F_4$  statistics). Migration from Pachón cave into Tinaja cave is indicated  
524 (also supported by  $\delta\text{a}\delta\text{i}$  modeling). However, the topology recovered by TreeMix places Pachón  
525 as the outgroup to (Rascón, Tinaja), thus, Pachón to Tinaja gene flow likely (partially) reflects  
526 this incorrect tree structure.

527 Care should be taken in interpreting the migration arrows drawn on the TreeMix result.  
528 First, we limited the number of migration edges to five, so further (possibly real) migration  
529 events are not represented. Second, any particular inferred admixture event is necessarily  
530 unidirectional and the source population is designated as the population with a migration weight  
531  $\leq 50\%$ . Thus, while directionality is hard to pin down with these analyses, we can confidently  
532 report admixture among and between lineages and habitat types.

533

#### 534 **Divergence times are younger than expected without accounting for migration**

535 The levels of diversity and divergence allow us to calculate a simple estimate of  
536 population split times. This approach results in remarkably recent divergence time estimates. For  
537 example, we estimate the oldest split between old and new lineages of approximately 110,000  
538 generations (Table 2; using  $\pi_{4\text{fold degen } A. aeneus}$  as a proxy for ancestral diversity, and representing  
539 the old-new lineage split by  $d_{4\text{fold degen Choy,Rascón}} (3.74 - 2.97) \times 10^{-3} / (7 \times 10^{-9})$ ). Assuming the  
540 generation time of one year, the oldest estimate for the old and new split is more than an order of  
541 magnitude less than that estimated from the *cytochrome b* which places the divergence time  
542 between lineages between 5.7-7.5 mya (Ornelas-García *et al.* 2008). Similarly, we estimate that

543 the split between new lineage cave (Molino) and new lineage surface (Río Choy) populations  
544 was approximately 50,000 generations ago  $((3.32 - 3.00) \times 10^{-3} / (7 \times 10^{-9}))$  similar to a recent  
545 analyses (Fumey *et al.* 2018). However, other estimates using this method were unstable,  
546 suggesting that *A. aeneus* is not a good proxy for ancestral diversity in the old lineage and/or  
547 introgression obscures any realistic estimate of divergence time. Our results that suggest rampant  
548 gene flow (even with the exclusion of recently admixed individuals) indicate that true divergence  
549 times exceed those estimated from comparisons of  $d_{XY}$  and  $\pi$ . We, therefore, pursue a model-  
550 based estimate of population divergence time while accounting for introgression.  
551

## 552 **Demographic modeling indicates cave populations are younger than expected when 553 accounting for migration**

554 Demographic modeling using  $\partial a\partial i$  revealed extensive interdependence and contact for all  
555 populations studied. In all cases, models with multiple migration rates fit the population  
556 comparisons best, suggesting that some genomic regions are more recalcitrant to gene flow than  
557 others. For most pairwise population comparisons, the best-fitting models supported a period of  
558 isolation followed by a period of secondary contact (SC2m; Table S6). The only exceptions were  
559 the comparisons between Molino-Rascón and Pachón-Rascón that supported divergence with  
560 isolation (IM2m) slightly more than SC2m (Table S6). The distributions of divergence times for  
561 IM2m were multimodal (Molino-Rascón) or nearly flat (Pachón-Rascón) (Figure S9); thus, we  
562 present results from SC2m models that exhibit much tighter distributions for divergence  
563 estimates (Table 4; Figure S9). Results from all models for all replicates are provided (Table S8).

564 Effective population sizes for the surface populations were an order of magnitude higher  
565 than for the cave populations, and Molino exhibited the lowest effective population size of all  
566 five populations (Table S9). Notably, even for cave populations, estimates of effective  
567 population size were an order of magnitude larger than previous estimates (Avise & Selander  
568 1972; Bradic *et al.* 2012) and on par with mark-recapture census estimates (~8500 fish in Pachon  
569 cave with wide 95% confidence interval of 1,279-18,283; Mitchell *et al.* 1977).

570  $\partial a\partial i$  demographic modeling estimated deeper split times for populations than the  
571 divergence estimates calculated as  $T = (d_{XY} - \pi_{\text{ancestral}})/2\mu$  (above) because they account for  
572 introgression that can artificially deflate these divergence estimates. The oldest divergence time  
573 between old and new lineages was estimated at 256,675 generations before present (Río Choy-  
574 Rascón), (Table 4, S10; Figure S9; using SC2m models for all comparisons). Importantly, both  
575 the model-independent method and the demographic estimates presented here reveal relatively  
576 similar divergence times between the old and new lineages (~110k versus ~257k generations  
577 ago), and these estimates differ substantially from the several million year divergence time  
578 obtained through mtDNA (Ornelas-García *et al.* 2008), unless we have dramatically  
579 underestimated generation time in the wild.

580 Cave-surface splits for both the new and old lineage comparisons were remarkably  
581 similar (Pachón - Rascón: 161,262 generations; Tinaja - Rascón: 190,650 generations; Molino -  
582 Río Choy: 162,537 generations). While the two old lineage cave populations (Pachón - Tinaja)  
583 are estimated to have split slightly more recently (115,522 generations before present),  
584 suggesting that colonization of one of the two old lineage caves was potentially from

585 subterranean gene flow (as suggested by Espinasa & Espinasa 2015). Distributions and estimates  
586 across 50 replicates are given in Figure S9, Table S8, and Table S10.

587 Subterranean gene flow may be higher than surface to cave or between-lineage surface  
588 gene flow. The highest rates of gene flow are estimated between caves, and surprisingly, Molino  
589 cavefish exhibited a migration rate into Tinaja cave that is higher than Tinaja gene flow into  
590 Pachón cave. Surface fish gene flow rates into cave populations are also among the highest rates  
591 (especially Río Choy into all sampled caves). Notably, several caves also have relatively high  
592 rates of gene flow into surface populations (Molino into Río Choy and Tinaja into Rascón).

593 Heterogeneity in gene flow across the genome is also different across population pairs.  
594 Generally, more of the genome of cave-surface pairs (48%) seems to follow the lower migration  
595 rate than in cave-cave pairs (40%) and surface-surface pair (18%), suggesting the possibility that  
596 strong selection for habitat-specific phenotypes slows gene flow across the genome.  
597

### 598 **Modeling of selection needed for cave alleles to reach high frequency**

599 Similarly to that estimated by (Cartwright *et al.* 2017) selection coefficients of ~0.01  
600 needed are for cave-phenotype alleles to reach high frequencies in either Molino or Tinaja cave  
601 populations with a 12-locus additive model (Figure 4). Animations of allele frequencies at  
602 different levels of selection across the historical demography are provided in Supplementary  
603 materials. There is an increase in noise at the secondary contact period because the influx of new  
604 alleles. This has little effect overall because the migration rate is of the same magnitude as the  
605 mutation rate and may be because prior to secondary contact, the loci are typically fixed for  
606 either the cave or surface allele and after contact, the loci may become more polymorphic. The  
607 average selection coefficients appear to approximately match the pre-secondary contact average.  
608

609 In sum, our data support that cavefish population sizes are sufficiently large for selection  
610 to play a role shaping traits, gene flow is sufficiently common to impact repeated evolution, and  
611 cave-surface divergence is more recent than expected from mitochondrial gene trees.  
612

### 613 **Candidate gene regions introgressed between caves**

614 In light of the suspected gene flow among populations, we identified genomic regions  
615 that showed molecular evolution signatures consistent with gene flow between caves and  
616 genomic regions that are likely affected by cave-surface gene flow. There were 997 5kb regions  
617 (out of 208,354 total) that exhibited the lowest 5% of  $d_{XY}$  windows of the genome for each of the  
618 cave-cave comparisons (Pachón-Molino, Pachón-Tinaja, Molino-Tinaja). These windows were  
619 spread across 471 scaffolds and overlapped 500 genes. We highlight some of these 500 genes in  
620 the context of Ensembl phenotype data in Supplementary text (see also Table S11).

621 Several of these regions cluster with known QTLs (O’Quin & McGaugh 2015). We  
622 examined co-occurring QTLs for many traits on Linkage Group 2 and Linkage Group 17 (LG2,  
623 LG17, Table S12), which were two main regions highlighted in recent work on cave phenotypes  
624 (Yoshizawa *et al.* 2012b). We found that the co-occurring QTL on Linkage Group 2 harbored  
625 about 1.5-fold (odds ratio = 1.54, 95% CI = 1.139-2.089) the number of regions with low-  
626 divergence among all three cave populations (44 windows with all three caves in lowest 5% of  
627  $d_{XY}$  / 6070 total windows that had data across these same scaffolds) relative to the total across the  
entire genome (997/208354). This suggests that this region with many co-occurring QTL was

628 potentially transferred among cave. Notably, we did not find a similar pattern for linkage group  
629 17 (proportion of windows in 5% lowest  $d_{XY}$  = 0.0048 for LG17 and 0.0048 across the entire  
630 genome). The region on Linkage Group 2 is not simply an area of high sequence conservation  
631 (which could account for low divergence among all three cave populations) because the mean  
632 divergence between surface-surface comparisons for this region is very similar to the genome-  
633 wide average (genome wide  $d_{XY}$  = 0.0048, LG2 QTL region  $d_{XY}$  = 0.0048).

634 We find genes that look to be affected by gene flow between caves. We found 1004  
635 genes that exhibited  $d_{XY}$  = 0 and another 370 genes with  $d_{XY}$  in the lowest 5% across the genome  
636 for the three pairwise comparisons of the caves, many with substantial divergence to at least one  
637 surface population (Table S13). We associated these genes with previously known QTL with  
638 linkage groups that follow (O'Quin *et al.* 2013) and a QTL database is provided (Table S7). One  
639 example is *fam136a* (*family with sequence similarity 136, member A*), which is under a QTL for  
640 body condition on Linkage Group 10. This gene is expressed in the hair cells of the crista  
641 ampullaris, an organ important for detecting rotation and acceleration, in the semicircular canals  
642 of the inner ear in the rat (Requena *et al.* 2014). All caves are identical except for a SNP that may  
643 have come from the Rascon population in one of the admixed Tinaja individuals. *fam136a* is in  
644 the top 10% most divergent genes by  $d_{XY}$  for Rascón surface – Pachón cave and Rascón surface  
645 – Tinaja cave populations (Molino-Rascón surface comparisons fall in the top 13% most  
646 divergent genes via  $d_{XY}$ ). Notably, Rascon and *A. aeneus* exhibit an E (glutamic acid) at 15aa  
647 (suggesting this is the ancestral state), whereas Río Choy and all caves exhibit a G (glycine).  
648 This amino acid switch is between a polar and a hydrophobic, thus not very functionally  
649 conserved. Such pattern could be produced by gene flow among caves or by gene flow of Río  
650 Choy with the cave populations.

651

## 652 **DISCUSSION**

653 The role of admixture between diverging populations is increasingly apparent as the  
654 application of genomic analyses has become standard, and such gene flow shapes the study of  
655 repeated evolution (Colosimo *et al.* 2005; Cresko *et al.* 2004; Roesti *et al.* 2014; Van Belleghem  
656 *et al.* 2018; Welch & Jiggins 2014). Further, gene flow may create a signature that resembles  
657 parallel genetic divergence as effective migration is reduced in the same genomic regions for  
658 multiple ecotypic pairs upon secondary contact (Bierne *et al.* 2013; Rougemont *et al.* 2017).  
659 Thus, to understand the repeated origins of traits, an accurate understanding of the demography  
660 is required (Dasmahapatra *et al.* 2012; Rosenblum *et al.* 2014).

661 *Astyanax mexicanus* have been widely studied as a model of repeated evolution of wide-  
662 ranging traits (Elmer & Meyer 2011; Krishnan & Rohner 2017). Our data provide insight into  
663 some of the most pressing demographic questions needed to understand repeated evolution: 1)  
664 whether there are independent origins of *Astyanax* cavefish, 2) the age of cave invasions, 3) the  
665 amount of gene flow between populations, and 4) the strength of selection needed to shape traits.  
666 Genomic resequencing allowed an understanding not afforded by mitochondrial or reduced  
667 representation nuclear sequencing, and we were able to identify genes and a region of the  
668 genome potentially affected by gene flow between populations. Together, these findings provide  
669 a framework for understanding the repeated evolution of many complex, cave-derived traits.  
670

671 **Cave populations are younger than previously estimated**

672 Our estimates fit in well with previous suggestions that the caves were colonized in the  
673 late Pleistocene (Avise & Selander 1972; Fumey *et al.* 2018; Porter *et al.* 2007; Strecker *et al.*  
674 2004) with both our  $d_{XY}$  – based divergence estimation and demographic modelling. As our work  
675 documents extensive gene flow, we favor the divergence time estimates provided by  
676 demographic models that incorporated estimates of migration. Demographic models estimate  
677 split time between the two lineages at approximately 257k generations ago, and estimates of  
678 cave-surface population splits are ~161k - 191k generations ago. Notably, *Astyanax* is a species  
679 of fish with a limited distribution in northern latitudes, with its current most northern locality in  
680 the Edwards Plateau in Texas (Page & Burr 2011). These split times are consistent with cooler  
681 temperatures in Northern Mexico associated with glaciation playing some role in the  
682 colonization of the caves by *Astyanax mexicanus*, potentially as thermally-stable refugia (Cussac  
683 *et al.* 2009). Our nuclear genomic data suggest that the "old" and "new" lineage split is more  
684 recent than the main volcanic activity of the Trans-Mexican Volcanic Belt (3-12 Mya) which  
685 was thought to have separated these two lineages, as well as other lineages in other vertebrates  
686 (Ornelas-García *et al.* 2008). This geographic barrier likely has been breached by *Astyanax*  
687 multiple times and likely led to cave invasions with each migration (Gross 2012; Hausdorf *et al.*  
688 2011; Strecker *et al.* 2012).

689

690 **Historic and contemporary gene flow between most populations is common**

691 Several cave populations exhibit intermediate phenotypes and experience flooding during  
692 the rainy season (Espinasa, unpublished, Strecker *et al.* 2012), suggesting that intermediate  
693 phenotypes are the result of admixture between cavefish and surface fish swept into caves during  
694 flooding (Avise & Selander 1972; Bradic *et al.* 2012). However, it has been suggested that  
695 surface fish and hybrids are too maladapted to survive and spawn in caves (Coghill *et al.* 2014;  
696 Hausdorf *et al.* 2011; Strecker *et al.* 2012), and that cavefish populations with intermediate  
697 troglomorphic phenotypes represent more recent cave invasions, rather than hybrids (Hausdorf *et*  
698 *al.* 2011; Strecker *et al.* 2012). Despite evidence from microsatellites (Bradic *et al.* 2012;  
699 Panaram & Borowsky 2005), mitochondrial capture (Dowling *et al.* 2002; Ornelas-García &  
700 Pedraza-Lara 2015; Yoshizawa *et al.* 2012a), and haplotype sharing of candidate loci (but see  
701 Espinasa *et al.* 2014c; Gross & Wilkens 2013), there was still uncertainty in the literature  
702 regarding the frequency of gene flow between *Astyanax* cavefish and surface fish and the role  
703 gene flow may play in adaptation to the cave environment (Coghill *et al.* 2014; Espinasa &  
704 Borowsky 2001; Hausdorf *et al.* 2011; Strecker *et al.* 2012).

