

Research Article

Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia

Running title: Evolution of MDR-TB in Central Asia

Authors: Matthias Merker^{1,2*}, Maxime Barbier^{3,4*}, Helen Cox⁵, Jean-Philippe Rasigade^{3,4,6}, Silke Feuerriegel^{1,2}, Thomas A. Kohl^{1,2}, Roland Diel⁷, Sonia Borrell^{8,9}, Sébastien Gagneux^{8,9}, Vladyslav Nikolayevskyy^{10,11}, Sönke Andres¹², Ulrich Nübel^{13,14}, Philip Supply^{15,16,17,18}, Thierry Wirth^{3,4}, Stefan Niemann^{1,2#}

Affiliations:

¹Molecular and Experimental Mycobacteriology, Research Center Borstel, Germany.

²German Center for Infection Research, Borstel site, Germany.

³Laboratoire Biologie Intégrative des Populations, Evolution Moléculaire, Ecole Pratique des Hautes Etudes, PSL University, Paris, France.

⁴Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France.

⁵Division of Medical Microbiology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.

⁶CIRI INSERM U1111, University of Lyon, Lyon, France.

⁷ Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany

⁸ Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.

⁹ University of Basel, Basel, Switzerland.

¹⁰ Imperial College London, United Kingdom.

¹¹ Public Health England, London, United Kingdom

¹² Division of Mycobacteriology (National Tuberculosis Reference Laboratory), Research Center Borstel, Borstel, Germany

¹³Microbial Genome Research, Leibniz-Institut DSMZ- Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.

¹⁴ German Center for Infection Research, Braunschweig site, Germany.

¹⁵ Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.

¹⁶ Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8204, Center for Infection and Immunity of Lille, Lille, France.

¹⁷ Université Lille Nord de France, Center for Infection and Immunity of Lille, Lille, France.

¹⁸ Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France.

* contributed equally

Correspondence to: Prof. Dr. Stefan Niemann, Head Molecular Mycobacteriology Group, National Reference Center for Mycobacteria, Deputy Head Priority Area Infections
Forschungszentrum Borstel

Parkallee 1, 23845 Borstel, Germany

E-Mail: sniemann@fz-borstel.de

Phone: 0049-4537-1887620

Fax: 0049-4537-1882091

Author contributions

S.N., M.M., T.W. H.C. and P.S. designed the study. M.M., M.B., H.C., S.F., J.P.R., U.N., R.D., S.B., S.G., V.N., S.A., and T.W. analyzed data e.g. classical mycobacteriology, performed population genetic, phylogenetic and statistical analysis. T.A.K. performed whole genome sequencing and variant calling. All authors analyzed the data and contributed to data interpretation and manuscript writing

Sources of support:

This work was partially funded by the Leibniz Science Campus Evolutionary Medicine of the Lung (EvoLung).

Word count: 3,459

Key words: *Mycobacterium tuberculosis*, multidrug resistant tuberculosis, compensatory evolution

1 **Abstract**

2 Bacterial factors favoring the unprecedented multidrug-resistant tuberculosis (MDR-TB) epidemic in the
3 former Soviet Union remain unclear.

4 We utilized whole genome sequencing and Bayesian statistics to analyze the evolutionary history, temporal
5 emergence of resistance and transmission networks of MDR-MTBC strains from Karakalpakstan,
6 Uzbekistan (2001-2006).

7 One MTBC-clone (termed Central Asian outbreak, CAO) with resistance mediating mutations to eight anti-
8 TB drugs existed prior the worldwide introduction of standardized WHO-endorsed directly observed
9 treatment, short-course (DOTS). DOTS implementation in Karakalpakstan in 1998 likely selected for these
10 CAO-strains, comprising 75% of sampled MDR-TB strains in 2005/2006. CAO-strains were also identified
11 in a previously published cohort from Samara, Russia (2008-2010). Similarly, transmission success and
12 resistance development was linked to mutations compensating fitness deficits associated with rifampicin
13 resistance.

14 The genetic make-up of these outbreak clades threatens the success of both empirical and standardized
15 guideline driven MDR-TB therapies, including the newly WHO-endorsed short MDR-TB regimen in
16 Uzbekistan.

17 **Word count (148)**

18

19

20

21

22

23

24

25

26

27 **Introduction**

28 Multidrug-resistant tuberculosis (MDR-TB), caused by *Mycobacterium tuberculosis* complex (MTBC)
29 strains that are resistant to the first-line drugs isoniazid and rifampicin, represent a threat to global TB
30 control. Barely 20% of the estimated annual 480,000 new MDR-TB patients have access to adequate
31 second-line treatment regimens. The majority of undiagnosed or ineffectively treated MDR-TB patients
32 continue to transmit their infection and suffer high mortality (1).

33 Based on early observations that the acquisition of drug resistance could lead to reduced bacterial fitness
34 (2) it was hypothesized that drug-resistant MTBC-strains had a reduced capacity to transmit, and would not
35 widely disseminate in the general population (3–7). This optimistic scenario has been invalidated by the
36 now abundant evidence for transmission of MDR and extensively drug-resistant MTBC-strains (XDR-TB;
37 MDR-TB additionally resistant to at least one fluoroquinolone and one aminoglycoside) in healthcare and
38 community settings (3, 8–11). In former Soviet Union countries, which experience the highest MDR-TB
39 rates worldwide, the expansion of drug-resistant MTBC-clones is thought to be promoted by interrupted drug
40 supplies, inadequate implementation of regimens, lack of infection control and erratic treatment in prison
41 settings (12, 13). Continued transmission is thought to be aided by the co-selection of mutations in the
42 bacterial population that compensate for a fitness cost (e.g. growth deficit) associated particularly with the
43 acquisition of rifampicin resistance mediating mutations (3, 7–11). The compensatory mechanism for
44 rifampicin resistant MTBC strains is proposed to be associated with structural changes in the RNA-
45 polymerase subunits *RpoA*, *RpoB*, and *RpoC* that increase transcriptional activity and as a consequence
46 enhance the growth rate (11). However, the impact of these bacterial genetic factors on the epidemiological
47 success of MDR-MTBC strains and implications for current and upcoming MDR-TB treatment strategies
48 remain unexplored.

49 We utilized whole genome sequencing (WGS) to retrace the longitudinal transmission and evolution of
50 MTBC-strains towards MDR/pre-XDR/XDR geno- and phenotypes in Karakalpakstan, Uzbekistan. In this
51 high MDR-TB incidence setting, the proportion of MDR-TB among new TB-patients increased from 13%
52 in 2001 to 23% in 2014 despite the local introduction of the World Health Organization recommended

53 DOTS strategy in 1998 and an initially limited MDR-TB treatment program in 2003 (14, 15). We expanded
54 our analyses by including a WGS dataset of MDR-MTBC strains from Samara, Russia (2008-2010) (13) to
55 investigate clonal relatedness, resistance and compensatory evolution in both settings.

56

57 **Results**

58 **Study population and MTBC phenotypic resistance (Karakalpakstan, Uzbekistan)**

59 Despite differences in sampling for cohort 1 and cohort 2 (see methods), patients showed similar age, sex
60 distributions, and proportion of residence in Nukus, the main city in Karakalpakstan (Uzbekistan)
61 (Appendix Table S1). While the majority of strains from both cohorts were phenotypically resistant to
62 additional first-line TB drugs (i.e. beyond rifampicin and isoniazid), combined resistance to all 5 first-line
63 drugs was significantly greater in cohort 2 (47% in cohort 2 compared to 14% in cohort 1, $P < 0.0001$). The
64 same was true for resistance to the second-line injectable drug capreomycin (23% in cohort 2 compared to
65 2% in cohort 1, $P = 0.0001$) (Appendix Table S1). This finding was surprising as the isolates from cohort
66 2 patients - who were treated with individualized second-line regimens predominately comprising ofloxacin
67 as the fluoroquinolone and capreomycin as the second-line injectable - were all obtained before the
68 initiation of their treatment. In addition, there was no formal MDR-TB treatment program in
69 Karakalpakstan prior to 2003. These elements imply that the higher rate of resistance to capreomycin was
70 attributable to infection by already resistant strains (i.e. to primary resistance).

71 **MTBC population structure and transmission rates**

72 Utilizing WGS, we determined 6,979 single nucleotide polymorphisms (SNPs) plus 537 variants located in
73 28 genes and upstream regions associated with drug resistance and bacterial fitness (additional data). The
74 corresponding phylogeny revealed a dominant subgroup comprising 173/277 (62.5%) closely related strains
75 within the Beijing-genotype (alias MTBC lineage 2) (Fig. 1). This group, termed Central Asian Outbreak
76 (CAO), showed a highly restricted genetic diversity (median pairwise distance of 21 SNPs, IQR 13-25) and
77 was differentiated from a set of more diverse strains by 38 specific SNPs (Appendix Figure S1, additional
78 data). The proportion of CAO-strains was similar between 2001-02 and 2003-04 (49% and 52%

79 respectively), but increased to 76% in 2005-06 ($P < 0.01$). Over the same time periods, the proportions of
80 other strain types remained stable or decreased (Appendix Figure S2).

81 We then sized transmission networks (measured by transmission indexes, see methods) supposed to reflect
82 human-to-human transmission over the last ~10 years based on a maximum of 10 differentiating SNPs
83 between two strains. Transmission rates varied, even among closely related outbreak strains (Fig. 1).
84 Beijing-CAO-strains formed particularly large transmission networks (>50 strains/patients; Fig. 1); 96.0%
85 (166/173) of all Beijing-CAO strains were associated with recent transmission (i.e. transmission index ≥ 1),
86 versus 48.4% (31/64) of non-CAO Beijing strains ($P < 0.0001$) and 57.5% (23/40) of non-Beijing strains
87 ($P < 0.0001$) (additional data). In addition the large CAO transmission network exhibited higher levels of
88 drug resistance relative to non-Beijing strains, as reflected by the larger number of drugs for which
89 phenotypic ($P = 0.0079$) and genotypic drug resistance ($P = 0.0048$) was detected Appendix Figure S3).

90 **Evolutionary history of CAO strains in Karakalpakstan**

91 In order to gain more detailed insights into the emergence of resistance mutations in the evolutionary history
92 of the CAO clade, we sought to employ a Bayesian phylogenetic analysis for a temporal calibration of the
93 CAO phylogeny and an estimation of the mutation rate. Using an extended collection of more diverse CAO
94 strains (n=220) from different settings (see methods) we initially compensated for the restricted sampling
95 time frame of the Karakalpakstan dataset (2001-2006). A linear regression analysis showed correlation
96 between sampling year and root-to-tip distance and a moderate temporal signal ($P = 0.00039$, $R^2 = 5.2\%$,
97 Appendix Figure S4), allowing for further estimation of CAO mutation rates and evaluation of molecular
98 clock models using Bayesian statistics. Based on the marginal L estimates collected by path sampling, we
99 found a strict molecular clock with tip dates to be most appropriate (Appendix Table S2). Mutation rate
100 estimates (under a relaxed clock model) ranged on average from 0.88 to 0.96×10^{-7} substitutions per site
101 per year (s/s/y), depending on the demographic model, in favor for the Bayesian skyline model with
102 mutation rate of 0.94×10^{-7} (s/s/y) (95% HPD 0.72 - 1.15×10^{-7} (s/s/y)) (Appendix Table S2).

