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KEY MESSAGE: We developed a combined ChIP-seq and RNA-seq protocol for tree buds; optimised to work on
small amount of material and on samples flash frozen in the field, and explored the link between expression level and

H3K4me3 enrichment.

ABSTRACT

Chromatin immunoprecipitation-sequencing (ChIP-seq) is a robust technique to study interactions between proteins, such
as histones or transcription factors, and DNA. This technique in combination with RNA-sequencing (RNA-seq) is a
powerful tool to better understand biological processes in eukaryotes. We developed a combined ChIP-seq and RNA-seq
protocol for tree buds (Prunus avium L., Prunus persica L Batch, Malus x domestica Borkh.) that has also been
successfully tested on Arabidopsis thaliana and Saccharomyces cerevisiae. Tree buds contain phenolic compounds that
negatively interfere with ChIP and RNA extraction. In addition to solving this problem, our protocol is optimised to work
on small amounts of material. Furthermore, one of the advantages of this protocol is that samples for ChIP-seq are cross-

linked after flash freezing, making it possible to work on trees growing in the field and to perform ChIP-seq and RNA-

1


https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

bioRxiv preprint doi: https://doi.org/10.1101/334474; this version posted October 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

seq on the same starting material. Focusing on dormant buds in sweet cherry, we explored the link between expression
level and H3K4me3 enrichment for all genes, including a strong correlation between H3K4me3 enrichment at the
DORMANCY-ASSOCIATED MADS-box 5 (PavDAMS5) loci and its expression pattern. This protocol will allow
analysis of chromatin and transcriptomic dynamics in tree buds, notably during its development and response to the

environment.

BACKGROUND

The term ‘epigenetics’ has traditionally been used to refer to heritable changes in gene expression that take place without
altering DNA sequence (Wolffe and Matzke, 1999), but it is also used, in a broader sense, to refer to modifications of the
chromatin environment (Miozzo et al., 2015). Epigenetic modifications are important for a wide range of processes in
plants, including seed germination (Nakabayashi et al., 2005), root growth (Krichevsky et al., 2009), flowering time (He
et al., 2003), disease resistance (Stokes et al., 2002) and abiotic stress responses (Zhu et al., 2008). Post-transcriptional
modifications of histone proteins and chromatin structure regulate the ability of transcription factors (TFs) to bind DNA
and thereby influence gene expression (Lee et al., 1993; Narlikar et al., 2002). Analysing the dynamics of chromatin
modifications and DNA-protein interactions is a critical step to fully understand how gene expression is regulated.
Chromatin Immunoprecipitation (ChIP) is one of the few methods enabling the exploration of in vivo interactions
between DNA and proteins such as histones and TFs. When followed by next generation sequencing (ChIP-seq), this
method allows the detection of these interactions at a genome-wide scale. Since chromatin modifications and the
regulation of gene expression are tightly linked, ChIP-seq for chromatin marks and TFs are often combined with RNA-
sequencing (RNA-seq) to extract key features of the role of chromatin modification and TF binding in regulating
transcription. While ChIP-seq is routinely performed in plant model organisms like Arabidopsis thaliana, it is still a
challenge to carry it out on tree buds. The numerous ChIP protocols published in plants and mammals [(Cortijo et al.,
2018; Kaufmann et al., 2010; Li et al., 2014; Nelson et al., 2006; Ricardi et al., 2010; Saleh et al., 2008; Wal and Pugh,
2012; Xie and Presting, 2016; Yamaguchi et al., 2014) to cite just some] cannot be directly used for plant materials with
high phenolic content (alkaloids or lignified cell walls) like tree buds (Bilkova et al., 1999). Such chemicals need to be
chelated during the chromatin extraction to prevent inhibition of downstream processes. In addition, the requirement for
large amounts of starting material in previous protocols has made it a challenge to perform ChIP on low-abundance
tissues such as tree buds. Here we present an efficient protocol for ChIP-seq and RNA-seq on complex, low-abundance
tree buds, with the possibility of studying trees growing in the field and rapid chromatin dynamics owing to an improved
cross-linking method (Figure 1). While several studies include ChIP-seq performed in trees, some with improvements

described in this protocol such as using a chelator of interfering compounds or performing cross-linking in frozen
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material (Hussey et al., 2015; de la Fuente et al., 2015; Leida et al., 2012), this is the first step-by-step detailed ChIP-seq
protocol in trees that includes all of these improvements:

* Our ChIP-seq/RNA-seq protocol can be carried out on complex plant tissues that contain interfering compounds
(phenolic complexes, scales, protective layers), by adding chelators of these compounds in the extraction buffers.

* The cross-linking step is performed on frozen, pulverised material, thus allowing sample collection in the field, where
cross-linking equipment is not available. It also allows studying fast responses by flash freezing material immediately
after a stimulus (e.g. transient temperature stress) rather than cross-linking directly on fresh tissue or cells. In previous
protocols, the cross-linking step was performed using a vacuum and lasted at least 10 minutes and up to 1 hour
(Kaufmann et al., 2010; Ricardi et al., 2010; Saleh et al., 2008; Xie and Presting, 2016). Moreover, cross-linking on
powder allows for a more homogenous cross-linking, as it is almost impossible to have a homogenous penetration of the
formaldehyde in tree buds that are protected by an impermeable and rigid lignin rich wall (Bilkova et al., 1999).

* By using frozen, pulverized material, ChIP-seq and RNA-seq can be performed on the same starting material for a
direct and robust comparison of epigenetic regulation and gene expression.

* Our protocol can be used to perform ChIP-seq and RNA-seq on a small amount of biological material. We optimised
this protocol to start from 0.2 to 0.5 g of buds, which is considerably lower than the usual amount of 0.8 to 5 g of starting
material for ChIP protocols in plant tissues (Haring et al., 2007; Kaufmann et al., 2010; Leida et al., 2012; Ricardi et al.,
2010; Saleh et al., 2008; Xie and Presting, 2016), or the 4g of tree buds previously used (de la Fuente et al., 2015; Leida
etal., 2012).

We have used this protocol to analyse histone modification profiles in several tree species. In a first instance, we
analysed H3K27me3 in buds of Prunus persica L Batch (peach) and could replicate previously published results (de la
Fuente et al., 2015). To demonstrate the versatility of this protocol, we also successfully performed ChIP-seq for
H3K27me3 and H3K4me3 in sweet cherry (Prunus avium L.) and apple (Malus x domestica Borkh.). Furthermore, we
directly compared expression level and enrichment for H3K4me3 by performing ChIP-seq for H3K4me3 and RNA-seq
on the same sweet cherry bud samples. We demonstrated the correlation between chromatin status and gene expression
for AGAMOUS (AG) and ELONGATION FACTOR 1 (EFI) that are known to be under control of H3K27me3 and
H3K4me3, respectively (Saito et al., 2015). We expended our analysis of chromatin and expression in cherry buds
harvested at different stages of dormancy, first to DORMANCY-ASSOCIATED MADS-box 6 and 5 (PavDAMG6 and
PavDAMS5) genes, which are key regulators of dormancy in trees, and then to the entire genome. Dormancy is an
important developmental stage of fruit trees and is characterised by a period of repressed growth that allows trees to

persist under low winter temperature and short photoperiod (Faust et al., 1997). A proper regulation of the timing of the
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onset and release of bud dormancy is crucial to ensure optimal flowering and fruit production in trees. Consequently,
unravelling the associated molecular mechanisms is essential and numerous studies have been conducted in trees to
answer this question. De la Fuente and colleagues (de la Fuente et al., 2015) have shown that DORMANCY-
ASSOCIATED MADS-box (DAM)-related genes are up-regulated in dormant peach buds. These genes are involved in
the regulation of bud dormancy under unfavorable climatic conditions in peach (de la Fuente et al., 2015; Leida et al.,
2012; Yamane et al., 2011), leafy spurge (Horvath et al., 2010), pear (Saito et al., 2015), apple (Mimida et al., 2015) and
apricot (Sasaki et al., 2011). We find that dormancy-associated PavDAM6 and PavDAMS5 genes are more expressed in
dormant buds than in non-dormant buds and that H3K4me3 occupancy is associated with PavDAMS5 expression level.
We also find significant changes in H3K4me3 level during dormancy for 671 genes, and that these changes are positively
associated with transcriptional changes during dormancy. Our results show the potential for future exploration of the link
between chromatin dynamics and expression at a genome-wide level during tree bud dormancy. Moreover, our combined
ChIP-seq and RNA-seq protocol, which is working on many tree species, will allow a better understanding of

transcriptional regulatory events and epigenomic mechanisms in tree buds.