705 Our work demonstrates recent and historical gene flow between cave and surface  
706 populations both within and between lineages (Figures 2, 3). This result is also suggested by past  
707 work which showed most genetic variance is within individuals (Table 2 in (Bradic *et al.* 2012))  
708 and very few private alleles (i.e., alleles specific to a population) were present among cave  
709 populations (Figure 3b in (Bradic *et al.* 2012)). Notably, many of the methods we employed take  
710 into account incomplete lineage sorting, are robust to non-equilibrium demographic scenarios,  
711 and detect recent admixture (< 500 generations ago) (Patterson *et al.* 2012). In all our analyses  
712 the hybridization detected may not be between these sampled populations directly, but  
713 unsampled populations/lineages related to them (Patterson *et al.* 2012).

714 One of the most intensely studied cave populations is Pachón. Our data of Pachón  
715 cavefish hybridization with the new lineage is expected from past field observations and  
716 molecular data. Only extremely troglomorphic fish were found early (1940's-1970's; Avise &  
717 Selander 1972; Mitchell *et al.* 1977) and late (1996-2000, (Dowling *et al.* 2002)) surveys,  
718 though, phenotypically intermediate fish were observed in 1986-1988, as well as in 2008  
719 (Borowsky, unpublished). Thus, subterranean introgression from a nearby cave population may  
720 cause transient complementation of phenotypes or hybridization with surface fish (from flooding  
721 or human-introduction) may contribute to the presence of intermediate-phenotype fish in the  
722 cave (Langecker *et al.* 1991; Wilkens & Strecker 2017). Indeed past studies suggested gene flow  
723 between Pachón and the new lineage populations, as Pachón mtDNA clusters with new lineage  
724 populations (Dowling *et al.* 2002; Ornelas-García *et al.* 2008; Ornelas-García & Pedraza-Lara  
725 2015; Strecker *et al.* 2003; Strecker *et al.* 2012). Interestingly and divergent from past studies,  
726 Pachón mitochondria group with old-lineage populations in the most recent analysis (Coghill *et*  
727 *al.* 2014). Continued intense scrutiny of other caves may reveal similar fluctuations in  
728 phenotypes and genotypes.

729 The most surprising signal of gene flow in our data is seen in the  $\delta\text{a}\delta\text{i}$  analyses, in which  
730 the signal of Molino-Tinaja exchange is similar to that from Pachón-Tinaja, suggesting  
731 subterranean gene flow between all three caves, despite substantial geographic distances (the  
732 entrances are separated by >100km; Mitchell *et al.* 1977). While our genome-wide ancestry  
733 proportion data suggest some exchange of Molino with Tinaja (Figure S5-S7), we have no other  
734 evidence to corroborate this signal. Thus, the results from population demography could be  
735 picking up a signal of Molino with Tinaja that is actually driven by Pachón - new lineage  
736 hybridization and subsequent Tinaja – Pachón hybridization or Tinaja - Río Choy hybridization.

737 Notably, many species of troglobites other than *Astyanax* inhabit caves spanning from  
738 southern El Abra to Sierra de Guatemala, and some were able to migrate among these areas  
739 within the last 12,000 years (Espinasa *et al.* 2014a). Due to the extensive connectivity and the  
740 span of geological changes throughout the hydrogeological history, it is likely that there have  
741 been ample opportunities for troglobites, including *Astyanax*, to migrate across much of the El  
742 Abra region (Espinasa & Espinasa 2015).

743 Across many systems genomic data has revealed reticulate evolution is much more  
744 common than previously thought (Abbott *et al.* 2016; Arnold & Kunte 2017; Brandvain *et al.*  
745 2014; Dasmahapatra *et al.* 2012; Geneva *et al.* 2015; Malinsky *et al.* 2017; McGaugh & Noor  
746 2012; Rougemont *et al.* 2017), and the ability of populations to maintain phenotypic differences  
747 despite secondary contact and hybridization is increasingly appreciated (Arnold & Kunte 2017;  
748 Fitzpatrick *et al.* 2015; Malinsky *et al.* 2017; Payseur & Rieseberg 2016). Thus, despite gene  
749 flow from the surface into caves, it is entirely possible that cave-like phenotypes can be  
750 maintained. Indeed, gene flow may help sustain cave populations from the effects of inbreeding  
751 (Åkesson *et al.* 2016; Ellstrand & Rieseberg 2016; Fitzpatrick *et al.* 2016; Frankham 2015;  
752 Kronenberger *et al.* 2017; Whiteley *et al.* 2015) or catalyze adaptation to the cave environment  
753 (sensu Clarkson *et al.* 2014; Meier *et al.* 2017; Richards & Martin 2017). Our data indicate  
754 extensive hybridization between sampled lineages and suggest that cavefish are poised to be a  
755 strong contributor to understanding the role gene flow may play in repeated evolutionary  
756 adaptation.

757

## 758 Candidate genes shaped by gene flow

759 In some cases, we have evidence that particular alleles were transferred between caves,  
760 but are highly diverged from surface populations (Table S11, S13). This suggests that gene flow  
761 between caves may hasten adaptation to the cave environment and suggests that repeated  
762 evolution in this system may, in part, rely on standing genetic variation. Notably, scaffolds under  
763 the co-localizing QTL on Linkage Group 2 for many traits exhibit 1.5 fold enrichment for 5kb  
764 regions with lowest divergence across caves relative to genome-wide, suggesting parts of this  
765 QTL have spread throughout caves.

766 For genes with high similarity among caves and substantial divergence between cave and  
767 surface, many appeared to be involved in classic cavefish traits such as pigmentation and eye  
768 development/morphology (*mdkb*, *atp6v0ca*, *ube2d2l*, *usp3*, *cln8*) and circadian functioning  
769 (*usp2a*) (Table S13). Additional common annotations suggest future areas of trait investigation,  
770 namely cardiac-related phenotypes (*mmd2*, *cyp26a1*, *tbx3a*, *tnfsf10*, *alx1*, *ptgr1*) as well as inner  
771 ear phenotypes (*ncs1a*, *dlx6a*, *fam136a*) (Table S13). Importantly, the sensory hair cells of the  
772 inner ear are homologous with sensory hair cells of the neuromasts of the lateral line (Fay &  
773 Popper 2000), therefore, these genes may be impacting mechanoreception or sound reception.

774

## 775 Effective population sizes are much larger than expected and weak selection can drive cave 776 phenotypes

777 Previous estimates of very small effective population sizes in cave populations of *A.*  
778 *mexicanus* suggested drift and relaxed selection shaped cave-derived phenotypes (e.g., Lahti *et*  
779 *al.* 2009). The estimates of nucleotide diversity and  $N_e$  provided here (Tables 1, 2, S9) indicated  
780 that positive selection coefficients need not be extreme to drive cave-derived traits (Akashi *et al.*  
781 2012; Charlesworth 2009). To put these values in perspective, the cave populations have an  
782 average genetic diversity (which is proportional to  $N_e$ ) similar to humans and the surface  
783 populations exhibit a similar genetic diversity to zebrafish (Leffler *et al.* 2012).

784 Our observations support theoretical and empirical results that selection likely shaped  
785 cavefish phenotypes (Borowsky 2015; Cartwright *et al.* 2017; Moran *et al.* 2015). Simulations  
786 using demographic parameters from Molino and Tinaja cave populations suggest that selection  
787 coefficients across 12 additive loci (patterned after the number of eye-related QTL (O’Quin &  
788 McGaugh 2015)) need to be above 0.01 to bring cave-alleles to very high frequencies (Figure 4).  
789 Such selection coefficients are often found driving selective sweeps in natural systems (Nair *et*  
790 *al.* 2003; Rieseberg & Burke 2001; Schlenke & Begun 2004; Wootton *et al.* 2002).

791

## 792 Diverging lineages should be examined with reticulation methods and absolute divergence 793 metrics

794 Our genome-wide data allowed a unique perspective that was not available in past studies. First,  
795 our data represent an empirical demonstration of how well-supported phylogenetic  
796 reconstructions can be misleading. When using genome-scale data with maximum likelihood,  
797 bootstrap values are not a measure of the number of sites that support a particular phylogeny,  
798 though, this is often how they are interpreted (Yang & Rannala 2012). Rather, if a genome-scale  
799 dataset is slightly more supportive of a particular topology, maximum likelihood will find that

800 topology consistently and exhibit high levels of bootstrap support (Yang & Rannala 2012). With  
801 the cavefish, a previous RADseq study suggested relatively strongly supported branches (Coghill  
802 *et al.* 2014), however, a much more complex evolutionary history with substantial reticulation  
803 among lineages was revealed here. Examination of recently diverged taxa with reticulation  
804 methods (e.g., Phylonet,  $F_4$ ,  $F_3$ , TreeMix) can ensure that phylogenetic reconstructions do not  
805 provide unwarranted confidence in a bifurcating tree.

806 Second, our dataset is yet another empirical demonstration of poor performance of  
807 pairwise  $F_{ST}$  in estimating population relationships when diversity is highly heterogeneous  
808 among populations (Figure 5, Tables 2, S14; Fumey *et al.* 2018; Jakobsson *et al.* 2013). When  
809 diversity is highly heterogeneous, this can give the false impression that low-diversity  
810 populations are highly divergent, when in reality the lower diversity drives greater pairwise  $F_{ST}$ ,  
811 not higher absolute divergence (Charlesworth 1998). These limitations of  $F_{ST}$  are especially  
812 important to appreciate in systems like the cavefish where diversity is highly heterogeneous  
813 across populations. Further, it is often suggested that high  $F_{ST}$  translates to low gene flow, but  
814 violations of the assumptions are common (Cruickshank & Hahn 2014). In the case of Molino (a  
815 very low diversity population), high  $F_{ST}$  values were taken to indicate relative isolation from  
816 other populations with little gene flow (Bradic *et al.* 2012), and we show here that is not the case.  
817 Indeed, pairwise  $F_{ST}$  among surface fish populations is the lowest and pairwise  $F_{ST}$  among caves  
818 is the highest, yet, absolute divergence between surface populations is slightly higher than  
819 absolute divergence among caves (Figure 5, Tables 2, S14). Future molecular ecology work  
820 should assay diversity and interpret pairwise  $F_{ST}$  accordingly or use absolute measures of  
821 divergence in conjunction with pairwise  $F_{ST}$  (Charlesworth 1998; Cruickshank & Hahn 2014;  
822 Noor & Bennett 2009; Ritz & Noor 2016).

823

## 824 Conclusion

825 In conclusion, our results suggest investigations of repeated evolution of cave-derived  
826 traits should take into account hybridization between lineages, between cave and surface fish,  
827 and between caves. Due to gene flow, best practices to assign the putative ancestral character  
828 state of cave-derived traits include comparing cavefish phenotypes to multiple surface  
829 populations and a distantly related outgroup with no evidence of admixture (e.g. *Astyanax*  
830 *bimaculatus*, Ornelas-García *et al.* 2008). Complementation crosses and molecular studies  
831 remain essential for understanding evolutionary origins for each cave-derived trait (Borowsky  
832 2008b; Gross *et al.* 2009; O’Quin *et al.* 2015; Protas *et al.* 2006; Wilkens 1971; Wilkens &  
833 Strecker 2003).

834 We expect future work with greatly expanded sampling (Beerli 2004; Hellenthal *et al.*  
835 2014; Pease & Hahn 2015; Slatkin 2005) and ecological parameterization of the caves to provide  
836 a more comprehensive view of the ultimate drivers of demography of *Astyanax mexicanus*  
837 cavefish. Interestingly, many caves are nutrient-limited which is suggested to be one of the  
838 largest impediments to surface fish survival in the cave environment (Espinasa *et al.* 2014b;  
839 Moran *et al.* 2014). One of the emerging hypotheses is that high food availability allows surface-  
840 like fish to persist longer in the cave environment and enhances the probability for cave-surface  
841 hybridization (Mitchell *et al.* 1977; Strecker *et al.* 2012). Future studies evaluating hybridization

842 levels in relation to food-availability or food-predictability are an important next step to examine  
843 important drivers of cave phenotypes. We look forward to these future studies, and their potential  
844 to elucidate how demography and environmental factors impact repeated adaptive evolution  
845 (sensu Rosenblum *et al.* 2014).

846

847 **Acknowledgments**

848 Fish were collected under CONAPESCA permit PPF/DGOPA - 106 / 2013 to Claudia Patricia  
849 Ornelas García and SEMARNAT permit 02241 to Ernesto Maldonado. We thank the Mexican  
850 government for providing the collecting permit to R.B. in 2008 (DGOPA.00570.288108-0291).  
851 For 2002, the collection permit to R.B. was from fisheries department #01.01.02.613.03.1799  
852 Molino samples were obtained under Mexican permit 040396-213-05. Animal care protocol  
853 numbers include #05-1235 by the New York University Animal Welfare Committee (UAWC) to  
854 R.B., UMD R-17-77 to WRJ, and UNAM animal care protocol to POG NOM-062-ZOO-1999.  
855 This work was supported by NIH grant 2R24OD011198-04A1 to WCW, The Genome Institute  
856 at Washington University School of Medicine, Cave Research Foundation Graduate Student  
857 Research Grant to BMC, a grant from the Eppley Foundation for Research to SEM,  
858 5R01EY014619-08 to WRJ, and 1R01GM127872-01 to SEM and ACK. Raw sequence data  
859 were submitted to the SRA. Project Accession Number: SRP046999, Bioproject: PRJNA260715.  
860 We appreciate the resources provided by the Minnesota Supercomputing Institute, without which  
861 this work would not be possible.

862 **Table 1.** Basic statistics for population level resequencing. Coverage statistics are for reads  
863 cleaned of adapters, filtered for quality, and aligned to the *Astyanax mexicanus* reference  
864 genome v1.0.2.  $\pi$  included all sites (invariant, SNPs) except highly repetitive masked regions of  
865 the genome (~33% of the genome), indels, and 3 nt on either side of an indel were excluded in  
866 the analysis. Each site was required to have six or more individuals for  $\pi$  to be calculated and  
867 the values given are a genome-wide average. Two individuals of *Astyanax aeneus*, one Texas  
868 surface *Astyanax mexicanus*, and white long-finned skirt tetra (*Gymnophorus ternetzi*) were  
869 also sequenced.