103 We then employed the Bayesian skyline model with a strict molecular clock set to 0.94×10^{-7} (s/s/y)
104 specifically for the CAO clade from Karakalpakstan (n=173). We determined that the most recent common

105 ancestor (MRCA) of the CAO-clade emerged around 1976 (95% highest posterior density (HPD) 1969-
106 1982). The MRCA already exhibited a streptomycin resistance mutation (*rpsL* K43R) (Fig. 2), and acquired
107 isoniazid resistance (*katG* S315T) in 1977 (95% HPD 1973-1983). The CAO-population size then rose
108 contemporaneously with multiple events of rifampicin, ethambutol, ethionamide, and para-aminosalicylic
109 acid resistance acquisition in different branches (Fig. 2). As an illustration, the most frequent CAO-clone
110 (upper clade in Fig. 2) acquired ethambutol and ethionamide resistance mutations (*embB* M306V, *ethA*
111 T314I) around 1984 (95% HPD 1982-1989), and an MDR-genotype (*rpoB* S450L) around 1986 (95% HPD
112 1985-1992). The effective population size reached a plateau before fixation of mutations in the *ribD*
113 promoter region (leading to para-aminosalicylic acid resistance) and *rpoC* N698S, putatively enhancing its
114 fitness around 1990 (95% HPD 1989-1994) (Fig. 2). Independent fixation of pyrazinamide (*pncA* Q10P
115 and I133T) and kanamycin (*eis* -12 g/a) resistance-associated mutations was detected in 1992 and 1991
116 (both with 95% HPD rounded to 1991-1996) (Fig. 2).

117 Interestingly, the implementation of the systematic DOTS-program in Karakalpakstan in 1998 coincided
118 with a second effective population size increase (Fig. 2). At that time, distinct CAO-subgroups already
119 exhibited pre-XDR (in this context MDR plus kanamycin resistance) resistance profiles, mediating
120 resistance to as many as eight different anti-TB drugs. Of note, only a single strain was identified as
121 harboring a *gyrA* mutation (A90V), associated to fluoroquinolone resistance (additional data). At the end
122 of the study period in 2006 we observed a pre-XDR rate among CAO strains of 52.0% (90/173), compared
123 to 35.9% (23/64) among other Beijing strains ($P=0.03$) and compared to 42.5% (17/40) among non-Beijing
124 strains ($P=0.30$) (additional data).

125 **Impact of compensatory variants on transmission networks**

126 Overall, 62.1% (172/277) of all MDR-MTBC strains carried putative compensatory mutations (11, 13) in
127 *rpoA* (n=7), *rpoC* (n=126) and *rpoB* (n=43) (additional data). These mutations were almost completely
128 mutually exclusive, as only 4/172 strains harbored variants in more than one RNA polymerase-encoding
129 gene. While mutations in *rpoA* and *rpoB* were equally distributed between Beijing-CAO strains and other
130 non-outbreak Beijing strains, CAO-strains had more *rpoC* variants (56% vs 28%, $P=0.003$) (Appendix

131 Table S3). The mean number of resistance mutations was higher among strains carrying compensatory
132 mutations (Fig. 3A), 4.77 vs 3.35 mutations (two-sample t-test $P=1.2\times10^{-10}$). Notably, strains with
133 compensatory mutations also showed larger transmission indexes than strains presenting no compensatory
134 mutation, 37.16 vs 9.22 (Welch two-sample t-test $P<2.2\times10^{-16}$) (Fig. 3B). CAO-strains with compensatory
135 mutation also had more resistance-conferring mutations than CAO-strains lacking such mutation (ANOVA,
136 Tukey multiple comparisons of means P adj=0.0000012). There was no difference observed for the means
137 of resistance-conferring mutations amon non-CAO strains; compensatory mutation present vs. absent (P
138 adj= 0.1978623) (Fig. 3C).

139 Regression-based analyses of transmission success scores in the Beijing-CAO clade confirmed that the
140 presence of compensatory mutations was strongly associated with cluster sizes independent of the
141 accumulation of resistance mutations (Fig. 4). This pattern was mostly observed for clusters initiated in the
142 late 1980s and the 1990s.

143 **Combined analysis of MDR-TB cohorts from Karakalpakstan and Samara (2001-2010)**

144 To place our analyses in a broader phylogenetic and geographic context, we combined our Karakalpakstan
145 genome set with previously published genomes of 428 MDR-MTBC isolates from Samara (13), a Russian
146 region located ~1,700 km from Nukus, Karakalpakstan. This analysis showed that Beijing-CAO strains
147 accounted for the third largest strain clade in Samara (13). Conversely, the second largest clade in Samara,
148 termed Beijing clade B according to Casali et al (13, 21), or European/Russian W148 (22), was represented
149 in Karakalpakstan by a minor clade (Fig. 5). Considering a third Beijing clade (termed clade A) restricted
150 to Samara (13), three major Beijing outbreak clades accounted for 69.6% (491/705) of the MDR-TB cases
151 in both regions.

152 The three Beijing clades (A, B, and CAO) in Samara and Karakalpakstan had more drug resistance
153 conferring mutations (in addition to isoniazid and rifampicin resistance) with means of 5.0 (SEM 0.07), 4.2
154 (SEM 0.18), and 4.7 (SEM 0.11), respectively (Appendix Figure S5), than compared to only 3.6 (SEM
155 0.20) additional genotypic drug resistances ($P < 0.0001$, $P = 0.0143$, $P < 0.0001$) for other Beijing strains
156 in both settings. Strains belonging to other MTBC genotypes (mainly lineage 4 subgroups) were found with

157 a mean of 2.6 (SEM 0.20) additional drug resistance mediating mutations, lower than any Beijing-
158 associated group ($P \leq 0.0009$) (Appendix Figure S5).

159 Similar to Karakalpakstan, MDR-MTBC strains from Samara with compensatory mutations also
160 accumulated more resistance-associated mutations (4.57 vs 2.30 mutations per genome; two-sample t-test
161 $P < 2.2 \times 10^{-16}$) and had higher transmission indexes (50.32 vs 0.46; Welch two-sample t-test $P < 2.2 \times 10^{-16}$)
162 compared to strains lacking compensatory mutations (Appendix Figure S6).

163 The impact of resistance conferring and compensatory mutations on the transmission success score in
164 Beijing-A clade from Samara (Appendix Figure S7) was strikingly similar to the one observed in CAO
165 strains from Karakalpakstan. The presence of compensatory mutations, but not the accumulation of
166 resistance mutations, was significantly and independently associated with network size in clusters
167 originating in the 1980s and 1990s, with a maximum influence found in clusters starting in the late 1990s.
168 Critically, the high proportions of strains detected in both settings with pre-XDR and XDR resistance
169 profiles among the three major Beijing clades (clade A, 96%; clade B, 62%; clade CAO, 50%; Appendix
170 Table S4, Figure 6) reveal the low proportion of patients that are or would be eligible to receive the newly
171 WHO endorsed short MDR-TB regimen. As per definition of the WHO exclusion criteria, e.g. any
172 confirmed or suspected resistance to one drug (except isoniazid) in the short regimen, only 0.5% (1/191 in
173 Karakalpakstan) and 2.7% (8/300 in Samara) of the patients infected with either a Beijing clade A, B or
174 CAO strain would benefit from a shortened MDR-TB therapy (additional data).

175 **Discussion**

176 Using WGS combined with Bayesian and phylogenetic analyses, we reveal the evolutionary history and
177 recent clonal expansion of the dominant MDR/pre-XDR MTBC clade in Karakalpakstan, Uzbekistan,
178 termed the Central Asian outbreak (CAO). Strikingly, CAO-strains were also found also in Samara, Russia,
179 and vice versa strains belonging to the second largest clade in Samara (Beijing clade B, i.e.
180 European/Russian W148 (13, 22)) were identified in Karakalpakstan, suggesting that the MDR-TB
181 epidemic in this world region is driven by few outbreak clades. During the three last decades, these strains
182 gradually accumulated resistance to multiple anti-TB drugs that largely escaped phenotypic and molecular

183 diagnostics, and reduce treatment options to a restricted set of drugs that often cause severe side effects. In
184 addition, our results suggest that compensatory mutations (in RNA-polymerase subunit coding genes) that
185 are proposed to ameliorate growth deficits in rifampicin resistant strains *in vitro* are also crucial in a global
186 epidemiological context allowing MDR and pre-XDR strains to form and maintain large transmission
187 networks. The predominance of these strain networks, seen in two distant geographic regions of the former
188 Soviet Union clearly limit the use of standardized MDR-TB therapies, e.g. the newly WHO endorsed short
189 MDR-TB regimen, in these settings.

190 Temporal reconstruction of the resistance mutation acquisition and of changes in bacterial population sizes
191 over three decades demonstrates that MDR outbreak strains already became resistant to both first- and
192 second-line drugs in the 1980s. Fully first-line resistant strains massively expanded in the 1990s, a period
193 that shortly preceded or immediately followed the end of the Soviet Union, years before the implementation
194 of DOTS and programmatic second-line MDR-TB treatment. This is in line with the known rise in TB
195 incidence that accompanied the economic breakdown in Russia during the 1990's (23).

196 From a bacterial genetic point of view, our data show that particular MDR and pre-XDR strain subgroups
197 are highly transmissible despite accumulation of multiple resistance mutations. The acquisition of
198 compensatory mutations after introduction of low fitness cost resistance mutations (e.g. *katG* S315T (10),
199 *rpoB* S450L (8), *rpsL* K43R (24)) seems the critical stage allowing for higher transmission rates. Multiple
200 regression analyses further strengthened this hypothesis by demonstrating that the presence of fitness
201 compensating variants was positively associated with transmission success in different settings and
202 outbreak clades, independently of the accumulation of resistance mutations. Compensatory evolution thus
203 appears to play a central role in driving large MDR-TB epidemics such as that seen with the Beijing CAO-
204 clade.

205 A particular concern is the high prevalence of mutations conferring resistance to second-line drugs currently
206 included in treatment regimens, among the dominant MDR-MTBC strains. Their detected emergence in a
207 period preceding DOTS implementation, e.g. in Karakalpakstan, can be explained by past, largely empirical
208 treatment decisions or self-medication. For instance, high frequencies of mutations in the *ribD* promoter

209 region, and *folC* among Beijing-CAO strains, associated with para-aminosalicylic acid resistance (25, 26),
210 are a likely consequence of the use of para-aminosalicylic acid in failing treatment regimens in the late
211 1970s to the early 1980s in the Soviet Union (27–29). Likewise, the frequent independent emergence of
212 mutations in the *eis* promoter and of rare variants in the upstream region of *whiB7*, both linked to resistance
213 to aminoglycosides (mainly streptomycin and kanamycin) (30, 31), probably reflects self-administration of
214 kanamycin that was available in local pharmacies.

215 The pre-existence of fully first-line resistant strain populations (e.g. CAO-Beijing in Karakalpakstan) likely
216 contributed to the poor treatment outcomes observed among MDR-TB patients following the
217 implementation of first-line DOTS treatment in 1998 (16). This period coincides with a detected CAO
218 population size increase, likely reflecting the absence of drug susceptibility testing and therefore
219 appropriate second-line treatment during extended hospitalization at the time, resulting in prolonged
220 infectiousness of TB-patients and further spread of these strains.

221 The frequencies of fluoroquinolone resistance, mediated by *gyrA* and *gyrB* mutations, remained low among
222 the Karakalpakstan MDR-MTBC strains, which is consistent with the notion that such drugs were rarely
223 used for treating TB in former Soviet Union countries (see discussion (13), (27–29)). This observation
224 explains the generally favorable MDR-TB treatment outcomes observed with the use of individualized
225 second-line regimens, including a fluoroquinolone, in the latter MDR-TB treatment program in the
226 Karakalpakstan patient population (14, 32). However, fluoroquinolone resistance, representing the last step
227 towards XDR-TB, is already emerging as reported for strains in Beijing clade A and B (13).

228 In conclusion, the (pre-) existence and wide geographic dissemination of highly resistant and highly
229 transmissible strain populations most likely contributes to increasing M/XDR-TB incidence rates despite
230 scaling up of the MDR-TB programs in some Eastern European and Russian regions (15, 23, 33).

231 Importantly, from the large spectrum of resistance detected among dominating strains in this study, it can
232 be predicted that standardized therapies, including the newly WHO endorsed short MDR-TB regimen in
233 Uzbekistan, are/will be largely ineffective for many patients in Samara and Karakalpakstan, and likely
234 elsewhere in Eurasia. In order to successfully control the worldwide MDR-TB epidemics, universal access

235 to rapid and comprehensive drug susceptibility testing, best supported by more advanced technologies, will
236 be crucial for guiding individualized treatment with existing and new/repurposed TB drugs and to maximize
237 chances of cure and prevention of further resistance acquisition.

