

1 **Whole genome linkage disequilibrium and effective population
2 size in a coho salmon (*Oncorhynchus kisutch*) breeding
3 population**

4 **Running title:** Linkage disequilibrium in Coho salmon

5 Agustín Barría¹, Kris A. Christensen², Grazyella Yoshida³, Ana Jedlicki¹, Jean P.
6 Lhorente⁴, William S. Davidson², José M. Yáñez^{1,4,5,*}

7 ¹ Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana,
8 Santiago, Chile

9 ² Department of Molecular Biology and Biochemistry, Simon Fraser University,
10 Burnaby, BC, Canada

11 ³ Animal Science Department, Universidade Estadual Paulista “Júlio de Mesquita Filho”
12 (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Campus Jaboticabal,
13 Via de Acesso Prof. Paulo Donato Castellane, Jaboticabal, Brazil.

14 ⁴ Aquainnovo S.A., Puerto Montt, Chile.

15 ⁵ Núcleo Milenio INVASAL, Concepción, Chile

16 ***Correspondence:** jmayanez@uchile.cl

17 **Word count:**

18 **Number of Figures: 3**

19 **Keywords:** **Linkage disequilibrium, *Oncorhynchus kisutch*, Selective breeding,**
20 **GWAS, Effective population size**

21

22

23

24

25

26

27

28

29

30

31 **Abstract**

32 The estimation of linkage disequilibrium between molecular markers within a population
33 is critical when establishing the minimum number of markers required for association
34 studies, genomic selection and for inferring historical events influencing different
35 populations. This work aimed to evaluate the extent and decay of linkage disequilibrium
36 in a coho salmon breeding population using ddRAD genomic markers.

37 Linkage disequilibrium was estimated between a total of 7,505 SNPs found in 62
38 individuals (33 dams and 29 sires) from the breeding population. The makers encompass
39 all 30 coho salmon chromosomes and comprise 1,655.19 Mb of the genome. The average
40 density of markers per chromosome ranged from 3.45 to 6.11 per 1 Mbp. The minor allele
41 frequency averaged 0.20 (with a range from 0.08 to 0.50). The overall average linkage
42 disequilibrium among SNPs pairs measured as r^2 was 0.054. The Average r^2 value
43 decreased with increasing physical distance, with values ranging from 0.37 to 0.054 at
44 distances lower than 1 kb and up to 10 Mb, respectively. An r^2 threshold of 0.1 was
45 reached at distance of approximately 1.3 Mb. Chromosomes Okis05, Okis15 and Okis28
46 showed high levels of linkage disequilibrium (> 0.20 at distances lower than 1 Mb).
47 Average r^2 values were lower than 0.1 for all chromosomes at distances greater than 4
48 Mb. Linkage disequilibrium values suggest that whole genome association and selection
49 studies could be performed using about 75,000 SNPs in aquaculture populations
50 (depending on the trait under investigation). From the identified SNPs, an effective
51 population size of 100 was estimated for the population 10 generation ago, and 1,000, for
52 139 generations ago.

53 Based on the extent of r^2 decay, we suggest that at least 75,000 SNPs would be necessary
54 for an association mapping study. Over 100,000 SNPs would be necessary for a high
55 power study, in the current coho salmon population.

56

57

58

59

60

61

62

63

64

65

66

67

68 INTRODUCTION

69 Coho salmon (*Oncorhynchus kisutch*) is one of the six Pacific salmon species found in
70 North American and Asian watersheds (Groot and Margolis, 1991). This species was
71 introduced into Chilean streams during the 1920s promoted by the Chilean Institute of
72 Fisheries Department. Cultivation of coho salmon began in Chile at the end of the 1970's,
73 when Chile imported almost 500,000 eggs from the Kitimat river (British Columbia) and
74 Oregon, becoming the genetic basis of the broodstocks in Chile (Neira et al., 2014).
75 Twenty years later, the production of the first eggs for commercial use were produced in
76 Chile (SalmonChile, 2007). Currently, Chile is the main producer of farmed coho salmon,
77 with the production of nearly 160,000 tons in 2014 (FAO, 2016). This represents more
78 than 90% of the global farmed coho production (Canada and Japan are the other major
79 coho salmon producers) (FAO, 2016). The temperature and the quality of the Chilean
80 freshwater environments have reduced the coho reproductive cycle to only two years
81 (Estay et al., 1997). To date, numerous genetic programs have been developed for coho
82 salmon in Chile. These programs are mainly focused on growth, disease resistance, and
83 flesh color (Neira et al., 2014).

84 With the eruption of next generation sequencing (NGS) technologies, it has become
85 possible to perform artificial selection through the use of genomic estimated breeding
86 values (GEBVs). By using dense molecular markers from the whole genome, genomic
87 selection (GS) can be used in broodstock enhancement (Bennewitz et al., 2009). This
88 methodology makes it possible to estimate GEBVs with high accuracy, even with animals
89 without recorded phenotypes (Meuwissen et al., 2001), which has improved the accuracy
90 of selection in salmonid species (Bangera et al., 2017; Barría et al., 2018; Correa et al.,
91 2017; Ødegård et al., 2014; Tsai et al., 2016; Yoshida et al., 2018). Genome wide
92 association studies (GWAs) and GS, exploit linkage disequilibrium (LD) between
93 molecular markers. The amount of LD between loci is important in GWAs, as the extent
94 of LD indicates the necessary number of SNPs to assure that causative mutations are in
95 LD with genetic markers (Flint-Garcia et al., 2003). GWAs are key for mapping traits
96 with commercial interest to causative mutations in the genome. For GS, LD is related to
97 the likelihood of successfully tagging the SNP effect in genomic breeding value
98 prediction (Kemper and Goddard, 2012).

99 LD maps allow researchers to explore the genetic basis of traits influencing productivity.
100 Through the comparison of the extent and pattern of LD in these LD maps, it is possible
101 to elucidate the diversity among breeds with different phenotypic attributes, and even
102 identify genomic regions subject to different selective pressures (López et al., 2015;
103 McKay et al., 2007). The most common LD measurements are r^2 and $|D'|$, both ranging
104 from 0 to 1. When $|D'| < 1$, it indicates the occurrence of historical recombination between
105 loci, while $|D'| = 1$ indicates no recombination. The r^2 statistic represents the correlation
106 between molecular markers. This latter parameter is preferred over $|D'|$ because $|D'|$ tends
107 to be overestimated in small samples size and when low-frequencies alleles are used
108 (Teare et al., 2002). Moreover, in association studies, r^2 is preferred due to the inverse
109 relationship between its value and the sample size needed to detect a significant
110 association between a causative variant and molecular markers (Wall and Pritchard,
111 2003).