870

| 871 <b>Population</b> | 872 <b>N</b>      | 873 <b>aligned coverage<br/>mean (range)</b> | 874 <b>Mean <math>\pi</math></b> | 875 <b>stdev</b> |
|-----------------------|-------------------|----------------------------------------------|----------------------------------|------------------|
| 876 Pachón - cave     | 877 9 + reference | 878 9.94 (7.65, 17.74)                       | 879 0.0012                       | 880 0.0002       |
| 881 Tinaja - cave     | 9                 | 10.05 (7.27, 12.35)                          | 0.0016                           | 0.0004           |
| Rascón - surface      | 6                 | 10.90 (8.63, 13.15)                          | 0.0030                           | 0.0003           |
| Molino - cave         | 9                 | 9.39 (7.47, 12.32)                           | 0.0007                           | 3e-04            |
| Río Choy- surface     | 9                 | 9.27 (8.38, 10.26)                           | 0.0046                           | 0.0004           |

882 **Table 2.** Inter- and intra- population average pairwise nucleotide diversity for fourfold  
883 degenerate sites ( $d_{XY}$  and  $\pi$ , respectively) and estimated population split times for the six  
884 populations sampled. Values in italics on the diagonal are the estimates of mean  $\pi$  for that  
885 population, values below the diagonal are  $d_{XY}$  for the population pair. Values above the  
886 diagonal are estimates, in generations, of the population split times (see Methods). In this  
887 table, four early-generation hybrids were excluded (e.g., Rascón 6, Tinaja 6, Choy 14, Tinaja E).  
888 Resulting in the sample sizes: *A. aeneus*: N = 2; Río Choy: N = 8; Molino: N = 9; Rascón: N = 5;  
889 Pachón: N = 9; Tinaja: N = 8 in the final calculations. N/A means the divergence time was  
890 negative. Divergence time does not take into account gene flow, therefore, is likely  
891 underestimated.

892  
893

***A. aeneus*      Río Choy      Molino      Pachón      Rascón      Tinaja**

| <i>A. aeneus</i> | 0.00297 | 208,571        | 208,571         | 164,286         | 144,286         | 158,571         |
|------------------|---------|----------------|-----------------|-----------------|-----------------|-----------------|
| Río Choy         | 0.00443 | <i>0.00300</i> | 50,000          | 81,429          | 110,000         | 108,571         |
| Molino           | 0.00443 | 0.00332        | <i>0.000738</i> | 61,571          | 84,857          | 79,714          |
| Pachón           | 0.00412 | 0.00354        | 0.003401        | <i>0.001000</i> | 857             | N/A             |
| Rascón           | 0.00398 | 0.00374        | 0.003564        | 0.002976        | <i>0.002067</i> | N/A             |
| Tinaja           | 0.00408 | 0.00373        | 0.003528        | 0.002251        | 0.002854        | <i>0.001291</i> |

894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911

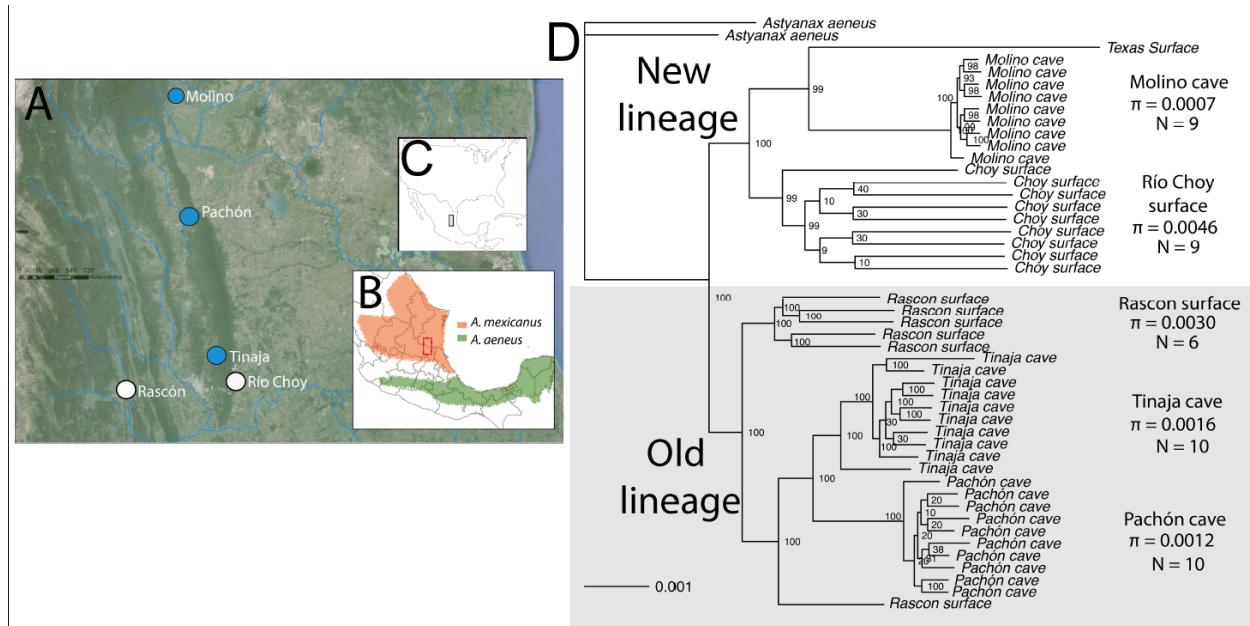
912

913 **Table 3.**  $F_3$  statistics for significant configurations out of all possible three population  
914 configurations (X;A,B) where X is the population tested for admixture. A significantly negative  $F_3$   
915 statistic indicates admixture from populations related to A and B. Notably, we conducted the  $F_3$   
916 statistics without individuals showing recent evidence of admixture. Sample sizes were as  
917 follows: *A. aeneus*: N = 2; Río Choy: N = 8; Molino N = 9; Rascón N = 5; Pachón N = 9; Tinaja N =  
918 8. Any z-score below -1.645 passes the critical value for significance at  $\alpha = 0.05$ . Tests are  
919 ordered most-least extreme z-scores. All other confirmations were not significant for  
920 introgression.

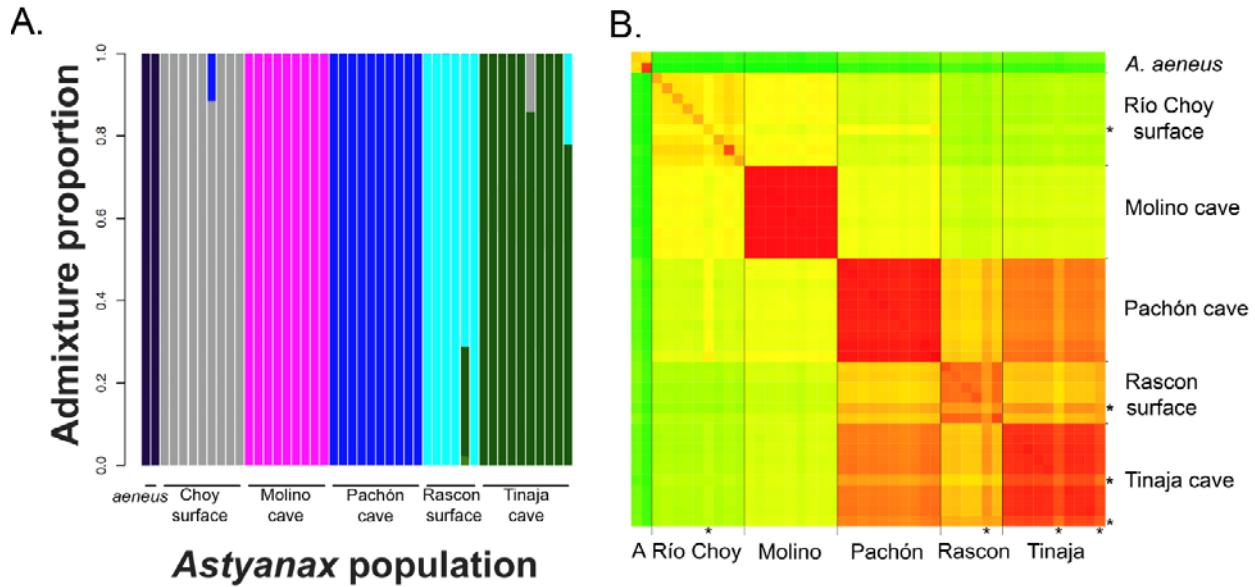
921

922

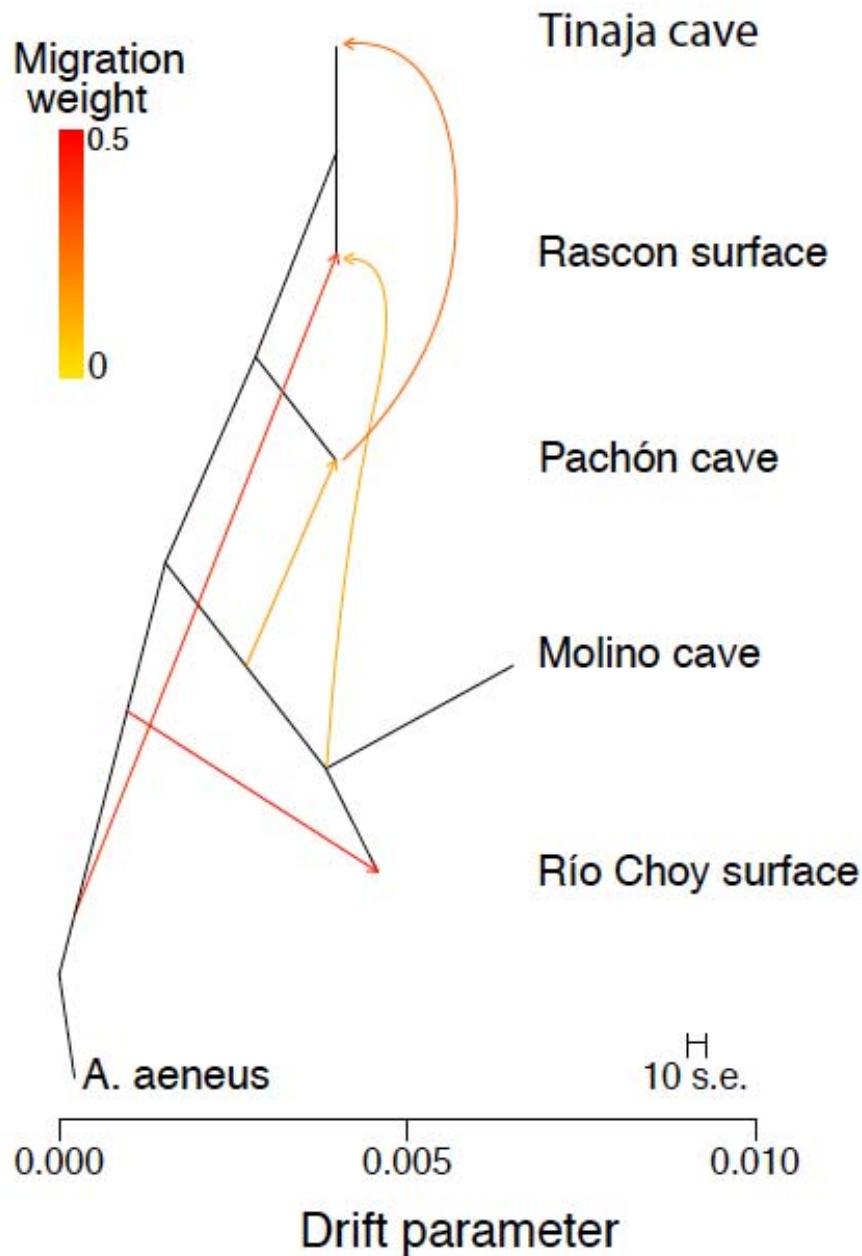
| 923 <u>(X; A, B)</u>                    | $F_3$ -statistic | standard error | z-score  |
|-----------------------------------------|------------------|----------------|----------|
| 924 Rascón; <i>A. aeneus</i> , Tinaja   | -0.000925258     | 5.63403e-05    | -16.4227 |
| 925 Rascón; Río Choy, Tinaja            | -0.000733913     | 4.96641e-05    | -14.7775 |
| 926 Rascón; Molino, Tinaja              | -0.000720705     | 5.1705e-05     | -13.9388 |
| 927 Rascón; <i>A. aeneus</i> , Pachón   | -0.000552022     | 6.04747e-05    | -9.12813 |
| 928 Rascón; <i>A. aeneus</i> , Molino   | -0.000373176     | 6.53244e-05    | -5.71266 |
| 929 Rascón; Río Choy, Pachón            | -0.000204061     | 6.02999e-05    | -3.3841  |
| 930 Rascón; Molino, Pachón              | -0.000146049     | 6.18243e-05    | -2.36232 |
| 931 Río Choy; <i>A. aeneus</i> , Molino | -0.000101532     | 5.50833e-05    | -1.84324 |