238

239

240 **Methods**

241 **Study population, Karakalpakstan (Uzbekistan)**

242 A total of 277 MDR-MTBC strains derived from two separate cohorts were sequenced. The first cohort
243 comprised 86% (49/57) of MDR-MTBC strains from a cross-sectional drug resistance survey conducted in
244 four districts in Karakalpakstan, Uzbekistan between 2001-2002 (16). An additional 228 strains were
245 obtained from TB-patients enrolled for second-line treatment in the MDR-TB treatment program from 2003
246 to 2006. These strains represented 76% (228/300) of all MDR-TB cases diagnosed over the period. While
247 the MDR-TB treatment program covered two of the four districts included in the initial drug resistance
248 survey, the majority of strains from both cohorts, 69% and 64% respectively, were obtained from patients
249 residing in the same main city of Nukus (Appendix Table S1).

250 **Study population, Samara (Russia)**

251 To set the MDR-MTBC strains from Karakalpakstan into a broader geographical perspective, raw
252 sequencing data of 428 MDR-MTBC strains from a published cross-sectional prospective study in Samara,
253 Russia from 2008-2010 (13) were processed as described below and included into a composite MDR-
254 MTBC dataset.

255 **Drug susceptibility testing**

256 Drug susceptibility testing (DST) was performed for five first-line drugs (isoniazid, rifampicin, ethambutol,
257 streptomycin, pyrazinamide), and three second-line drugs (ofloxacin, capreomycin and prothionamide) for
258 cohort 1, and six second-line drugs for cohort 2 (capreomycin, amikacin, ofloxacin, ethionamide, para-
259 aminosalicylic acid and cycloserine) by the reference laboratory in Borstel, Germany as described
260 previously (17).

261 **Whole genome sequencing**

262 Whole genome sequencing (WGS) was performed with Illumina Technology (MiSeq and HiSeq 2500)
263 using Nextera XT library preparation kits as instructed by the manufacturer (Illumina, San Diego, CA,
264 USA). Fastq files (raw sequencing data) were submitted to the European nucleotide archive (see additional
265 data for accession numbers). Obtained reads were mapped to the *M. tuberculosis* H37Rv reference genome
266 (GenBank ID: NC_000962.3) with BWA (18). Alignments were refined with GATK (19) and Samtools
267 (20) toolkits with regard to base quality re-calibration and alignment corrections for possible PCR artefact.
268 We considered variants that were covered by a minimum of 4 reads in both forward and reverse orientation,
269 4 reads calling the allele with at least a phred score of 20, and 75% allele frequency. In the combined
270 datasets, we allowed a maximum of 5% of all samples to fail the above mentioned threshold criteria in
271 individual genome positions to compensate for coverage fluctuations in certain genome regions; in these
272 cases, the majority allele was considered. Regions annotated as ‘repetitive’ elements (e.g. PPE and PE-
273 PGRS gene families), insertions and deletions (InDels), and consecutive variants in a 12 bp window
274 (putative artefacts flanking InDels) were excluded. Additionally, 28 genes associated with drug resistance
275 and bacterial fitness (see additional data) were excluded for phylogenetic reconstructions. The remaining
276 single nucleotide polymorphisms (SNPs) were considered as valid and used for concatenated sequence
277 alignments. Further detailed methods of the phylogenetic reconstruction, molecular resistance prediction,
278 strain-to-strain genetic distance, and Bayesian models are given as Supplementary Methods.

279 **Transmission index**

280 Based on the distance matrix (SNP distances), we further determined for every isolate the number of isolates
281 that were in a range of 10 SNPs or less (in the following referred to as “transmission index”). This 10 SNP-
282 threshold was used to infer the number of recently linked cases, as considered within a 10-year time period,
283 based on previous convergent estimates of MTBC genome evolution rate of ≈ 0.5 SNPs/genome/year in
284 inter-human transmission chains and in macaque infection models (21–24).

285 **Genotypic drug resistance prediction**

286 Mutations (small deletions and SNPs) in 34 resistance associated target regions (comprising 28 genes) were
287 considered for a molecular resistance prediction to 13 first- and second-line drugs (additional data).
288 Mutations in genes coding for the RNA-Polymerase subunits *rpoA*, *rpoB* (excluding resistance mediating
289 mutations), and *rpoC* were reported as putative fitness compensating (e.g. *in vitro* growth enhancing)
290 variants for rifampicin resistant strains. A detailed overview of all mutations considered as genotypic
291 resistance marker is given as additional data. Mutations that were not clearly linked to phenotypic drug
292 resistance were reported as genotypic non wild type and were not considered as genotypic resistance
293 markers. When no mutation (or synonymous, silent mutations) was detected in any of the defined drug
294 relevant target regions the isolate was considered to be phenotypically susceptible.

295 **Phylogenetic inference (maximum likelihood)**

296 We used jModelTest v2.1 and Akaike and Bayesian Information Criterion (AIC and BIC) to find an
297 appropriate substitution model for phylogenetic reconstructions based on the concatenated sequence
298 alignments (Appendix Table S5). Maximum likelihood trees were calculated with FastTree 2.1.9 (double
299 precision for short branch lengths) (25) using a general time reversible (GTR) nucleotide substitution model
300 (best model according to AIC and second best model according to BIC), 1,000 resamplings and Gamma20
301 likelihood optimization to account for evolutionary rate heterogeneity among sites. The consensus tree was
302 rooted with the “midpoint root” option in FigTree and nodes were arranged in increasing order.
303 Polymorphisms considered as drug resistance marker (see above) and putative compensatory variants were
304 analyzed individually and mapped on the phylogenetic tree to define resistance patterns of identified
305 phylogenetic subgroups.

306 **Molecular clock model**

307 In order to compute a time scaled phylogeny and employ the Bayesian skyline model (see below) for the
308 identified Central Asian outbreak (CAO) clade we sought to define an appropriate molecular clock model
309 (strict versus relaxed clock) and a mutation rate estimate. Due to the restricted sampling timeframe of the
310 Karakalpakstan dataset (2001-2006) we extended the dataset for the model selection process with CAO
311 strains from Samara (2008-2010) and ‘historical’ CAO strains isolated from MDR-TB patients in Germany

312 (1995-2000) thus allowing for a more confident mutation rate estimate. The strength of the temporal signal
313 in the combined dataset, assessed by the correlation of sampling year and root-to-tip distance, was
314 investigated with TempEst v1.5 (26). Regression analysis was based on residual mean squares, using a
315 rooted ML tree (PhyML, GTR substitution model, 100 bootstraps), R-square and adjusted *P*-value are
316 reported. For the comparison of different Bayesian phylogenetic models we used path sampling with an
317 alpha of 0.3, 50% burn-in and 15 million iterations (resulting in mean ESS values >100), marginal
318 likelihood estimates were calculated with BEAST v2.4.2 (27), and Δ marginal L estimates are reported
319 relative to the best model.

320 First, we employed a strict molecular clock fixed to 1×10^{-7} substitutions per site per year as reported
321 previously (21–23) without tip dating, a strict molecular clock with tip dating and a relaxed molecular clock
322 with tip dating. BEAST templates were created with BEAUTi v2 applying a coalescent constant size
323 demographic model, a GTR nucleotide substitution model, a chain length of 300 million (10% burn-in) and
324 sampling of 5,000 traces/trees.

325 Second, we ran different demographic models (i.e. coalescent constant size, exponential, and Bayesian
326 skyline) under a relaxed molecular clock using tip dates and the same parameters for the site model and
327 Markov-Chain-Monte-Carlo (MCMC) as described above. Inspection of BEAST log files with Tracer v1.6
328 showed an adequate mixing of the Markov chains and all parameters were observed with an effective
329 sample size (ESS) in the hundreds, suggesting an adequate number of effectively independent draws from
330 the posterior sample and thus sufficient statistical support.

331 **Bayesian Skyline Plot**

332 Changes of the effective population size of the CAO clade in Karakalpakstan over the last four decades
333 were calculated with a Bayesian skyline plot using BEAST v2.4.2 (27) using a tip date approach with a
334 strict molecular clock model of 0.94×10^{-7} substitutions per site per year (best model according to path
335 sampling results, see above), and a GTR nucleotide substitution model. We further used a random starting
336 tree, a chain length of 300 million (10% burn-in) and collected 5,000 traces/trees. Again adequate mixing

337 of the Markov chains and ESS values in the hundreds were observed. A maximum clade credibility
338 genealogy was calculated with TreeAnnotator v2.

339 **Impact of resistance-conferring and compensatory mutations on transmission success**

340 We used multiple linear regression to examine the respective contributions of antimicrobial resistance and
341 putative fitness cost-compensating mutations to the transmission success of tuberculosis. To take
342 transmission duration into account, we computed, for each isolate and each period length T in years (from
343 1 to 40y before sampling), a transmission success score defined as the number of isolates distant of less
344 than T SNPs, divided by T . This approach relied on the following rationale: based on MTBC evolution rate
345 of 0.5 mutation per genome per year, the relation between evolution time and SNP divergence is such that
346 a cluster with at most N SNPs of difference is expected to have evolved for approximately N years. Thus,
347 transmission success score over T years could be interpreted as the size of the transmission network divided
348 by its evolution time, hence as the average yearly increase of the network size. For each period T , the
349 transmission success score was regressed on the number of resistance mutations and on the presence of
350 putative compensatory mutations. The regression coefficients with 95% confidence intervals were
351 computed and plotted against T to identify maxima, that is, time periods when the transmission success was
352 maximally influenced by either resistance-conferring or –compensating mutations. These analyses were
353 conducted independently on outbreak strains of the Beijing-CAO clade in the Karakalpakstan cohort and
354 of the Beijing-A clade in the Samara cohort.

355 **Statistical analyses.**

356 Differences between cohorts and numbers of sampled isolates per year category were performed using Chi-
357 squared analysis (mid-P exact) or Fisher's exact test, while comparison of median age was performed using
358 the Mann-Whitney test. P -values for pairwise comparisons of subgroups regarding pairwise genetic
359 distances, number of resistant DST results and number of resistance related mutations were calculated with
360 an unpaired t-test (Welch correction) or a t-test according to the result of the variances comparison using a
361 F-test. Boxplot, bubble plots and density plots have been performed on R.

362

363 **Acknowledgments**

364 We thank: I. Razio, P. Vock, T. Ubben and J. Zallet from Borstel, Germany for technical assistance; the
365 national and expatriate staff of Médecins Sans Frontières, Karakalpakstan; Dr. Atadjan and Dr. K.
366 Khamraev from the Ministry of Health (Karakalpakstan) for their support. Parts of this work have been
367 supported by the European Union TB-PAN-NET (FP7-223681) project and the German Center for Infection
368 Research. The funders had no role in study design, data collection and analysis, decision to publish, or
369 preparation of the manuscript. Raw sequence data (fastq files) have been deposited at the European
370 Nucleotide Archive (ENA) under the project number (pending).

