

1 ChIP-seq and RNA-seq for complex and low-abundance
2 tree buds reveal chromatin and expression co-dynamics
3 during sweet cherry bud dormancy

4
5 Noémie Vimont^{1,2}, Fu Xiang Quah², David Guillaume-Schöpfer², François Roudier³, Elisabeth
6 Dirlewanger¹, Philip A. Wigge², Bénédicte Wenden¹ & Sandra Cortijo²

7 ¹UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France

8 ²The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom

9 ³Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France

10 **Corresponding author:** Sandra Cortijo, Email: Sandra.cortijo@slcu.cam.ac.uk, ORCID: 0000-0003-3291-6729

11

12 This article is present on a Biorxiv repository website and can be accessed
13 on <https://www.biorxiv.org/content/10.1101/334474v1>. This article is not published nor is under publication elsewhere.

14

15

16 **KEY WORDS:** Tree buds, ChIP-seq/Chromatin immunoprecipitation-sequencing, RNA-seq/RNA-sequencing, *Prunus*
17 *avium* L., *Prunus persica* L Batch, *Malus x domestica* Borkh.

18

19 **KEY MESSAGE:** We developed a combined ChIP-seq and RNA-seq protocol for tree buds; optimised to work on
20 small amount of material and on samples flash frozen in the field, and explored the link between expression level and
21 H3K4me3 enrichment.

22

23 **ABSTRACT**

24 Chromatin immunoprecipitation-sequencing (ChIP-seq) is a robust technique to study interactions between proteins, such
25 as histones or transcription factors, and DNA. This technique in combination with RNA-sequencing (RNA-seq) is a
26 powerful tool to better understand biological processes in eukaryotes. We developed a combined ChIP-seq and RNA-seq
27 protocol for tree buds (*Prunus avium* L., *Prunus persica* L Batch, *Malus x domestica* Borkh.) that has also been
28 successfully tested on *Arabidopsis thaliana* and *Saccharomyces cerevisiae*. Tree buds contain phenolic compounds that
29 negatively interfere with ChIP and RNA extraction. In addition to solving this problem, our protocol is optimised to work
30 on small amounts of material. Furthermore, one of the advantages of this protocol is that samples for ChIP-seq are cross-
31 linked after flash freezing, making it possible to work on trees growing in the field and to perform ChIP-seq and RNA-

1 seq on the same starting material. Focusing on dormant buds in sweet cherry, we explored the link between expression
2 level and H3K4me3 enrichment for all genes, including a strong correlation between H3K4me3 enrichment at the
3 *DORMANCY-ASSOCIATED MADS-box 5 (PavDAM5)* loci and its expression pattern. This protocol will allow
4 analysis of chromatin and transcriptomic dynamics in tree buds, notably during its development and response to the
5 environment.

6

7 BACKGROUND

8 The term ‘epigenetics’ has traditionally been used to refer to heritable changes in gene expression that take place without
9 altering DNA sequence (Wolffe and Matzke, 1999), but it is also used, in a broader sense, to refer to modifications of the
10 chromatin environment (Miozzo et al., 2015). Epigenetic modifications are important for a wide range of processes in
11 plants, including seed germination (Nakabayashi et al., 2005), root growth (Krichevsky et al., 2009), flowering time (He
12 et al., 2003), disease resistance (Stokes et al., 2002) and abiotic stress responses (Zhu et al., 2008). Post-transcriptional
13 modifications of histone proteins and chromatin structure regulate the ability of transcription factors (TFs) to bind DNA
14 and thereby influence gene expression (Lee et al., 1993; Narlikar et al., 2002). Analysing the dynamics of chromatin
15 modifications and DNA-protein interactions is a critical step to fully understand how gene expression is regulated.
16 Chromatin Immunoprecipitation (ChIP) is one of the few methods enabling the exploration of *in vivo* interactions
17 between DNA and proteins such as histones and TFs. When followed by next generation sequencing (ChIP-seq), this
18 method allows the detection of these interactions at a genome-wide scale. Since chromatin modifications and the
19 regulation of gene expression are tightly linked, ChIP-seq for chromatin marks and TFs are often combined with RNA-
20 sequencing (RNA-seq) to extract key features of the role of chromatin modification and TF binding in regulating
21 transcription. While ChIP-seq is routinely performed in plant model organisms like *Arabidopsis thaliana*, it is still a
22 challenge to carry it out on tree buds. The numerous ChIP protocols published in plants and mammals [(Cortijo et al.,
23 2018; Kaufmann et al., 2010; Li et al., 2014; Nelson et al., 2006; Ricardi et al., 2010; Saleh et al., 2008; Wal and Pugh,
24 2012; Xie and Presting, 2016; Yamaguchi et al., 2014) to cite just some] cannot be directly used for plant materials with
25 high phenolic content (alkaloids or lignified cell walls) like tree buds (Bílková et al., 1999). Such chemicals need to be
26 chelated during the chromatin extraction to prevent inhibition of downstream processes. In addition, the requirement for
27 large amounts of starting material in previous protocols has made it a challenge to perform ChIP on low-abundance
28 tissues such as tree buds. Here we present an efficient protocol for ChIP-seq and RNA-seq on complex, low-abundance
29 tree buds, with the possibility of studying trees growing in the field and rapid chromatin dynamics owing to an improved
30 cross-linking method (Figure 1). While several studies include ChIP-seq performed in trees, some with improvements
31 described in this protocol such as using a chelator of interfering compounds or performing cross-linking in frozen

1 material (Hussey et al., 2015; de la Fuente et al., 2015; Leida et al., 2012), this is the first step-by-step detailed ChIP-seq
2 protocol in trees that includes all of these improvements:
3 • Our ChIP-seq/RNA-seq protocol can be carried out on complex plant tissues that contain interfering compounds
4 (phenolic complexes, scales, protective layers), by adding chelators of these compounds in the extraction buffers.
5 • The cross-linking step is performed on frozen, pulverised material, thus allowing sample collection in the field, where
6 cross-linking equipment is not available. It also allows studying fast responses by flash freezing material immediately
7 after a stimulus (e.g. transient temperature stress) rather than cross-linking directly on fresh tissue or cells. In previous
8 protocols, the cross-linking step was performed using a vacuum and lasted at least 10 minutes and up to 1 hour
9 (Kaufmann et al., 2010; Ricardi et al., 2010; Saleh et al., 2008; Xie and Presting, 2016). Moreover, cross-linking on
10 powder allows for a more homogenous cross-linking, as it is almost impossible to have a homogenous penetration of the
11 formaldehyde in tree buds that are protected by an impermeable and rigid lignin rich wall (Bílková et al., 1999).
12 • By using frozen, pulverized material, ChIP-seq and RNA-seq can be performed on the same starting material for a
13 direct and robust comparison of epigenetic regulation and gene expression.
14 • Our protocol can be used to perform ChIP-seq and RNA-seq on a small amount of biological material. We optimised
15 this protocol to start from 0.2 to 0.5 g of buds, which is considerably lower than the usual amount of 0.8 to 5 g of starting
16 material for ChIP protocols in plant tissues (Haring et al., 2007; Kaufmann et al., 2010; Leida et al., 2012; Ricardi et al.,
17 2010; Saleh et al., 2008; Xie and Presting, 2016), or the 4g of tree buds previously used (de la Fuente et al., 2015; Leida
18 et al., 2012).