RESULTS

Validation of the protocol robustness in peach

In order to validate our protocol, we analysed H3K27me3 enrichment in the gene body of a DAM gene cluster on peach
(Prunus Persica L Batch) non-dormant buds (Figure 2). H3K27me3 enrichment is known to be associated with a
repressed transcriptional state. It has been shown that DORMANCY-ASSOCIATED MADS-box (DAM)-related genes
display contrasting H3K27me3 profiles in dormant and non-dormant buds, with H3K27me3 signal only observed in non-
dormant buds (de la Fuente et al., 2015). We observe a higher enrichment for H3K27me3 at the peach PpeDAMS5 and
PpeDAMG6 loci compared with the PpeDAM3 gene in non-dormant buds, or compared to the gene EFI, known to be
enriched in H3K4me3 and depleted in H3K27me3 (Figure 2, Figure 3a). The replication of previously published results

at the DAM genes confirms that our improved ChIP-seq protocol is working on tree buds.

Successful application of this protocol on different species

To demonstrate the versatility of this protocol, we performed ChIP-seq for two histone marks (H3K27me3 and
H3K4me3) on buds of three tree species: peach, apple (Malus x domestica Borkh.) and sweet cherry (Prunus avium L.)
(Figure 3). We analysed the signal at the genes ELONGATION FACTOR 1 (EFI), known to be enriched in H3K4me3,

and AGAMOUS (AG), known to be enriched in H3K27me3 (Saito et al., 2015). While H3K27me3 is associated with a
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repressive transcriptional state, H3K4me3 is on the contrary associated with transcriptional activation. We observed a
strong H3K4me3 signal at EF] and enrichment for H3K27me3 at AG locus for the three species (Figure 3). This result
confirms that this ChIP-seq protocol works on buds for several tree species. To test the adaptability of this protocol for
other biological system, we also performed ChIP-qPCR in Arabidopsis thaliana and in Saccharomyces cerevisiae. We
reproduced previously published results for the histone variant H2A.Z at HSP70 locus in Arabidopsis thaliana (Cortijo et
al., 2017; Kumar and Wigge, 2010), and for the binding of the TF Hsfl at the SSA4 promoter in yeast (Erkina and
Erkine, 2006), Suppl. Figure 1). This protocol is thus versatile and can be used on buds for several tree species as well as

in other biological systems such as Arabidopsis thaliana and yeast.

Association between gene expression and H3K27m3 enrichment at PavDAM loci

To test if chromatin state and gene expression can be directly compared using this protocol, we carried out RNA-seq and
ChIP-seq on the same starting material of sweet cherry floral buds. To start with, we analysed expression together with
enrichment for H3K27me and H3K4me3 for PavEFI and PavAG genes. We observe that PavEF I, marked by H3K4me3,
is highly expressed, while PavAG, marked by H3K27me3, is very lowly expressed (Figure 3¢, Suppl. Figure 4).

We then compared the abundance of H3K4me3 histone mark to the expression patterns of PavDAMS5 and PavDAM6
during the dormancy period at three different dates for sweet cherry floral buds (October, December and January; Figure
4). Firstly, we defined if the flower buds harvested are in endodormancy or ecodormancy at each time-point (Figure 4a).
The time of dormancy release, after which the buds are in ecodormancy, is defined when the percentage of bud break
reaches 50% at BBCH stage 53 (Meier, 2001). We observe that samples harvested in October and December are in
endodormancy and the ones harvested in January are in ecodormancy (Figure 4a). PavDAMS5 and PavDAMG6 are two key
genes involved in sweet cherry dormancy corresponding to the peach PpeDAMS5 and PpeDAMG, respectively. We find
that PavDAMG6 is highly expressed in October at the beginning of endodormancy and that its expression decreases in
December and January (Figure 4b), and that PavDAMS is highly expressed in deep dormancy (December) and less
expressed in ecodormancy (January, Figure 4b). These results are in agreement with previous observations showing that
DAM genes are up-regulated in dormant peach buds (de la Fuente et al., 2015). We observe H3K4me3 enrichment at the
beginning of these genes, at the level of the first exon (Figure 4c, Suppl. Figure 5) as expected for this chromatin mark. A
low or no enrichment was found for the two controls (H3 and INPUT, Figure 4c) meaning that the enrichment seen for
H3K4me3 at these genes is relevant. We observe that H3K4me3 enrichment at PavDAMS5 is higher in December

compared to October and January (Figure 4c¢). This is in agreement with the higher PavDAMS5 expression in December.
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We observe that H3K4me3 enrichment at PavDAMG is also higher in December compared to October and January, while

its peak of expression is in October (Figure 4c).

Direct comparison of ChIP-seq and RNA-seq data

To further investigate the link between gene expression and H3K4me3 enrichments during bud dormancy, we analysed
genome-wide changes between time-points in expression level as well as H3K4me3 signal. For this, we employed a gene
centric approach by measuring the strength of the H3K4me3 signal at each gene, and identifying genes showing
significant changes between at least two of the three time-points (see material and methods for more detail). We
identified 671 genes that show significant changes in H3K4me3 between at least two of the sampling dates. We then
performed a hierarchical clustering of these genes based on a Z-score [(signal for a time-point - average over all time-
points)/ STD across all time-points], which normalises for differences in H3K4me3 signal between genes, thus allowing
direct gene-by-gene comparisons of their patterns across the studied time-points. We observe a reduction in H3K4me3
signal over time, and in particular between endodormancy and ecodormancy for most genes (Figure Sa, see Suppl. Figure
7bc for examples of H3K4me3 signal at a few genes). We then compared changes in H3K4me3 and expression over
time, for the genes in the main clusters depicted in Figure Sb and Figure 5c. Genes in the purple (233 genes) and blue
(313 genes) clusters are associated with simultaneous reductions in H3K4me3 signal and expression over time (Figure
5¢). Genes in the green (53 genes), the gold (40 genes) and the orange (13 genes) clusters show increases in H3K4me3
signal and in expression over time (Figure 5c). Genes in the red cluster (19 genes) are characterised by a transient
reduction in H3K4me3 signal and expression in December (Figure Sc).