932

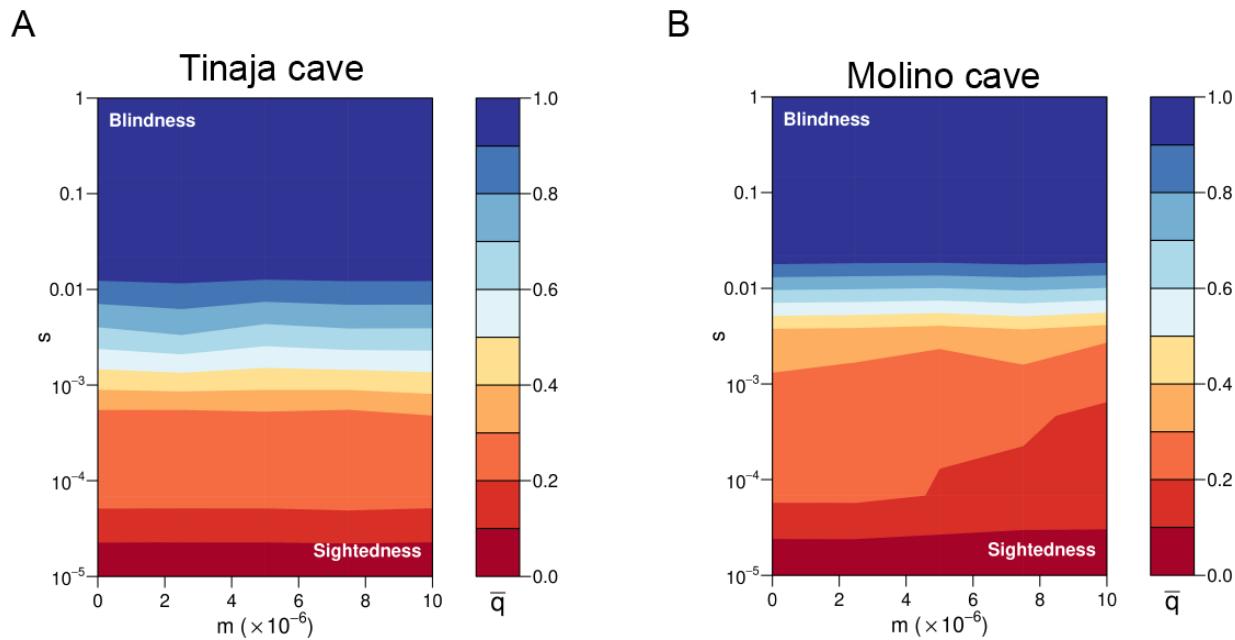
933


934

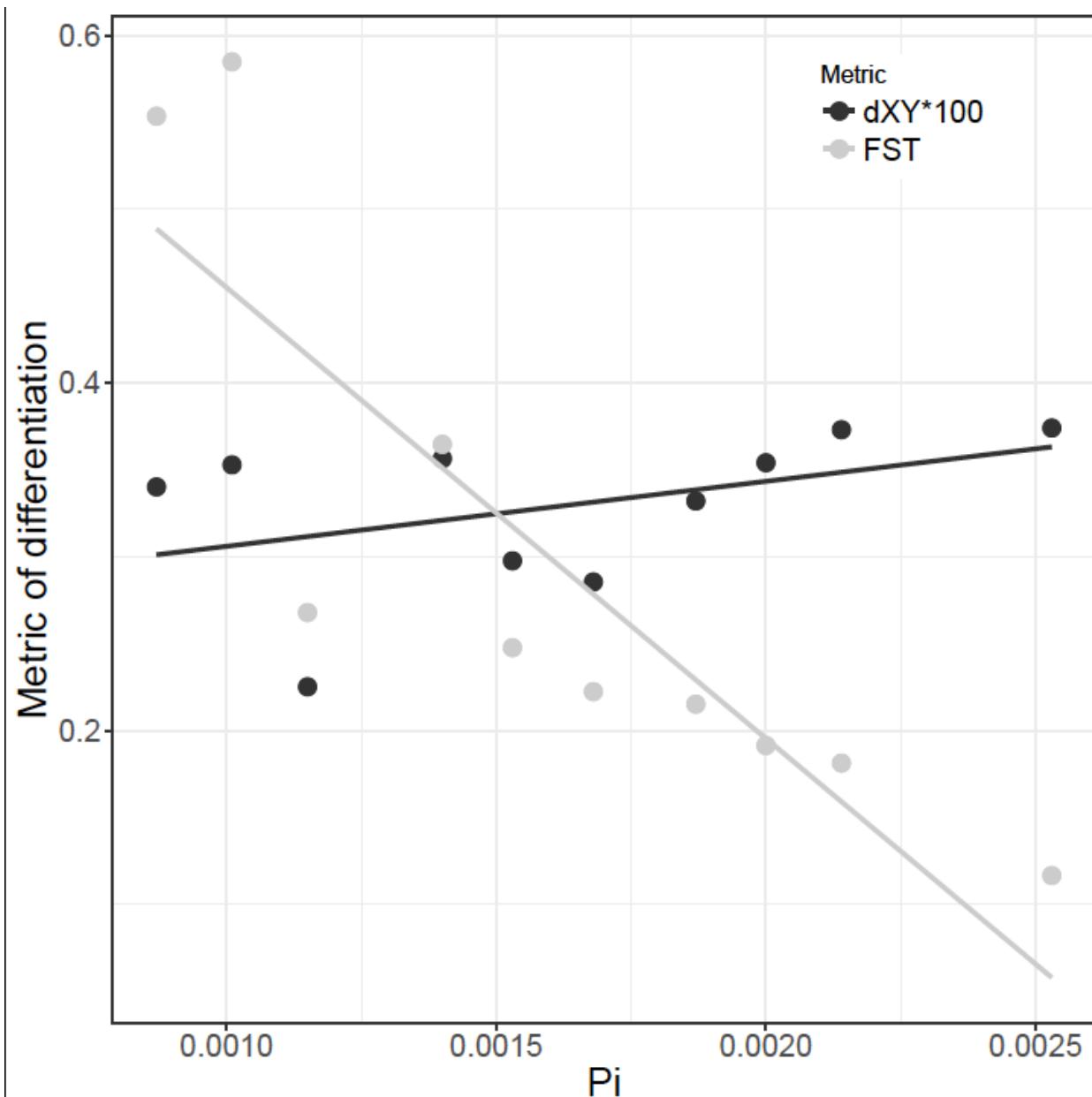
**Table 4.** dadi demographic modeling of divergence times between pairwise populations for 50 replicates per model. For population pairs that favored the IM2m model (e.g., isolation with migration and heterogeneity of migration across the genome), we also report results of SC2m (e.g., a period of isolation followed by secondary contact and heterogeneity of migration across the genome, black) which was the favored model for most pairwise population comparisons. Ts is the number of generations from population split to the start of secondary contact. Tsc is the number of generations from the start of secondary contact to the present. Ts+Tsc is the total divergence time in generations. Generation time is assumed to be six months to one year.


| Pop1   | Pop2   | Model | MedianTs  | MinTs   | MaxTs      | MedianTsc | MinTsc | MaxTsc    | MedianTS+TSC |
|--------|--------|-------|-----------|---------|------------|-----------|--------|-----------|--------------|
| Choy   | Molino | SC2M  | 91,270    | 0       | 1,031,510  | 71,268    | 0      | 2,061,383 | 162,537      |
| Choy   | Pachón | SC2M  | 174,483   | 0       | 5,894,387  | 6,690     | 0      | 1,944,141 | 181,173      |
| Choy   | Rascón | SC2M  | 241,747   | 7,018   | 263,584    | 14,928    | 0      | 274,878   | 256,675      |
| Choy   | Tinaja | SC2M  | 182,107   | 0       | 497,367    | 24,859    | 0      | 519,170   | 206,966      |
| Molino | Pachón | SC2M  | 195,724   | 60      | 641,127    | 30,431    | 0      | 603,939   | 226,155      |
| Molino | Rascón | IM2M  | 1,242,575 | 228,667 | 1,799,441  | NA        | NA     | NA        | NA           |
| Molino | Rascón | SC2M  | 210,396   | 0       | 1,593,512  | 27,023    | 0      | 1,044,418 | 237,418      |
| Molino | Tinaja | SC2M  | 119,177   | 0       | 563,918    | 34,819    | 0      | 290,502   | 153,996      |
| Pachón | Rascón | IM2M  | 1,239,971 | 140,387 | 11,358,780 | NA        | NA     | NA        | NA           |
| Pachón | Rascón | SC2M  | 148,702   | 27,575  | 655,675    | 12,560    | 0      | 644,435   | 161,262      |
| Pachón | Tinaja | SC2M  | 102,245   | 0       | 261,637    | 13,277    | 4,358  | 137,507   | 115,522      |
| Rascón | Tinaja | SC2M  | 170,279   | 0       | 405,939    | 20,370    | 0      | 399,350   | 190,650      |




**Figure 1. A.** Map of caves (red), surface populations (blue), and additional unsampled cave populations (grey) **B.** Location of *A. mexicanus* range with sampled area in red box and *A. aeneus* range, **C.** Location in North and Central America of the focal sampled area. Map adapted from (Ornelas-García & Pedraza-Lara 2015). **D.** Phylogenetic inference from the largest scaffolds that comprised approximately 50% of the genome using a maximum likelihood tree search and 100 bootstrap replicates in RAxML v8.2.8(Stamatakis 2014).  $\pi$  is from Table 1. Old lineage and new lineage populations delineated by past studies are strongly supported. Branch lengths correspond to phylogenetic distance and confirm cave populations (especially Molino cave) are less diverse than surface populations.




**Figure 2. A. ADMIXTURE analysis suggests contemporary gene flow between old and new lineages and cave and surface populations.** Analysis was performed on the thinned Biallelic SNP VCF to account for linkage disequilibrium between SNPs. We were interested in the relationships among the five nominal populations and the putative outgroup rather than an unknown, best-supported number of clusters, thus, we set the clusters to six. Additional analyses performed with other cluster numbers are given in the supplementary material. **B.** Pairwise nucleotide similarity (e.g.,  $d_{xy}$ ,  $\pi$ ) between all sampled individuals for fourfold degenerate sites genome-wide. Green = less similar, Red = more similar. Particular individuals potentially exhibiting admixture are indicated with an asterisk (e.g., Rascón 6, Tinaja 6, Río Choy 14, Tinaja E [bottom right corner]). *Astyanax aeneus* is represented by two total samples and indicated by the A on the x-axis.



**Figure 3. TreeMix population graph with five migration events.** We see here patterns evident throughout our study, namely admixture between a lineage related to *A. aeneus* and Río Choy and Rascón, as well as exchange from the ancestor of Río Choy and Molino into Pachón and Rascón. Admixture from Pachón into Tinaja is also apparent. Analyses were conducted on the Biallelic SNP VCF file thinned to account for linkage between SNPs. This analysis excluded the four recently admixed individuals.



**Figure 4. Selection coefficients required for cave alleles to reach high frequency (darker blue) in a 12-locus additive model.** A. Tinaja. B. Molino. Shown is the final iteration of a model that takes into account isolation between cave and surface populations followed by secondary contact inline with demographic models presented in the paper.  $m$  = migration rate,  $s$  = selection coefficient.



**Figure 5.** Pairwise population comparisons using  $F_{ST}$  and average  $\pi_{pop1-pop2}$  at fourfold degenerate sites (filled circles) or  $d_{XY}$  (open circles) averaged across the genome using non-admixed individuals. There is no correlation between  $F_{ST}$  and  $d_{XY}$ , but a strong correlation between  $F_{ST}$  and average  $\pi_{pop1-pop2}$ . Thus, the heterogeneity in  $\pi$  is driving  $F_{ST}$ , not absolute divergence.

**Table S1.** Sample name and sequence coverage for the core samples analyzed here after filtering for quality and removing adaptors. Approximate fold coverage is given using the genome size estimate of 1.19 Gb (McGaugh *et al.* 2014). All samples were sequenced with Illumina DNA nano library preps and v3 chemistry using the HiSeq 2000. Pachón\_Ref were single-end reads from the genome project. Several individuals were sequenced on HiSeq 2500 rather than HiSeq 2000. These include the outgroup white long-finned skirt tetra (*Gymnophorus ternetzi*) and Texas surface *A. mexicanus*.

| <b>Sample</b> | <b>Gb</b> | <b>Fold Coverage</b> |
|---------------|-----------|----------------------|
| Choy1         | 10.00     | 8.40                 |
| Choy5         | 10.84     | 9.11                 |
| Choy6         | 9.13      | 7.67                 |
| Choy9         | 9.96      | 8.37                 |
| Choy10        | 9.61      | 8.08                 |
| Choy11        | 10.29     | 8.65                 |
| Choy12        | 10.25     | 8.62                 |
| Choy13        | 11.16     | 9.38                 |
| Choy14        | 9.67      | 8.12                 |
| Molino2a      | 11.01     | 9.25                 |
| Molino7a      | 10.50     | 8.82                 |
| Molino9b      | 10.15     | 8.53                 |
| Molino10b     | 11.67     | 9.81                 |
| Molino11a     | 8.74      | 7.34                 |
| Molino12a     | 10.05     | 8.44                 |
| Molino13b     | 13.40     | 11.26                |
| Molino14a     | 8.13      | 6.83                 |
| Molino15b     | 8.18      | 6.87                 |
| Pachón3       | 12.64     | 10.62                |
| Pachón7       | 9.24      | 7.77                 |
| Pachón8       | 10.08     | 8.47                 |
| Pachón9       | 9.28      | 7.80                 |
| Pachón11      | 8.57      | 7.20                 |
| Pachón12      | 10.47     | 8.80                 |
| Pachón14      | 8.22      | 6.91                 |
| Pachón15      | 10.57     | 8.88                 |
| Pachón17      | 8.64      | 7.26                 |
| Pachón_Ref    | 19.85     | 16.68                |
| Rascón2       | 14.21     | 11.94                |
| Rascón4       | 13.50     | 11.35                |
| Rascón6       | 10.89     | 9.15                 |
| Rascón8       | 9.57      | 8.04                 |
| Rascón13      | 11.41     | 9.59                 |
| Rascón15      | 11.49     | 9.66                 |
| TinajaB       | 12.86     | 10.80                |

|                                        |       |       |
|----------------------------------------|-------|-------|
| TinajaC                                | 11.92 | 10.01 |
| TinajaD                                | 9.31  | 7.82  |
| TinajaE                                | 11.54 | 9.70  |
| Tinaja2                                | 9.15  | 7.69  |
| Tinaja3                                | 10.29 | 8.65  |
| Tinaja5                                | 11.51 | 9.68  |
| Tinaja6                                | 10.82 | 9.09  |
| Tinaja11                               | 12.18 | 10.23 |
| Tinaja12                               | 13.41 | 11.27 |
| <i>Asytanax aeneus</i> : Granadas cave | 10.09 | 8.48  |
| <i>Asytanax aeneus</i> : Surface       | 10.54 | 8.86  |
|                                        |       |       |
| HiSeq 2000 mean                        | 10.56 | 8.87  |
| HiSeq 2000 median                      | 10.29 | 8.65  |

Additional samples from HiSeq2500

|                                   |       |       |
|-----------------------------------|-------|-------|
| White long-finned skirt tetra     | 43.16 | 36.27 |
| Texas surface <i>A. mexicanus</i> | 52.25 | 43.91 |

**Table S2.** Sample name and alignment coverage before and after removing PCR duplicates, along with the proportion of reads removed as duplicates. Pachón\_Ref were single-end reads from the genome project. Several individuals were sequenced on HiSeq 2500 rather than HiSeq 2000. These include the outgroup white long-finned skirt tetra (*Gymnophorus ternetzi*) and Texas surface *A. mexicanus*.