19 We have used this protocol to analyse histone modification profiles in several tree species. In a first instance, we
20 analysed H3K27me3 in buds of *Prunus persica* L Batch (peach) and could replicate previously published results (de la
21 Fuente et al., 2015). To demonstrate the versatility of this protocol, we also successfully performed ChIP-seq for
22 H3K27me3 and H3K4me3 in sweet cherry (*Prunus avium* L.) and apple (*Malus x domestica* Borkh.). Furthermore, we
23 directly compared expression level and enrichment for H3K4me3 by performing ChIP-seq for H3K4me3 and RNA-seq
24 on the same sweet cherry bud samples. We demonstrated the correlation between chromatin status and gene expression
25 for *AGAMOUS* (*AG*) and *ELONGATION FACTOR 1* (*EF1*) that are known to be under control of H3K27me3 and
26 H3K4me3, respectively (Saito et al., 2015). We expanded our analysis of chromatin and expression in cherry buds
27 harvested at different stages of dormancy, first to *DORMANCY-ASSOCIATED MADS-box 6 and 5* (*PavDAM6* and
28 *PavDAM5*) genes, which are key regulators of dormancy in trees, and then to the entire genome. Dormancy is an
29 important developmental stage of fruit trees and is characterised by a period of repressed growth that allows trees to
30 persist under low winter temperature and short photoperiod (Faust et al., 1997). A proper regulation of the timing of the

1 onset and release of bud dormancy is crucial to ensure optimal flowering and fruit production in trees. Consequently,
2 unravelling the associated molecular mechanisms is essential and numerous studies have been conducted in trees to
3 answer this question. De la Fuente and colleagues (de la Fuente et al., 2015) have shown that *DORMANCY-*
4 *ASSOCIATED MADS-box (DAM)*-related genes are up-regulated in dormant peach buds. These genes are involved in
5 the regulation of bud dormancy under unfavorable climatic conditions in peach (de la Fuente et al., 2015; Leida et al.,
6 2012; Yamane et al., 2011), leafy spurge (Horvath et al., 2010), pear (Saito et al., 2015), apple (Mimida et al., 2015) and
7 apricot (Sasaki et al., 2011). We find that dormancy-associated *PavDAM6* and *PavDAM5* genes are more expressed in
8 dormant buds than in non-dormant buds and that H3K4me3 occupancy is associated with *PavDAM5* expression level.
9 We also find significant changes in H3K4me3 level during dormancy for 671 genes, and that these changes are positively
10 associated with transcriptional changes during dormancy. Our results show the potential for future exploration of the link
11 between chromatin dynamics and expression at a genome-wide level during tree bud dormancy. Moreover, our combined
12 ChIP-seq and RNA-seq protocol, which is working on many tree species, will allow a better understanding of
13 transcriptional regulatory events and epigenomic mechanisms in tree buds.

14

15 RESULTS

16 Validation of the protocol robustness in peach

17 In order to validate our protocol, we analysed H3K27me3 enrichment in the gene body of a *DAM* gene cluster on peach
18 (*Prunus Persica* L Batch) non-dormant buds (Figure 2). H3K27me3 enrichment is known to be associated with a
19 repressed transcriptional state. It has been shown that *DORMANCY-ASSOCIATED MADS-box (DAM)*-related genes
20 display contrasting H3K27me3 profiles in dormant and non-dormant buds, with H3K27me3 signal only observed in non-
21 dormant buds (de la Fuente et al., 2015). We observe a higher enrichment for H3K27me3 at the peach *PpeDAM5* and
22 *PpeDAM6* loci compared with the *PpeDAM3* gene in non-dormant buds, or compared to the gene *EF1*, known to be
23 enriched in H3K4me3 and depleted in H3K27me3 (Figure 2, Figure 3a). The replication of previously published results
24 at the *DAM* genes confirms that our improved ChIP-seq protocol is working on tree buds.

25

26 Successful application of this protocol on different species

27 To demonstrate the versatility of this protocol, we performed ChIP-seq for two histone marks (H3K27me3 and
28 H3K4me3) on buds of three tree species: peach, apple (*Malus x domestica* Borkh.) and sweet cherry (*Prunus avium* L.)
29 (Figure 3). We analysed the signal at the genes *ELONGATION FACTOR 1 (EF1)*, known to be enriched in H3K4me3,
30 and *AGAMOUS (AG)*, known to be enriched in H3K27me3 (Saito et al., 2015). While H3K27me3 is associated with a

1 repressive transcriptional state, H3K4me3 is on the contrary associated with transcriptional activation. We observed a
2 strong H3K4me3 signal at *EF1* and enrichment for H3K27me3 at *AG* locus for the three species (Figure 3). This result
3 confirms that this ChIP-seq protocol works on buds for several tree species. To test the adaptability of this protocol for
4 other biological system, we also performed ChIP-qPCR in *Arabidopsis thaliana* and in *Saccharomyces cerevisiae*. We
5 reproduced previously published results for the histone variant H2A.Z at *HSP70* locus in *Arabidopsis thaliana* (Cortijo et
6 al., 2017; Kumar and Wigge, 2010), and for the binding of the TF Hsfl at the *SSA4* promoter in yeast (Erkina and
7 Erkine, 2006), Suppl. Figure 1). This protocol is thus versatile and can be used on buds for several tree species as well as
8 in other biological systems such as *Arabidopsis thaliana* and yeast.

9

10 **Association between gene expression and H3K27m3 enrichment at *PavDAM* loci**

11 To test if chromatin state and gene expression can be directly compared using this protocol, we carried out RNA-seq and
12 ChIP-seq on the same starting material of sweet cherry floral buds. To start with, we analysed expression together with
13 enrichment for H3K27me and H3K4me3 for *PavEF1* and *PavAG* genes. We observe that *PavEF1*, marked by H3K4me3,
14 is highly expressed, while *PavAG*, marked by H3K27me3, is very lowly expressed (Figure 3c, Suppl. Figure 4).
15 We then compared the abundance of H3K4me3 histone mark to the expression patterns of *PavDAM5* and *PavDAM6*
16 during the dormancy period at three different dates for sweet cherry floral buds (October, December and January; Figure
17 4). Firstly, we defined if the flower buds harvested are in endodormancy or ecodormancy at each time-point (Figure 4a).
18 The time of dormancy release, after which the buds are in ecodormancy, is defined when the percentage of bud break
19 reaches 50% at BBCH stage 53 (Meier, 2001). We observe that samples harvested in October and December are in
20 endodormancy and the ones harvested in January are in ecodormancy (Figure 4a). *PavDAM5* and *PavDAM6* are two key
21 genes involved in sweet cherry dormancy corresponding to the peach *PpeDAM5* and *PpeDAM6*, respectively. We find
22 that *PavDAM6* is highly expressed in October at the beginning of endodormancy and that its expression decreases in
23 December and January (Figure 4b), and that *PavDAM5* is highly expressed in deep dormancy (December) and less
24 expressed in ecodormancy (January, Figure 4b). These results are in agreement with previous observations showing that
25 *DAM* genes are up-regulated in dormant peach buds (de la Fuente et al., 2015). We observe H3K4me3 enrichment at the
26 beginning of these genes, at the level of the first exon (Figure 4c, Suppl. Figure 5) as expected for this chromatin mark. A
27 low or no enrichment was found for the two controls (H3 and INPUT, Figure 4c) meaning that the enrichment seen for
28 H3K4me3 at these genes is relevant. We observe that H3K4me3 enrichment at *PavDAM5* is higher in December
29 compared to October and January (Figure 4c). This is in agreement with the higher *PavDAM5* expression in December.