We explore signalling pathways that were represented in the different clusters (Figure Sc, Suppl. figure 7b, Suppl. Table
2). Among the genes classed in the green, gold and orange clusters, that increase expression over time, we identified the
GLUTATHION S-TRANSFERASEI19 (PavGSTU19), LATE EMBRYOGENESIS ABUNDANTI14 (PavLEA14) and
GALACTINOL SYNTHASE 4 (PavGolS4) genes (Figure 5c), potentially involved in the response to drought and
oxidative stresses (Hara et a., 2010; Nishizawa et al., 2008; Singh et al., 2005), together with genes associated with
growth and cellular activity such as PavSWEET2, GIBBERELLIN 20 OXIDASE 1 (PavGA20ox1) and AMINO ACID
PERMEASE3 (PavAAP3). On the other hand, genes from clusters purple and blue that are downregulated during
ecodormancy include XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE6 (PavXTH6), DOF
AFFECTING GERMINATIONZ2 (PavDAG?2), GA-STIMULATED IN ARABIDOPSIS6 (PavGASA6), TREHALOSE-
PHOSPHATASE/SYNTHASE7 (PavTPS7), PavHVA22C, and PHYTOCHROME-ASSOCIATED PROTEINI

(PavPAPI) (Figure 5c). Homologs of XTH6, DAG2, GASA6 and HVA22C were found to be activated under cold,
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drought and other stress-associated stimulus while TPS7 and PAPI are more likely associated with metabolism and auxin
pathway. We also found RESPIRATORY BURST OXIDASE HOMOLOG C (PavRBOHC) in the cluster red,
transiently downregulated in December, of which the homolog in Arabidopsis is involved in reactive oxygen species

production.

DISCUSSION

ChIP-seq and RNA-seq protocol: new epigenetic perspectives in trees

In this study, we described a combined ChIP/RNA-seq protocol for low abundance and complex plant tissues such as tree
buds. This method allows a robust comparison of epigenetic regulation and gene expression as we use the same starting
material. More notably, this protocol could permit to perform ChIP/RNA-seq for kinetic experiment with short intervals
(every minute or less) and to collect samples in the field.

Several studies have led to the identification of molecular mechanisms involved in dormancy, including a cluster of
DAM genes (Bielenberg et al., 2008). DAM-related genes are up-regulated in dormant buds in peach (de la Fuente et al.,
2015; Leida et al., 2012; Yamane et al., 2011), leafy spurge (Horvath et al., 2010), pear (Saito et al., 2015), apple
(Mimida et al., 2015) and apricot (Sasaki et al., 2011). Conversely, DAM-related genes are down-regulated in non-
dormant buds. In particular, it was shown that H3K27me3 abundance is increased at DAMS5 and DAMG6 loci in non-
dormant buds compared to dormant buds (de la Fuente et al., 2015). Using the proposed ChIP-seq protocol, we found
similar results for H3K27me3 abundance in the DAM genes in peach in non-dormant buds (Figure 2), thus validating our
improved ChIP-seq method. In particular, we observe a higher enrichment for H3K27me3 at the DAMS5 and DAMG6 loci
compared with DAM3 in non-dormant buds in peach, suggesting that not all DAM genes are regulated the same way
during dormancy. Additionally, we demonstrated the correlation between the presence of histone marks and gene
expression in sweet cherry (Prunus avium L.) for two control genes PavAG and PavEF] known to be under control of
H3K27me3 and H3K4me3, respectively (Figure 3c). As the ChIP-seq and RNA-seq were performed on the same
biological material, the level of gene expression and the presence/absence of particular histone marks can be directly
compared with confidence. In the last two decades ChIP has become the principal tool for investigating chromatin-
related events at the molecular level such as transcriptional regulation. Our protocol will allow analysis of chromatin and
expression dynamics in response to abiotic and biotic stresses, and this for trees in controlled conditions as well as
growing in fields. Improvements to the ChIP-seq approach are still needed and will include an expansion of available
ChIP-grade antibodies and a reduction of the hands-on time required for the entire procedure. A remaining challenge is to

further decrease the amount of starting material without compromising the signal-to-noise ratio.
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Correlation between expression level and H3K4me3 enrichment in sweet cherry dormant buds
Previous studies highlighted the importance of DAM genes as key components of dormancy in perennials. We have
shown that, in sweet cherry, PavDAMG6 is highly expressed in October, at the beginning of dormancy, and then down-
regulated over time (Figure 4). Conversely, we found that PavDAMS is highly expressed at the end of endodormancy
(December), and then down-regulated during ecodormancy (Figure 4). Both PavDAMS5 and PavDAMG6 genes were
down-regulated in ecodormancy, which suggest an important role in the maintenance of endodormancy as observed in
Chinese cherry (Zhu et al., 2015), peach (Bielenberg et al., 2008; de la Fuente et al., 2015; Yamane et al., 2011) and
Japanese apricot (Saito et al., 2015; Sasaki et al., 2011). However their timing of expression during endodormancy was
different, suggesting that they have non-redundant roles and that their expression might be regulated by different factors
during dormancy.

We conducted a ChIP-seq in sweet cherry for H3K4me3, which is associated with gene activation, in order to link the
abundance of histone marks to expression patterns at three different dates along dormancy (October, December and
January; Figure 4). We found an H3K4me3 enrichment around the translation start site of both PavDAM6 and
PavDAMS5 during dormancy (Figure 4), as reported in peach for PpeDAMG6 (Leida et al., 2012) (Leida et al. 2012) and in
leafy spurge for DAM1 (Horvath et al., 2010). Generally, H3K4me3 enrichment is more abundant at the PavDAMS5 locus
than at the PavDAMG6 locus and this is associated with the difference in their expression levels (Figure 4). We find a
positive relation between changes over time for H3K4me3 and expression level at PavDAMS5 (Figure 4). Similarly, we
find a general trend that genes with an increase over time in H3K4me3 level also show an increase in expression, while
genes with a reduction in H3K4me3 over time also show a reduction in expression (Figure 5). Despite these general
correlations, changes in H3K4me3 signal that occur at a significant magnitude have been observed for only 671 genes.
These results suggest that while chromatin marks might be involved in transcriptional regulation of some genes in sweet
cherry buds during dormancy, other genes might exhibit changes in expression that are not associated with chromatin
changes. In other genes, like PavDAMS6, any relation between chromatin marks and expression seems to be more
complex and possibly integrates other chromatin marks than H3K4me3. Performing a similar analysis for other
chromatin marks, such as H3K27me3 that is associated with transcriptional repression, might reveal complex links
between chromatin and expression dynamics during bud dormancy in sweet cherry.

Our analysis has been done with only 3 time-points spanning a period of four months. A finer time resolution would be
needed to better identify relations between chromatin expression dynamics during dormancy, and in particular to define

if chromatin changes happen before or after expression changes. Together with our results, the observation from Leida et
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al. (2012) and De la fuente et al. (2015) of the presence of repressive histone mark such as H3K37me3 in peach DAM
loci during dormancy, support the hypothesis of a balance of histone mark enrichment controlling the dormancy process

in sweet cherry and probably more largely in perennials.

Genes involved in bud dormancy

In addition to DAM genes, we identified genes that showed differential H3K4me3 enrichment between the different bud
dormancy stages. We found genes involved in the response to drought, cold and oxidative stresses that were either highly
expressed at the beginning of endodormancy, such as PavGSTU19 and PavLEA14, or expressed during ecodormancy
(PavXTH6, PavDAG2, PavGASA6 and PavHVA22C). This is consistent with previous studies showing the key role of
redox regulation (Ophir et al., 2009; Considine and Foyer, 2014; Beauvieux et al., 2018) and stress-associated stimulus
(Maurya and Bhalerao 2017) in bud dormancy. Interestingly, we highlighted PavGASA6 and PavGA20ox1, two genes
associated with the gibberellin pathway. In particular, PavGA20oxI, that encodes an enzyme required for the
biosynthesis of active GA (Plackett et al., 2012), is markedly upregulated after endodormancy release, associated with
H3K4me3 enrichment at the locus, therefore suggesting that epigenetic and transcriptomic states facilitate an increase in
active GA levels during ecodormancy, as previously shown in hybrid aspen (Rinne et al., 2011) and grapevine (Zheng et
al., 2018).

Finally, our results highlighted the CHROMATIN REMODELINGS5 (PavCHRY5) gene, upregulated during ecodormancy.
In Arabidopsis, CHRS is required to reduce nucleosome occupancy near the transcriptional start site of key seed
maturation genes (Shen et al., 2015). We can therefore hypothesize that chromatin remodelling, other than post-
transcriptional histone modification, occurs during dormancy progression. Our results confirm that the analysis of
differential H3K4me3 states between endodormant and ecodormant buds might lead to the identification of key

signalling pathways involved in the control of dormancy progression.