| Sample       | Merged | Duplicate Removed | Proportion Duplicate |
|--------------|--------|-------------------|----------------------|
| <b>Reads</b> |        |                   |                      |
| Choy1        | 9.19   | 8.80              | 0.042                |
| Choy5        | 9.95   | 9.56              | 0.039                |
| Choy6        | 8.38   | 8.01              | 0.044                |
| Choy9        | 9.14   | 8.76              | 0.042                |
| Choy10       | 8.82   | 8.49              | 0.037                |
| Choy11       | 9.41   | 9.00              | 0.044                |
| Choy12       | 9.42   | 9.03              | 0.041                |
| Choy13       | 10.26  | 9.80              | 0.045                |
| Choy14       | 8.88   | 8.51              | 0.042                |
| Molino2a     | 10.13  | 9.50              | 0.062                |
| Molino7a     | 9.67   | 9.17              | 0.052                |
| Molino9b     | 9.35   | 8.86              | 0.052                |
| Molino10b    | 10.74  | 10.13             | 0.057                |
| Molino11a    | 8.04   | 7.59              | 0.056                |
| Molino12a    | 9.24   | 8.70              | 0.058                |
| Molino13b    | 12.32  | 11.51             | 0.066                |
| Molino14a    | 7.47   | 7.06              | 0.055                |
| Molino15b    | 7.52   | 7.12              | 0.053                |
| Pach3        | 11.78  | 11.28             | 0.042                |
| Pach7        | 8.60   | 8.25              | 0.041                |
| Pach8        | 9.37   | 8.98              | 0.042                |
| Pach9        | 8.64   | 8.28              | 0.042                |
| Pach11       | 7.98   | 7.66              | 0.040                |
| Pach12       | 9.76   | 9.32              | 0.045                |
| Pach14       | 7.65   | 7.34              | 0.041                |
| Pach15       | 9.86   | 9.46              | 0.041                |
| Pach17       | 8.04   | 7.71              | 0.041                |
| Pach_Ref     | 17.74  | 13.36             | 0.247                |
| Rascón2      | 13.15  | 12.59             | 0.043                |
| Rascón4      | 12.47  | 11.92             | 0.044                |
| Rascón6      | 10.06  | 9.61              | 0.045                |
| Rascón8      | 8.63   | 8.28              | 0.041                |
| Rascón13     | 10.51  | 10.05             | 0.044                |
| Rascón15     | 10.60  | 10.11             | 0.046                |
| TinajaB      | 11.84  | 11.22             | 0.052                |
| TinajaC      | 10.96  | 10.39             | 0.052                |

|                                        |       |       |       |
|----------------------------------------|-------|-------|-------|
| TinajaD                                | 8.56  | 8.15  | 0.048 |
| TinajaE                                | 10.63 | 10.10 | 0.050 |
| Tinaja2                                | 8.42  | 8.01  | 0.049 |
| Tinaja3                                | 9.41  | 8.94  | 0.050 |
| Tinaja5                                | 7.27  | 6.93  | 0.047 |
| Tinaja6                                | 9.88  | 9.38  | 0.051 |
| Tinaja11                               | 11.21 | 10.64 | 0.051 |
| Tinaja12                               | 12.35 | 11.70 | 0.053 |
| <i>Asytanax aeneus</i> : Surface       | 9.61  | 9.06  | 0.057 |
| <i>Asytanax aeneus</i> : Granadas cave | 9.23  | 8.78  | 0.049 |
| HiSeq 2000 mean                        | 9.83  | 9.28  | 0.052 |
| HiSeq 2000 median                      | 9.42  | 9.02  | 0.046 |
| Additional samples from HiSeq2500      |       |       |       |
| White long-finned skirt tetra          | 18.94 | 15.03 | 0.206 |
| Texas surface <i>A. mexicanus</i>      | 47.68 | 42.85 | 0.101 |

**Table S3.** Sequence Read Archive accession numbers for raw data reads are located under Bioproject: PRJNA260715.

*Astyanax aeneus*

SAMN03421328 : *A. aeneus*

SAMN03024504 : *A. aeneus*

*Astyanax mexicanus*

SAMN03734634 : Texas\_Surface

SAMN03421314 : Tinaja\_11

SAMN03421315 : Tinaja\_6

SAMN03421316 : Tinaja\_12

SAMN03421317 : Tinaja\_B

SAMN03421318 : Tinaja\_2

SAMN03421319 : Tinaja\_C

SAMN03421320 : Tinaja\_3

SAMN03421321 : Tinaja\_D

SAMN03421322 : Tinaja\_5

SAMN03421323 : Tinaja\_E

SAMN03421324 : Rascón\_13

SAMN03421325 : Rascón\_15

SAMN03421326 : Rascón\_8

SAMN03421327 : Rascón\_6

SAMN03024475 : Choy\_01

SAMN03024476 : Choy\_05

SAMN03024477 : Choy\_06

SAMN03024478 : Choy\_09

SAMN03024479 : Choy\_10

SAMN03024480 : Choy\_11

SAMN03024481 : Choy\_12

SAMN03024482 : Choy\_13

SAMN03024483 : Choy\_14

SAMN03024484 : Pach\_3

SAMN03024485 : Pach\_7

SAMN03024486 : Pach\_8

SAMN03024487 : Pach\_9

SAMN03024488 : Pach\_11

SAMN03024489 : Pach\_12

SAMN03024490 : Pach\_14

SAMN03024491 : Pach\_15

SAMN03024492 : Pach\_17

SAMN03024493 : Molino\_2a

SAMN03024494 : Molino\_7a

SAMN03024495 : Molino\_9b

SAMN03024496 : Molino\_10b

SAMN03024497 : Molino\_11a

SAMN03024498 : Molino\_12a

SAMN03024499 : Molino\_13b

SAMN03024500 : Molino\_14a

SAMN03024501 : Molino\_15b

SAMN03024502 : Rascón\_02

SAMN03024503 : Rascón\_04

SRR2040422: White skirt tetra

**Table S4.** Parameters used to filter variant call set: sites for which these parameters were true were marked and removed from downstream analyses.

| Parameter Name                        | Filter Values<br>for SNPs | Filter Values<br>for Mixed/Indels |
|---------------------------------------|---------------------------|-----------------------------------|
| QualByDepth (QD)                      | < 2.0                     | < 2.0                             |
| FisherStrand (FS)                     | > 60.0                    | > 200.0                           |
| RMSMappingQuality (MQ)                | < 40.0                    | --                                |
| MappingQualityRankSumTest (MQRankSum) | < -12.5                   | --                                |
| ReadPosRankSumTest (ReadPosRankSum)   | < -8.0                    | < -20.0                           |

**Table S5.** Description of the parameters used in the  $\delta\delta\delta$  model. All parameter estimates are reported with respect to an internally-defined effective population size,  $N_{ref}$  (multiply by the value in the Scaling Factor column to convert to real-world values). Not all parameters are used by all models.

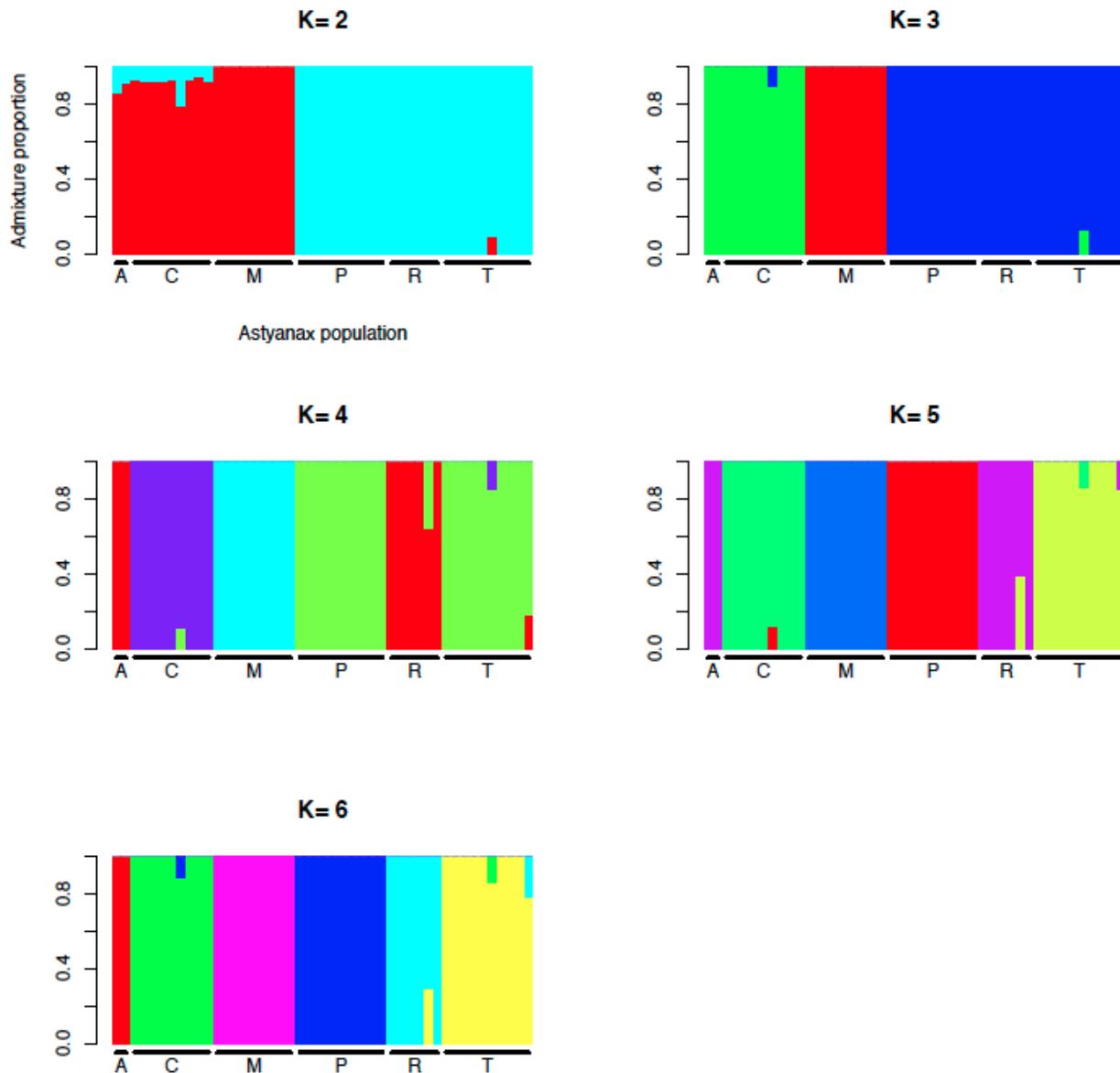
| Parameter   | Description                                                                 | Scaling Factor | Starting Value |
|-------------|-----------------------------------------------------------------------------|----------------|----------------|
| <b>N1</b>   | Ne of population 1                                                          | $N_{ref}$      | 1              |
| <b>N2</b>   | Ne of population 2                                                          | $N_{ref}$      | 1              |
| <b>Ts</b>   | Time from split to present (SI, IM models) or secondary contact (SC models) | $2N_{ref}$     | 1              |
| <b>Tsc</b>  | Time from secondary contact to present                                      | $2N_{ref}$     | 0.1            |
| <b>Tam</b>  | Time from end of ancestral migration to split                               | $2N_{ref}$     | 0.1            |
| <b>m21</b>  | Migration from population 1 to population 2                                 | $1/(2N_{ref})$ | 5              |
| <b>m12</b>  | Migration from population 2 to population 1                                 | $1/(2N_{ref})$ | 5              |
| <b>mi21</b> | Migration from population 1 to population 2 in “islands”                    | $1/(2N_{ref})$ | 0.5            |
| <b>mi12</b> | Migration from population 2 to population 1 in “islands”                    | $1/(2N_{ref})$ | 0.5            |
| <b>p</b>    | Proportion of genome in “islands”                                           | None           | 0.5            |

**Table S6:** Model selection for *ðaði* demographic modeling using weighted AIC values across the 50 replicates for each model. Higher values indicate the favored model. The seven models are as follows: SI - strict isolation, SC - secondary contact, IM - isolation with migration, AM - ancestral migration, SC2M - secondary contact with two migration rates, IM2M - isolation with two migration rates, and AM2M - ancestral migration with two migration rates (see Figure S9 of (Tine *et al.* 2014)).

| <b>Pop1</b> | <b>Pop2</b> | <b>BestModel</b> | <b>SI</b> | <b>SC</b> | <b>IM</b> | <b>AM</b> | <b>SC2M</b> | <b>IM2M</b> | <b>AM2M</b> |
|-------------|-------------|------------------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|
| Choy        | Molino      | SC2M             | 0         | 0         | 0         | 0         | 0.46        | 0.41        | 0.13        |
| Choy        | Pachon      | SC2M             | 0         | 0.47      | 0         | 0         | 0.53        | 0           | 0           |
| Choy        | Rascón      | SC2M             | 0         | 0         | 0         | 0         | 0.42        | 0.31        | 0.27        |
| Choy        | Tinaja      | SC2M             | 0         | 0.02      | 0         | 0         | 0.58        | 0.34        | 0.60        |
| Molino      | Pachon      | SC2M             | 0         | 0         | 0         | 0         | 0.51        | 0.41        | 0.08        |
| Molino      | Rascón      | IM2M             | 0         | 0         | 0         | 0         | 0.24        | 0.63        | 0.12        |
| Molino      | Tinaja      | SC2M             | 0         | 0         | 0         | 0         | 0.48        | 0.32        | 0.20        |
| Pachon      | Rascón      | IM2M             | 0         | 0         | 0         | 0         | 0.34        | 0.60        | 0.06        |
| Pachon      | Tinaja      | SC2M             | 0         | 0         | 0         | 0         | 0.78        | 0.15        | 0.06        |
| Rascón      | Tinaja      | SC2M             | 0         | 0         | 0         | 0         | 0.51        | 0.37        | 0.12        |

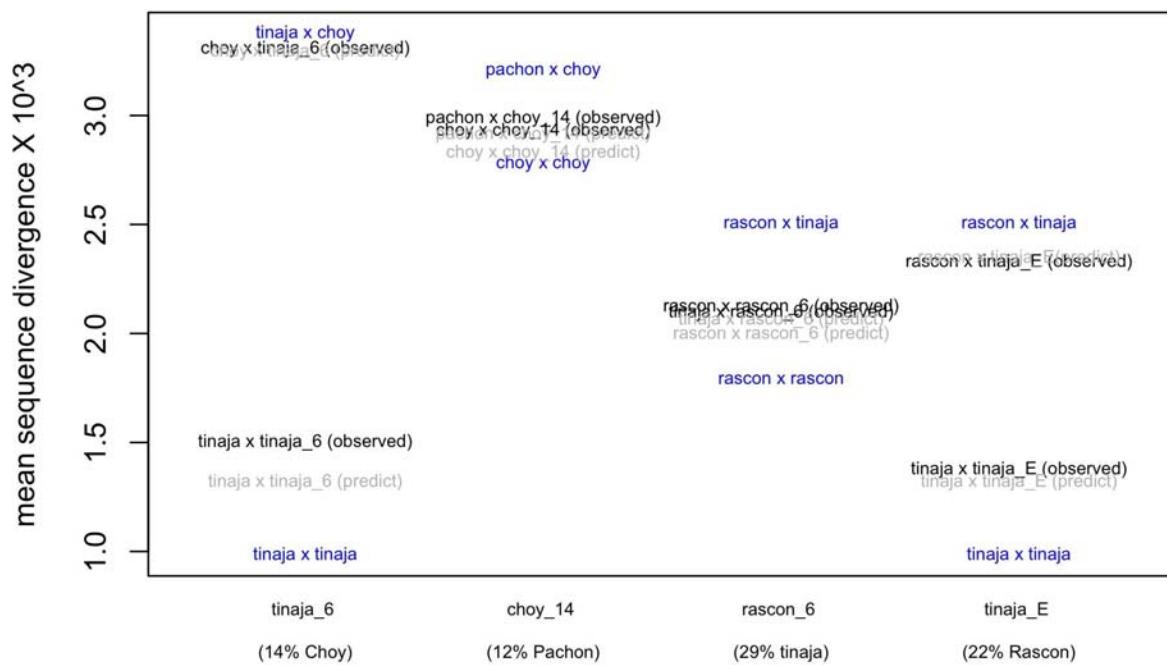
**Table S7:** Median and ranges of effective population size estimates for each population calculated from all SC2m models and replicates which involved that population.

| <b>Population</b> | <b>Median Ne</b> | <b>Min Ne</b> | <b>Max Ne</b> |
|-------------------|------------------|---------------|---------------|
| <b>Río Choy</b>   | 258,643.48       | 219,187.97    | 706,222.19    |
| <b>Molino</b>     | 7,335.23         | 1,803.14      | 18,661.97     |
| <b>Pachón</b>     | 31,755.67        | 3,052.04      | 46,023.74     |
| <b>Rascón</b>     | 173,816.85       | 128,892.74    | 597,166.07    |
| <b>Tinaja</b>     | 30,522.15        | 11,144.70     | 42,453.10     |