1 We observe that H3K4me3 enrichment at *PavDAM6* is also higher in December compared to October and January, while
2 its peak of expression is in October (Figure 4c).

3

4 **Direct comparison of ChIP-seq and RNA-seq data**

5 To further investigate the link between gene expression and H3K4me3 enrichments during bud dormancy, we analysed
6 genome-wide changes between time-points in expression level as well as H3K4me3 signal. For this, we employed a gene
7 centric approach by measuring the strength of the H3K4me3 signal at each gene, and identifying genes showing
8 significant changes between at least two of the three time-points (see material and methods for more detail). We
9 identified 671 genes that show significant changes in H3K4me3 between at least two of the sampling dates. We then
10 performed a hierarchical clustering of these genes based on a Z-score [(signal for a time-point - average over all time-
11 points)/ STD across all time-points], which normalises for differences in H3K4me3 signal between genes, thus allowing
12 direct gene-by-gene comparisons of their patterns across the studied time-points. We observe a reduction in H3K4me3
13 signal over time, and in particular between endodormancy and ecodormancy for most genes (Figure 5a, see Suppl. Figure
14 7bc for examples of H3K4me3 signal at a few genes). We then compared changes in H3K4me3 and expression over
15 time, for the genes in the main clusters depicted in Figure 5b and Figure 5c. Genes in the purple (233 genes) and blue
16 (313 genes) clusters are associated with simultaneous reductions in H3K4me3 signal and expression over time (Figure
17 5c). Genes in the green (53 genes), the gold (40 genes) and the orange (13 genes) clusters show increases in H3K4me3
18 signal and in expression over time (Figure 5c). Genes in the red cluster (19 genes) are characterised by a transient
19 reduction in H3K4me3 signal and expression in December (Figure 5c).

20 We explore signalling pathways that were represented in the different clusters (Figure 5c, Suppl. figure 7b, Suppl. Table
21 2). Among the genes classed in the green, gold and orange clusters, that increase expression over time, we identified the
22 *GLUTATHION S-TRANSFERASE19* (*PavGSTU19*), *LATE EMBRYOGENESIS ABUNDANT14* (*PavLEA14*) and
23 *GALACTINOL SYNTHASE 4* (*PavGolS4*) genes (Figure 5c), potentially involved in the response to drought and
24 oxidative stresses (Hara et a., 2010; Nishizawa et al., 2008; Singh et al., 2005), together with genes associated with
25 growth and cellular activity such as *PavSWEET2*, *GIBBERELLIN 20 OXIDASE 1* (*PavGA20ox1*) and *AMINO ACID*
26 *PERMEASE3* (*PavAAP3*). On the other hand, genes from clusters purple and blue that are downregulated during
27 ecodormancy include *XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE6* (*PavXTH6*), *DOF*
28 *AFFECTING GERMINATION2* (*PavDAG2*), *GA-STIMULATED IN ARABIDOPSIS6* (*PavGASA6*), *TREHALOSE-*
29 *PHOSPHATASE/SYNTHASE7* (*PavTPS7*), *PavHVA22C*, and *PHYTOCHROME-ASSOCIATED PROTEIN1*
30 (*PavPAP1*) (Figure 5c). Homologs of *XTH6*, *DAG2*, *GASA6* and *HVA22C* were found to be activated under cold,

1 drought and other stress-associated stimulus while *TPS7* and *PAP1* are more likely associated with metabolism and auxin
2 pathway. We also found *RESPIRATORY BURST OXIDASE HOMOLOG C* (*PavRBOHC*) in the cluster red,
3 transiently downregulated in December, of which the homolog in *Arabidopsis* is involved in reactive oxygen species
4 production.

5

6 DISCUSSION

7 ChIP-seq and RNA-seq protocol: new epigenetic perspectives in trees

8 In this study, we described a combined ChIP/RNA-seq protocol for low abundance and complex plant tissues such as tree
9 buds. This method allows a robust comparison of epigenetic regulation and gene expression as we use the same starting
10 material. More notably, this protocol could permit to perform ChIP/RNA-seq for kinetic experiment with short intervals
11 (every minute or less) and to collect samples in the field.

12 Several studies have led to the identification of molecular mechanisms involved in dormancy, including a cluster of
13 *DAM* genes (Bielenberg et al., 2008). *DAM*-related genes are up-regulated in dormant buds in peach (de la Fuente et al.,
14 2015; Leida et al., 2012; Yamane et al., 2011), leafy spurge (Horvath et al., 2010), pear (Saito et al., 2015), apple
15 (Mimida et al., 2015) and apricot (Sasaki et al., 2011). Conversely, *DAM*-related genes are down-regulated in non-
16 dormant buds. In particular, it was shown that H3K27me3 abundance is increased at *DAM5* and *DAM6* loci in non-
17 dormant buds compared to dormant buds (de la Fuente et al., 2015). Using the proposed ChIP-seq protocol, we found
18 similar results for H3K27me3 abundance in the *DAM* genes in peach in non-dormant buds (Figure 2), thus validating our
19 improved ChIP-seq method. In particular, we observe a higher enrichment for H3K27me3 at the *DAM5* and *DAM6* loci
20 compared with *DAM3* in non-dormant buds in peach, suggesting that not all *DAM* genes are regulated the same way
21 during dormancy. Additionally, we demonstrated the correlation between the presence of histone marks and gene
22 expression in sweet cherry (*Prunus avium* L.) for two control genes *PavAG* and *PavEF1* known to be under control of
23 H3K27me3 and H3K4me3, respectively (Figure 3c). As the ChIP-seq and RNA-seq were performed on the same
24 biological material, the level of gene expression and the presence/absence of particular histone marks can be directly
25 compared with confidence. In the last two decades ChIP has become the principal tool for investigating chromatin-
26 related events at the molecular level such as transcriptional regulation. Our protocol will allow analysis of chromatin and
27 expression dynamics in response to abiotic and biotic stresses, and this for trees in controlled conditions as well as
28 growing in fields. Improvements to the ChIP-seq approach are still needed and will include an expansion of available
29 ChIP-grade antibodies and a reduction of the hands-on time required for the entire procedure. A remaining challenge is to
30 further decrease the amount of starting material without compromising the signal-to-noise ratio.

1

2 **Correlation between expression level and H3K4me3 enrichment in sweet cherry dormant buds**

3 Previous studies highlighted the importance of *DAM* genes as key components of dormancy in perennials. We have
4 shown that, in sweet cherry, *PavDAM6* is highly expressed in October, at the beginning of dormancy, and then down-
5 regulated over time (Figure 4). Conversely, we found that *PavDAM5* is highly expressed at the end of endodormancy
6 (December), and then down-regulated during ecodormancy (Figure 4). Both *PavDAM5* and *PavDAM6* genes were
7 down-regulated in ecodormancy, which suggest an important role in the maintenance of endodormancy as observed in
8 Chinese cherry (Zhu et al., 2015), peach (Bielenberg et al., 2008; de la Fuente et al., 2015; Yamane et al., 2011) and
9 Japanese apricot (Saito et al., 2015; Sasaki et al., 2011). However their timing of expression during endodormancy was
10 different, suggesting that they have non-redundant roles and that their expression might be regulated by different factors
11 during dormancy.