MATERIALS AND METHODS

Plant material

Sweet cherry trees (cultivar ‘Burlat”), apple trees (cultivar ‘Choupette’) and peach trees (unknown cultivar) were grown
in an orchard located at the Fruit Experimental Unit of INRA in Toulenne (France, 44°34’N 0°16’W) under standard
agricultural practices. Sweet cherry flower buds used for the RNA-seq and ChIP-seq experiment were collected on

October 21st 2014 and December Sth 2014 for dormant buds and January 27th 2015 for non-dormant buds. Apple buds
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were collected on January 25th 2016 and peach buds on February Sth 2016. Buds were harvested from the same

branches, flash frozen in liquid nitrogen and stored at -80°C prior to performing ChIP-seq and RNA-seq.

Measurements of bud break

Three branches bearing floral buds were randomly chosen from the sweet cherry cultivar ‘Burlat’ trees at different dates.
Branches were incubated in water pots placed in forcing conditions in a growth chamber (25°C, 16h light/ 8h dark, 60-
70% humidity). The water was replaced every 3-4 days. After ten days under forcing conditions, the total number of
flower buds that reached the BBCH stage 53 (Meier, 2001) was recorded. We estimate that endodormancy is released

when the percentage of buds at BBCH stage 53 is above 50% after ten days under forcing conditions.

ChIP/RNA-seq protocol

MATERIAL SAMPLING SECTION

Harvest tree buds in 2 ml tubes with screw cap, immediately flash-freeze in liquid nitrogen and store at -80°C until ready
to proceed for the ChIP-seq or RNA-seq. There is no need to remove the scales after harvesting. Grind the tissues to a
fine powder using mortars and pestles pre-chilled with liquid nitrogen. Add liquid nitrogen several times while grinding
to facilitate cell lysis and to ensure that the material remains completely frozen to prevent degradation of tissues. Weights
of powder for this protocol are for buds for which scales have not been removed.

For the cross-linking and chromatin extraction, weigh out 300 to 500 mg of powder in a 50 ml Falcon tube pre-
chilled with liquid nitrogen. The same amount of powder should be used for all samples to allow a direct comparison of
results. Then proceed to “ChIP and library preparation section”.

For RNA extraction, weigh out 50-70 mg of powder in a 2 ml tubes (screw cap) pre-chilled with liquid nitrogen.
Then proceed to “RNA extraction and library preparation section”. Due to the small amount of starting material, it is

necessary to keep the tubes in liquid nitrogen to prevent any degradation.

ChIP AND LIBRARY PREPARATION SECTION

Cross-linking and chromatin extraction: Timing 2-3 hours. Work on ice, except when specified otherwise.

Add 25 ml of ice-cold Extraction buffer 1 [0.4 M sucrose, 10 mM HEPES pH 7.5, 10 mM MgCl,, 5 mM -
mercaptoethanol, I mM PMSF, 1 % PVP-40 (polyvinylpyrrolidone), 1 tablet of complete protease inhibitor EDTA free
for 50 ml of buffer from Sigma cat# 11836170001] to the powder. For each buffer, the protease inhibitor (PMSF), the

tablet of complete protease inhibitor and f-mercaptoethanol should be added directly before using the buffer. PVP-40 is a
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chelator used to remove phenolic derivatives as well as polysaccharides and improve the quality of the chromatin
extraction. It is commonly used in RNA and chromatin extractions in buds sampled from fruit trees (Gambino et al.,
2008; Leida et al., 2012; Ionescu et al., 2017). When extracting chromatin in other biological systems such as
Arabidopsis thaliana or Saccharomyces cerevisiae, the PVP-40 in Extraction buffer 1 may optionally be removed.
Immediately add 675 pl of 37% formaldehyde solution (1% final concentration) and invert the tube several times to
resuspend the powder. Cross-link the samples by incubating at room temperature for 10 minutes and then quench the
formaldehyde by adding 1.926 ml 2 M of fresh glycine solution (0.15 M final concentration). Invert the tube several
times and incubate at room temperature for 5 minutes. Filter the homogenate through Miracloth (Millipore cat# 475855)
in a funnel and collect in a clean 50 ml Falcon tube placed on ice. Repeat the filtration step once more. Centrifuge the
filtrate at 3,200 x g for 20 minutes at 4 °C. Discard the supernatant by inverting the tube, being careful not to disturb the
pellet. Gently resuspend the pellet in 1 ml of Extraction buffer 2 [0.24 M sucrose, 10 mM HEPES pH 7.5, 10 mM MgCl,,
1 % Triton X-100, 5 mM B-mercaptoethanol, 0.1 mM PMSF, 1 tablet protease inhibitor EDTA free for 50 ml of
solution], without creating bubbles, and transfer the solution to a clean 1.5 ml tube. Centrifuge at 13,500 x g for 10
minutes at 4°C. Carefully remove the supernatant by pipetting. If the pellet is still green, repeat the resuspension in 1 ml
of Extraction buffer 2, centrifuge at 13,500 x g for 10 minutes at 4°C, and remove the supernatant. In a new 1.5 ml tube,
add 300 pl of Extraction buffer 3 [1.7 M sucrose, 10 mM HEPES pH 7.5, 2 mM MgCl,, 0.15 % Triton X-100, 5 mM -
mercaptoethanol, 0.1 mM PMSF, 1 mini-tablet protease inhibitor EDTA free for 50 ml of solution]. Slowly resuspend the
pellet in 300 pl of Extraction buffer 3 to prevent the formation of bubbles. Take the resuspended pellet and carefully
layer it on top of the 300 ul Extraction buffer 3. Centrifuge at 21,200 x g for 1 hour at 4°C. During this process, nuclei
are pelleted through a sucrose cushion to remove cellular contaminants.

From this step, chromatin fragmentation can be performed in two different ways: (A) sonication, to shear the chromatin
into 100-500 bp fragments, or (B) MNase (Micrococcal nuclease) digestion, to enrich for mono-nucleosomes (~150-200

bp). Results shown in this paper come from ChIP-seq performed on sonicated chromatin.

A. Sonication: TIMING 3-4h hours (+ 8 hours of incubation)

1. Chromatin fragmentation
Carefully remove the supernatant with a pipette and resuspend the nuclei pellet in 300 pl of Sonication buffer [SO mM
HEPES pH 7.5, 10 mM EDTA, 1 % SDS, 0.1 % sodium deoxycholate, 1% Triton X-100, 1 mini-tablet protease inhibitor
EDTA free for 50 ml of solution]. To improve nuclear membrane breaking, flash-freeze the tube in liquid nitrogen and

then thaw rapidly by warming the tube in your hand. Repeat once more. This freeze-thaw step is not essential, but could
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improve the chromatin yield. Centrifuge the tube at 15,800 x g for 3 minutes at 4°C to pellet debris, and carefully recover
the supernatant into a new tube. Complete the tube to 300 pl with the Sonication buffer. Set aside a 10 ul aliquot of
chromatin in a PCR tube to serve as the non-sonicated control when assessing sonication efficiency by gel
electrophoresis and keep on ice. Shear the chromatin into ~300 bp (100-500 bp) fragments by sonication (e.g. using
Diagenode Bioruptor Twin- UCD400, sonicate 300 pl chromatin in 1.5 ml microcentrifuge tubes for 14 to 16 cycles, on
High setting, with 30s ON/30s OFF per cycle). The number of cycles of sonication to obtain DNA fragments of around
300 bp should be tested and optimised for different tissues and different concentrations of chromatin. Transfer 40 pl of
sheared chromatin to a PCR tube, which will be used to check the sonication efficiency. The rest of the sonicated
chromatin should be stored at -80°C.
ii. Analysis of sonication efficiency

Complete the sonicated (40 pl) and non-sonicated (10 pl) aliquots to 55.5 pul with TE buffer [10 mM Tris-HCI pH 8, 1
mM EDTA], add 4.5 pul of 5 M NaCl and incubate at 65°C for 8 hours to reverse cross-link. Add 2 pl of 10 mg/ml RNase
A (Fisher cat# EN0531) and incubate at 37°C for 30 minutes. Add 2 pl of 20 mg/ml proteinase K (Fisher cat# EO0491)
and incubate at 45°C for 1 hour. During this step, take out the SPRI beads (e.g AMPure beads; Beckman Coulter, cat#
A63880) from the fridge and allow them to equilibrate at room temperature (for at least 30 minutes before use).