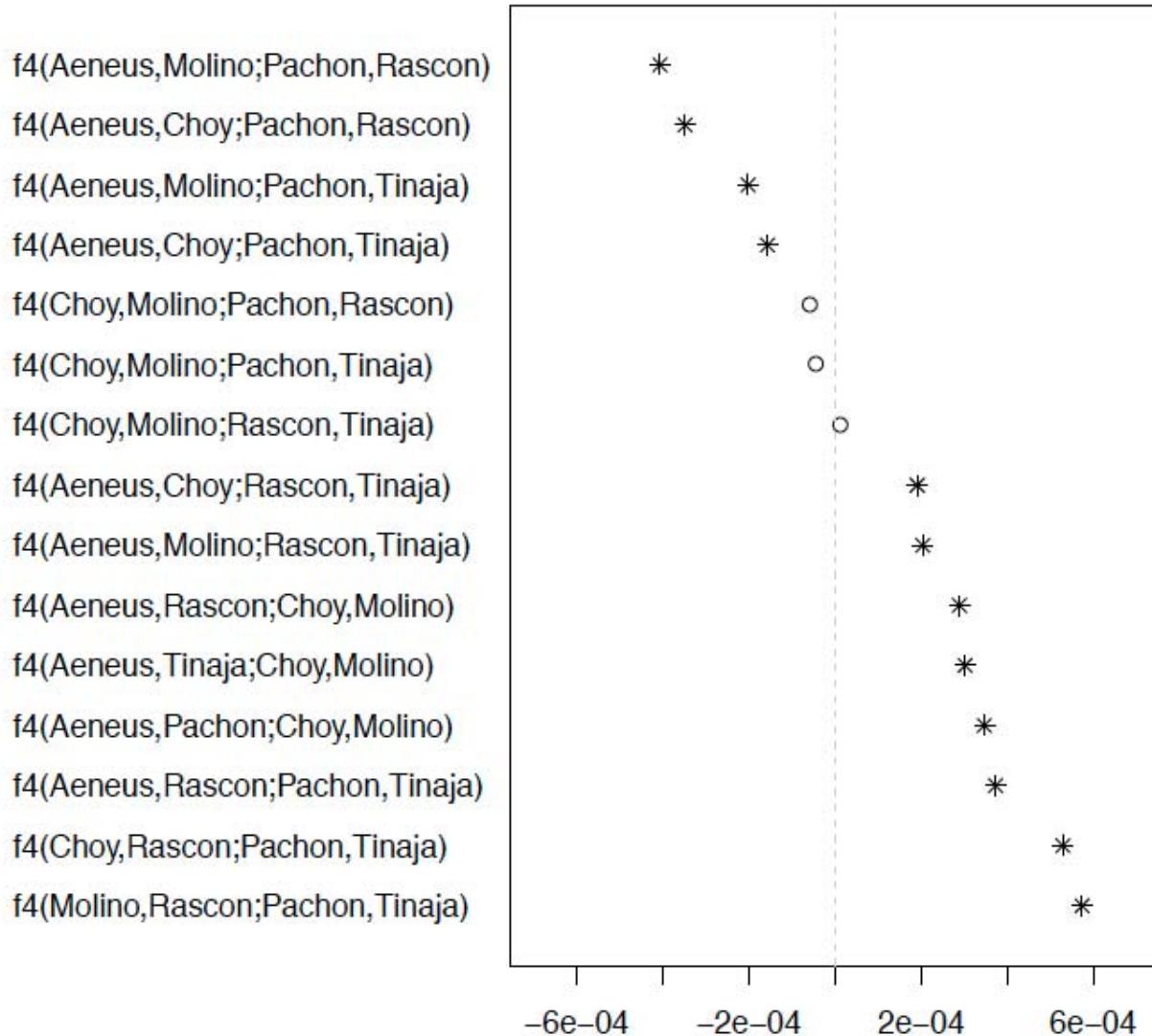

**Table S8:** Median estimates of population divergence and migration rate parameters for best-fitting models across 50 replicates. All parameter estimates are scaled to real-world values. L is the number of sites, including invariant sites, that were used to generate the 2D SFS for each comparison. Ts is the number of generations from population split to the start of secondary contact. Tsc is the number of generations from the start of secondary contact to the present. M21 and M12 are the proportions of migrants from population 1 and 2, respectively. Mi21 and Mi12 are migrant proportions, but for genomic regions that may be recalcitrant to migration. P is the proportion of the genome that follows Mi21 and Mi12 migration rates. Values for all models for all replicates are given as a separate supplementary document. Columns with migration rates starting with “Tot” are the median number of chromosomes that are migrant, per generation (i.e., the median migrant proportion multiplied by the population size).

| Pop 1  | Pop 2  | SNPs/L            | Model | Ts         | Tsc       | M21      | M12      | Mi21     | Mi12     | Tot M21 | Tot M12 | Tot Mi21 | Tot Mi12 | p    |
|--------|--------|-------------------|-------|------------|-----------|----------|----------|----------|----------|---------|---------|----------|----------|------|
| Choy   | Molino | 3878487/505096374 | SC2M  | 91,269.51  | 71,267.61 | 1.41E-05 | 2.61E-05 | 3.42E-07 | 1.30E-06 | 4.4275  | 0.1528  | 0.1074   | 0.0076   | 0.49 |
| Choy   | Pachon | 4066711/509724974 | SC2M  | 174,483.39 | 6,689.94  | 2.46E-06 | 1.94E-05 | 1.00E-07 | 8.72E-06 | 0.6377  | 0.1471  | 0.0260   | 0.0660   | 0.25 |
| Choy   | Rascón | 5521229/523658094 | SC2M  | 241,747.28 | 14,927.91 | 3.70E-05 | 8.06E-06 | 6.96E-07 | 5.96E-10 | 9.1239  | 1.1599  | 0.1714   | 0.0001   | 0.18 |
| Choy   | Tinaja | 4265583/515895385 | SC2M  | 182,107.21 | 24,858.71 | 1.49E-09 | 8.23E-06 | 8.83E-08 | 4.37E-06 | 0.0004  | 0.1015  | 0.0227   | 0.0539   | 0.32 |
| Molino | Pachon | 1637246/504586215 | SC2M  | 195,724.03 | 30,431.23 | 3.53E-06 | 9.01E-06 | 7.58E-07 | 1.37E-06 | 0.0268  | 0.2946  | 0.0058   | 0.0447   | 0.51 |
| Molino | Rascón | 2857347/517486052 | SC2M  | 210,395.46 | 27,022.94 | 6.26E-06 | 1.29E-07 | 1.18E-06 | 5.57E-09 | 0.0374  | 0.0223  | 0.0071   | 0.0010   | 0.46 |
| Molino | Tinaja | 1692575/510149070 | SC2M  | 119,176.81 | 34,819.37 | 3.46E-05 | 8.99E-05 | 5.66E-07 | 6.41E-07 | 0.2823  | 3.0158  | 0.0046   | 0.0215   | 0.30 |
| Pachon | Rascón | 3083094/524059906 | SC2M  | 148,701.57 | 12,560.35 | 4.40E-06 | 2.46E-07 | 2.75E-06 | 1.34E-09 | 0.1407  | 0.0430  | 0.0880   | 0.0002   | 0.34 |
| Pachon | Tinaja | 1705986/517306034 | SC2M  | 102,245.09 | 13,276.94 | 6.76E-05 | 6.17E-06 | 1.72E-06 | 2.24E-06 | 2.2739  | 0.1941  | 0.0579   | 0.0704   | 0.40 |
| Rascón | Tinaja | 3054424/531929176 | SC2M  | 170,279.24 | 20,370.36 | 2.24E-07 | 8.16E-06 | 1.54E-09 | 1.68E-06 | 4.9844  | 0.2628  | 0.0003   | 0.0542   | 0.38 |

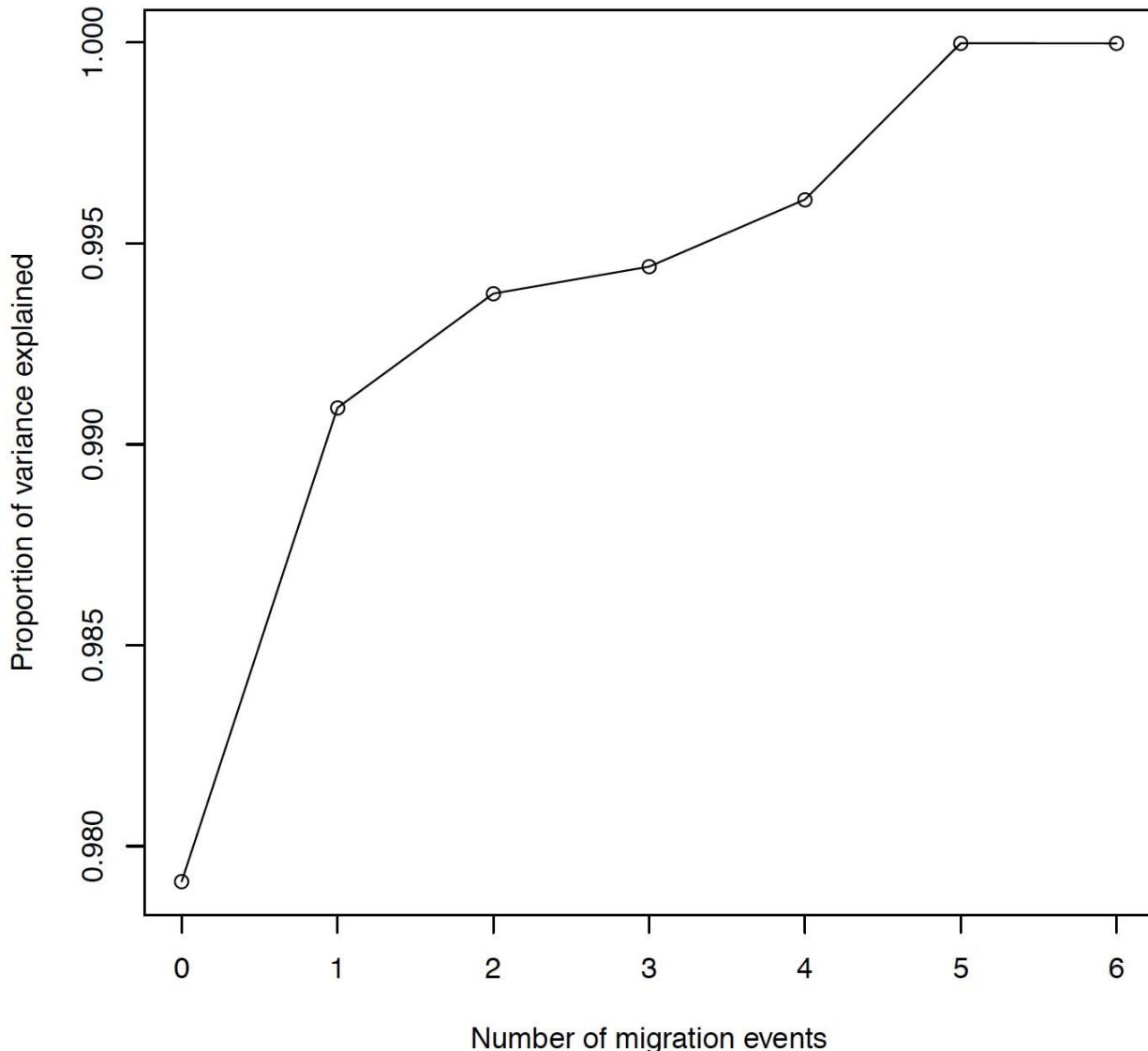
**Table S9.** Pairwise population comparisons using  $F_{ST}$  (lower triangle) and average  $\pi_{pop1-pop2}$  at fourfold degenerate sites (upper triangle) averaged across the genome using non-admixed individuals. Comparisons to Molino are among the highest  $F_{ST}$  values, and we suspect this is due to the low diversity in Molino. Likewise, Choy and Rascón are the most divergent in  $d_{XY}$ , but exhibit the highest  $\pi$  and lowest  $F_{ST}$ .

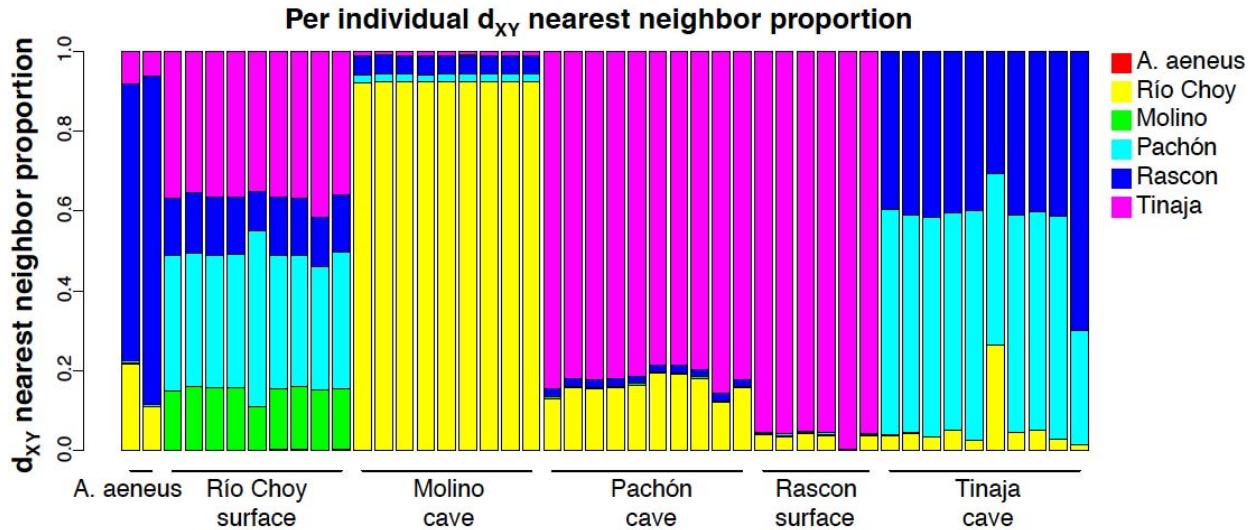

|                  | <i>A. aeneus</i> | Río Choy | Molino  | Pachón  | Rascón  | Tinaja  |
|------------------|------------------|----------|---------|---------|---------|---------|
| <i>A. aeneus</i> | --               | 0.00299  | 0.00186 | 0.00199 | 0.00252 | 0.00213 |
| Río Choy         | 0.1680           | --       | 0.00187 | 0.00200 | 0.00253 | 0.00214 |
| Molino           | 0.6507           | 0.2151   | --      | 0.00087 | 0.00140 | 0.00101 |
| Pachón           | 0.5158           | 0.1913   | 0.5534  | --      | 0.00153 | 0.00115 |
| Rascón           | 0.2396           | 0.1165   | 0.3646  | 0.2476  | --      | 0.00168 |
| Tinaja           | 0.4968           | 0.1812   | 0.5847  | 0.2678  | 0.2223  | --      |

**Figure S1.** ADMIXTURE analysis suggests contemporary gene flow between “old” and “new” lineages and cave and surface populations using different cluster sizes. Analysis was performed on a thinned Biallelic SNP VCF. A = *Astyanax aeneus*, N = 2; C = Río Choy, N = 10; M = Molino cave, N = 9; P = Pachón cave, N = 10; R = Rascón surface, N = 6; T = Tinaja cave, N = 10.