12 We conducted a ChIP-seq in sweet cherry for H3K4me3, which is associated with gene activation, in order to link the
13 abundance of histone marks to expression patterns at three different dates along dormancy (October, December and
14 January; Figure 4). We found an H3K4me3 enrichment around the translation start site of both *PavDAM6* and
15 *PavDAM5* during dormancy (Figure 4), as reported in peach for *PpeDAM6* (Leida et al., 2012) (Leida et al. 2012) and in
16 leafy spurge for *DAM1* (Horvath et al., 2010). Generally, H3K4me3 enrichment is more abundant at the *PavDAM5* locus
17 than at the *PavDAM6* locus and this is associated with the difference in their expression levels (Figure 4). We find a
18 positive relation between changes over time for H3K4me3 and expression level at *PavDAM5* (Figure 4). Similarly, we
19 find a general trend that genes with an increase over time in H3K4me3 level also show an increase in expression, while
20 genes with a reduction in H3K4me3 over time also show a reduction in expression (Figure 5). Despite these general
21 correlations, changes in H3K4me3 signal that occur at a significant magnitude have been observed for only 671 genes.
22 These results suggest that while chromatin marks might be involved in transcriptional regulation of some genes in sweet
23 cherry buds during dormancy, other genes might exhibit changes in expression that are not associated with chromatin
24 changes. In other genes, like *PavDAM6*, any relation between chromatin marks and expression seems to be more
25 complex and possibly integrates other chromatin marks than H3K4me3. Performing a similar analysis for other
26 chromatin marks, such as H3K27me3 that is associated with transcriptional repression, might reveal complex links
27 between chromatin and expression dynamics during bud dormancy in sweet cherry.

28 Our analysis has been done with only 3 time-points spanning a period of four months. A finer time resolution would be
29 needed to better identify relations between chromatin expression dynamics during dormancy, and in particular to define
30 if chromatin changes happen before or after expression changes. Together with our results, the observation from Leida et

1 al. (2012) and De la fuente et al. (2015) of the presence of repressive histone mark such as H3K37me3 in peach *DAM*
2 loci during dormancy, support the hypothesis of a balance of histone mark enrichment controlling the dormancy process
3 in sweet cherry and probably more largely in perennials.

4

5 **Genes involved in bud dormancy**

6 In addition to *DAM* genes, we identified genes that showed differential H3K4me3 enrichment between the different bud
7 dormancy stages. We found genes involved in the response to drought, cold and oxidative stresses that were either highly
8 expressed at the beginning of endodormancy, such as *PavGSTU19* and *PavLEA14*, or expressed during ecodormancy
9 (*PavXTH6*, *PavDAG2*, *PavGASA6* and *PavHVA22C*). This is consistent with previous studies showing the key role of
10 redox regulation (Ophir et al., 2009; Considine and Foyer, 2014; Beauvieux et al., 2018) and stress-associated stimulus
11 (Maurya and Bhalerao 2017) in bud dormancy. Interestingly, we highlighted *PavGASA6* and *PavGA20ox1*, two genes
12 associated with the gibberellin pathway. In particular, *PavGA20ox1*, that encodes an enzyme required for the
13 biosynthesis of active GA (Plackett et al., 2012), is markedly upregulated after endodormancy release, associated with
14 H3K4me3 enrichment at the locus, therefore suggesting that epigenetic and transcriptomic states facilitate an increase in
15 active GA levels during ecodormancy, as previously shown in hybrid aspen (Rinne et al., 2011) and grapevine (Zheng et
16 al., 2018).

17 Finally, our results highlighted the *CHROMATIN REMODELING5* (*PavCHR5*) gene, upregulated during ecodormancy.
18 In *Arabidopsis*, *CHR5* is required to reduce nucleosome occupancy near the transcriptional start site of key seed
19 maturation genes (Shen et al., 2015). We can therefore hypothesize that chromatin remodelling, other than post-
20 transcriptional histone modification, occurs during dormancy progression. Our results confirm that the analysis of
21 differential H3K4me3 states between endodormant and ecodormant buds might lead to the identification of key
22 signalling pathways involved in the control of dormancy progression.

23

24 **MATERIALS AND METHODS**

25 **Plant material**

26 Sweet cherry trees (cultivar ‘Burlat’), apple trees (cultivar ‘Choupette’) and peach trees (unknown cultivar) were grown
27 in an orchard located at the Fruit Experimental Unit of INRA in Toulouse (France, 44°34’N 0°16’W) under standard
28 agricultural practices. Sweet cherry flower buds used for the RNA-seq and ChIP-seq experiment were collected on
29 October 21st 2014 and December 5th 2014 for dormant buds and January 27th 2015 for non-dormant buds. Apple buds

1 were collected on January 25th 2016 and peach buds on February 5th 2016. Buds were harvested from the same
2 branches, flash frozen in liquid nitrogen and stored at -80°C prior to performing ChIP-seq and RNA-seq.

3

4 **Measurements of bud break**

5 Three branches bearing floral buds were randomly chosen from the sweet cherry cultivar ‘Burlat’ trees at different dates.
6 Branches were incubated in water pots placed in forcing conditions in a growth chamber (25°C, 16h light/ 8h dark, 60-
7 70% humidity). The water was replaced every 3-4 days. After ten days under forcing conditions, the total number of
8 flower buds that reached the BBCH stage 53 (Meier, 2001) was recorded. We estimate that endodormancy is released
9 when the percentage of buds at BBCH stage 53 is above 50% after ten days under forcing conditions.

10

11 **ChIP/RNA-seq protocol**

12 **MATERIAL SAMPLING SECTION**

13 Harvest tree buds in 2 ml tubes with screw cap, immediately flash-freeze in liquid nitrogen and store at -80°C until ready
14 to proceed for the ChIP-seq or RNA-seq. There is no need to remove the scales after harvesting. Grind the tissues to a
15 fine powder using mortars and pestles pre-chilled with liquid nitrogen. Add liquid nitrogen several times while grinding
16 to facilitate cell lysis and to ensure that the material remains completely frozen to prevent degradation of tissues. Weights
17 of powder for this protocol are for buds for which scales have not been removed.

18 For the cross-linking and chromatin extraction, weigh out 300 to 500 mg of powder in a 50 ml Falcon tube pre-
19 chilled with liquid nitrogen. The same amount of powder should be used for all samples to allow a direct comparison of
20 results. Then proceed to “ChIP and library preparation section”.

21 For RNA extraction, weigh out 50-70 mg of powder in a 2 ml tubes (screw cap) pre-chilled with liquid nitrogen.
22 Then proceed to “RNA extraction and library preparation section”. Due to the small amount of starting material, it is
23 necessary to keep the tubes in liquid nitrogen to prevent any degradation.

24

25 **ChIP AND LIBRARY PREPARATION SECTION**

26 **Cross-linking and chromatin extraction:** Timing 2-3 hours. Work on ice, except when specified otherwise.