112 Despite the many GWAs and GS analyses performed with Atlantic salmon (Bangera et
113 al., 2017; Correa et al., 2017; Gutierrez et al., 2015; Tsai et al., 2015, 2016), rainbow trout
114 (Vallejo et al., 2016, 2017) and Coho salmon (Barría et al., 2018), none of them have

115 evaluated the LD in the studied populations. Further, most of the linkage disequilibrium
116 studies have been focused on the extent and decay pattern of LD in livestock species, such
117 as dairy (Bohmanova et al., 2010; Sargolzaei et al., 2008) and beef cattle (Makina et al.,
118 2015; McKay et al., 2007), plants (Delourme et al., 2013; Porto-Neto et al., 2014), and
119 pigs (Saura et al., 2015). Recently, LD has been evaluated in farmed rainbow trout
120 (*Oncorhynchus mykiss*) (Rexroad and Vallejo, 2009) and in Atlantic salmon (Kijas et al.,
121 2017).

122 The first step to calculate the number of molecular markers necessary for genomic
123 selection and QTL mapping is to estimate the extent and decline of LD within a
124 population. To date, there have been no studies aimed to characterize the levels and extent
125 of LD in coho salmon. The current work aimed to evaluate the extent of linkage
126 disequilibrium, at the genomic and chromosome level, on a breeding coho salmon
127 population using double digest restriction associated DNA (ddRAD) molecular markers.

128

129 MATERIAL AND METHODS

130 Populations and samples

131 The coho salmon samples were obtained from a breeding population belonging to a
132 genetic improvement program established in 1997. Using *best linear unbiased prediction*
133 (BLUP), harvest weight had been selected over eight generations in this population. For
134 LD estimations a total of 63 animals (33 sires and 30 dams), corresponding to the parents
135 of 33 families from a 2012-spawning year, were selected. These individuals were not
136 related to each other and belonged to the broodstock of the breeding nucleus. For specific
137 details about reproductive management, mating design, rearing conditions, effective size,
138 inbreeding and breeding objectives of the genetic program for this population see
139 (Dufflocq et al., 2016; Yáñez et al., 2014, 2016). Experimental challenge against *P.*
140 *salmonis* was approved by the Animal Bioethics Committee from Universidad de Chile
141 (Nº08-2015).

142

143 Genotyping

144 Total DNA was extracted from the fin clip of 63 individuals. Sequencing library
145 preparation was performed using a ddRAD methodology, and followed the protocol
146 described in Peterson et al., (2012). Briefly, the extracted and normalized DNA was
147 digested with the restriction enzymes (RE) *SbfI* and *MseI*, followed by adapter ligation
148 and PCR amplification with primers complementary to the adapters. After PCR,
149 individual sample libraries were pooled and concentrated. Size selection was performed
150 on the pooled libraries (from 0.75 and 1.5 kb and between 1.8 and 2.5 kb). Sequencing
151 was performed on a HiSeq2500 using 150 bp SE.

152 For the SNP identification step, raw sequences were analyzed with STACKS v. 1.41
153 (Catchen et al., 2011, 2013). Reads were trimmed to 134 bp using *process_radtags*. After
154 this quality filter step, the sequences were aligned to the coho salmon reference genome
155 (assembly accession = GCA_002021735.1) using BWA mem (Li and Durbin, 2009). For
156 loci identification, a minimum coverage depth of three (-m 3) was set in *pstacks*. To build

157 the genetic marker catalog, reads from all genotyped fish were considered and processed
158 with *cstacks*. The *sstacks* program was then used to match called individual loci against
159 the constructed catalog, and genotypes were called with the *populations* program. Loci
160 were considered only if present in at least 75% of the individuals. Prior to LD analyses, a
161 quality control (QC) step was performed through the GenABEL library (Aulchenko et al.,
162 2007) implemented in R (R Core Team, 2016). The following parameters were used to
163 exclude low-confidence SNPs: Hardy-Weinberg Equilibrium (HWE) $p < 1e-6$, Minor
164 Allele Frequency (MAF) ≤ 0.05 and genotyping call rate < 0.80 . Fish with genotyping
165 call rates < 0.70 were excluded from further analyses. For more details about DNA
166 extraction, library preparation, data filter and SNP quality, please see (Barría et al., 2018).
167 With the availability of the coho salmon reference genome, physical distances were
168 calculated during SNP identification. Raw sequences were deposited at the NCBI
169 Sequence Read Archive (SRA). Bioproject ID PRJNA471180, temporary submission ID
170 SUB4039075.

171

172 LD estimation

173 The LD between each pair of genetic markers was estimated using Pearson's squared
174 correlation coefficient (r^2) statistic which is less sensitive to allelic frequencies (Ardlie et
175 al., 2002) and more suitable for biallelic markers (Zhao et al., 2005). The r^2 values were
176 estimated with Plink v1.09 (Purcell et al., 2007). Genotypes were coded as 0, 1 and 2
177 relative to the number of non-reference alleles. The parameter *-inter-chr*, in conjunction
178 with a *ld-window-r2* set to zero, was used to obtain correlations between all the pairs of
179 SNPs on each chromosome independently of their r^2 value.

180 LD decay curves were calculated for SNP pairs separated by an inter-marker distance
181 between 0 and 10 Mb, and per chromosome according to the distance between all markers
182 on that chromosome.

183 The historical effective population size was estimated using SNeP (Barbato et al., 2015).
184 Using the estimated LD values, a historical population size estimation was calculated with
185 the following equation: $N_t = 1/(4f(c)) (1/r^2 - 1)$. Where $f(c)$ refers to $c[(1 - c/2)/(1 - 2)^2]$
186 (Sved, 1971), and c corresponds to the linkage distance inferred from the physical
187 distance between SNPs, assuming that 1 Mb \sim 1cM and that N_t is the effective population
188 size estimated at $t = 1/2c$ generations ago.

189

190 RESULTS

191 SNPs identification

192 A total of 9,376 SNPs was identified in 62 coho salmon individuals (one individual was
193 dropped). Of these, 7,505 were on chromosomes. The rest of the markers (1,871) were
194 excluded because they mapped to unplaced scaffolds (i.e. the scaffolds were not on
195 chromosomes). Markers tended to have low MAF values between 0.05 and 0.1. The MAF
196 distribution of the retained SNPs was nearly uniform along the 30 chromosomes, with an
197 average of 0.20 ± 0.13 (mean \pm standard deviation), and a minimum and maximum value

198 of 0.18 and 0.29, respectively (**Table 1**). The average decreased to 0.19 ± 0.12 when all
199 9,376 SNPs were included.