**Figure S2. ADMIXTURE assignment predicts divergence.** To validate our finding of early generation hybrids, we model divergence between a focal admixed sample its two parental species as diversity within and divergence between the parental species weighted by the admixture proportion inferred. For example, because ADMIXTURE predicts that sample Tinaja\_E inherits 22% of its ancestry from Tinaja and 78% of its ancestry from Rascón, we predict that its divergence from Tinaja will be  $0.78 \pi_{Tinaja} + 0.22 d_{Tinaja \times Rascón}$ , and that its divergence from Rascón will be  $0.78 d_{Tinaja \times Rascón} + 0.22 \pi_{Rascón}$ . These predicted divergence values of  $1.3 \times 10^3$  and  $2.3 \times 10^3$  are quite close to the observed divergence values of  $1.4 \times 10^3$  and  $2.3 \times 10^3$ , respectively. We visually present all such comparisons below.


## ADmixTURE assignment predicts divergence

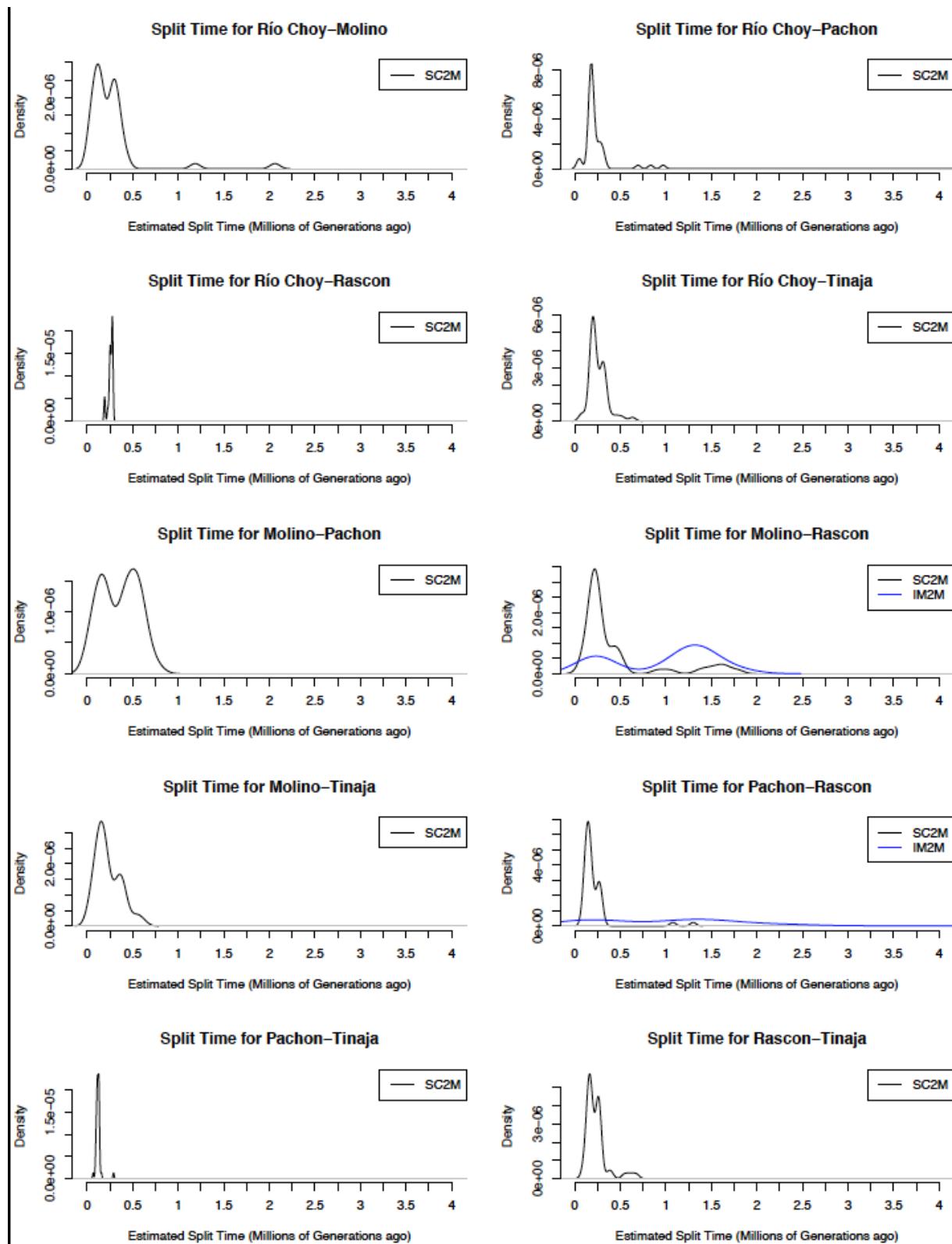



**Figure S3.**  $F_4$  statistics as calculated in TreeMix. Asterisks indicate a significant Z-score. For those newick trees where the asterisk falls in the negative zone, admixture between either the two outermost or the two inner-most is favored. For those newick trees where the asterisk falls in a positive zone, admixture between the first and third or second and fourth taxa is supported. Putatively recently admixed individuals were removed from the analysis.



**Figure S4. TreeMix proportion of variance explained by number of migration events.** We calculated the proportion of variance explained as the observed sample covariance / expected sample covariance. There is clearly a plateau from five to six migration events, indicating that five events sufficiently explain the observed covariance matrix.






**Figure S5. Per-individual estimated copying proportions from  $d_{XY}$ -based chromosome painting for non-overlapping 20kb windows across the genome.** We restrict these proportions to chunks that are at least 20kb and have unambiguous population affinity (i.e., for each window the assigned population is consistent and the only population with minimum  $d_{XY}$  to the focal individual).

**Figure S6. Examination of length distribution of ancestry chunks per individual.** 5 kb windows of average pairwise nucleotide differences (e.g.,  $d_{XY}$ ) were assigned to their nearest-neighbor population in the sampled populations. **We include this as a separate PDF.**

**Figure S7.** Pairwise individual  $d_{XY}$  for each individual (on y-axis) for each 5kb window that show that population being the minimum  $d_{XY}$  distance from the focal population (listed as the title). For example, 5kb windows that show *A. aeneus* as the nearest  $d_{XY}$  neighbor to Choy, are much more divergent than when the other four populations are Choy's nearest  $d_{XY}$  neighbor. Populations are abbreviated by their first letter. **We include this for every individual as a separate PDF.**

**Figure S8.** Best topology from using 1430 loci in PhyloNet v3.6.1. MCMC\_SEQ incorporating reticulate evolution and incomplete lineage sorting. **We include this for every individual as a separate PDF.** Analyses shown below were conducted with four recently admixed individuals removed and *apriori* information included.



**Figure S9.** *daði* demographic modeling of divergence times between pairwise populations for 50 replicates per model. For population pairs that favored the IM2m model (e.g.,

isolation with migration and heterogeneity of migration across the genome, blue), we also plotted the results of SC2m (e.g., a period of isolation followed by secondary contact and heterogeneity of migration across the genome, black) which was the favored model for most pairwise population comparisons.

## References cited

Abbott RJ, Barton NH, Good JM (2016) Genomics of hybridization and its evolutionary consequences. *Molecular ecology* **25**, 2325-2332.

Agrawal AA (2017) Toward a predictive framework for convergent evolution: integrating natural history, genetic mechanisms, and consequences for the diversity of life. *The American Naturalist* **190**, S1-S12.

Åkesson M, Liberg O, Sand H, *et al.* (2016) Genetic rescue in a severely inbred wolf population. *Molecular ecology* **25**, 4745-4756.

Alexander DH, Lange K (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. *BMC bioinformatics* **12**, 1.

Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. *Genome research* **19**, 1655-1664.

Arnold ML, Kunte K (2017) Adaptive genetic exchange: A tangled history of admixture and evolutionary innovation. *Trends in Ecology & Evolution*.

Aspiras AC, Rohner N, Martineau B, Borowsky RL, Tabin CJ (2015) *Melanocortin 4 receptor* mutations contribute to the adaptation of cavefish to nutrient-poor conditions. *Proceedings of the National Academy of Sciences* **112**, 9668-9673.

Auwera GA, Carneiro MO, Hartl C, *et al.* (2013) From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. *Current protocols in bioinformatics*, 11.10. 11-11.10. 33.

Avise JC, Selander RK (1972) Evolutionary genetics of cave-dwelling fishes of the genus *Astyanax*. *Evolution*, 1-19.

Beerli P (2004) Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. *Molecular ecology* **13**, 827-836.

Bibliowicz J, Alié A, Espinasa L, *et al.* (2013) Differences in chemosensory response between eyed and eyeless *Astyanax mexicanus* of the Rio Subterráneo cave. *EvoDevo* **4**, 25-25.

Bierne N, Gagnaire P-A, David P (2013) The geography of introgression in a patchy environment and the thorn in the side of ecological speciation. *Current Zoology* **59**, 72-86.

Borowsky R (2008a) *Astyanax mexicanus*, the blind Mexican cave fish: A model for studies in development and morphology. *Cold Spring Harbor Protocols* **2008**, pdb. em0107.

Borowsky R (2008b) Restoring sight in blind cavefish. *Current Biology* **18**, R23-R24.

Borowsky R (2015) Regressive evolution: Testing hypotheses of selection and drift. In: *Biology and Evolution of the Mexican Cavefish* (ed. Keene A, Yoshizawa, M. McGaugh, S. E.), p. 93. Elsevier, San Diego.

Bradic M, Beerli P, León FG-d, Esquivel-Bobadilla S, Borowsky R (2012) Gene flow and population structure in the Mexican blind cavefish complex (*Astyanax mexicanus*). *BMC evolutionary biology* **12**, 9.

Bradic M, Teotónio H, Borowsky RL (2013) The population genomics of repeated evolution in the blind cavefish *Astyanax mexicanus*. *Molecular biology and evolution* **30**, 2383-2400.

Brandvain Y, Kenney AM, Flagel L, Coop G, Sweigart AL (2014) Speciation and introgression between *Mimulus nasutus* and *Mimulus guttatus*. *PLoS genetics* **10**, e1004410.

Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. *The American Journal of Human Genetics* **81**, 1084-1097.

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972-1973.

Charlesworth B (1998) Measures of divergence between populations and the effect of forces that reduce variability. *Molecular biology and evolution* **15**, 538-543.

Clarkson CS, Weetman D, Essandoh J, *et al.* (2014) Adaptive introgression between *Anopheles* sibling species eliminates a major genomic island but not reproductive isolation. *Nature communications* **5**.

Coghill LM, Hulsey CD, Chaves-Campos J, García de Leon FJ, Johnson SG (2014) Next generation phylogeography of cave and surface *Astyanax mexicanus*. *Molecular Phylogenetics and Evolution* **79**, 368-374.

Colosimo PF, Hosemann KE, Balabhadra S, *et al.* (2005) Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. *Science* **307**, 1928-1933.

Cresko WA, Amores A, Wilson C, *et al.* (2004) Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. *Proc Natl Acad Sci U S A* **101**, 6050-6055.

Cruickshank TE, Hahn MW (2014) Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. *Molecular ecology* **23**, 3133-3157.

Cussac V, Fernández DA, Gómez SE, López HL (2009) Fishes of southern South America: a story driven by temperature. *Fish Physiology and Biochemistry* **35**, 29-42.

Dasmahapatra KK, Walters JR, Briscoe AD, *et al.* (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. *Nature* **487**, 94.

DePristo MA, Banks E, Poplin R, *et al.* (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nature genetics* **43**, 491-498.

Dowling TE, Martasian DP, Jeffery WR (2002) Evidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, *Astyanax mexicanus*. *Molecular biology and evolution* **19**, 446-455.

Duboué ER, Keene AC, Borowsky RL (2011) Evolutionary convergence on sleep loss in cavefish populations. *Current Biology* **21**, 671-676.

Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. *Trends in Ecology & Evolution* **29**, 51-63.

Ellstrand NC, Rieseberg LH (2016) When gene flow really matters: gene flow in applied evolutionary biology. *Evolutionary applications* **9**, 833-836.

Elmer KR, Meyer A (2011) Adaptation in the age of ecological genomics: insights from parallelism and convergence. *Trends in Ecology and Evolution* **26**, 298-306.

Espinasa L, Bartolo ND, Newkirk CE (2014a) DNA sequences of troglobitic nicoletiid insects support Sierra de El Abra and the Sierra de Guatemala as a single biogeographical area: Implications for *Astyanax*. *Subterranean Biology* **13**, 35.

Espinasa L, Bibliowicz J, Jeffery WR, Rétaux S (2014b) Enhanced prey capture skills in *Astyanax* cavefish larvae are independent from eye loss. *EvoDevo* **5**, 35.

Espinasa L, Borowsky RB (2001) Origins and relationship of cave populations of the blind Mexican tetra, *Astyanax fasciatus*, in the Sierra de El Abra. *Environmental Biology of Fishes* **62**, 233-237.

Espinasa L, Centone DM, Gross JB (2014c) A contemporary analysis of a loss-of-function of the *oculocutaneous albinism type II (Oca2)* allele within the Micos *Astyanax* cave fish population. *Speleobiology Notes* **6**, 48-54.

Espinasa L, Espinasa M (2015) Hydrogeology of caves in the Sierra de El Abra region. In: *Biology and Evolution of the Mexican Cavefish*. (eds. Keene A, Yoshizawa M, McGaugh S), pp. 41-58. Elsevier San Diego.

Espinasa L, Rivas-Manzano P, Pérez HE (2001) A new blind cave fish population of genus *Astyanax*: geography, morphology and behavior. In: *The biology of hypogean fishes*, pp. 339-344. Springer.

Falush D, van Dorp L, Lawson D (2016) A tutorial on how (not) to over-interpret STRUCTURE/ADMIXTURE bar plots. *bioRxiv*, 066431.

Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. *Hearing research* **149**, 1-10.

Fitzpatrick S, Gerberich J, Kronenberger J, Angeloni L, Funk W (2015) Locally adapted traits maintained in the face of high gene flow. *Ecology Letters* **18**, 37-47.

Fitzpatrick SW, Gerberich JC, Angeloni LM, *et al.* (2016) Gene flow from an adaptively divergent source causes rescue through genetic and demographic factors in two wild populations of Trinidadian guppies. *Evolutionary applications* **9**, 879-891.

Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. *Molecular ecology* **24**, 2610-2618.