To extract DNA using SPRI beads, vortex the beads until they are well dispersed, add 126 pl of beads to 60 pl of sample
(2.1 x ratio) and mix well by pipetting up and down at least 10 times. Incubate 4 minutes at room temperature and then
place the tubes on a magnetic rack (96 well; Fisher, cat# AM10027) for 4 minutes to capture the beads. Carefully remove
and discard the supernatant without disturbing the beads. Without removing the tubes of the magnetic rack, add 200 pl of
freshly prepared 80 % v/v ethanol, incubate for 30 seconds and discard the supernatant. Repeat the ethanol wash once
more and then completely remove all ethanol. Allow the beads to dry for 15-30 minutes, until cracks appear in the bead
pellet and no droplets of ethanol are visible. Tubes can alternatively be placed in a fume hood for 10 minutes to
accelerate drying. The beads must be completely free from ethanol as it can interfere with downstream processes.
Remove the tubes from the magnetic rack and resuspend the beads in 15 pl of 10 mM Tris-HCI (pH 8) by pipetting up
and down at least 10 times. Incubate for 5 minutes at room temperature and place on the magnetic rack for 4 minutes to
capture the beads. Carefully transfer 14 pl of supernatant containing DNA to a new tube. Add 2.8 pul of 6x Loading dye
to 14 pl of DNA. Separate the DNA by electrophoresis on a 1.5 % agarose gel for at least 1 h at 70 V. The smear should
be concentrated between 100—500 bp (Figure 6a). If necessary, perform additional sonication cycles. Otherwise, continue

directly to the “Immunoprecipitation (IP)” step.
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B. MNase digestion: TIMING 4-5 hours (+ 2 x 8 hours of incubation)
i. DNA quantification prior to MNase digestion

Carefully remove the supernatant with a pipette and resuspend the nuclei pellet in 500 ul of MNase buffer [20 mM
HEPES pH 7.5, 50 mM NaCl, 0.5 mM DTT, 0.5 % NP-40, 3mM CacCl,, Triton X-100, 1 mini-tablet protease inhibitor
EDTA free for 50 ml of solution]. To improve nuclear membrane breaking, flash-freeze the tube in liquid nitrogen and
then thaw rapidly by warming the tube in your hand. Repeat once more. This freeze-thaw step is not essential, but could
improve the chromatin yield. Transfer 40 pl of chromatin to a PCR tube to quantify DNA prior to MNase digestion and
complete to 55.5 ul with MNase digestion buffer, add 4.5 pl of SM NaCl and incubate in a PCR machine or thermocycler
at 65°C for 8 hours to reverse cross-link. Keep the rest of the chromatin at —80 °C. Add 2 pl of 10 mg/ml RNase A and
incubate at 37°C for 30 minutes. Add 2 pl of 20 mg/ml proteinase K and incubate at 45°C for 1 hour. During this step,
take out the SPRI beads from the fridge and allow them to equilibrate at room temperature (for at least 30 minutes before
use). Proceed to the DNA extraction using SPRI beads as explained before in the sonication analysis section (ii). Use 1 pl
from each sample to quantify the DNA using a Qubit fluorometer (ThermoFisher Scientific), or a Nanodrop

spectrophotometer (Thermo Scientific).

ii. MNase digestion
Adjust all samples to the same concentration according to the quantification results using MNase buffer and to a final
volume of 500 pl. Set aside a 20 ul aliquot of chromatin in a PCR tube to serve as the non-digested control when
assessing MNase efficiency by gel electrophoresis and keep on ice. Incubate chromatin in a ThermoMixer (Eppendorf)
for 2-5 minutes at 37°C with shaking at 1,200 rpm, for optimal MNase activity. Add MNase (Fisher cat# 88216) to the
chromatin to a final concentration of 0.6 U/ml and incubate 10 minutes in the ThermoMixer at 37°C, 1,200 rpm. Stop the
digestion by adding 5 pul of 0.5 M EDTA pH 8 (5 mM final concentration), invert the tube several times to mix and
immediately place on ice for 5 minutes. The optimal MNase enzyme concentration and incubation time to obtain
predominantly mono-nucleosomes should be tested and optimised for different tissues and different concentrations of
chromatin. For the optimisation of MNase digestions, we recommend using 1 ml of chromatin and carrying out
digestions in 100 pl aliquots with varying concentrations of MNase (0.2 U/ml to 1 U/ml) and incubation times (5 to 20
minutes). Transfer 50 pl of digested chromatin to a PCR tube, which will be used to check the MNase efficiency. The

rest of the digested chromatin should be stored at -80°C.

iii. MNase digestion analysis
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Complete the digested sample (50 pl) and non-digested (20 pl) aliquots to 55.5 ul with TE buffer, add 4.5 ul of SM NaCl
and incubate in a PCR machine or thermocycler at 65°C for 8 hours to reverse cross-link. Add 2 pl of 10 mg/ml RNase A
and incubate at 37°C for 30 minutes. Add 2 pl of 20 mg/ml proteinase K and incubate at 45°C for 1 hour. During this
step, take out the SPRI beads from the fridge and allow them to equilibrate at room temperature (for at least 30 minutes
before use). Proceed to the DNA extraction, using SPRI beads as explained before in the sonication analysis section (ii).
Add 2.8 pl of 6x Loading dye to 14 ul of DNA. Separate the DNA by electrophoresis on a 1.5% agarose gel for at least 1
h at 70 V. The most abundant band should be 150-200 bp in size (Figure 6b), which corresponds to chromatin in mono-
nucleosome form, with a less abundant 300-350 bp band (di-nucleosomes) and a faintly visible ~500 bp band (tri-
nucleosomes). For optimum sequencing results, approximately 80% of chromatin should be in mono-nucleosome form.
If this is judged not to be the case from the gel, it is not possible to carry out further MNase digestions on the chromatin,

as EDTA sequesters calcium ions that are required for MNase activity.

Immunoprecipitation (IP): TIMING 7-8 hours (+ overnight incubation). Work on ice, except when specified
otherwise.