200

201 Estimation of LD

202 **Table 1** summarizes the mean, median and standard deviation of r^2 values for each coho
203 salmon chromosome. All of the 7,505 SNPs placed onto chromosomes and which passed
204 quality control were included in this analysis. These markers encompassed 1,655.19 Mb
205 of the genome. The molecular marker density per chromosome per Mb, ranged from 3.48
206 to 6.11 with a mean of 4.60. In general, SNPs were uniformly distributed along the 30
207 chromosomes. The number of SNPs on each chromosome ranged from 145 on Okis16 to
208 404 on Okis04, which is in agreement with Okis16 and Okis04 being the shortest and
209 longest chromosome, respectively. The overall mean linkage disequilibrium (measure as
210 r^2) among SNP pairs was 0.054 ± 0.11 . The global median was lower at 0.020. Low
211 average LD among adjacent SNPs along the 30 chromosomes was observed in the current
212 population, with values ranging from 0.043 to 0.065 (**Table 1**).

213 In order to estimate the decay of linkage disequilibrium as a function of physical distance,
214 SNP pairs were sorted into bins based on their distance, and mean values of r^2 were
215 calculated for each bin. As observed in other species (Kijas et al., 2017; Lu et al., 2012;
216 Vos et al., 2017), LD declines smoothly as the physical distance increases between
217 markers. **Figure 1** shows a scatter plot of the decline in r^2 among linked SNP pairs as
218 distance increases. A maximum average LD of 0.37 was estimated for SNPs less than 1
219 kb apart. This value declines quickly by more than half at marker distances up to 0.1 Mb,
220 with a value of 0.12. From 1 Mb to 10 Mb LD ranges from 0.103 to 0.051. The latter
221 value represents the lowest average LD estimated in the current data set. The r^2 estimation
222 drops below 0.1 at a distance of ~ 1.3 Mb, suggesting that linkage equilibrium was
223 reached (Vos et al., 2017). **Figure 2** compares the mean LD at different distance bins for
224 each chromosome. High variation across chromosomes was observed at lower distance
225 bins. Higher levels of LD (> 0.20) were estimated for Okis05, Okis15 and Okis28.
226 Average r^2 values < 0.10 were estimated for all chromosomes at distances greater than 4
227 Mb.

228 **Figure 3** illustrates the estimated effective population size of the coho salmon, based on
229 LD, from 8 to 241 generations ago. An increasing N_e as a function of the number of
230 generation was observed, with a N_e of 100 estimated at 10 generations ago, and 1000 for
231 139 generations ago.

232

233 DISCUSSION

234 Evaluating the extent and decay pattern of linkage disequilibrium is an important step for
235 statistical genetics. Understanding LD enhances our knowledge of the demographic
236 processes and evolution within the population. Biological factors such as recombination
237 and mutation in conjunction with genetic drift, admixture and effective population size
238 are important variables determining patterns of LD. For this reason, variation in LD
239 among populations and genomic regions are widely reported.

240 To our knowledge, this is the first study characterizing the LD in a coho salmon
241 population. The samples originated from the broodstock of a breeding program involved
242 with genetically improving coho salmon for production traits. Unrelated animals were
243 chosen in order to avoid LD inflation that can occur with high kinship relationships
244 present (this excluded family-based analyses) (Gutierrez et al., 2015). Due to the
245 increased bias of LD estimations, when estimating $|D'|$ from small sample sizes
246 (Bohmanova et al., 2010), we preferred to use the robust r^2 statistic. Moreover, to predict
247 the power of association mapping, r^2 is more useful. The minimum number of individuals
248 necessary for an accurate r^2 estimation has been suggested to range from 55 to 75 in cattle
249 (Bohmanova et al., 2010; Khatkar et al., 2008). This range increases to 400 or more in
250 case of $|D'|$ (Khatkar et al., 2008). The number of individuals necessary to estimate LD
251 depends on the demographic and genetic population history. Our sample size was within
252 the range suggested above.

253 Sample sizes above 50 also provide accurate estimations of MAFs (> 0.05) within a
254 population, at a physical distance up to 10 Mb (Khatkar et al., 2008). Filtered markers
255 showed an average MAF of 0.20 per chromosome (**Table 1**). A similar mean value was
256 reported in Nellore cattle, ranging from 0.20 to 0.25 (Espigolan et al., 2013; Matukumalli
257 et al., 2009) and from 0.28 to 0.30 in North American Holstein (Bohmanova et al., 2010).
258 MAFs showed a skewed distribution toward low values, a near identical distribution was
259 found in farmed Tasmanian Atlantic salmon (Kijas et al., 2017). The use of SNP markers
260 with low MAFs tends to underestimate LD measures (Espigolan et al., 2013). LD
261 measurements of r^2 , tend to be less sensitive than $|D'|$ to low MAF (Bohmanova et al.,
262 2010; Khatkar et al., 2008; Kijas et al., 2017).

263 Estimations of the extent and decay of linkage disequilibrium in the coho salmon breeding
264 population, provide insights into LD patterns in the coho salmon genome, which may
265 have implications for GWAs, GS and for the design of SNP arrays. We estimated the
266 decline in LD, within the population, for values above $r^2 = 0.1$ (Delourme et al., 2013;
267 Stich et al., 2013; Vos et al., 2017). For this distance, at least 2,300 SNPs are necessary
268 for whole genome association studies. However, to achieve an accuracy of 0.85 for
269 GEBVs, an average r^2 greater than 0.2 is required (Meuwissen et al. 2001). At this value,
270 the number of SNPs increases to about 75,000. If we consider a more stringent criterion
271 for higher power genome scans, and consider one SNP every 30 kb, a distance at which
272 the average r^2 values among SNPs is 0.3 (Ai et al., 2013; Khatkar et al., 2008; Lu et al.,
273 2012), the number of SNPs would increase drastically to 100,000.

274 Large variation in the average and standard deviation in the LD among chromosomes was
275 found in the current study (**Table 1**). This could be due to variation in recombination rates
276 along different chromosomes (e.g. local hotspots for recombination), decreasing as
277 function of an increase in chromosome length (Arias et al., 2009; Espigolan et al., 2013).
278 Therefore, inferences based on single or only on few chromosomes might be biased and
279 inferences regarding LD would be best when using genome-wide data. LD information
280 from the population may allow researchers to reduce the number of required SNPs for a
281 genomic analysis by excluding redundant SNPs (Khatkar et al., 2008). This can be done
282 by identifying tag SNPs, using information from haplotype block structure, as was
283 previously done in Holstein-Friesian cattle (Khatkar et al., 2007).

284 Average r^2 values estimated in our study were higher than those estimated in a wild
285 Finnish Atlantic salmon population, with values ranging from 0.015 to 0.037 (Kijas et al.,
286 2017). However, farmed Tasmanian Atlantic salmon showed mean LD (measured as r^2)

287 values up to 0.67 for SNPs closer than 1 kb (Kijas et al., 2017), almost double than in the
288 current work (0.37). Linkage disequilibrium estimations in others Atlantic salmon
289 populations, found low LD values, although these estimations were reported in units of
290 recombination (Gutierrez et al., 2015) and using sliding windows of 20 SNPs (Johnston
291 et al., 2014). The different estimation metrics make it difficult to compare directly with
292 the current work. The origin of the current breeding coho population comes from two
293 isolated wild populations (The Kitimat River and Oregon). The admixture of the
294 originated new population may explain the observations of long-range and reduced short-
295 range LD (Pfaff et al., 2001). Pattern that was previously suggested for a Norwegian
296 Atlantic salmon population (Ødegård et al., 2014).