371

372

373 **Conflicts of interest**

374 None to declare.

375

376

377 **References:**

- 378 1. WHO. WHO treatment guidelines for drug-resistant tuberculosis - 2016 update. 2016;at
379 <<http://www.who.int/tb/MDRTBguidelines2016.pdf>>.
- 380 2. Middlebrook G, Cohn ML. Some observations on the pathogenicity of isoniazid-resistant variants of
381 tubercle bacilli. *Science* 1953;118:297–299.
- 382 3. Borrell S, Gagneux S. Infectiousness, reproductive fitness and evolution of drug-resistant
383 Mycobacterium tuberculosis. *Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis* 2009;13:1456–
384 1466.
- 385 4. Billington OJ, McHugh TD, Gillespie SH. Physiological cost of rifampin resistance induced in vitro
386 in Mycobacterium tuberculosis. *Antimicrob Agents Chemother* 1999;43:1866–1869.
- 387 5. Burgos M, DeRiemer K, Small PM, Hopewell PC, Daley CL. Effect of drug resistance on the
388 generation of secondary cases of tuberculosis. *J Infect Dis* 2003;188:1878–1884.
- 389 6. Dye C, Espinal MA. Will tuberculosis become resistant to all antibiotics? *Proc Biol Sci* 2001;268:45–
390 52.
- 391 7. Andersson DI, Levin BR. The biological cost of antibiotic resistance. *Curr Opin Microbiol*
392 1999;2:489–493.
- 393 8. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJM. The competitive cost of
394 antibiotic resistance in Mycobacterium tuberculosis. *Science* 2006;312:1944–1946.
- 395 9. Müller B, Borrell S, Rose G, Gagneux S. The heterogeneous evolution of multidrug-resistant
396 Mycobacterium tuberculosis. *Trends Genet TIG* 2013;29:160–169.
- 397 10. Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the virulence of Mycobacterium
398 tuberculosis and the implication for transmission in humans. *Infect Immun* 2002;70:4955–4960.
- 399 11. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S.
400 Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies
401 compensatory mutations in RNA polymerase genes. *Nat Genet* 2011;44:106–110.

402 12. Balabanova Y, Fedorin I, Kuznetsov S, Graham C, Ruddy M, Atun R, Coker R, Drobniowski F.
403 Antimicrobial prescribing patterns for respiratory diseases including tuberculosis in Russia: a
404 possible role in drug resistance? *J Antimicrob Chemother* 2004;54:673–679.

405 13. Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, Corander J,
406 Bryant J, Parkhill J, Nejentsev S, Horstmann RD, Brown T, Drobniowski F. Evolution and
407 transmission of drug-resistant tuberculosis in a Russian population. *Nat Genet* 2014;46:279–286.

408 14. Cox HS, Kalon S, Allamuratova S, Sizaire V, Tigay ZN, Rüsch-Gerdes S, Karimovich HA, Kebede
409 Y, Mills C. Multidrug-resistant tuberculosis treatment outcomes in Karakalpakstan, Uzbekistan:
410 treatment complexity and XDR-TB among treatment failures. *PLoS One* 2007;2:e1126.

411 15. Ulmasova DJ, Uzakova G, Tillyashayhov MN, Turaev L, van Gemert W, Hoffmann H, Zignol M,
412 Kremer K, Gombogaram T, Gadoev J, du Cros P, Muslimova N, Jalolov A, Dadu A, de Colombani
413 P, Telnov O, Slizkiy A, Kholikulov B, Dara M, Falzon D. Multidrug-resistant tuberculosis in
414 Uzbekistan: results of a nationwide survey, 2010 to 2011. *Euro Surveill Bull Eur Sur Mal Transm*
415 *Eur Commun Dis Bull* 2013;18:.

416 16. Cox H, Kebede Y, Allamuratova S, Ismailov G, Davletmuratova Z, Byrnes G, Stone C, Niemann S,
417 Rüsch-Gerdes S, Blok L, Doshetov D. Tuberculosis recurrence and mortality after successful
418 treatment: impact of drug resistance. *PLoS Med* 2006;3:e384.

419 17. Kent P, Kubica G. *Public Health Mycobacteriology: A guide for the level III laboratory*. Atlanta, Ga:
420 US Department of Health and Human Services, Centres for Disease Control; 1985.

421 18. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinforma*
422 *Oxf Engl* 2009;25:1754–1760.

423 19. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler
424 D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for
425 analyzing next-generation DNA sequencing data. *Genome Res* 2010;20:1297–1303.

426 20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000
427 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools.
428 *Bioinforma Oxf Engl* 2009;25:2078–2079.

429 21. Casali N, Nikolayevskyy V, Balabanova Y, Ignatyeva O, Kontsevaya I, Harris SR, Bentley SD,
430 Parkhill J, Nejentsev S, Hoffner SE, Horstmann RD, Brown T, Drobniowski F. Microevolution of
431 extensively drug-resistant tuberculosis in Russia. *Genome Res* 2012;22:735–745.

432 22. Merker M, Blin C, Mona S, Duforest-Frebourg N, Lecher S, Willery E, Blum MGB, Rüsch-Gerdes S,
433 Mokrousov I, Aleksic E, Allix-Béguec C, Antierens A, Augustynowicz-Kopeć E, Ballif M, Barletta
434 F, Beck HP, Barry CE, Bonnet M, Borroni E, Campos-Herrero I, Cirillo D, Cox H, Crowe S, Crudu
435 V, Diel R, Drobniowski F, Fauville-Dufaux M, Gagneux S, Ghebremichael S, *et al.* Evolutionary
436 history and global spread of the *Mycobacterium tuberculosis* Beijing lineage. *Nat Genet*
437 2015;47:242–249.

438 23. Institute of Medicine (US) Forum on Drug Discovery D, Science RA of M. Drug-Resistant
439 Tuberculosis in the Russian Federation. 2011;at <<http://www.ncbi.nlm.nih.gov/books/NBK62453/>>.

440 24. Böttger EC, Springer B, Pletschette M, Sander P. Fitness of antibiotic-resistant microorganisms and
441 compensatory mutations. *Nat Med* 1998;4:1343–1344.

442 25. Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, Jang J, Nam J, Dick T, Walker JR, Pethe K,
443 Camacho LR. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in
444 *Mycobacterium tuberculosis*. *J Biol Chem* 2013;288:23447–23456.

445 26. Zhao F, Wang X-D, Erber LN, Luo M, Guo A, Yang S, Gu J, Turman BJ, Gao Y, Li D, Cui Z, Zhang
446 Z, Bi L, Baughn AD, Zhang X-E, Deng J-Y. Binding pocket alterations in dihydrofolate synthase
447 confer resistance to para-aminosalicylic acid in clinical isolates of *Mycobacterium tuberculosis*.
448 *Antimicrob Agents Chemother* 2014;58:1479–1487.

449 27. Ministry of Health of the USSR. Methodological recommendations. *Chemother TB Treat* Moscow:
450 1963.

451 28. Ministry of Health of the USSR. Methodological recommendations. *Chemother TB Treat* Moscow:
452 1983.

453 29. Mishin VY. TB chemotherapy (review). 2008;34–43.

454 30. Zaunbrecher MA, Sikes RD Jr, Metchock B, Shinnick TM, Posey JE. Overexpression of the
455 chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in
456 *Mycobacterium tuberculosis*. *Proc Natl Acad Sci U S A* 2009;106:20004–20009.

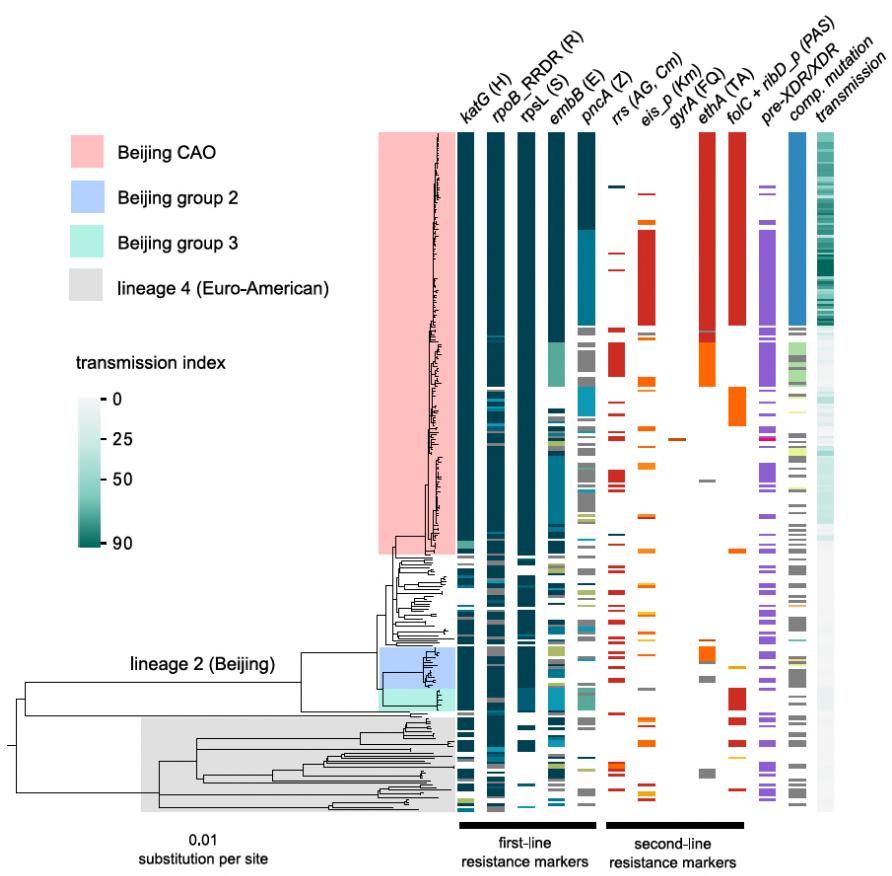
457 31. Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M, Plikaytis BB, Shinnick TM, Posey JE.
458 Aminoglycoside cross-resistance in *Mycobacterium tuberculosis* due to mutations in the 5'
459 untranslated region of *whiB7*. *Antimicrob Agents Chemother* 2013;57:1857–1865.

460 32. Lalor M, Allamuratova S, Tiegay Z, Khamraev A, Greig J, Braker K, De Cros P, Telnov A.
461 Treatment outcomes in multidrug-resistant TB patients in Uzbekistan (conference abstract). Paris,
462 France: 2011.

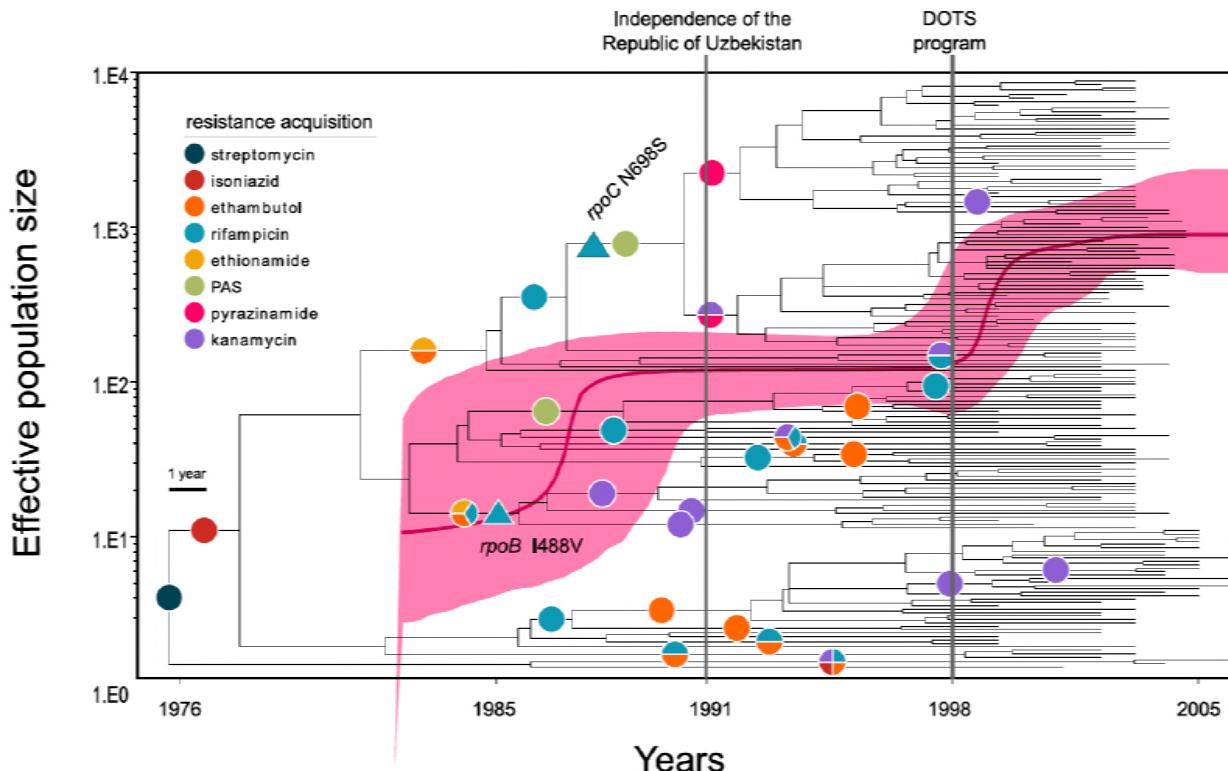
463 33. Medecins Sans Frontieres. *International Activity Report*. Medecins Sans Frontieres; 2013.