Transfer 50 pl of protein A- and/or protein G-coupled magnetic beads (Invitrogen cat# 10-002D and cat# 10-004D,
respectively) per IP to a 2 ml tube. Wash the beads with 1 ml of Binding buffer [0.5% (wt/vol) BSA, 0.5% (vol/vol)
Tween-20 in PBS (without Ca,", Mg,")] during 5 minutes at 4°C on a rotating wheel (low speed, around one rotation
every 5-6 seconds). Place the tubes on a magnetic rack (Thermo Fisher cat# 12321D) until the liquid is clear and remove
the supernatant. Repeat three times. After the washes, resuspend the beads in 250 pl of Binding buffer. Add 5 pul of
antibody per IP to the beads. In our study, we used anti-trimethyl-histone 3 Lys 27 antibody (Millipore cat# 07-449) and
anti-trimethyl-histone 3 Lys 4 antibody (Millipore cat#17-614,). Incubate 4 hours on a rotating wheel at 4°C (low speed).
During this incubation time, centrifuge the sonicated or digested chromatin at 15,800 x g for 5 minutes at 4°C to pellet
debris, and carefully recover supernatant into a new tube. Transfer 100 pul of sonicated chromatin to a new 2 ml tube for
one IP, add 900 pl of Binding buffer and keep on ice. Or transfer 200 pl of MNAse-digested chromatin to a new 2 ml
tube for one IP, add 800 pl of Binding buffer and keep on ice. Transfer 20 ul of sonicated or MNAse-digested chromatin
as an input fraction (no immunoprecipitation) in a PCR tube and store at -80°C. The rest of the chromatin can be used for
another IP or stored at -80°C. After completion of the incubation of protein A/G beads with the antibody, place the tubes
containing the antibody-bead complexes on a magnetic rack, remove the supernatant and wash the beads with 1 ml of
Binding buffer during 5 minutes at 4°C on a rotating wheel (low speed). Repeat three times. Resuspend the beads in 50

ul of Binding buffer per IP and transfer to the 1 ml of diluted chromatin. Incubate overnight on a rotating wheel at 4°C

14


https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

bioRxiv preprint doi: https://doi.org/10.1101/334474; this version posted October 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(low speed). Briefly centrifuge the tube (<3 seconds) to pull down the liquid in the lid of the tube. Place on a magnetic
rack and remove the supernatant. Wash the beads to reduce unspecific interactions by incubating 5 minutes at 4°C on a
rotating wheel (low speed) with 1ml of the following buffers and total number of washes:

a. 5 washes with Low Salt Wash buffer [150 mM NacCl, 0.1% SDS, 1% triton X-100, 2 mM EDTA, 20 mM Tris-HCI pH
8];

b. 2 washes with High Salt Wash buffer [SO0mM NacCl, 0.1% SDS, 1% triton X-100, 2 mM EDTA, 20mM Tris-HCI pH
8];

c. 2 washes with LiCl Wash buffer [0.25 M LiCL 1% NP-40 (IGEPAL), 1% sodium deoxycholate, | mM EDTA, 10 mM
Tris-HCI pH 8];

d. 2 washes with TE buffer.

After the second wash in TE buffer, resuspend the beads in 100 pl of TE buffer and transfer the beads to a PCR tube.
Place the tube on a magnetic rack, remove the TE buffer and resuspend the beads in 60 pl of Elution buffer [10 mM Tris-

HCl pH 8.0, 5 mM EDTA pH 8.0, 300 mM NaCl, 0.5% SDS].

Reverse cross-linking and Elution by proteinase K treatment: TIMING 2 hours (+ 8 hours of incubation)

Defrost the input fraction on ice (20 pl of sonicated or MNAse-digested chromatin). Complete the input fraction to 60 pl
with the Elution buffer. Incubate the input fraction and the IP sample (60 pl beads-Elution buffer) at 65°C for 8 hours in
a PCR machine or thermocycler to reverse crosslink. Add 2 pl of RNase A (10 mg/ml) and incubate at 37°C for 30
minutes. Add 2 pl of Proteinase K (20 mg/ml) and incubate at 45°C for 1 hour. During this step, take out the SPRI beads
from the fridge and allow them to equilibrate at room temperature (for at least 30 minutes before use). Place the tubes on
a magnetic rack to collect the beads, transfer 60 ul of supernatant from each well to a new PCR tubes (or a new 96 wells-

plate).

DNA extraction using SPRI beads and qPCR: TIMING 1 hour

Proceed to the DNA extraction, using SPRI beads as explained before in the sonication analysis section (ii) until just
before the elution. Remove the tubes from the magnetic rack and for the elution, resuspend the beads in 50 pl of 10mM
Tris-HCI (pH 8.0) by pipetting up and down at least 10 times. Incubate for 5 minutes at room temperature and place on
the magnetic rack for 4 minutes to capture the beads. Carefully transfer 49 ul of supernatant containing DNA to a new

tube. For qPCR analysis, use 1 pl of DNA per 10 pl reaction, from the IP and input. The percentage of enrichment of
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DNA in the ChIP fraction relative to the input fraction is calculated according to the formula: (2P <P / 2 -CPimputy 5 100,

Keep the rest of the DNA for sequencing (continue to “ChIP library preparation and size selection section”).

ChIP library preparation and size selection: TIMING 2-3 days

Use 5-10 ng from the input fraction for the preparation of sequencing libraries. Quantify the input fraction using a DNA
high sensitivity Qubit kit. For the IP fraction, as yield is often too low to be able to quantify DNA, we recommend to use
the entire volume from the IP for the preparation of sequencing libraries. Using this protocol we extracted around 500 ng
of DNA from 300 to 500 mg of powder of sweet cherry buds. We recommend carrying out ChIP-seq library preparation
using the TruSeq ChIP Sample Prep Kit (Illumina 48 samples, 12 indexes, Illumina, cat# IP-202-1012) with minor
modifications.

1- The “Purify Ligation Products” section using the gel electrophoresis is eliminated to minimise DNA loss.

2- DNA size selection is carried out after the “Enrich DNA fragments” section. This is a required step to increase the
visualisation of nucleosome positioning. Smaller and larger reads might disturb the MNase input profile after
analysis.

The Illumina TruSeq ChIP Sample Preparation protocol is available at the following URL:

http://support.illumina.com/content/dam/illumina-

support/documents/documentation/chemistry documentation/samplepreps_truseq/truseqchip/truseq-chip-sample-prep-

guide-15023092-b.pdf

Check the quality of libraries using a 4200 TapeStation or Bioanalyzer instruments (Agilent) following manufacturer’s.
See Suppl. Figure 2 for profiles with and without adapter contaminations. If the libraries are contaminated with adapters,
repeat again a size selection step with SPRI beads to remove them, otherwise proceed directly with the “quantification

and pool of libraries” section. Store DNA for sequencing at -20°C.

RNA EXTRACTION AND LIBRARY PREPARATION SECTION
RNA extraction: TIMING 2-5 hours
We recommend for the RNA extraction the use of RNeasy® Plant Mini kit from Qiagen (cat# 74904) for less than 50
samples with the following minor modifications:
1- Start from 50-70 mg of buds powder with scales. Only remove the tubes from the liquid nitrogen when the RNA

Extraction buffer is prepared.
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2- Add 1.5 % of PVP-40 (polyvinylpyrrolidone) in the RLT buffer to chelate phenolic compounds and thus prevent
any interaction. Then add the appropriate volume of 3-mercaptoethanol mentioned in the Qiagen protocol.
3- Add 750 pl of RNA Extraction buffer (RLT buffer + PVP-40 + 3-mercaptoethanol) instead of 450 pl if the starting
material contains scales to increase the RNA yield.
Alternatively, RNA can be extracted using the MagMAX™-96 Total RNA Isolation Kit from Thermo Fisher (cat#

AM1830) for more than 50 samples following manufacturer’s instructions. Store RNA at -80°C.

RNA library preparation: TIMING 3-4 days

We recommend carrying out RNA-seq library preparation using the Truseq Stranded mRNA Library Prep Kit from
Illumina (96 samples, 96 indexes, [llumina cat# RS-122-2103). Check the quality of libraries using 4200 TapeStation or
Bioanalyzer instruments (Agilent) following manufacturer’s instructions. See Suppl. Figure 3 for profiles of libraries
with and without adapter contaminations. If the libraries are contaminated with adapters, continue with a size selection

step with SPRI beads to remove them, otherwise proceed directly with “the quantification and pool of libraries” section.