297 A large decline in N_e was observed ~ 180 generations ago (approximately 700 years ago,
298 assuming a generation interval of 4 years). This could be due to a significant bottleneck
299 in the wild populations. Similar N_e reductions have been observed in cattle populations
300 (Makina et al., 2015; Villa-Angulo et al., 2009). Even though this is the first study aimed
301 to estimate the effective population size of a coho salmon breeding population, caution
302 must be taken when evaluating the estimations for the number of generations (Corbin et
303 al., 2012). For recent generations, large c values are involved and do not necessarily fit
304 the theoretical implications proposed by Hayes (Hayes et al., 2003) for N_e estimations.
305 In the oldest generation after $4N_e$ generations ago, none of the SNPs can be reliably
306 sampled (Corbin et al., 2012). Therefore, N_e estimations after $4N_e$ generations ago may
307 be questionable.

308

309 **Conclusions**

310 In the current study we used a relatively small sample of coho salmon individuals from a
311 breeding population. We showed the feasibility to estimate LD and infer ancestral
312 population size based on the observed LD using data from ddRAD sequencing. We
313 performed an LD analysis with 62 coho salmon genotyped with 7,505 SNPs. Based on
314 the extent of r^2 decay of 0.2, we suggest that at least 75,000 SNPs would be necessary for
315 an association mapping study. Increasing this threshold to 0.3, over 100,000 SNPs would
316 be necessary for a high power study, in the current coho salmon population.

317

318 **Acknowledgements**

319 AB wants to acknowledge the National Commission of Scientific and Technologic
320 Research (CONICYT) for the funding through the National PhD funding program and to
321 the Government of Canada for the funding through the Canada-Chile Leadership
322 Exchange Scholarship (ELAP).

323

324 **Ethics approval and consent to participate**

325 Coho salmon individuals and sampling procedures were approved by the Comité de
326 Bioética Animal from the Facultad de Ciencias Veterinarias y Pecuarias, Universidad de
327 Chile (Certificate N08-2015).

328

329 **Funding**

330 This project was funded by the U-Inicia grant, from the Vicerrectoría de Investigación y
331 Desarrollo, Universidad de Chile. This work has been conceived on the frame of the grant
332 FONDEF NEWTON-PICARTE (IT14I10100), funded by CONICYT (Government of
333 Chile). This work has been partially supported by Núcleo Milenio INVASAL from
334 Iniciativa Científica Milenio (Ministerio de Economía, Fomento y Turismo, Gobierno de
335 Chile). This research was carried out in conjunction with EPIC4 (Enhanced Production
336 in Coho: Culture, Community, Catch), a project supported by the government of Canada
337 through Genome Canada, Genome British Columbia, and Genome Quebec.

338

339 **Authors' contributions**

340 AB performed DNA extraction, library construction, ddRAD analysis, LD analysis and
341 wrote the initial version of the manuscript. KrC performed library construction and
342 contributed on the data analysis and discussion. GrY contributed with LD analysis and
343 discussion. AJ performed DNA extraction. JPL contributed with study design. WD
344 contributed with analysis and discussion. JMY conceived and designed the study,
345 supervised work of AB and contributed to the analysis, discussion and writing. All authors
346 have reviewed and approved the manuscript.

347 **Conflict of Interest**

348 The authors have no conflicts of interest to declare

349

350 **REFERENCES**

351 Ai, H., Huang, L., and Ren, J. (2013). Genetic Diversity, Linkage Disequilibrium and
352 Selection Signatures in Chinese and Western Pigs Revealed by Genome-Wide SNP
353 Markers. *PLoS One* 8.

354 Ardlie, K. G., Kruglyak, L., and Seielstad, M. (2002). Patterns of Linkage Disequilibrium
355 in the Human Genome. *Nat. Rev. Genet.* 3.

356 Arias, J. A., Keehan, M., Fisher, P., Coppieters, W., and Spelman, R. (2009). A high
357 density linkage map of the bovine genome. *BMC Genet.* 10, 1–12.

358 Aulchenko, Y. S., Ripke, S., Isaacs, A., and van Duijn, C. M. (2007). GenABEL: An R
359 library for genome-wide association analysis. *Bioinformatics* 23, 1294–1296.

360 Bangera, R., Correa, K., Lhorente, J. P., Figueroa, R., and Yáñez, J. M. (2017). Genomic
361 predictions can accelerate selection for resistance against *Piscirickettsia salmonis* in
362 Atlantic salmon (*Salmo salar*). *BMC Genomics* 18, 121.

363 Barbato, M., Orozco-terWengel, P., Tapió, M., and Bruford, M. W. (2015). SNeP: A tool
364 to estimate trends in recent effective population size trajectories using genome-wide

365 SNP data. *Front. Genet.* 6, 1–6.

366 Barría, A., Christensen, K. A., Yoshida, G. M., Correa, K., Jedlicki, A., Lhorente, J. P.,
367 et al. (2018). Genomic Predictions and Genome-Wide Association Study of
368 Resistance Against *Piscirickettsia salmonis* in Coho Salmon (*Oncorhynchus kisutch*)
369) Using ddRAD Sequencing. *G3 Genes Genomes Genet.* 4231, g3.200053.2018t.
370 Available at: <http://g3journal.org/lookup/doi/10.1534/g3.118.200053>.

371 Bennewitz, J., Solberg, T., and Meuwissen, T. H. (2009). Genomic breeding value
372 estimation using nonparametric additive regression models. *Genet. Sel. Evol.* 41, 20.
373 doi:10.1186/1297-9686-41-20.

374 Bohmanova, J., Sargolzaei, M., and Schenkel, F. S. (2010). Characteristics of linkage
375 disequilibrium in North American Holsteins. *BMC Genomics* 11. doi:10.1186/1471-
376 2164-11-421.

377 Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., and Cresko, W. A. (2013).
378 Stacks: An analysis tool set for population genomics. *Mol. Ecol.* 22, 3124–3140.

379 Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., Postlethwait, J. H., and De
380 Koning, D.-J. (2011). Stacks: Building and Genotyping Loci De Novo From Short-
381 Read Sequences. *G3 Genes Genomes Genet.* 1, 171–182.

382 Corbin, L. J., Liu, A. Y. H., Bishop, S. C., and Woolliams, J. A. (2012). Estimation of
383 historical effective population size using linkage disequilibria with marker data. *J.
384 Anim. Breed. Genet.* 129, 257–270.