464

465


466

467


468

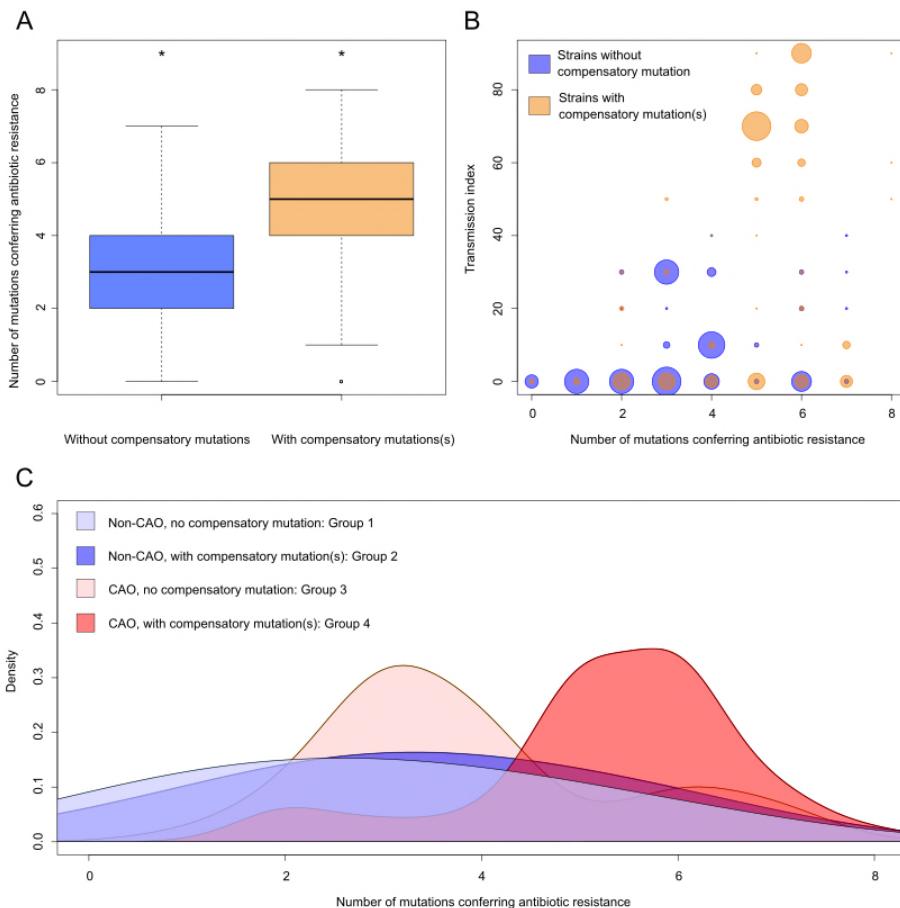
469

470 **Figures**

472 **Fig. 1: Drug resistance and transmission success among MDR-MTBC strains from Karakalpakstan,**
473 **Uzbekistan.** Maximum likelihood phylogeny (GTR substitution model, 1,000 resamples) of 277 MDR-
474 MTBC strains from **Karakalpakstan**, Uzbekistan sampled from 2001 to 2006. Columns show drug
475 resistance associated mutations to first- and second-line drugs (different mutations represented by different
476 colors), genetic classification of pre-XDR (purple) and XDR (pink) strains, and putative compensatory
477 mutations in the RNA polymerase genes *rpoA*, *rpoB* and *rpoC*. Transmission index represents number of
478 isolates within a maximum range of 10 SNPs at whole genome level. MTBC-Beijing strains (lineage 2) are
479 differentiated into three sub-groups (i.e. Central Asian Outbreak (CAO), group 2 and group 3). Strains
480 belonging to lineage 4 (Euro-American) are colored in grey: H=isoniazid, R=rifampicin, S=streptomycin,
481 E=ethambutol, Z=pyrazinamide, FQ=fluoroquinolone, AG=aminoglycosides, Km=kanamycin
482 Cm=capreomycin, TA=thioamide, PAS=para-aminosalicylic acid.

483

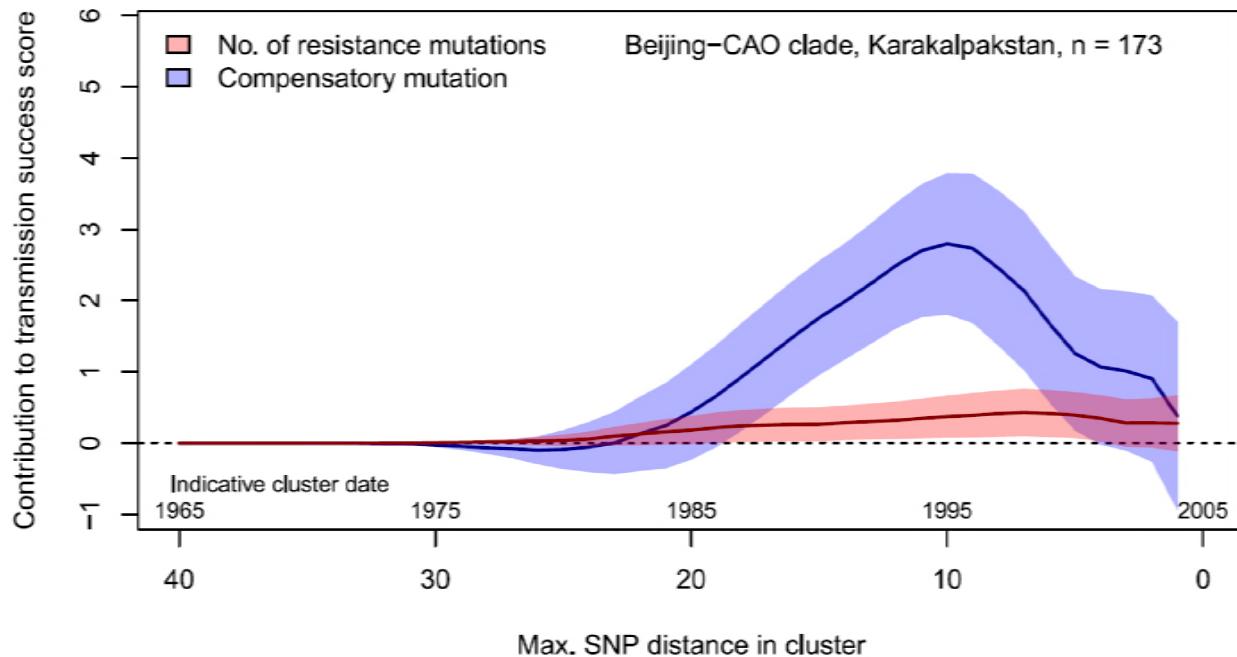
484 **Fig. 2: Evolutionary history of MTBC Central Asian outbreak (CAO) strains**


485 Genealogical tree of CAO strains in **Karakalpakstan**, Uzbekistan and effective population size over time
486 based on a (piecewise-constant) Bayesian skyline approach using the GTR substitution model and a strict
487 molecular clock prior of 0.94×10^{-7} substitutions per nucleotide per year. Pink shaded area represents
488 changes in the effective population size giving the 95% highest posterior density (HPD) interval with the
489 pink line representing the mean value. Vertical lines indicate time points of the implementation of the first
490 standardized TB treatment program (DOTS) in Karakalpakstan and of the declaration of Uzbekistan as
491 independent republic. Symbols on branches show steps of fixation of resistance conferring mutations.

492

493

494


495

496

497 **Fig. 3: Compensatory mutations and drug resistance levels**

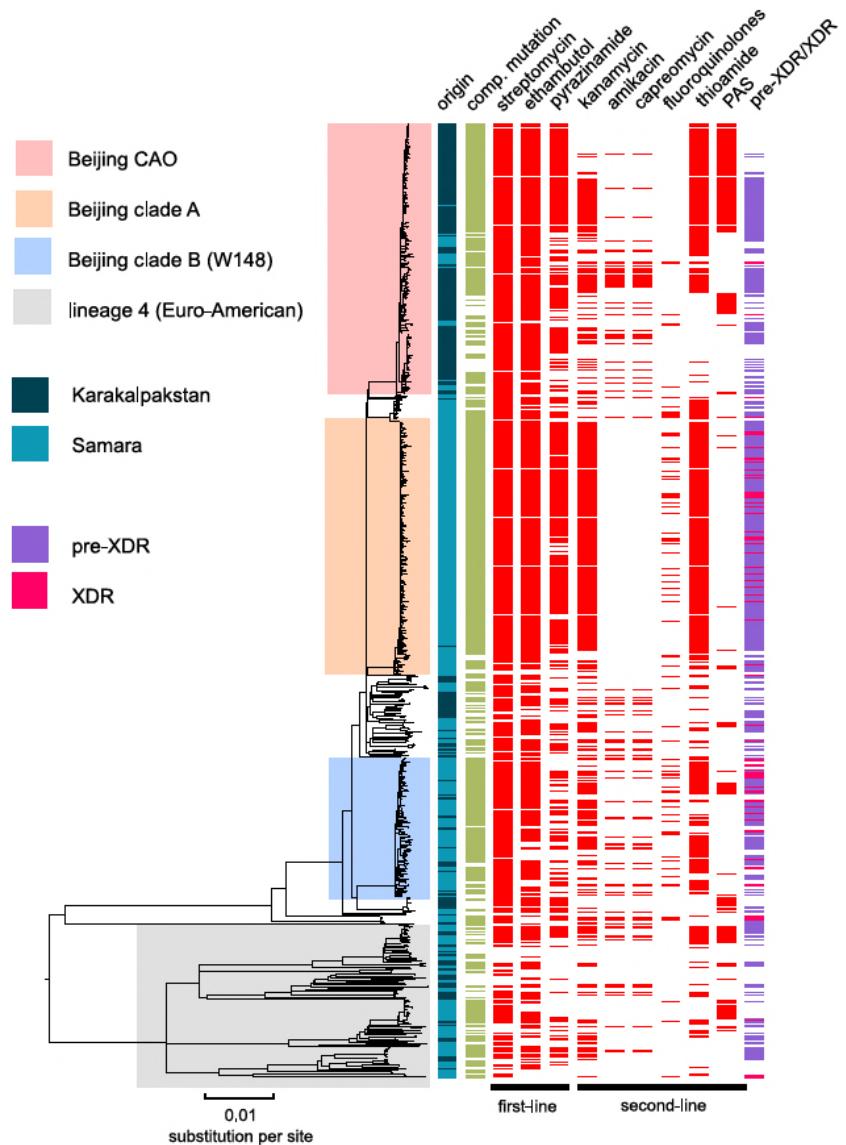
498 Comparisons between strains carrying compensatory mutations (in orange) and strains with no-
499 compensatory mutations (in blue), from the **Karakalpakstan** dataset. A) Boxplot showing number of
500 resistance mutations for the two categories (without or with compensatory mutations). The two categories
501 were significantly different (two-sample t-test $P=1.2 \times 10^{-10}$). B) Bubble plots showing the transmission
502 index (number of strains differing by less than 10 SNPs) as a function of antibiotic resistance related
503 mutations. Bubble sizes are proportional to the numbers of strains. C) Density plot of the number of
504 resistance-conferring mutations for 4 groups of strains sourced from the Karakalpakstan data. Proportions
505 are adjusted by using Gaussian smoothing kernels. The 4 groups are composed of non-CAO strains with no
506 compensatory mutations; non-CAO strains carrying compensatory mutations; CAO strains with no
507 compensatory mutations and CAO strains carrying compensatory mutations. These groups are respectively
508 colored in light blue, dark blue, light orange and light red.