QUANTIFICATION AND POOL OF LIBRARIES SECTION

Quantification of RNA and ChIP libraries:

From this step, the quantification and the pool for RNA and ChIP libraries are the same. However, ChIP-seq libraries on
one-hand and RNA-seq libraries on the other should be pooled and sequenced separately. Libraries are quantified using a
Qubit Fluorometer from Thermo Fisher (DNA high sensitivity). Dilute the DNA high sensitivity dye to 1/200 in the
DNA high sensitivity buffer (e.g. for 10 samples: mix 1.990 ml of DNA high sensitivity buffer and 10 ul of DNA high
sensitivity dye). Add 198 pl of mix in Qubit tubes (Thermo Fisher cat# Q32856) and 2 pl of DNA (for standard: 190 pl
of mix + 10 pl of standard). Vortex and spin down. Quantification is performed using Qubit fluorometer following

manufacturer’s instructions.

Pool of libraries: TIMING 1 hour

According to the quantification results, dilute libraries at 10 nM using this calcul to convert from ng/pl to nM:
(concentration*10"6)/(size*617.96+36.04), where concentration is in ng/pul and size in bp. And pool the libraries using 5
pl of each library. Quantify the pool by Qubit as explained before and dilute the pool to the concentration required by the

sequencing facility/company or the sequencer system used.

17


https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

bioRxiv preprint doi: https://doi.org/10.1101/334474; this version posted October 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Data analysis
(i) RNA-seq

The raw reads obtained from the sequencing were analysed using several publicly available software and in-house
scripts. Firstly, we determined the quality of reads using FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Then, possible adaptor contaminations were removed using Trimmomatic (Bolger et al., 2014), before alignment to the
Prunus persicav.1 (Verde et al., 2017) or Malus domestica v.3 (Velasco et al., 2010) reference genome using Tophat
(Trapnell et al., 2009). Possible optical duplicates resulting from library preparation were removed using the Picard tools
(https://github.com/broadinstitute/picard). Raw reads and TPM (Transcripts Per Million) were computed for each gene
(Wagner et al., 2012). To finish, data are represented using the Integrative Genome Viewer (Robinson et al., 2011) as a

tool for visualising sequencing read profiles.

(ii) -ChIP-seq

Sequenced ChIP-seq data were analysed in house, following the same quality control and pre-processing as in RNA-seq.
The adaptor-trimmed reads were mapped to the Prunus persica reference genome v.1 (Verde et al., 2017) or Malus x
domestica reference genome v3.0 (Velasco et al.,, 2010) using Bowtie2 (Langmead et al., 2009). Possible optical
duplicates were removed using Picard, as described above. Data are represented using the Integrative Genome Viewer
(Robinson et al., 2011). The efficiency of the H3K4me3 ChIP-seq was evaluated using fingerplots (Suppl. Figure 6a)
from deeptools (Ramirez et al., 2016). We observe that a smaller fraction of the genome contains a high proportion of
reads for all H3K4me3 ChIP-seq compared to H3 ChIP-seq, suggesting that the H3K4me3 ChIP worked. Also, around
30% of the genome is not covered by reads, which can be explained by the fact that the ChIP-seq has been performed on
cherry tree buds, but mapped on the peach genome.

We used a gene-centric approach to identify genes with significant changes in the strength of H3K4me3 signal between
time-points. The DiffBind R package was used for the read counting and differential binding analysis steps (Stark and
Brown, 2011; Ross-Innes et al., 2012). Firstly, to quantify H3K4me3 signal at genes, we measured the number of
H3K4me3 ChIP reads in a 2000bp window around the TSS of each gene (Suppl. Figure 7a). Two biological replicates
were present for each time point, and DiffBind combines the available information to provide a statistical estimate of the
H3K4me4 signal for any particular gene. Next, we identified a subset of genes that exhibit significant differential binding
between any two time-points (October vs December; October vs January and December vs January). For this step, we
used the H3 ChIP as a control, instead of the INPUT, because the number of mapped reads for one of the INPUT is much

lower than other samples (Suppl. Table 1) and this might have created some bias in detecting genes with significant
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differences in H3K4me3 enrichment between time-points. The quality of biological replicates was assessed by
performing a correlation heatmap, and hierarchical clustering of samples (Suppl. Figure 7b), based on the H3K4me3
signal around TSS for all genes, normalised by H3. It shows that H3K4me3 ChIP-seq replicates are of high quality.

To identify groups of genes with similar H3K4me3 dynamics, hierarchical clustering was performed on the Z-score of
the H3K4me3 signal normalised by H3 using the function hclust on 1-Pearson correlation in the statistical programme R
(R Core Team 2014). The Z-score has the formula (signal for a time-point - average over all time-points/ STD across all
time-points), which allows the changes in H3K4me3 between time-points to be compared on a gene-to-gene basis, after

normalising for differences that exist between genes.
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Figure 1 Workflow

Outline of the two main modules of the protocol: (I) ChIP-seq (top) and (II) RNA-seq (bottom). Each module starts with
the same biological material (ground frozen material). (I) (a) The ChIP-seq module starts with a cross-linking step on
frozen powder to stabilise interactions between DNA and proteins. (b) The chromatin is extracted using different buffers
and then fragmented by sonication or MNase digestion. (c) Proteins of interest, among the protein/DNA complexes, are
immunoprecipitated using specific antibodies coupled to magnetic beads. An aliquot of chromatin is set aside as an input
fraction. (d) After different wash steps, a reverse cross-linking step is performed, and the DNA is isolated using SPRI
beads. (e) The purified DNA is used in library preparation, and (f) is then sequenced. (II) (a) The RNA-seq module starts
with RNA extraction from the frozen powder. (b) This DNAse treated RNA is then used in library preparation, and (c)

sequenced.
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Figure 2 H3K27me3 ChIP-seq profile at the DAM gene cluster in peach
IGV screenshot of ChIP-seq data for H3K27me3 and its corresponding input performed on non-dormant peach buds
(Prunus persica) at PpeDAM3, PpeDAMS and PpeDAMG6 genes. Genes are represented by black lines, with arrows

indicating gene directionality and rectangles representing exons.
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Figure 3 H3K27me3 and H3K4me3 ChIP-seq and RNA-seq profiles three fruit tree species

IGV screenshot of ChIP-seq data for H3K27me3 and H3K4me3 and their corresponding inputs performed on peach (a),
apple (b) and sweet cherry buds (c) for two control genes: ELONGATION FACTOR 1 as a positive control of H3K4me3
and AGAMOUS as a positive control of H3K27me3. RNA-seq was also carried out on sweet cherry buds (c). Genes are

represented by black lines, with arrows indicating gene directionality and rectangles representing exons.
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Figure 4 Expression and H3K4me3 profiles of PavDAMS5 and PavDAMG6 genes during dormancy in sweet cherry
flower buds

a) Evaluation of bud break percentage under forcing conditions (n=5).

b) Transcriptional dynamics of PavDAMS5 and PavDAMG6 genes at three different dates (October 21st 2014, December
5th 2014 and January 27th 2015; n=3). Expressions are represented in TPM (Transcripts Per kilobase Million).

C) IGV screenshot of the first biological replicate of ChIP-seq data for H3K4me3 and H3 at three different dates
(October 21st 2014, December 5th 2014 and January 27th 2015) and their corresponding inputs at PavDAMS5 and
PavDAMG6 loci. Genes are represented by black rectangles, with arrows indicating gene directionality and bigger

rectangles representing exons.