385 Correa, K., Bangera, R., Figueroa, R., Lhorente, J. P., and Yáñez, J. M. (2017). The use
386 of genomic information increases the accuracy of breeding value predictions for sea
387 louse (*Caligus rogercresseyi*) resistance in Atlantic salmon (*Salmo salar*). *Genet. Sel.
388 Evol.* 49, 15.

389 Delourme, R., Falentin, C., Fomeju, B. F., Boillot, M., Lassalle, G., André, I., et al.
390 (2013). High-density SNP-based genetic map development and linkage
391 disequilibrium assessment in *Brassica napus* L. *BMC Genomics* 14, 1–18.

392 Dufflocq, P., Lhorente, J. P., Bangera, R., Neira, R., Newman, S., and Yáñez, J. M.
393 (2016). Correlated response of flesh color to selection for harvest weight in coho
394 salmon (*Oncorhynchus kisutch*). *Aquaculture*, 6–11.

395 Espigolan, R., Baldi, F., Boligon, A. A., Souza, F. R. P., Gordo, D. G. M., Tonussi, R. L.,
396 et al. (2013). Study of whole genome linkage disequilibrium in Nellore cattle. *BMC
397 Genomics* 14.

398 Estay, F., Diaz, N., Neira, R., and Garcia, X. (1997). Reproductive Performance of
399 Cultured Female Coho Salmon in Chile. *Progress. Fish-Culturist* 59, 36–40.

400 FAO (2016). Fisheries and Aquaculture Information and Statistical Branch.

401 Flint-Garcia, S. A., Thornsberry, J. M., and Buckler, E. S. (2003). Structure of Linkage
402 Disequilibrium in Plants. *Annu. Rev. Plant Biol.* 54, 357–374.

403 Groot, C., and Margolis, L. (1991). *Pacific Salmon Life Histories*.

404 Gutierrez, A. P., Yáñez, J. M., Fukui, S., Swift, B., and Davidson, W. S. (2015). Genome-
405 Wide Association Study (GWAS) for Growth Rate and Age at Sexual Maturation in
406 Atlantic Salmon (*Salmo salar*). *PLoS One* 10, e0119730.

407 Hayes, B. J., Visscher, P. M., Mcpartlan, H. C., and Goddard, M. E. (2003). Novel
408 Multilocus Measure of Linkage Disequilibrium to Estimate Past Effective
409 Population Size Novel Multilocus Measure of Linkage Disequilibrium to Estimate
410 Past Effective Population Size. *Genome Res.*, 635–643.

411 Johnston, S. E., Orell, P., Pritchard, V. L., Kent, M. P., Lien, S., Niemelä, E., et al. (2014).
412 Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild
413 population of Atlantic salmon (*Salmo salar*). *Mol. Ecol.* 23, 3452–3468.

414 Kemper, K. E., and Goddard, M. E. (2012). Understanding and predicting complex traits:
415 Knowledge from cattle. *Hum. Mol. Genet.* 21, 45–51.

416 Khatkar, M. S., Nicholas, F. W., Collins, A. R., Zenger, K. R., Cavanagh, J. A. L., Barris,
417 W., et al. (2008). Extent of genome-wide linkage disequilibrium in Australian
418 Holstein-Friesian cattle based on a high-density SNP panel. *BMC Genomics* 9.

419 Khatkar, M. S., Zenger, K. R., Hobbs, M., Hawken, R. J., Cavanagh, J. A. L., Barris, W.,
420 et al. (2007). A primary assembly of a bovine haplotype block map based on a
421 15,036-single-nucleotide polymorphism panel genotyped in Holstein-Friesian cattle.
422 *Genetics* 176, 763–772.

423 Kijas, J., Elliot, N., Kube, P., Evans, B., Botwright, N., King, H., et al. (2017). Diversity
424 and linkage disequilibrium in farmed Tasmanian Atlantic salmon. *Anim. Genet.* 48,
425 237–241.

426 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-
427 Wheeler transform. *Bioinformatics* 25, 1754–1760.
428 doi:10.1093/bioinformatics/btp324.

429 López, M. E., Neira, R., and Yáñez, J. M. (2015). Applications in the search for genomic
430 selection signatures in fish. *Front. Genet.* 5, 1–12.

431 Lu, D., Sargolzaei, M., Kelly, M., Li, C., Voort, G. Vander, Wang, Z., et al. (2012).
432 Linkage disequilibrium in Angus, Charolais, and Crossbred beef cattle. *Front.
433 Genet.* 3, 1–10.

434 Makina, S. O., Taylor, J. F., Van Marle-Köster, E., Muchadeyi, F. C., Makgahlela, M. L.,
435 MacNeil, M. D., et al. (2015). Extent of linkage disequilibrium and effective
436 population size in four South African sanga cattle breeds. *Front. Genet.* 6, 1–12.

437 Matukumalli, L. K., Lawley, C. T., Schnabel, R. D., Taylor, J. F., Allan, M. F., Heaton,
438 M. P., et al. (2009). Development and Characterization of a High Density SNP
439 Genotyping Assay for Cattle. *PLoS One* 4.

440 McKay, S. D., Schnabel, R. D., Murdoch, B. M., Matukumalli, L. K., Aerts, J.,
441 Coppieters, W., et al. (2007). Whole genome linkage disequilibrium maps in cattle.

442 *BMC Genet.* 8, 74.

443 Meuwissen, T. H., Hayes, B. J., and Goddard, M. E. (2001). Prediction of Total Genetic
444 Value Using Genome-Wide Dense Marker Maps. *Genetics* 157, 1819–1829.

445 Neira, R., Lhorente, J., Newman, S., Yáñez, J., Araneda, M., and Filp, M. (2014).
446 Evolution of Coho Salmon (*Oncorhynchus kisutch*) Breeding Programs. in *10th*
447 *World Congress of Genetics Applied to Livestock Production*, 472.

448 Ødegård, J., Moen, T., Santi, N., Korsvoll, S. A., Kjøglum, S., and Meuwisse, T. H. E.
449 (2014). Genomic prediction in an admixed population of Atlantic salmon (*Salmo*
450 *salar*). *Front. Genet.* 5, 1–8.

451 Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., and Hoekstra, H. E. (2012).
452 Double digest RADseq: An inexpensive method for de novo SNP discovery and
453 genotyping in model and non-model species. *PLoS One* 7.

454 Pfaff, C. L., Parra, E. J., Bonilla, C., Hiester, K., McKeigue, P. M., Kamboh, M. I., et al.
455 (2001). Population Structure in Admixed Populations: Effect of Admixture
456 Dynamics on the Pattern of Linkage Disequilibrium. *Am. J. Hum. Genet.* 68, 198–
457 207.

458 Porto-Neto, L. R., Kijas, J. W., and Reverter, A. (2014). The extent of linkage
459 disequilibrium in beef cattle breeds using high-density SNP genotypes. *Genet. Sel.
460 Evol.* 46, 1–5.