509 **Fig. 4:** Contributions of resistance-conferring and compensatory mutations to the transmission success of
510 *M. tuberculosis* of the Beijing-CAO clade, **Karakalpakstan**, Uzbekistan. Shown are the coefficients and
511 95% confidence bands of multiple linear regression of the transmission success score, defined as the size
512 of clusters diverging by at most N SNPs and divided by N or, equivalently, the size of clusters that evolved
513 over N years divided by N . The presence of compensatory mutations was independently associated with
514 transmission success, with a maximum association strength found for SNP distances ranging from 10 to 20
515 SNPs, corresponding to transmission clusters beginning around 1995.

517

518

519


520

521

522

523

524

	Streptomycin	Ethambutol	Pyrazinamide	Kanamycin	Amikacin	Capreomycin	Fluoroquinolones	Thioamide	PAS	pre-XDR/XDR
Beijing-CAO	100	97	76	48	18	18	3	60	49	50
Beijing-B	100	81	43	59	18	18	22	73	12	62
Beijing-A	98	98	87	95	0	0	18	96	4	96
other Beijing	91	73	52	39	20	23	14	32	15	24
non-Beijing	61	55	26	34	12	12	3	30	30	35
short MDR-TB regimen*										

534

535

536 **Fig. 6: Percentage of drug resistance among 705 MDR-MTBC strains from Samara (Russia) and**
537 **Karakalpakstan (Uzbekistan)**

538 MDR-MTBC strains stratified to three Beijing sub-groups, other Beijing strains and non-Beijing strains.

539 Proportions of strains with identified molecular drug resistance mutations (see additional data) which

540 mediate resistance to multiple first- and second-line anti-TB drugs. Values are rounded. Drugs used in the

541 WHO endorsed standardized short MDR-TB regimen marked with grey boxes.

542 *The short MDR-TB regimen further includes high-dose isoniazid treatment, and clofazimine. In that

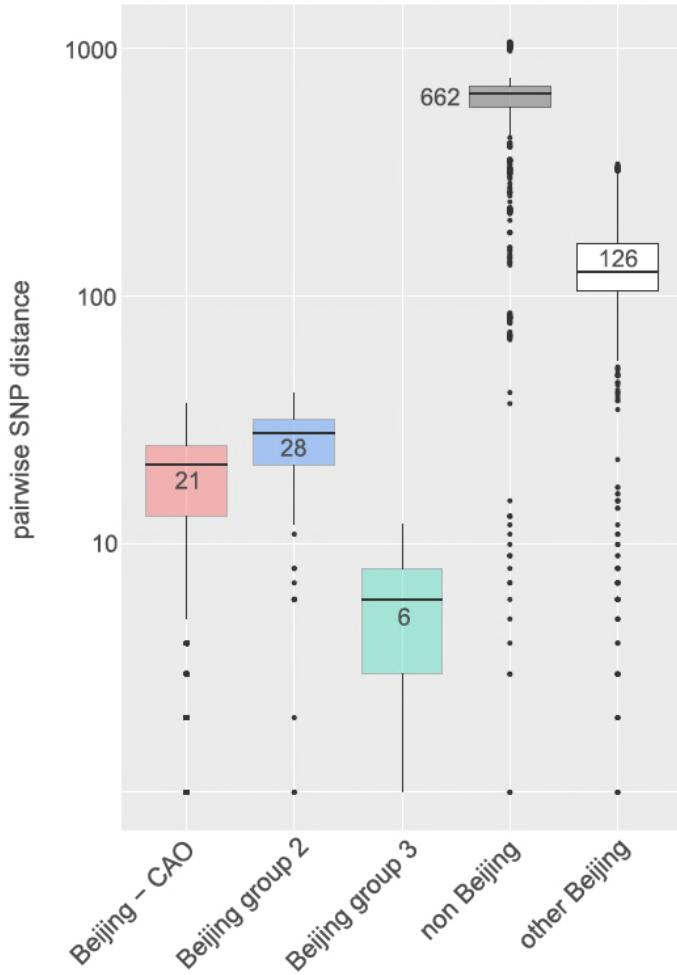
543 regard, we identified 622/705 (85.4%) of the MDR-MTBC strains with the well-known high-level

544 isoniazid resistance mediating mutation *katG* S315T (additional data), for clofazimine resistance

545 mediating mutations are not well described.

546

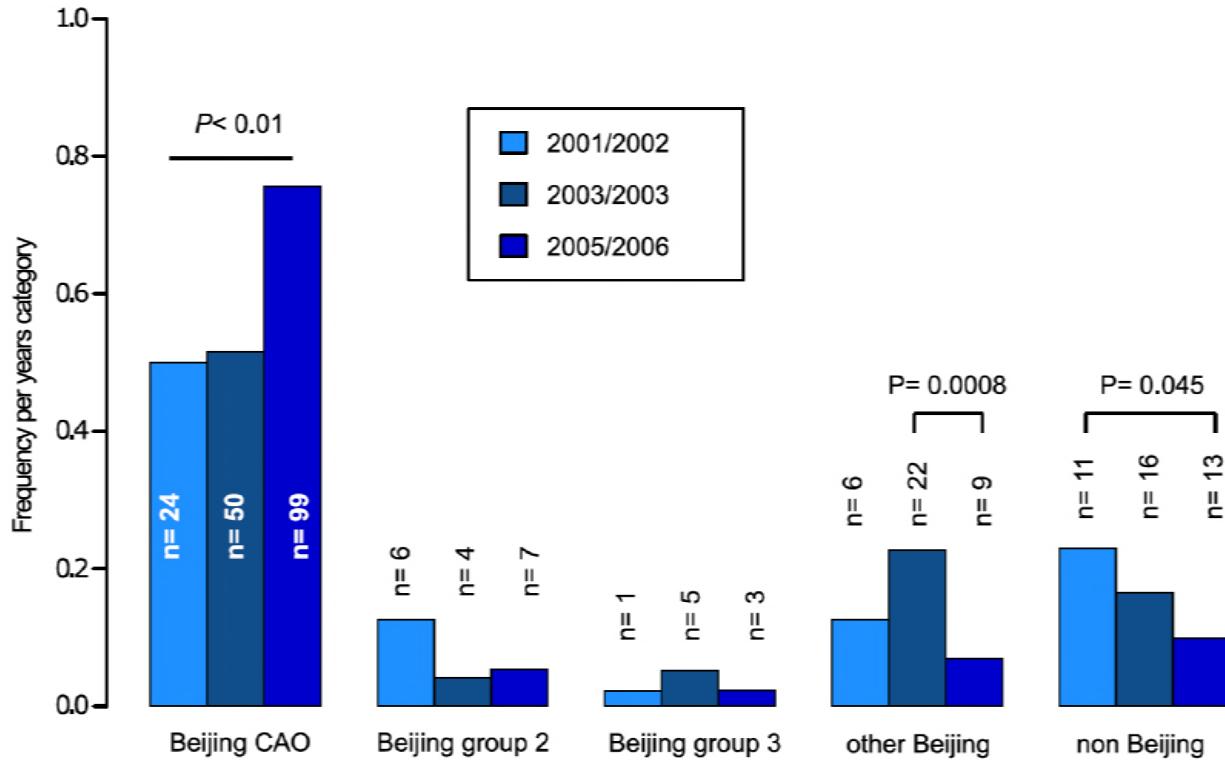
547


548

549

550

551 **Appendix Figures and Tables**


552

553

554

555 **Appendix Figure S1:** Box-Plot showing pairwise SNP distances among identified Beijing genotype
556 subgroups in comparison to non-Beijing strains from **Karakalpakstan**, Uzbekistan. Box represents inter
557 quartile range, whiskers represent 95% of the data, outliers shown as black dots; solid black line represents
558 the median.

559

560 **Appendix Figure S2:** Proportions of different genome-based subgroups in **Karakalpakstan**, Uzbekistan
561 stratified to the years 2001/02, 2003/04, 2005/06. P-values for pairwise comparisons within phylogenetic
562 groups were calculated with Fisher exact test (two-sided). Beijing CAO 2001/2002 vs 2005/2006 $P=0.0018$,
563 Beijing CAO 2003/2004 vs 2005/2006 $P=0.0002$.