27 Add 25 ml of ice-cold Extraction buffer 1 [0.4 M sucrose, 10 mM HEPES pH 7.5, 10 mM MgCl₂, 5 mM β-
28 mercaptoethanol, 1 mM PMSF, 1 % PVP-40 (polyvinylpyrrolidone), 1 tablet of complete protease inhibitor EDTA free
29 for 50 ml of buffer from Sigma cat# 11836170001] to the powder. For each buffer, the protease inhibitor (PMSF), the
30 tablet of complete protease inhibitor and β-mercaptopethanol should be added directly before using the buffer. PVP-40 is a

1 chelator used to remove phenolic derivatives as well as polysaccharides and improve the quality of the chromatin
2 extraction. It is commonly used in RNA and chromatin extractions in buds sampled from fruit trees (Gambino et al.,
3 2008; Leida et al., 2012; Ionescu et al., 2017). When extracting chromatin in other biological systems such as
4 *Arabidopsis thaliana* or *Saccharomyces cerevisiae*, the PVP-40 in Extraction buffer 1 may optionally be removed.
5 Immediately add 675 μ l of 37% formaldehyde solution (1% final concentration) and invert the tube several times to
6 resuspend the powder. Cross-link the samples by incubating at room temperature for 10 minutes and then quench the
7 formaldehyde by adding 1.926 ml 2 M of fresh glycine solution (0.15 M final concentration). Invert the tube several
8 times and incubate at room temperature for 5 minutes. Filter the homogenate through Miracloth (Millipore cat# 475855)
9 in a funnel and collect in a clean 50 ml Falcon tube placed on ice. Repeat the filtration step once more. Centrifuge the
10 filtrate at 3,200 \times g for 20 minutes at 4 °C. Discard the supernatant by inverting the tube, being careful not to disturb the
11 pellet. Gently resuspend the pellet in 1 ml of Extraction buffer 2 [0.24 M sucrose, 10 mM HEPES pH 7.5, 10 mM MgCl₂,
12 1 % Triton X-100, 5 mM β -mercaptoethanol, 0.1 mM PMSF, 1 tablet protease inhibitor EDTA free for 50 ml of
13 solution], without creating bubbles, and transfer the solution to a clean 1.5 ml tube. Centrifuge at 13,500 \times g for 10
14 minutes at 4°C. Carefully remove the supernatant by pipetting. If the pellet is still green, repeat the resuspension in 1 ml
15 of Extraction buffer 2, centrifuge at 13,500 \times g for 10 minutes at 4°C, and remove the supernatant. In a new 1.5 ml tube,
16 add 300 μ l of Extraction buffer 3 [1.7 M sucrose, 10 mM HEPES pH 7.5, 2 mM MgCl₂, 0.15 % Triton X-100, 5 mM β -
17 mercaptoethanol, 0.1 mM PMSF, 1 mini-tablet protease inhibitor EDTA free for 50 ml of solution]. Slowly resuspend the
18 pellet in 300 μ l of Extraction buffer 3 to prevent the formation of bubbles. Take the resuspended pellet and carefully
19 layer it on top of the 300 μ l Extraction buffer 3. Centrifuge at 21,200 \times g for 1 hour at 4°C. During this process, nuclei
20 are pelleted through a sucrose cushion to remove cellular contaminants.

21 From this step, chromatin fragmentation can be performed in two different ways: (A) sonication, to shear the chromatin
22 into 100-500 bp fragments, or (B) MNase (Micrococcal nuclease) digestion, to enrich for mono-nucleosomes (~150-200
23 bp). Results shown in this paper come from ChIP-seq performed on sonicated chromatin.

24

25 *A. Sonication: TIMING 3-4h hours (+ 8 hours of incubation)*

26 i. Chromatin fragmentation

27 Carefully remove the supernatant with a pipette and resuspend the nuclei pellet in 300 μ l of Sonication buffer [50 mM
28 HEPES pH 7.5, 10 mM EDTA, 1 % SDS, 0.1 % sodium deoxycholate, 1% Triton X-100, 1 mini-tablet protease inhibitor
29 EDTA free for 50 ml of solution]. To improve nuclear membrane breaking, flash-freeze the tube in liquid nitrogen and
30 then thaw rapidly by warming the tube in your hand. Repeat once more. This freeze-thaw step is not essential, but could

1 improve the chromatin yield. Centrifuge the tube at 15,800 × g for 3 minutes at 4°C to pellet debris, and carefully recover
2 the supernatant into a new tube. Complete the tube to 300 µl with the Sonication buffer. Set aside a 10 µl aliquot of
3 chromatin in a PCR tube to serve as the non-sonicated control when assessing sonication efficiency by gel
4 electrophoresis and keep on ice. Shear the chromatin into ~300 bp (100–500 bp) fragments by sonication (e.g. using
5 Diagenode Bioruptor Twin- UCD400, sonicate 300 µl chromatin in 1.5 ml microcentrifuge tubes for 14 to 16 cycles, on
6 High setting, with 30s ON/30s OFF per cycle). The number of cycles of sonication to obtain DNA fragments of around
7 300 bp should be tested and optimised for different tissues and different concentrations of chromatin. Transfer 40 µl of
8 sheared chromatin to a PCR tube, which will be used to check the sonication efficiency. The rest of the sonicated
9 chromatin should be stored at -80°C.

10 ii. Analysis of sonication efficiency

11 Complete the sonicated (40 µl) and non-sonicated (10 µl) aliquots to 55.5 µl with TE buffer [10 mM Tris-HCl pH 8, 1
12 mM EDTA], add 4.5 µl of 5 M NaCl and incubate at 65°C for 8 hours to reverse cross-link. Add 2 µl of 10 mg/ml RNase
13 A (Fisher cat# EN0531) and incubate at 37°C for 30 minutes. Add 2 µl of 20 mg/ml proteinase K (Fisher cat# EO0491)
14 and incubate at 45°C for 1 hour. During this step, take out the SPRI beads (e.g AMPure beads; Beckman Coulter, cat#
15 A63880) from the fridge and allow them to equilibrate at room temperature (for at least 30 minutes before use).
16 To extract DNA using SPRI beads, vortex the beads until they are well dispersed, add 126 µl of beads to 60 µl of sample
17 (2.1 × ratio) and mix well by pipetting up and down at least 10 times. Incubate 4 minutes at room temperature and then
18 place the tubes on a magnetic rack (96 well; Fisher, cat# AM10027) for 4 minutes to capture the beads. Carefully remove
19 and discard the supernatant without disturbing the beads. Without removing the tubes of the magnetic rack, add 200 µl of
20 freshly prepared 80 % v/v ethanol, incubate for 30 seconds and discard the supernatant. Repeat the ethanol wash once
21 more and then completely remove all ethanol. Allow the beads to dry for 15-30 minutes, until cracks appear in the bead
22 pellet and no droplets of ethanol are visible. Tubes can alternatively be placed in a fume hood for 10 minutes to
23 accelerate drying. The beads must be completely free from ethanol as it can interfere with downstream processes.
24 Remove the tubes from the magnetic rack and resuspend the beads in 15 µl of 10 mM Tris-HCl (pH 8) by pipetting up
25 and down at least 10 times. Incubate for 5 minutes at room temperature and place on the magnetic rack for 4 minutes to
26 capture the beads. Carefully transfer 14 µl of supernatant containing DNA to a new tube. Add 2.8 µl of 6× Loading dye
27 to 14 µl of DNA. Separate the DNA by electrophoresis on a 1.5 % agarose gel for at least 1 h at 70 V. The smear should
28 be concentrated between 100–500 bp (Figure 6a). If necessary, perform additional sonication cycles. Otherwise, continue
29 directly to the “Immunoprecipitation (IP)” step.