461 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., et al.
462 (2007). PLINK: A tool set for whole-genome association and population-based
463 linkage analyses. *Am. J. Hum. Genet.* 81, 559–575.

464 R Core Team (2016). R: A Language and Environment for Statistical Computing; R
465 Foundation for Statistical Computing: Vienna, Austria, 2015.

466 Rexroad, C. E., and Vallejo, R. L. (2009). Estimates of linkage disequilibrium and
467 effective population size in rainbow trout. *BMC Genet.* 10, 83.

468 SalmonChile (2007). Historia en Chile. <http://www.salmonchile.cl/es/historia-en-chile.php#1990-2007>.

470 Sargolzaei, M., Schenkel, F. S., Jansen, G. B., and Schaeffer, L. R. (2008). Extent of
471 Linkage Disequilibrium in Holstein Cattle in North America. *J. Dairy Sci.* 91, 2106–
472 2117.

473 Saura, M., Tenesa, A., Woolliams, J. A., Fernández, A., and Villanueva, B. (2015).
474 Evaluation of the linkage-disequilibrium method for the estimation of effective
475 population size when generations overlap: An empirical case. *BMC Genomics* 16,
476 1–10.

477 Stich, B., Urbany, C., Hoffmann, P., and Gebhardt, C. (2013). Population structure and
478 linkage disequilibrium in diploid and tetraploid potato revealed by genome-wide
479 high-density genotyping using the SolCAP SNP array. *Plant Breed.* 132, 718–724.

480 Sved, J. A. (1971). Linkage disequilibrium and homozygosity of chromosome segments
481 in finite populations. *Theor. Popul. Biol.* 2, 125–141.

482 Teare, M. D., Dunning, A. M., Durocher, F., Rennart, G., and Easton, D. F. (2002).
483 Sampling distribution of summary linkage disequilibrium measures. *Ann. Hum. Genet.* 66, 223–233. doi:doi:10.1017/S0003480002001082.

485 Tsai, H. Y., Hamilton, A., Tinch, A. E., Guy, D. R., Bron, J. E., Taggart, J. B., et al.
486 (2016). Genomic prediction of host resistance to sea lice in farmed Atlantic salmon
487 populations. *Genet. Sel. Evol.* 48, 1–11.

488 Tsai, H. Y., Hamilton, A., Tinch, A. E., Guy, D. R., Gharbi, K., Stear, M. J., et al. (2015).
489 Genome wide association and genomic prediction for growth traits in juvenile
490 farmed Atlantic salmon using a high density SNP array. *BMC Genomics*, 1–9.

491 Vallejo, R. L., Leeds, T. D., Fragomeni, B. O., Gao, G., Hernandez, A. G., Misztal, I., et
492 al. (2016). Evaluation of genome-enabled selection for bacterial cold water disease
493 resistance using progeny performance data in rainbow trout: Insights on genotyping
494 methods and genomic prediction models. *Front. Genet.* 7, 1–13.

495 Vallejo, R. L., Leeds, T. D., Gao, G., Parsons, J. E., Martin, K. E., Evenhuis, J. P., et al.
496 (2017). Genomic selection models double the accuracy of predicted breeding values
497 for bacterial cold water disease resistance compared to a traditional pedigree-based
498 model in rainbow trout aquaculture. *Genet. Sel. Evol.* 49, 17.

499 Villa-Angulo, R., Matukumalli, L. K., Gill, C. A., Choi, J., Van Tassell, C. P., and
500 Grefenstette, J. J. (2009). High-resolution haplotype block structure in the cattle
501 genome. *BMC Genet.* 10, 1–13.

502 Vos, P. G., Paulo, M. J., Voorrips, R. E., Visser, R. G. F., van Eck, H. J., and van Eeuwijk,
503 F. A. (2017). Evaluation of LD decay and various LD-decay estimators in simulated
504 and SNP-array data of tetraploid potato. *Theor. Appl. Genet.* 130, 123–135.

505 Wall, J. D., and Pritchard, J. K. (2003). Haplotype blocks and linkage disequilibrium in
506 the human genome. *Nat. Rev. Genet.* 4, 587–597. doi:10.1038/nrg1123.

507 Yáñez, J. M., Bangera, R., Lhorente, J. P., Barría, A., Oyarzún, M., Neira, R., et al.
508 (2016). Negative genetic correlation between resistance against *Piscirickettsia*
509 *salmonis* and harvest weight in coho salmon (*Oncorhynchus kisutch*). *Aquaculture*
510 459, 8–13.

511 Yáñez, J. M., Bassini, L. N., Filp, M., Lhorente, J. P., Ponzoni, R. W., and Neira, R.
512 (2014). Inbreeding and effective population size in a coho salmon (*Oncorhynchus*
513 *kisutch*) breeding nucleus in Chile. *Aquaculture* 420–421, S15–S19.

514 Yoshida, G. M., Bangera, R., Carvalheiro, R., Correa, K., Figueroa, R., Lhorente, J. P., et
515 al. (2018). Genomic Prediction Accuracy for Resistance Against *Piscirickettsia*
516 *salmonis* in Farmed Rainbow Trout. *G3 Genes Genomes Genet.* 8, 719–726.
517 doi:10.1534/g3.117.300499.

518 Zhao, H., Nettleton, D., Zoller, M., and Dekkers, J. C. M. (2005). Evaluation of linkage
519 disequilibrium measures between multi-allelic markers as predictors of linkage

520 disequilibrium between markers and QTL. *Genet. Res.* 86, 77–87.