564

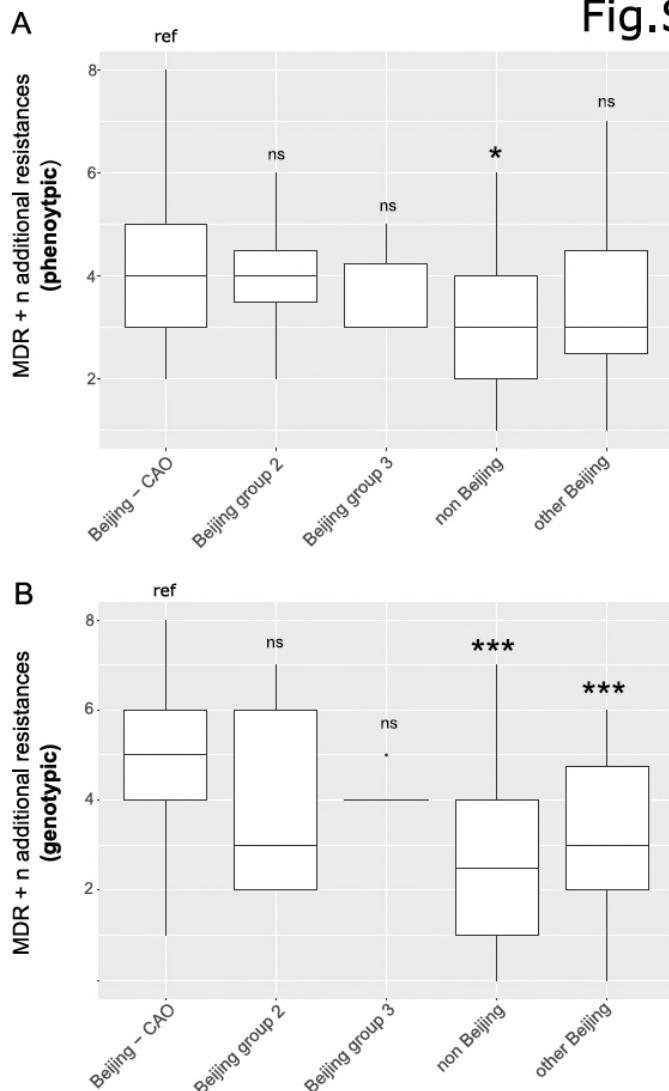
565

566

567

568

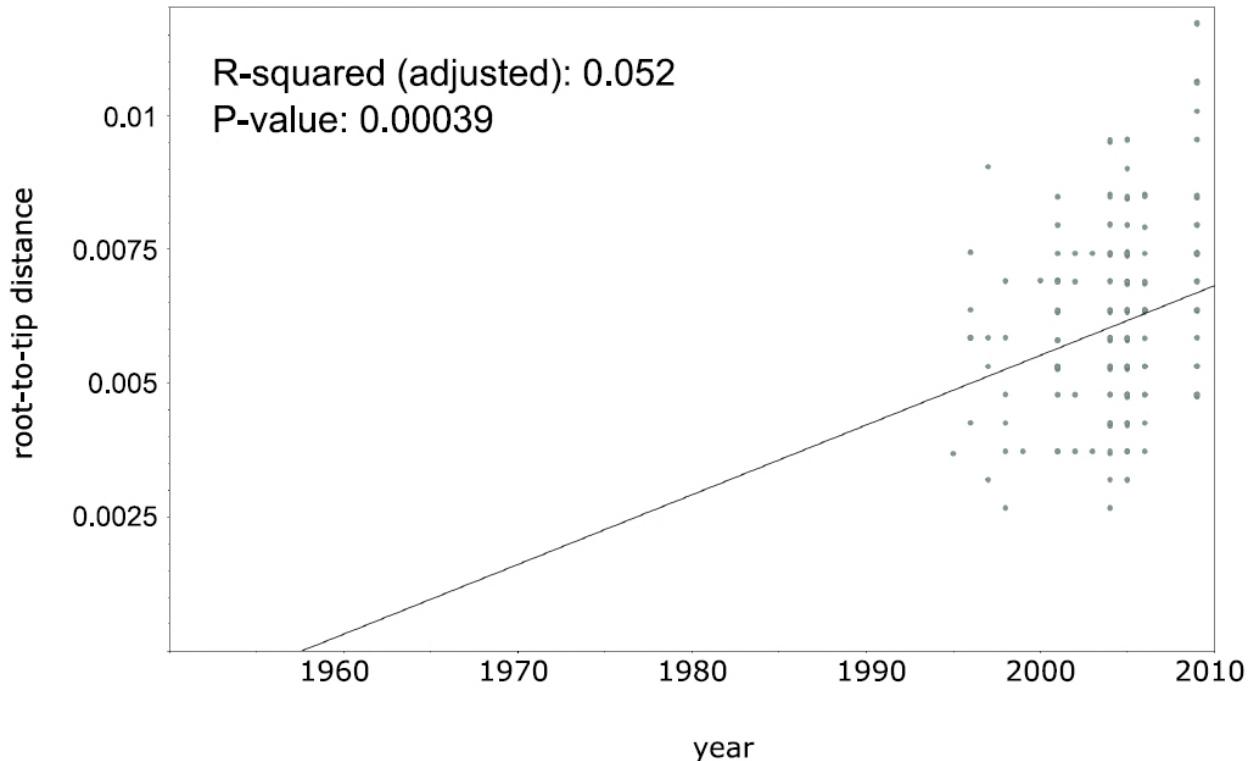
569

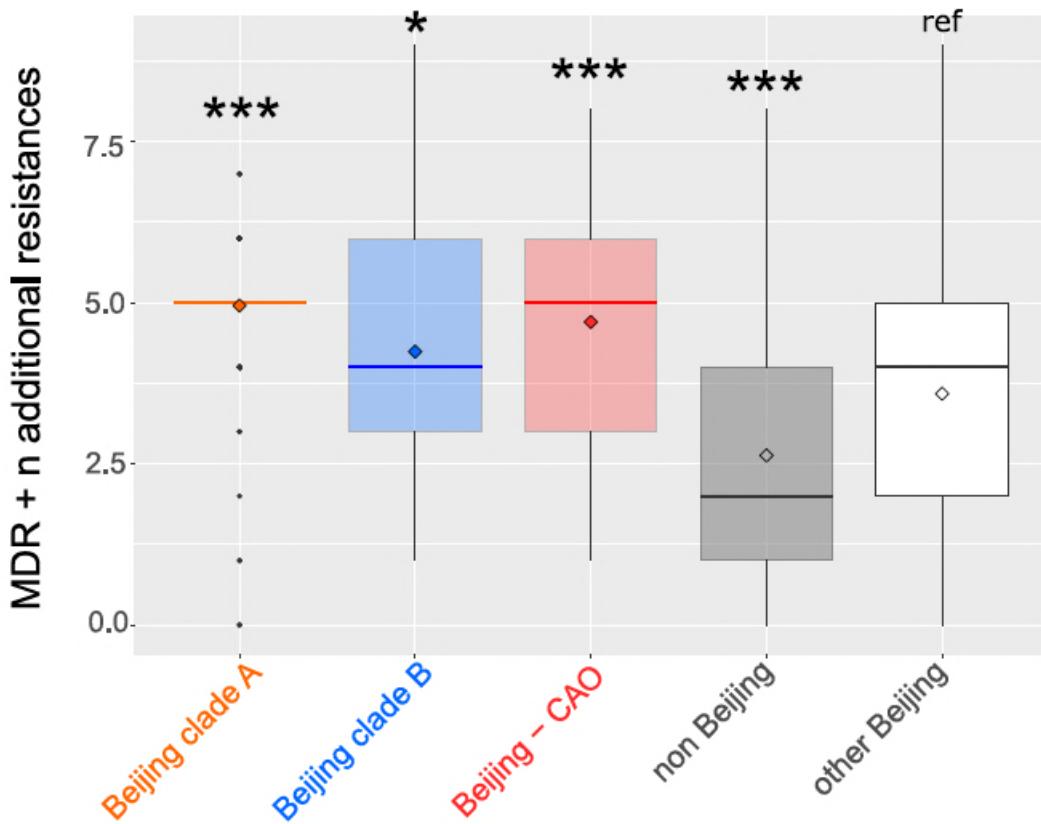

570

571

572

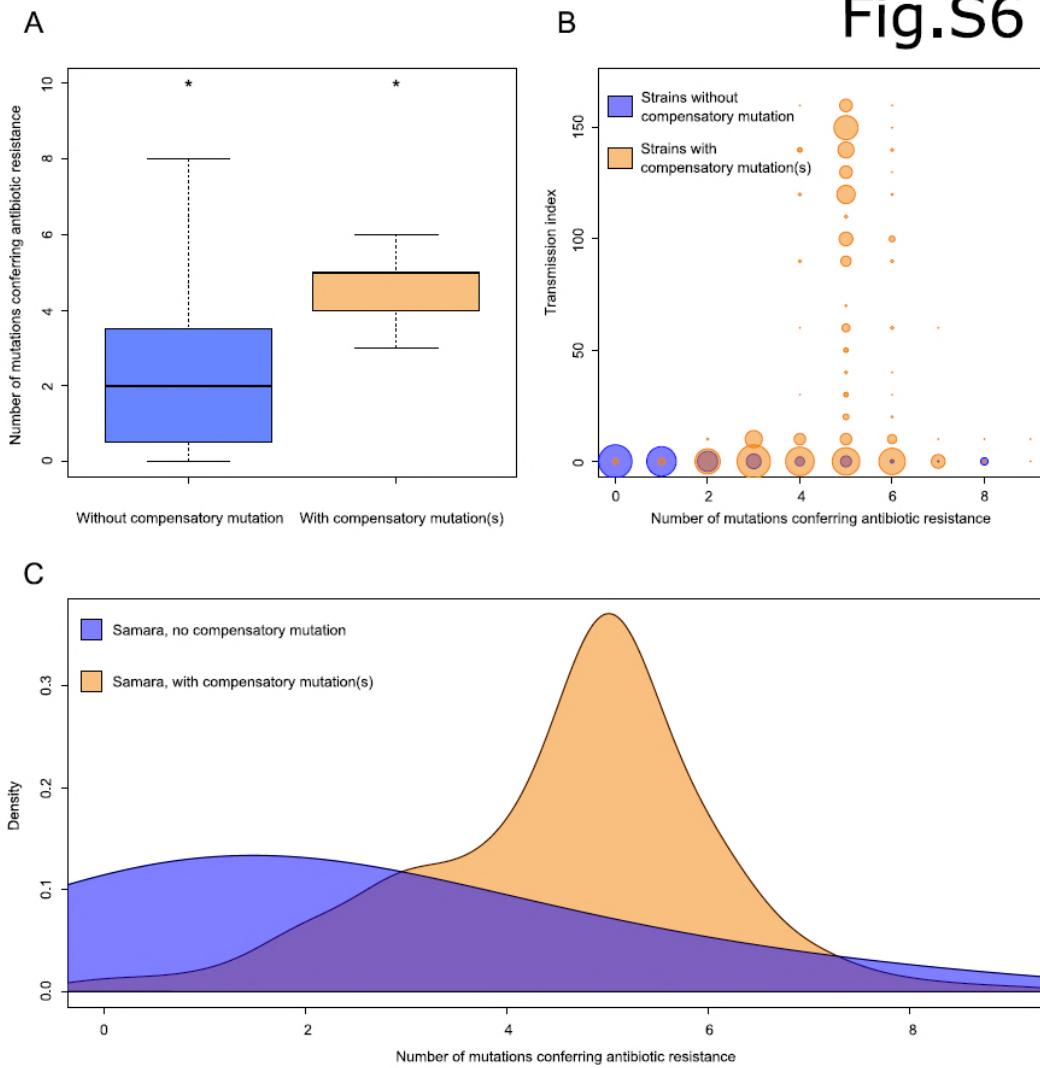
573


Fig.S3

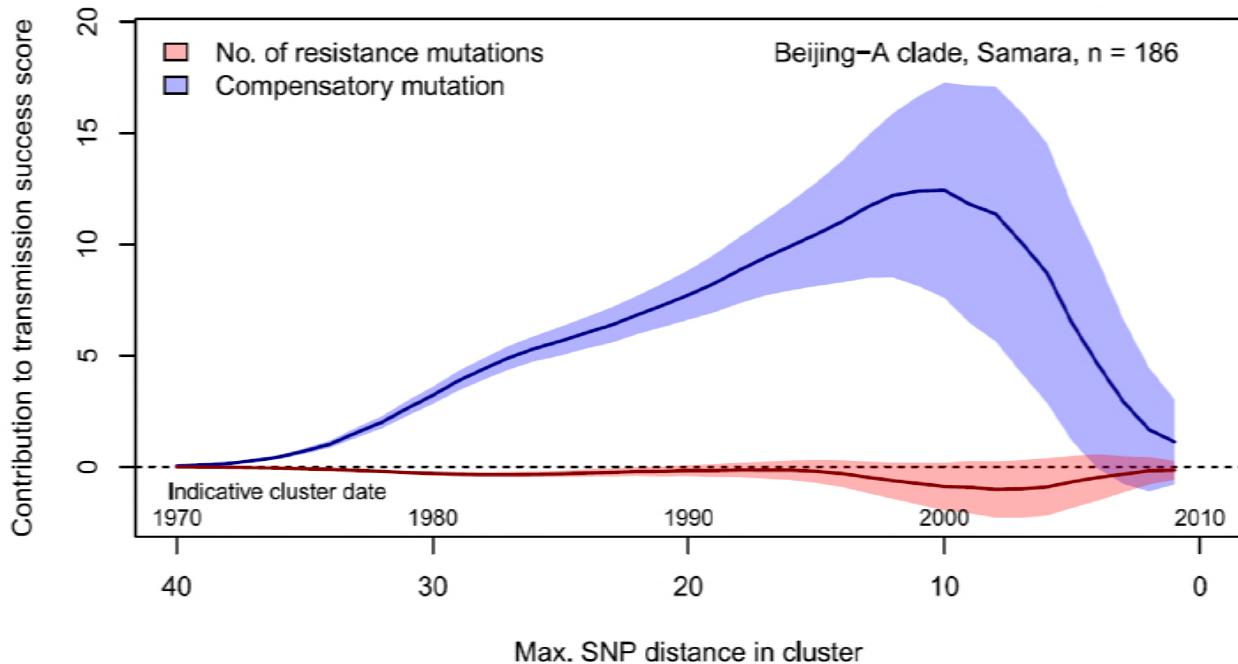

574

575

576 **Appendix Figure S3:** Box-Plot showing median number of (A) phenotypic and (B) genotypic drug
577 resistances (in addition to the MDR classification, i.e. isoniazid and rifampicin resistance) of all strains
578 **from Karakalpakstan.** Box represents inter quartile range, whiskers represent 95% of the data, outliers
579 shown as black dots; solid black line represents the median. Beijing CAO strains exhibit more phenotypic
580 drug resistances compared to non-Beijing strains ($P=0.0079$) and more genotypic drug resistances
581 compared to other Beijing strains ($P<0.0001$), and non-Beijing strains ($P<0.0001$). P-values for pairwise
582 comparison with reference group calculated with unpaired t-test (two-tailed, Welch's correction).