30

1 *B. MNase digestion: TIMING 4-5 hours (+ 2 × 8 hours of incubation)*

2 i. DNA quantification prior to MNase digestion

3 Carefully remove the supernatant with a pipette and resuspend the nuclei pellet in 500 μ l of MNase buffer [20 mM
4 HEPES pH 7.5, 50 mM NaCl, 0.5 mM DTT, 0.5 % NP-40, 3mM CaCl₂, Triton X-100, 1 mini-tablet protease inhibitor
5 EDTA free for 50 ml of solution]. To improve nuclear membrane breaking, flash-freeze the tube in liquid nitrogen and
6 then thaw rapidly by warming the tube in your hand. Repeat once more. This freeze-thaw step is not essential, but could
7 improve the chromatin yield. Transfer 40 μ l of chromatin to a PCR tube to quantify DNA prior to MNase digestion and
8 complete to 55.5 μ l with MNase digestion buffer, add 4.5 μ l of 5M NaCl and incubate in a PCR machine or thermocycler
9 at 65°C for 8 hours to reverse cross-link. Keep the rest of the chromatin at -80 °C. Add 2 μ l of 10 mg/ml RNase A and
10 incubate at 37°C for 30 minutes. Add 2 μ l of 20 mg/ml proteinase K and incubate at 45°C for 1 hour. During this step,
11 take out the SPRI beads from the fridge and allow them to equilibrate at room temperature (for at least 30 minutes before
12 use). Proceed to the DNA extraction using SPRI beads as explained before in the sonication analysis section (ii). Use 1 μ l
13 from each sample to quantify the DNA using a Qubit fluorometer (ThermoFisher Scientific), or a Nanodrop
14 spectrophotometer (Thermo Scientific).

15

16 ii. MNase digestion

17 Adjust all samples to the same concentration according to the quantification results using MNase buffer and to a final
18 volume of 500 μ l. Set aside a 20 μ l aliquot of chromatin in a PCR tube to serve as the non-digested control when
19 assessing MNase efficiency by gel electrophoresis and keep on ice. Incubate chromatin in a ThermoMixer (Eppendorf)
20 for 2-5 minutes at 37°C with shaking at 1,200 rpm, for optimal MNase activity. Add MNase (Fisher cat# 88216) to the
21 chromatin to a final concentration of 0.6 U/ml and incubate 10 minutes in the ThermoMixer at 37°C, 1,200 rpm. Stop the
22 digestion by adding 5 μ l of 0.5 M EDTA pH 8 (5 mM final concentration), invert the tube several times to mix and
23 immediately place on ice for 5 minutes. The optimal MNase enzyme concentration and incubation time to obtain
24 predominantly mono-nucleosomes should be tested and optimised for different tissues and different concentrations of
25 chromatin. For the optimisation of MNase digestions, we recommend using 1 ml of chromatin and carrying out
26 digestions in 100 μ l aliquots with varying concentrations of MNase (0.2 U/ml to 1 U/ml) and incubation times (5 to 20
27 minutes). Transfer 50 μ l of digested chromatin to a PCR tube, which will be used to check the MNase efficiency. The
28 rest of the digested chromatin should be stored at -80°C.

29

30 iii. MNase digestion analysis

1 Complete the digested sample (50 μ l) and non-digested (20 μ l) aliquots to 55.5 μ l with TE buffer, add 4.5 μ l of 5M NaCl
2 and incubate in a PCR machine or thermocycler at 65°C for 8 hours to reverse cross-link. Add 2 μ l of 10 mg/ml RNase A
3 and incubate at 37°C for 30 minutes. Add 2 μ l of 20 mg/ml proteinase K and incubate at 45°C for 1 hour. During this
4 step, take out the SPRI beads from the fridge and allow them to equilibrate at room temperature (for at least 30 minutes
5 before use). Proceed to the DNA extraction, using SPRI beads as explained before in the sonication analysis section (ii).
6 Add 2.8 μ l of 6 \times Loading dye to 14 μ l of DNA. Separate the DNA by electrophoresis on a 1.5% agarose gel for at least 1
7 h at 70 V. The most abundant band should be 150-200 bp in size (Figure 6b), which corresponds to chromatin in mono-
8 nucleosome form, with a less abundant 300-350 bp band (di-nucleosomes) and a faintly visible ~500 bp band (tri-
9 nucleosomes). For optimum sequencing results, approximately 80% of chromatin should be in mono-nucleosome form.
10 If this is judged not to be the case from the gel, it is not possible to carry out further MNase digestions on the chromatin,
11 as EDTA sequesters calcium ions that are required for MNase activity.

12

13 **Immunoprecipitation (IP):** TIMING 7-8 hours (+ overnight incubation). Work on ice, except when specified
14 otherwise.

15 Transfer 50 μ l of protein A- and/or protein G-coupled magnetic beads (Invitrogen cat# 10-002D and cat# 10-004D,
16 respectively) per IP to a 2 ml tube. Wash the beads with 1 ml of Binding buffer [0.5% (wt/vol) BSA, 0.5% (vol/vol)
17 Tween-20 in PBS (without Ca_2^+ , Mg_2^+)] during 5 minutes at 4°C on a rotating wheel (low speed, around one rotation
18 every 5-6 seconds). Place the tubes on a magnetic rack (Thermo Fisher cat# 12321D) until the liquid is clear and remove
19 the supernatant. Repeat three times. After the washes, resuspend the beads in 250 μ l of Binding buffer. Add 5 μ l of
20 antibody per IP to the beads. In our study, we used anti-trimethyl-histone 3 Lys 27 antibody (Millipore cat# 07-449) and
21 anti-trimethyl-histone 3 Lys 4 antibody (Millipore cat#17-614.). Incubate 4 hours on a rotating wheel at 4°C (low speed).
22 During this incubation time, centrifuge the sonicated or digested chromatin at 15,800 \times g for 5 minutes at 4°C to pellet
23 debris, and carefully recover supernatant into a new tube. Transfer 100 μ l of sonicated chromatin to a new 2 ml tube for
24 one IP, add 900 μ l of Binding buffer and keep on ice. Or transfer 200 μ l of MNase-digested chromatin to a new 2 ml
25 tube for one IP, add 800 μ l of Binding buffer and keep on ice. Transfer 20 μ l of sonicated or MNase-digested chromatin
26 as an input fraction (no immunoprecipitation) in a PCR tube and store at -80°C. The rest of the chromatin can be used for
27 another IP or stored at -80°C. After completion of the incubation of protein A/G beads with the antibody, place the tubes
28 containing the antibody-bead complexes on a magnetic rack, remove the supernatant and wash the beads with 1 ml of
29 Binding buffer during 5 minutes at 4°C on a rotating wheel (low speed). Repeat three times. Resuspend the beads in 50
30 μ l of Binding buffer per IP and transfer to the 1 ml of diluted chromatin. Incubate overnight on a rotating wheel at 4°C