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

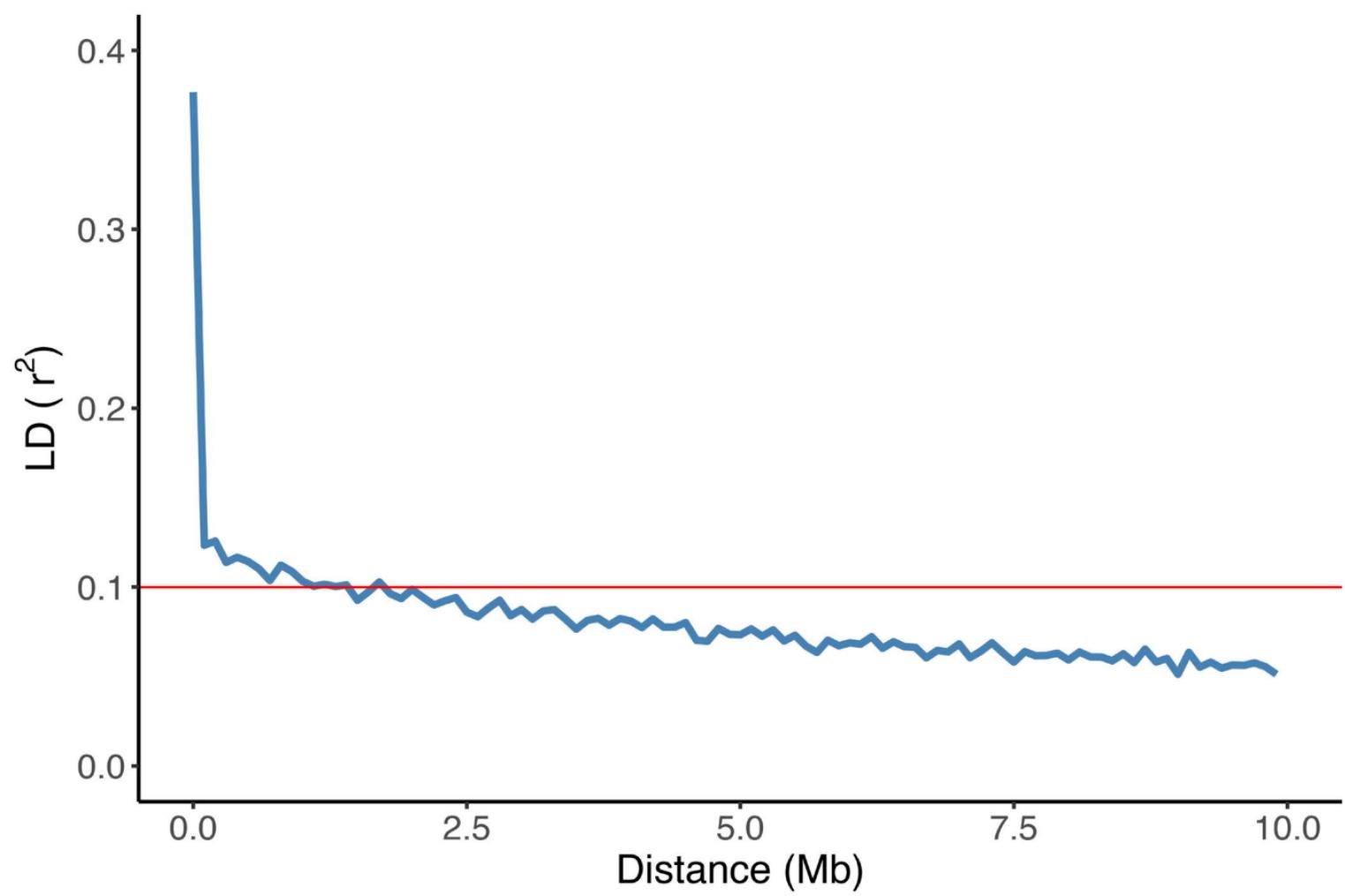
547 **Table 1. Summary statistics for the evaluated SNPs and linkage disequilibrium**
548 **values along coho salmon chromosomes**

549

Okis	Length (Mb)	Number of SNPs	SNP Density (Mb)	Mean (r^2)	Median (r^2)	SD (r^2)	MAF
01	66.78	299	4.47	0.061	0.023	0.12	0.20
02	73.79	299	4.05	0.050	0.020	0.10	0.19
03	68.18	288	4.22	0.056	0.021	0.11	0.20
04	79.31	404	5.09	0.048	0.019	0.09	0.18
05	70.56	253	3.59	0.057	0.020	0.11	0.18
06	76.16	314	4.12	0.048	0.016	0.10	0.20
07	50.17	232	4.62	0.053	0.020	0.10	0.20
08	66.26	283	4.27	0.061	0.023	0.12	0.20
09	39.12	161	4.12	0.052	0.019	0.11	0.18
10	64.07	324	5.06	0.048	0.018	0.10	0.20
11	78.70	362	4.60	0.065	0.025	0.12	0.21
12	50.46	281	5.57	0.051	0.021	0.10	0.19
13	66.72	333	5.00	0.045	0.017	0.10	0.19
14	69.58	242	3.48	0.055	0.021	0.10	0.20
15	64.02	287	4.48	0.051	0.020	0.10	0.20
16	32.35	145	4.48	0.056	0.019	0.12	0.20
17	75.25	344	4.57	0.054	0.020	0.11	0.21
18	64.85	303	4.67	0.051	0.019	0.10	0.20
19	52.74	226	4.29	0.060	0.023	0.12	0.19
20	40.39	226	5.60	0.043	0.015	0.10	0.18
21	34.84	165	4.74	0.051	0.017	0.11	0.18
22	55.31	228	4.12	0.056	0.022	0.10	0.20
23	41.04	196	4.78	0.051	0.019	0.11	0.20
24	38.72	172	4.44	0.055	0.020	0.11	0.19
25	32.99	201	6.10	0.055	0.023	0.11	0.18
26	43.33	181	4.18	0.060	0.022	0.12	0.20
27	37.31	228	6.11	0.061	0.024	0.11	0.20
28	46.42	190	4.10	0.062	0.020	0.13	0.19
29	36.55	182	4.98	0.048	0.018	0.10	0.18
30	39.22	156	3.98	0.062	0.021	0.13	0.21
Mean	55.17	250	4.60	0.054	0.020	0.11	0.20

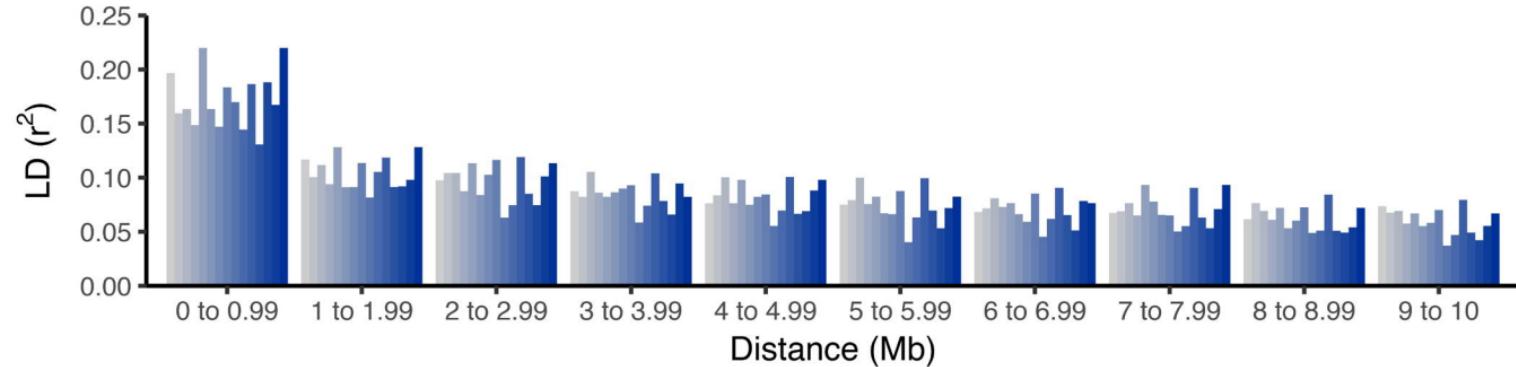
550 SNP: Single-Nucleotide Polymorphism; MAF: Minor Allele Frequency; SD: Standard
551 deviation