583
584 **Appendix Figure S4:** Linear regression analysis showing correlation between root-to-tip distance and
585 sampling years of an extended collection of 220 Beijing CAO datasets covering the period 1995 to 2009.
586



587
588
589 **Appendix Figure S5:** Number of drug resistance mutations among different MDR-MTBC groups from
590 **Samara (n=428) and Karakapakstan (n=277).** Box-Plot with mean (diamond) and median (horizontal
591 line) number of genotypic drug resistances (see methods) to additional anti-TB drugs (beyond MDR
592 defining rifampicin and isoniazid resistance). Box represents inter quartile range, whiskers represent 95%
593 of the data, outliers shown as black dots. P -values for three major Beijing outbreak clades (A, B and
594 CAO), and non-Beijing strains (mainly lineage 4 isolates) were calculated with unpaired t-tests with
595 Welch correction compared to the group ‘other Beijing’ strains. Color codes according to Fig. 5. P -values
596 for pairwise comparison with reference group calculated with unpaired t-test (two-tailed, Welch’s
597 correction). Clade A ($P \leq 0.0001$), Clade B ($P = 0.0143$), CAO ($P \leq 0.0001$), and non-Beijing ($P = 0.0009$).
598
599

Fig.S6

600
601 **Appendix Figure S6:** Comparisons between strains carrying compensatory mutations (in orange) and
602 strains with no-compensatory mutations (in blue), from the **Samara dataset**. A) Boxplot showing number
603 of resistance mutations for the two categories (without or with compensatory mutations). The two categories
604 were significantly different (two-sample t-test $P<2.2\times 10^{-16}$). B) Bubble plots showing the transmission
605 index (number of strains differing by less than 10 SNPs) as a function of antibiotic resistance related
606 mutations. Bubble sizes are function of the number of strains. C) Density plot of the number of resistance-
607 conferring mutations for strains carrying compensatory mutations (orange) and strains that don't carry
608 compensatory mutation (blue) from Samara dataset. Proportions are adjusted by using Gaussian smoothing
609 kernels.

610
611 **FigS7:** Contributions of resistance-conferring and compensatory mutations to the transmission success of
612 *M. tuberculosis* of the Beijing-A clade from **Samara**, Russia. Shown are the coefficients and 95%
613 confidence bands of multiple linear regression of the transmission success score, defined as the size of
614 clusters diverging by at most N SNPs and divided by N or, equivalently, the size of clusters that evolved
615 over N years divided by N . Compensatory mutations were independently associated with transmission
616 success, with a maximum association strength found for transmission clusters beginning around 1999.

617

618

619

620

621

622

623

624

625

626 **Appendix Table S1:** Main characteristics of patients from cohorts 1 and 2 in **Karakalpakstan**, Uzbekistan.

	Cohort 1	Cohort 2	P value
Year of strain collection (patient diagnosis with MDR-TB)	2001-2002	2003-2006	
No. MDR cases diagnosed within time period	57	300	
No. Included in this analysis	49 (86%)	228 (76%)	0.094
Reasons for non-inclusion:			
Multiple strain infection	6	1	
No DNA available	2	40	
Patient already in cohort 1	NA	11	
MIRU not available	0	20	
Patient residence (within Karakalpakstan)			
Nukus	34 (69%)	146 (64%)	0.49
Chimbay	6	64	
Other	9	1	
Unknown	0	17	
Male	27 (55%)	119 (52%)	0.72
Age (median, IQR)	32, 27-38	31, 24-41	0.40
Missing age	0	49 (21%)	
Previous TB treatment	38 (78%)	228 (100%)	<0.0001
First-line resistance profile:			
HR	1	2	
HRE	0	1	
HRS	12 (24%)	41 (18%)	
HRES	28 (57%)	49 (21%)	
HRSZ	1 (2%)	27 (12%)	
HREZ	1	1	
HRESZ	7 (14%)	107 (47%)	<0.0001
No. of first-line drugs resistant			
2	1	2	
3	12 (24%)	42 (18%)	
4	30 (61%)	77 (34%)	
5	7 (14%)	107 (47%)	<0.0001
Availability of second-line drug susceptibility testing (DST)	Ofx, Cap, Proth	Ofx, Cap, Ami, Eth, Cyc, PAS	
Ofx resistance	5 (10%)	6 (3%)	0.033
Cm resistance	1 (2%)	53 (23%)	0.0001

627

628 Abbreviations: H=isoniazid, R=rifampicin, E=ethambutol, S=streptomycin, Z=pyrazinamide,

629 Ofx=ofloxacin, Cm=capreomycin

630

631

632 **Appendix Table S2:**

633 Path sampling results and model selection based on Δ marginal L estimates (relative to best model, given
634 in bold fonts) considering 75 path sampling steps and chain lengths of 15 million analysing Beast runs of a
635 combined dataset of Central Asian outbreak (CAO) isolates originated from Germany (1995-2000),
636 **Karakalpakstan** (2001-2006), and **Samara** (2008-2010).

637

Subst. model	Clock model	Demographic model	Marginal L estimate	Mean ESS	Δ marginal L estimate	Subst rate x 10^{-7} (95%HPD)
GTR	Strict (no tip dating)	Coalescent constant size	-10131.67	214.3	32.21	1.0 (fixed)
GTR	Strict (tip dating)	Coalescent constant size	-10099.46	153.7	ref	1.0 (fixed)
GTR	Relaxed, lognormal	Coalescent constant size	-10117.21	123.9	17.75	0.96 (0.65-1.24)
<i>Strict clock with tip dating selected as best model</i>						
GTR	Relaxed, lognormal	Coalescent constant size	-10117.21	123.9	78.28	0.96 (0.65-1.24)
GTR	Relaxed, lognormal	Exponential	-10044.41	189.5	5.48	0.88 (0.58-1.21)
GTR	Relaxed, lognormal	Bayesian skyline	-10038.93	98.6	ref	0.94 (0.72-1.15)
<i>Mutation rate of 0.94 used for a Bayesian skyline model with a strict molecular clock for CAO strains from Karakalpakstan only</i>						

638

639 Abbreviations: HPD=Highest posterior density interval, GTR=general time reversible

640

641

642

643

644 **Appendix Table S3:** Mutations in *rpoB*, *rpoA* and *rpoC* associated with a putative compensatory effect in
645 rifampicin resistant MTBC strains. Data from 277 MDR-MTBC strains from **Karakalpakstan**, Uzbekistan,
646 stratified to the particularly successful variant termed Central Asian outbreak (CAO) and other Beijing
647 strains. Pairwise differences between the two groups calculated with Fisher exact test; two-tailed *P*-values
648 are reported.

649

	Beijing CAO (n=173)	Other Beijing (n=64)	<i>P</i> -value	All (n=277)	650
<i>rpoB</i> mutations outside RRDR, excluding codon 170,400,491 variants	25 (14.5%)	12 (18.8%)		43 (15.5%)	651
wild type	147 (85.0%)	52 (81.3%)	0.43	234 (84.5%)	652
<i>rpoC</i> variants	95 (54.9%)	18 (28.1%)		126 (45.5%)	653
wild type	78 (45.1%)	46 (71.2%)	0.0002	151 (54.5%)	654
<i>rpoA</i> variants	5 (2.9%)	2 (3.1%)		7 (2.5%)	655
wild type	168 (97.1%)	62 (96.9%)	1.00	270 (97.5%)	656

660 Abbreviations: CAO=Central Asian outbreak, RRDR=rifampicin resistance determining region

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678 **Appendix Table S4:** Proportions of genotypic drug resistance rates for different anti-TB drugs (beyond
679 isoniazid and rifampicin resistance) and pre-XDR/XDR-TB classification among 705 MDR-MTBC clinical
680 isolates from **Samara** (n=428) **and Karakalpakstan** (n=277), stratified to three identified major
681 phylogenetic groups within the Beijing genotype/lineage and to other Beijing strains, and to non-Beijing
682 strains (mainly lineage 4, Euro-American).

683

group	S	E	Z	Km	Am	Cm	Fq	Thio	PAS	Pre-XDR XDR
Beijing CAO (n=201)	201/201 100.0%	195/201 97.0%	152/201 75.6%	97/201 48.3%	37/201 18.4%	37/201 18.4%	6/201 3.0%	121/201 60.2%	99/201 49.3%	100/201 49.8%
Beijing clade B (W148) (n=103)	103/103 100.0%	83/103 80.6%	44/103 42.7%	61/103 59.2%	18/103 17.5%	18/103 17.5%	23/103 22.3%	75/103 72.8%	12/103 11.7%	64/103 62.1%
Beijing clade A (n=187)	184/187 98.4%	183/187 97.9%	163/187 87.2%	177/187 94.7%	0/187 0.0%	0/187 0.0%	33/187 17.6%	180/187 96.3%	7/187 3.7%	179/187 95.7%
Other Beijing (n=100)	91/100 91.0%	73/100 73.0%	52/100 52.0%	39/100 39.0%	20/100 20.0%	23/100 23.0%	14/100 14.0%	32/100 32.0%	15/100 15.0%	45/187 24.1%
Non-Beijing (n=114)	69/114 60.5%	63/114 55.3%	30/114 26.3%	39/114 34.2%	14/114 12.3%	14/114 12.3%	3/114 2.6%	34/114 29.8%	34/114 29.8%	40/114 35.1%

684

685 Abbreviations: S=streptomycin, E=ethambutol, Z=pyrazinamide, Km=kanamycin, Am=amikacin,
686 Cm=Capreomycin, Fq=fluoroquinolone, Thio=thioamide, PAS=para-aminosalicylic acid

687

688

689

690

691

692

693

694

695

696 **Appendix Table S5**

697 Likelihood scores for different substitution models calculated with Jmodeltest 2.1 and statistical model
698 selection based on Akaike and Bayesian Information Criteration (AIC and BIC). Best model is assumed to
699 have the lowest criteration value. Shown are the top 10 AIC models. Substitution model used for Bayesian
700 inference marked in bold.

701

Subst. model	-lnL	AIC	Δ AIC (AIC ranking)	BIC	Δ BIC (BIC ranking)
GTR	8837.6437	18567.2875	0.0 (1)	21041.0025	7.0748 (2)
GTR+I	8837.6747	18569.3494	2.0619 (2)	21048.6109	14.6832 (5)
GTR+G	8838.9842	18571.9684	4.6809 (3)	21051.2299	17.3022 (6)
GTR+I+G	8839.0077	18574.0153	6.7278 (4)	21058.8233	24.8955 (8)
TPM1uf	8845.426	18576.852	9.5645 (5)	21033.9277	0.0 (1)
TPM1uf+I	8845.4446	18578.8891	11.6016 (6)	21041.5113	7.5836 (3)
TPM1uf+G	8846.7354	18581.4709	14.1834 (7)	21044.093	10.1653 (4)
TPM1uf+I+G	8846.7697	18583.5395	16.252 (8)	21051.7081	17.7804 (7)
SYM	8860.6478	18607.2955	40.008 (9)	21064.3712	30.4435 (9)
SYM+I	8860.6826	18609.3652	42.0777 (10)	21071.9874	38.0596 (12)

702

703

704

705 **Additional data:**

706 34 Resistance targets (in 28 genes) and molecular markers considered as resistance predictor.

707 Phylogenetic variants in 34 resistance associated target genes.

708 DST phenotypes and polymorphisms in resistance and compensatory genes found in 705 MDR-MTBC

709 strains from Karakalpakstan, Uzbekistan and Samara, Russia and 19 CAO-Beijing strains from Germany.

710 Genotypic classification, transmission indexes, Accession numbers.

711 38 Central Asian outbreak (CAO) specific SNPs with annotations.