1 (low speed). Briefly centrifuge the tube (<3 seconds) to pull down the liquid in the lid of the tube. Place on a magnetic
2 rack and remove the supernatant. Wash the beads to reduce unspecific interactions by incubating 5 minutes at 4°C on a
3 rotating wheel (low speed) with 1ml of the following buffers and total number of washes:
4 a. 5 washes with Low Salt Wash buffer [150 mM NaCl, 0.1% SDS, 1% triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH
5 8];
6 b. 2 washes with High Salt Wash buffer [500mM NaCl, 0.1% SDS, 1% triton X-100, 2 mM EDTA, 20mM Tris-HCl pH
7 8];
8 c. 2 washes with LiCl Wash buffer [0.25 M LiCL 1% NP-40 (IGEPAL), 1% sodium deoxycholate, 1 mM EDTA, 10 mM
9 Tris-HCl pH 8];
10 d. 2 washes with TE buffer.
11 After the second wash in TE buffer, resuspend the beads in 100 µl of TE buffer and transfer the beads to a PCR tube.
12 Place the tube on a magnetic rack, remove the TE buffer and resuspend the beads in 60 µl of Elution buffer [10 mM Tris-
13 HCl pH 8.0, 5 mM EDTA pH 8.0, 300 mM NaCl, 0.5% SDS].
14
15 **Reverse cross-linking and Elution by proteinase K treatment:** TIMING 2 hours (+ 8 hours of incubation)
16 Defrost the input fraction on ice (20 µl of sonicated or MNase-digested chromatin). Complete the input fraction to 60 µl
17 with the Elution buffer. Incubate the input fraction and the IP sample (60 µl beads-Elution buffer) at 65°C for 8 hours in
18 a PCR machine or thermocycler to reverse crosslink. Add 2 µl of RNase A (10 mg/ml) and incubate at 37°C for 30
19 minutes. Add 2 µl of Proteinase K (20 mg/ml) and incubate at 45°C for 1 hour. During this step, take out the SPRI beads
20 from the fridge and allow them to equilibrate at room temperature (for at least 30 minutes before use). Place the tubes on
21 a magnetic rack to collect the beads, transfer 60 µl of supernatant from each well to a new PCR tubes (or a new 96 wells-
22 plate).
23
24 **DNA extraction using SPRI beads and qPCR:** TIMING 1 hour
25 Proceed to the DNA extraction, using SPRI beads as explained before in the sonication analysis section (ii) until just
26 before the elution. Remove the tubes from the magnetic rack and for the elution, resuspend the beads in 50 µl of 10mM
27 Tris-HCl (pH 8.0) by pipetting up and down at least 10 times. Incubate for 5 minutes at room temperature and place on
28 the magnetic rack for 4 minutes to capture the beads. Carefully transfer 49 µl of supernatant containing DNA to a new
29 tube. For qPCR analysis, use 1 µl of DNA per 10 µl reaction, from the IP and input. The percentage of enrichment of

1 DNA in the ChIP fraction relative to the input fraction is calculated according to the formula: $(2^{-\text{Cp ChIP}} / 2^{-\text{Cp input}}) \times 100$.

2 Keep the rest of the DNA for sequencing (continue to “ChIP library preparation and size selection section”).

3

4 **ChIP library preparation and size selection:** TIMING 2-3 days

5 Use 5–10 ng from the input fraction for the preparation of sequencing libraries. Quantify the input fraction using a DNA

6 high sensitivity Qubit kit. For the IP fraction, as yield is often too low to be able to quantify DNA, we recommend to use

7 the entire volume from the IP for the preparation of sequencing libraries. Using this protocol we extracted around 500 ng

8 of DNA from 300 to 500 mg of powder of sweet cherry buds. We recommend carrying out ChIP-seq library preparation

9 using the TruSeq ChIP Sample Prep Kit (Illumina 48 samples, 12 indexes, Illumina, cat# IP-202-1012) with minor

10 modifications.

11 1- The “Purify Ligation Products” section using the gel electrophoresis is eliminated to minimise DNA loss.

12 2- DNA size selection is carried out after the “Enrich DNA fragments” section. This is a required step to increase the

13 visualisation of nucleosome positioning. Smaller and larger reads might disturb the MNase input profile after

14 analysis.

15 The Illumina TruSeq ChIP Sample Preparation protocol is available at the following URL:

16 http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/samplepreps_truseq/truseqchip/truseq-chip-sample-prep-guide-15023092-b.pdf

17 Check the quality of libraries using a 4200 TapeStation or Bioanalyzer instruments (Agilent) following manufacturer’s.

18 See Suppl. Figure 2 for profiles with and without adapter contaminations. If the libraries are contaminated with adapters,

19 repeat again a size selection step with SPRI beads to remove them, otherwise proceed directly with the “quantification

20 and pool of libraries” section. Store DNA for sequencing at -20°C.

21

22

23

24 **RNA EXTRACTION AND LIBRARY PREPARATION SECTION**

25 **RNA extraction:** TIMING 2-5 hours

26 We recommend for the RNA extraction the use of RNeasy® Plant Mini kit from Qiagen (cat# 74904) for less than 50

27 samples with the following minor modifications:

28 1- Start from 50-70 mg of buds powder with scales. Only remove the tubes from the liquid nitrogen when the RNA

29 Extraction buffer is prepared.

1 2- Add 1.5 % of PVP-40 (polyvinylpyrrolidone) in the RLT buffer to chelate phenolic compounds and thus prevent
2 any interaction. Then add the appropriate volume of β -mercaptoethanol mentioned in the Qiagen protocol.
3 3- Add 750 μ l of RNA Extraction buffer (RLT buffer + PVP-40 + β -mercaptoethanol) instead of 450 μ l if the starting
4 material contains scales to increase the RNA yield.
5 Alternatively, RNA can be extracted using the MagMAX™-96 Total RNA Isolation Kit from Thermo Fisher (cat#
6 AM1830) for more than 50 samples following manufacturer's instructions. Store RNA at -80°C.
7

8 **RNA library preparation: TIMING 3-4 days**

9 We recommend carrying out RNA-seq library preparation using the Truseq Stranded mRNA Library Prep Kit from
10 Illumina (96 samples, 96 indexes, Illumina cat# RS-122-2103). Check the quality of libraries using 4200 TapeStation or
11 Bioanalyzer instruments (Agilent) following manufacturer's instructions. See Suppl. Figure 3 for profiles of libraries
12 with and without adapter contaminations. If the libraries are contaminated with adapters, continue with a size selection
13 step with SPRI beads to remove them, otherwise proceed directly with "the quantification and pool of libraries" section.
14

15 **QUANTIFICATION AND POOL OF LIBRARIES SECTION**

16 **Quantification of RNA and ChIP libraries:**

17 From this step, the quantification and the pool for RNA and ChIP libraries are the same. However, ChIP-seq libraries on
18 one-hand and RNA-seq libraries on the other should be pooled and sequenced separately. Libraries are quantified using a
19 Qubit Fluorometer from Thermo Fisher (DNA high sensitivity). Dilute the DNA high sensitivity dye to 1/200 in the
20 DNA high sensitivity buffer (e.g. for 10 samples: mix 1.990 ml of DNA high sensitivity buffer and 10 μ l of DNA high
21 sensitivity dye). Add 198 μ l of mix in Qubit tubes (Thermo Fisher cat# Q32856) and 2 μ l of DNA (for standard: 190 μ l
22 of mix + 10 μ l of standard). Vortex and spin down. Quantification is performed using Qubit fluorometer following
23 manufacturer's instructions.
24