552

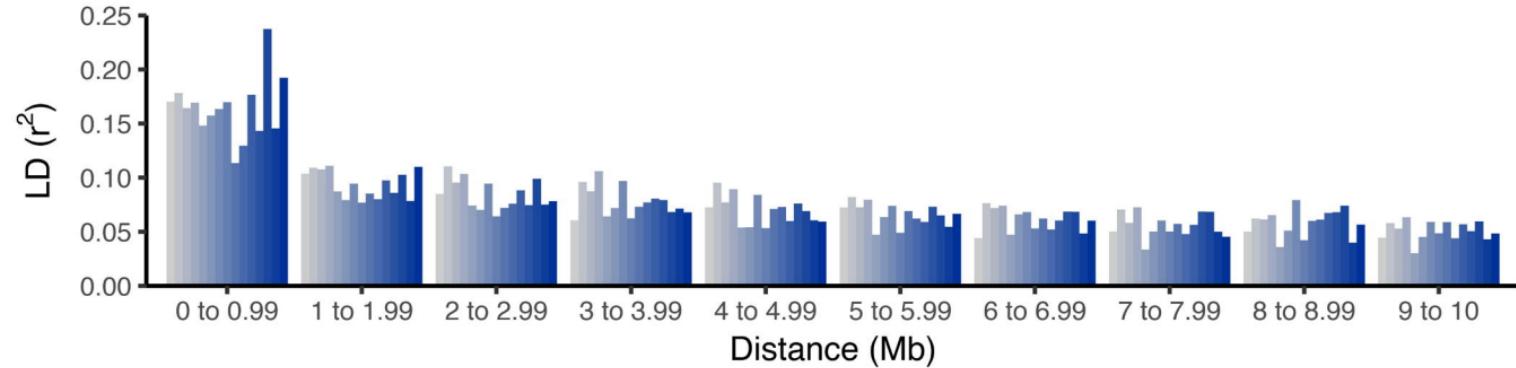

553

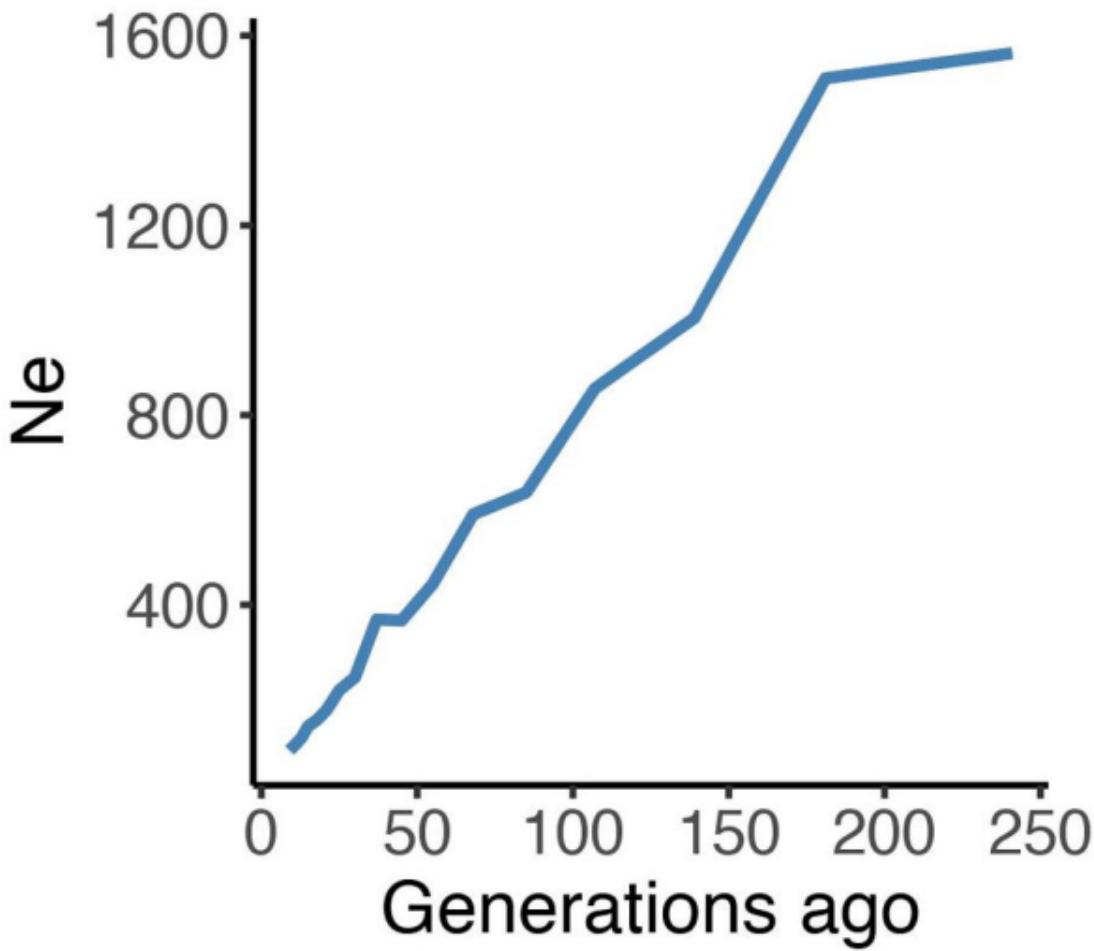
554 **Figure legends**

555 **Figure 1. Decay of average LD (r^2) over distance among SNPs in coho salmon**
556 (*Oncorhynchus kisutch*) population. The blue line shows the mean LD in each 1 kb
557 sliding window. The horizontal red line represents significance threshold at 0.1.


558 **Figure 2. Linkage disequilibrium estimations along the 30 chromosomes of coho**
559 **salmon.** Average values of LD measured as r^2 per chromosome, according to distances
560 between SNPs. Estimated values are shown from Okis01 to Okis015 (A), and from
561 Okis16 to Okis30 (B)

562 **Figure 3. Effective population size estimation in coho salmon population.** Estimates
563 of effective population size (Ne) over the past 241 generations based on the LD of an
564 aquaculture strain of coho salmon.


Legend for the first chart:


- Okis01
- Okis02
- Okis03
- Okis04
- Okis05
- Okis06
- Okis07
- Okis08
- Okis09
- Okis10
- Okis11
- Okis12
- Okis13
- Okis14
- Okis15

Legend for the second chart:

- Okis16
- Okis17
- Okis18
- Okis19
- Okis20
- Okis21
- Okis22
- Okis23
- Okis24
- Okis25
- Okis26
- Okis27
- Okis28
- Okis29
- Okis30