26


https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/

purple royalblue
H3K4me3 o
1.5+
1.0
0.5+
0.01
T red orange
Q2 2.04
Eel
ﬁ 1.5
£ 1.0
2 0.5
IS
@ 0.01
=
gold darkgreen
2.01
1.54
1.0 /
0.54
OIO- T T T T T T
Oct Dec Jan October December January October December January
Endodormancy Ecodormancy .
c ~— Expression =—=H3K4me3
Cluster purple Cluster royalblue
E PavDAG2 PavGASA6 PavXTH6 E PavHVA22C PavPAP1 PavTPS7
g 1001 @ °® ! N 3 0l ® )
5 ¢ [ ) 5 ® 60+
L ] L i . .
g 1201 600 E.QO
§ 757 ® g 154
s 5
3 3 [ J 401
% : 804 400+ % 60 o )
e 501 IS o 10 ' o
5 $ 2 °
2 200+ 5 301 5 o 201
(7] 4
R s “ e i 1% o
g o () & 'Y s
° ° [ ] ' ¢ [ °
5 ) ol [ ] 5o ® o o o o @ o
E Oct Dec Jan Oct Dec Jan Oct Dec Jan E Oct Dec Jan Oct Dec Jan Oct Dec Jan
Cluster red Cluster orange
5]
§ PavRBOHC ‘“E? Pav015668mg PavELIP1 PavGolS4
N S ® | 12 200+
2 ¢ [ : '
S o 5 40+
260
£ 60 = 900 ® | 1501
[
z 2301
° P .
@ @ ® expression
£ 401 ; = ® | 60 100+ P
3 £ 204
2 g ° ® H3K4me3
5 20 5 * ’ 3001 501 s
b4 g1 o
o 2 [ 4
o o
3 o § 8 [ $ o ® !
5o ® 50/ 0 10 @ 0. @
E Oct  Dec  Jan E O'ct Dec Jan dct Dec Jan dct Dec Jan
=
Cluster gold Cluster darkgreen
E PavAAP3 PavCHR5 PavGA200x1 g PavGSTU19 PavLEA14 PavSWEET2
80 1200+
% ® [ o 3 o ° °
o 80+ T ([ J
5 60 * ® 75, k] (]
£ ® Z 601 9001 751
5 601 o § (
o ‘ . o . .
B 40+ 50 3 ()
n 0
2 101 (] = 404 ® | 6001 o 501
£ o £ 8 o ®
e * e ®
. ) N [ ] [ J
§ 20+ 25+ 5 [
‘@ . 20+ . @ 20 300+ 251
8 ° 4 8
g ° °® g e 3
§ ' . o ! § : ’ Y L
o @ © 01 @ ® o 5,10 01 o
E Oct Dec Jan Oct Dec Jan Oct Dec Jan g Oct Dec Jan Oct Dec Jan Oct Dec Jan



https://doi.org/10.1101/334474
http://creativecommons.org/licenses/by-nc-nd/4.0/

10
11
12
13
14
15

16

17

18

19

20

21

22

23

24

25

26

bioRxiv preprint doi: https://doi.org/10.1101/334474; this version posted October 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 5 Genome wide comparison of H3K4me3 and expression in sweet cherry flower buds in endodormancy and
ecodormancy

a) Hierarchical clustering of genes showing a change in H3K4me3 level between the time points, based on the Z-score of
the normalised H3K4me3 level around the TSS of each gene [Z-score = (signal for a time point - average over all time
points)/ STD across all time points]. The result is represented as a heatmap where red indicates a high Z-score and blue a
low Z-score. The genes were separated into six clusters, indicated by the side coloured bar.

b) Average signal in each time point for genes in clusters showing changes in H3K4me3 over time (identified in figure
Sa) for expression (red) and H3K4me3 (blue). Mean normalised expression and H3K4me3 levels was used (level in one
time-point/ average across the entire time course for a given gene). The standard deviation is also shown as a transparent
ribbon.

c¢) Expression level (TPM) and normalised H3K4me3 signal over time for a few individual genes in each of the 6 clusters
identified on Figure 5a. Each point represents one biological replicate. Normalised H3K4me3 signal corresponds to the
number of H3K4me3 ChIP reads in a 2000bp window around the TSS of each gene normalised by the number of H3

ChIP reads in the same window.
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Figure 6 DNA profiles for MNase-digested and sonicated chromatin (Prunus avium L.)

a) DNA profiles of chromatin fragmented with different numbers of sonication cycles (0-16). The dotted white lines
represent the optimal range of DNA fragments size (100-500 bp). Optimal sonication profiles are indicated with the
black rectangle.

b) DNA profiles of chromatin digested with different concentrations of MNase (0.3 and 0.6 U/ml) for various durations
(5, 10, 20 and 30 minutes). Optimal MNase digestion profiles, with ~80% of chromatin in mono-nucleosome form, are

indicated with the black rectangle.
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Supplemental figure 1 ChlIP results in different biological systems

a) ChIP-gPCR on Arabidopsis thaliana seedlings. 7-day-old Col-0 seedlings grown at 22°C were
harvested after 15-minute incubation at 17°C and flash frozen. ChIP was performed as outlined in
the protocol, with an anti-HTA9 antibody (44). Quantitative PCR was carried out using primers
specifically amplifying the genomic region occupied by the +1 nucleosome of the HSP70/
AT3G12580 or the upstream nucleosome-free region (NFR). Occupancy is normalised to the input
fraction.

b) ChIP-qPCR on Saccharomyces cerevisiae (budding yeast). YEF473a cells expressing FLAGx3-
tagged Hsfl were grown in YPD medium untill mid log phase at 28°C and subjected to 5-minute
heat treatment at 37°C, after which they were harvested by centrifugation and flash frozen. ChIP
was performed as outlined in the protocol, with an anti-FLAG antibody. Quantitative PCR was
carried out using primers specifically amplifying distinct regions of the promoter of Hsf1-target
gene SSA4 (denoted as distance from the start of the coding sequence). Occupancy is normalised to
the input fraction.
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Supplemental figure 2

Example of ChlIP-seq library profile with (a) and without (b) adapter contamination. The peak at
125 bp corresponds to adapter contaminations. A size selection using SPRI beads is carried out to
remove the adapter contamination prior sequencing. DNA profiles were obtained using
TapeStation 4200 (Agilent Genomics).
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Supplemental figure 4

IGV screenshot of ChIP-seq data for H3K27me3 and H3K4me3 their corresponding input and expression in
sweet cherry buds. Replicate 1 is shown in Figure 3c. Genes are represented by black rectangles, with
arrows indicating gene directionality and taller boxes within the rectangles representing exons.
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Supplemental figure 5

IGV screenshot of the second biological replicate of ChIP-seq data for H3K4me3 and H3 at three different
dates (21st October 2014, 5th December 2014 and 27th January 2015) and their corresponding inputs at
PavDAM5 and PavDAMEG loci. Replicate 1 is shown in Figure 4c. Genes are represented by black rectangles,
with arrows indicating gene directionality and taller boxes within the rectangles representing exons.
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Supplemental figure 6
a) Fingerplots of H3 and H3K4me3 ChiIP-seq. Each plot is for a replicate of a time-point.

b) Heatmap of correlation between H3K4me3 ChIP-seq samples. The correlation is based on the H3K4me3
signal around TSS for all genes, normalised by H3.
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Supplemental figure 6 (continued)

a) Fingerplots of H3 and H3K4me3 ChlP-seq. Each plot is for a replicate of a time-point.

b) Heatmap of correlation between H3K4me3 ChlIP-seq samples. The correlation is based on the H3K4me3
signal around TSS for all genes, normalised by H3.
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Supplemental figure 7

a) Average profile of H3K4me3 in the gene body of all genes, or around the TSS of all genes
Cherry tree H3K4me3 ChIP-seq mapped in Peach genome.

b) Example of H3K4me3 profile at the three dates for one gene in each of the six clusters.
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Supplemental figure 7 (continued)
a) Average profile of H3K4me3 in the gene body of all genes, or around the TSS of all genes

Cherry tree H3K4me3 ChIP-seq mapped in Peach genome.

b) Example of H3K4me3 profile at the three dates for one gene in each of the six clusters.
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