Fumey J, Hinaux H, Noirot C, *et al.* (2018) Evidence for late Pleistocene origin of *Astyanax mexicanus* cavefish. *BMC evolutionary biology* **18**, 43.

Geneva AJ, Muirhead CA, Kingan SB, Garrigan D (2015) A new method to scan genomes for introgression in a secondary contact model. *PloS one* **10**, e0118621.

Gompel N, Prud'homme B (2009) The causes of repeated genetic evolution. *Developmental Biology* **332**, 36-47.

Gross J, Wilkens H (2013) Albinism in phylogenetically and geographically distinct populations of *Astyanax* cavefish arises through the same loss-of-function *Oca2* allele. *Heredity* **111**, 122-130.

Gross JB (2012) The complex origin of *Astyanax* cavefish. *BMC evolutionary biology* **12**, 105.

Gross JB, Borowsky R, Tabin CJ (2009) A novel role for *Mc1r* in the parallel evolution of depigmentation in independent populations of the cavefish *Astyanax mexicanus*. *PLoS genetics* **5**, e1000326-e1000326.

Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2009) Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. *PLoS genetics* **5**, e1000695.

Hausdorf B, Wilkens H, Strecker U (2011) Population genetic patterns revealed by microsatellite data challenge the mitochondrial DNA based taxonomy of *Astyanax* in Mexico (Characidae, Teleostei). *Molecular Phylogenetics and Evolution* **60**, 89-97.

Hellenthal G, Busby GB, Band G, *et al.* (2014) A genetic atlas of human admixture history. *Science* **343**, 747-751.

Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. *Journal of Molecular Evolution* **59**, 190-203.

Hudson RR (1990) Gene genealogies and the coalescent process. *Oxford surveys in evolutionary biology* **7**, 44.

Hudson RR, Kreitman M, Aguadé M (1987) A test of neutral molecular evolution based on nucleotide data. *Genetics* **116**, 153-153.

Jaggard JB, Robinson BG, Stahl BA, *et al.* (2017) The lateral line confers evolutionarily derived sleep loss in the Mexican cavefish. *Journal of Experimental Biology* **in press**.

Jaggard JB, Stahl BA, Lloyd E, *et al.* (2018) Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. *eLife* **7**.

Jakobsson M, Edge MD, Rosenberg NA (2013) The relationship between FST and the frequency of the most frequent allele. *Genetics* **193**, 515-528.

Jeffery WR (2001) Cavefish as a model system in evolutionary developmental biology. *Developmental Biology* **231**, 1-12.

Jeffery WR (2009) Chapter 8: Evolution and development in the cavefish *Astyanax*. *Current Topics in Developmental Biology* **86**, 191-221.

Keene A, Yoshizawa M, McGaugh SE (2015) *Biology and Evolution of the Mexican Cavefish* Elsevier: Academic Press.

Kowalko JE, Rohner N, Linden TA, *et al.* (2013a) Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of *Astyanax mexicanus*. *Proceedings of the National Academy of Sciences USA* **110**, 16933-16938.

Kowalko JE, Rohner N, Rompani SB, *et al.* (2013b) Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms. *Current Biology* **23**, 1874-1883.

Krishnan J, Rohner N (2017) Cavefish and the basis for eye loss. *Philosophical Transactions Royal Society B* **372**, 20150487.

Kronenberger J, Funk W, Smith J, *et al.* (2017) Testing the demographic effects of divergent immigrants on small populations of Trinidadian guppies. *Animal Conservation* **20**, 3-11.

Langecker TG, Wilkens H, Junge P (1991) Introgressive hybridization in the Pachon Cave population of *Astyanax fasciatus* (Teleostei: Characidae). *Ichthyological exploration of freshwaters. Munchen* **2**, 209-212.

Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv preprint arXiv:1303.3997*.

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**, 1754-1754.

Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* **26**, 589-589.

Lohse M, Bolger A, Nagel A, *et al.* (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. *Nucleic Acids Research* **40**(Web Server issue), W622-627.

Losos JB (2011) Convergence, adaptation, and constraint. *Evolution* **65**, 1827-1840.

Lowry DB, Hoban S, Kelley JL, *et al.* (2016) Breaking RAD: An evaluation of the utility of restriction site associated DNA sequencing for genome scans of adaptation. *Molecular Ecology Resources* **17**, 142-152.

Malinsky M, Svardal H, Tyers AM, *et al.* (2017) Whole genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. *bioRxiv*, 143859.

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal* **17**, 10.

McGaugh SE, Gross JB, Aken B, *et al.* (2014) The cavefish genome reveals candidate genes for eye loss. *Nature communications* **5**, 5307-5307.

McGaugh SE, Noor MAF (2012) Genomic impacts of chromosomal inversions in parapatric *Drosophila* species. *Philosophical Transactions of the Royal Society B* **367**, 422-429.

McKenna A, Hanna M, Banks E, *et al.* (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome research* **20**, 1297-1303.

Meier JI, Marques DA, Mwaiko S, *et al.* (2017) Ancient hybridization fuels rapid cichlid fish adaptive radiations. *Nature communications* **8**, 14363.

Meyer A, Van de Peer Y (2005) From 2R to 3R: Evidence for a fish-specific genome duplication (FSGD). *Bioessays* **27**, 937-945.

Mitchell RW, Russell WH, Elliott WR (1977) *Mexican eyeless characin fishes, genus Astyanax: Environment, distribution, and evolution* Texas Tech Press, Texas.

Moran D, Softley R, Warrant EJ (2014) Eyeless Mexican cavefish save energy by eliminating the circadian rhythm in metabolism. *PloS one* **9**, e107877-e107877.

Nair S, Williams JT, Brockman A, *et al.* (2003) A selective sweep driven by pyrimethamine treatment in southeast asian malaria parasites. *Molecular biology and evolution* **20**, 1526-1536.

Nei M (1987) *Molecular Evolutionary Genetics* Columbia University Press, New York.

Noor MAF, Bennett SM (2009) Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. *Heredity* **103**, 439-444.

O'Quin KE, Yoshizawa M, Doshi P, Jeffery WR (2013) Quantitative genetic analysis of retinal degeneration in the blind cavefish *Astyanax mexicanus*. *PloS one* **8**, e57281.

O'Quin K, McGaugh SE (2015) The genetic bases of troglomorphy in *Astyanax*: How far we have come and where do we go from here? In: *Biology and Evolution of the Mexican Cavefish* (ed. A. Keene MY, S.E. McGaugh). Elsevier.

O'Quin KE, Doshi P, Lyon A, *et al.* (2015) Complex evolutionary and genetic patterns characterize the loss of scleral ossification in the blind cavefish *Astyanax mexicanus*. *PloS one* **10**, e0142208.

Ornelas-García CP, Domínguez-Domínguez O, Doadrio I (2008) Evolutionary history of the fish genus *Astyanax* Baird & Girard (1854)(Actinopterygii, Characidae) in Mesoamerica reveals multiple morphological homoplasies. *BMC evolutionary biology* **8**, 340.

Ornelas-García CP, Pedraza-Lara C (2015) Phylogeny and evolutionary history of *A. mexicanus* In: *Biology and Evolution of the Mexican Cavefish* (ed. Keene AY, M. McGaugh, S.E.). Elsevier, San Diego.

Page LM, Burr BM (2011) *Peterson field guide to freshwater fishes of North America north of Mexico* Houghton Mifflin Harcourt, Boston, Massachusetts, USA.

Panaram K, Borowsky R (2005) Gene flow and genetic variability in cave and surface populations of the Mexican tetra, *Astyanax mexicanus* (Teleostei: Characidae). *Copeia* **2005**, 409-416.

Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. *Bioinformatics* **20**, 289-290.

Patterson N, Moorjani P, Luo Y, *et al.* (2012) Ancient admixture in human history. *Genetics* **192**, 1065-1093.

Payseur BA, Rieseberg LH (2016) A genomic perspective on hybridization and speciation. *Molecular ecology* **25**, 2337-2360.

Pease J, Rosenzweig B (2015) Encoding data using biological principles: the Multisample Variant Format for phylogenomics and population genomics. *IEEE/ACM transactions on computational biology and bioinformatics/IEEE, ACM*.

Pease JB, Hahn MW (2015) Detection and polarization of introgression in a five-taxon phylogeny. *Systematic biology* **64**, 651-662.

Peter BM (2016) Admixture, population structure, and F-statistics. *Genetics* **202**, 1485-1501.

Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from genome-wide allele frequency data. *PLoS genetics* **8**, e1002967.

Porter ML, Dittmar K, Pérez-Losada M (2007) How long does evolution of the troglomorphic form take? Estimating divergence times in *Astyanax mexicanus*. *Acta Carsologica* **36**.

Protas M, Conrad M, Gross JB, Tabin C, Borowsky R (2007) Regressive evolution in the Mexican cave tetra, *Astyanax mexicanus*. *Current Biology* **17**, 452-454.

Protas M, Hersey C, Kochanek D, *et al.* (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. *Nature genetics* **38**, 107-111.

Protas M, Jeffery WR (2012) Evolution and development in cave animals: from fish to crustaceans. *WIREs Developmental Biology* **1**, 823-845.

Protas M, Tabansky I, Conrad M, *et al.* (2008) Multi-trait evolution in a cave fish, *Astyanax mexicanus*. *Evolution and Development* **10**, 196-209.

Reich D, Thangaraj K, Patterson N, Price AL, Singh L (2009) Reconstructing Indian population history. *Nature* **461**, 489-494.

Requena T, Cabrera S, Martín-Sierra C, *et al.* (2014) Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere's disease. *Human molecular genetics* **24**, 1119-1126.

Richards EJ, Martin CH (2017) Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. *PLoS genetics* **13**, e1006919.

Riddle MR, Aspiras AC, Gaudenz K, *et al.* (2018) Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. *Nature* **555**, 647.

Rieseberg LH, Burke JM (2001) The biological reality of species: gene flow, selection, and collective evolution. *Taxon*, 47-67.

Ritz KR, Noor MA (2016) Mistaken identity: Another bias in the use of relative genetic divergence measures for detecting interspecies introgression. *PloS one* **11**, e0165032.

Roesti M, Gavrilets S, Hendry AP, Salzburger W, Berner D (2014) The genomic signature of parallel adaptation from shared genetic variation. *Molecular ecology* **23**, 3944-3956.

Rosenblum EB, Parent CE, Brandt EE (2014) The molecular basis of phenotypic convergence. *Annual Review of Ecology, Evolution, and Systematics* **45**, 203-226.

Rougemont Q, Gagnaire PA, Perrier C, *et al.* (2017) Inferring the demographic history underlying parallel genomic divergence among pairs of parasitic and nonparasitic lamprey ecotypes. *Molecular ecology* **26**, 142-162.

Rougeux C, Bernatchez L, Gagnaire P-A (2017) Modeling the multiple facets of speciation-with-gene-flow toward inferring the divergence history of lake whitefish species pairs (*Coregonus clupeaformis*). *Genome biology and evolution* **9**, 2057-2074.

Salin K, Voituron Y, Mourin J, Hervant F (2010) Cave colonization without fasting capacities: An example with the fish *Astyanax fasciatus mexicanus*. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology* **156**, 451-457.

Schlenke TA, Begun DJ (2004) Strong selective sweep associated with a transposon insertion in *Drosophila simulans*. *Proc Natl Acad Sci U S A* **101**, 1626-1631.

Slatkin M (2005) Seeing ghosts: the effect of unsampled populations on migration rates estimated for sampled populations. *Molecular ecology* **14**, 67-73.

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**, 1312-1313.

Stern DL (2013) The genetic causes of convergent evolution. *Nature Reviews Genetics* **14**, 751.

Stern DL, Orgogozo V (2009) Is genetic evolution predictable? *Science* **323**, 746-751.

Strecker U, Bernatchez L, Wilkens H (2003) Genetic divergence between cave and surface populations of *Astyanax* in Mexico (Characidae, Teleostei). *Molecular ecology* **12**, 699-710.

Strecker U, Faúndez VH, Wilkens H (2004) Phylogeography of surface and cave *Astyanax* (Teleostei) from Central and North America based on *cytochrome b* sequence data. *Molecular Phylogenetics and Evolution* **33**, 469-481.

Strecker U, Hausdorf B, Wilkens H (2012) Parallel speciation in *Astyanax* cave fish (Teleostei) in Northern Mexico. *Molecular Phylogenetics and Evolution* **62**, 62-70.

Team RC (2014) R: A language and environment for statistical computing. . In: *R Foundation for Statistical Computing*.

Tine M, Kuhl H, Gagnaire P-A, et al. (2014) European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. *Nature communications* **5**, 5770.

Van Belleghem S, Vangestel C, De Wolf K, et al. (2018) Evolution at two time frames: polymorphisms from an ancient singular divergence event fuel contemporary parallel evolution. *bioRxiv*, 255554.

Varatharasan N, Croll RP, Franz Odendaal T (2009) Taste bud development and patterning in sighted and blind morphs of *Astyanax mexicanus*. *Developmental Dynamics* **238**, 3056-3064.

Wagenmakers E-J, Farrell S (2004) AIC model selection using Akaike weights. *Psychonomic bulletin & review* **11**, 192-196.

Welch JJ, Jiggins CD (2014) Standing and flowing: the complex origins of adaptive variation. *Molecular ecology* **23**, 3935-3937.

Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. *Trends in Ecology & Evolution* **30**, 42-49.

Wilkens H (1971) Genetic interpretation of regressive evolutionary processes: studies on hybrid eyes of two *Astyanax* cave populations (Characidae, Pisces). *Evolution* **25**, 530-544.

Wilkens H, Strecker U (2003) Convergent evolution of the cavefish *Astyanax* (Characidae, Teleostei): genetic evidence from reduced eye size and pigmentation. *Biological Journal of the Linnean Society* **80**, 545-554.

Wilkens H, Strecker U (2017) *Evolution in the Dark* Springer.

Wootton JC, Feng X, Ferdig MT, et al. (2002) Genetic diversity and chloroquine selective sweeps in *Plasmodium falciparum*. *Nature* **418**, 320.

Yamamoto Y, Byerly MS, Jackman WR, Jeffery WR (2009) Pleiotropic functions of embryonic *sonic hedgehog* expression link jaw and taste bud amplification with eye loss during cavefish evolution. *Developmental Biology* **330**, 200-211.

Yang Z, Rannala B (2012) Molecular phylogenetics: principles and practice. *Nature Reviews Genetics* **13**, 303-314.

Yoshizawa M, Ashida G, Jeffery DE (2012a) Parental genetic effects in a cavefish adaptive behavior explain disparity between nuclear and mitochondrial DNA. *Evolution* **66**, 2975-2982.

Yoshizawa M, Gorički Š, Soares D, Jeffery WR (2010) Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. *Current Biology* **20**, 1631-1636.

Yoshizawa M, Robinson B, Duboue ER, *et al.* (2015) Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. *BMC Biology* **13**, 1.

Yoshizawa M, Yamamoto Y, O'Quin KE, Jeffery WR (2012b) Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. *BMC Biology* **10**, 108.