25 **Pool of libraries: TIMING 1 hour**

26 According to the quantification results, dilute libraries at 10 nM using this calcul to convert from ng/ μ l to nM:
27 (concentration*10^6)/(size*617.96+36.04), where concentration is in ng/ μ l and size in bp. And pool the libraries using 5
28 μ l of each library. Quantify the pool by Qubit as explained before and dilute the pool to the concentration required by the
29 sequencing facility/company or the sequencer system used.
30

1 **Data analysis**

2 (i) RNA-seq

3 The raw reads obtained from the sequencing were analysed using several publicly available software and in-house
4 scripts. Firstly, we determined the quality of reads using FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/).
5 Then, possible adaptor contaminations were removed using Trimmomatic (Bolger et al., 2014), before alignment to the
6 *Prunus persica* v.1 (Verde et al., 2017) or *Malus domestica* v.3 (Velasco et al., 2010) reference genome using Tophat
7 (Trapnell et al., 2009). Possible optical duplicates resulting from library preparation were removed using the Picard tools
8 (<https://github.com/broadinstitute/picard>). Raw reads and TPM (Transcripts Per Million) were computed for each gene
9 (Wagner et al., 2012). To finish, data are represented using the Integrative Genome Viewer (Robinson et al., 2011) as a
10 tool for visualising sequencing read profiles.

11

12 (ii) -ChIP-seq

13 Sequenced ChIP-seq data were analysed in house, following the same quality control and pre-processing as in RNA-seq.
14 The adaptor-trimmed reads were mapped to the *Prunus persica* reference genome v.1 (Verde et al., 2017) or *Malus x*
15 *domestica* reference genome v3.0 (Velasco et al., 2010) using Bowtie2 (Langmead et al., 2009). Possible optical
16 duplicates were removed using Picard, as described above. Data are represented using the Integrative Genome Viewer
17 (Robinson et al., 2011). The efficiency of the H3K4me3 ChIP-seq was evaluated using fingerplots (Suppl. Figure 6a)
18 from deeptools (Ramirez et al., 2016). We observe that a smaller fraction of the genome contains a high proportion of
19 reads for all H3K4me3 ChIP-seq compared to H3 ChIP-seq, suggesting that the H3K4me3 ChIP worked. Also, around
20 30% of the genome is not covered by reads, which can be explained by the fact that the ChIP-seq has been performed on
21 cherry tree buds, but mapped on the peach genome.

22 We used a gene-centric approach to identify genes with significant changes in the strength of H3K4me3 signal between
23 time-points. The DiffBind R package was used for the read counting and differential binding analysis steps (Stark and
24 Brown, 2011; Ross-Innes et al., 2012). Firstly, to quantify H3K4me3 signal at genes, we measured the number of
25 H3K4me3 ChIP reads in a 2000bp window around the TSS of each gene (Suppl. Figure 7a). Two biological replicates
26 were present for each time point, and DiffBind combines the available information to provide a statistical estimate of the
27 H3K4me4 signal for any particular gene. Next, we identified a subset of genes that exhibit significant differential binding
28 between any two time-points (October vs December; October vs January and December vs January). For this step, we
29 used the H3 ChIP as a control, instead of the INPUT, because the number of mapped reads for one of the INPUT is much
30 lower than other samples (Suppl. Table 1) and this might have created some bias in detecting genes with significant

1 differences in H3K4me3 enrichment between time-points. The quality of biological replicates was assessed by
2 performing a correlation heatmap, and hierarchical clustering of samples (Suppl. Figure 7b), based on the H3K4me3
3 signal around TSS for all genes, normalised by H3. It shows that H3K4me3 ChIP-seq replicates are of high quality.
4 To identify groups of genes with similar H3K4me3 dynamics, hierarchical clustering was performed on the Z-score of
5 the H3K4me3 signal normalised by H3 using the function `hclust` on 1-Pearson correlation in the statistical programme R
6 (R Core Team 2014). The Z-score has the formula (signal for a time-point - average over all time-points/ STD across all
7 time-points), which allows the changes in H3K4me3 between time-points to be compared on a gene-to-gene basis, after
8 normalising for differences that exist between genes.

9

10 **Declarations**

11 **Data Archiving Statement**

12 ChIP-seq and RNA-seq raw data will be made available on GEO upon acceptance of the manuscript.

13

14 **Competing interests**

15 The authors declare that they have no competing interests

16

17 **Funding**

18 This work was supported by a CIFRE grant funded by the CMI-Roullier Group (St Malo-France) for the ChIP and RNA-
19 seq. S.C. was supported by an EMBO long-term fellowship [ALTF 290-2013]. P.A.W's laboratory is supported by a
20 Fellowship from the Gatsby Foundation [GAT3273/GLB].

21

22 **Authors' contributions**

23 SC and BW organized the project. NV performed the experiments and analysed the data. DGS performed the ChIP-qPCR
24 in *Saccharomyces cerevisiae*, and SC performed the ChIP-qPCR in *Arabidopsis thaliana*. NV, SC and BW wrote the
25 paper. DGS, FR, ED and PAW edited the paper. All authors read and approved the final manuscript.

26

27 **Acknowledgments**

28 We thank the Fruit Experimental Unit of INRA (Bordeaux-France) for growing the trees and Varodom Charoensawan
29 (Mahidol University, Thailand) for sharing his scripts for RNA-seq and ChIP-seq mapping.

30

1 References

2 Beauvieux R, Wenden B, Dirlewanger E (2018) Bud Dormancy in Perennial Fruit Tree Species: A Pivotal
3 Role for Oxidative Cues. *Frontiers in plant science* 9:657

4 Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008)
5 Sequencing and annotation of the evergrowing locus in peach [*Prunus persica (L.) Batsch*] reveals a
6 cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud
7 formation. *Tree Genetics & Genomes* 4: 495-507

8 Bílková J, Albrechtová J, Opatrná J (1999) Histochemical detection and image analysis of non-specific
9 esterase activity and the amount of polyphenols during annual bud development in Norway spruce

10 Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data.
11 *Bioinformatics* (Oxford, England) 30: 2114-2120

12 Chen H, Huh J, Yu Y, Ho L, Chen L, Tholl D, Frommer WB, Guo W (2015) The *Arabidopsis* vacuolar sugar
13 transporter SWEET2 limits carbon sequestration from roots and restricts *Pythium* infection. *Plant*
14 *Journal* 83: 1046-1058.

15 Considine MJ, Foyer CH (2014) Redox regulation of plant development. *Antioxidants & redox*
16 signaling 21(9):1305-1326

17 Cortijo S, Charoensawan V, Bretovitsky A, Buning R, Ravarani C, Rhodes D, van Noort J, Jaeger KE,
18 Wigge PA (2017) Transcriptional Regulation of the Ambient Temperature Response by H2A.Z
19 Nucleosomes and HSF1 Transcription Factors in *Arabidopsis*. *Molecular plant* 10: 1258-1273

20 Cortijo S, Charoensawan V, Roudier F, Wigge PA (2018) Chromatin Immunoprecipitation Sequencing
21 (ChIP-Seq) for Transcription Factors and Chromatin Factors in *Arabidopsis thaliana* Roots: From
22 Material Collection to Data Analysis. *Methods in molecular biology* (Clifton, N.J.) 1761: 231-248

23 de la Fuente L, Conesa A, Lloret A, Badenes ML, Ríos G (2015) Genome-wide changes in histone H3
24 lysine 27 trimethylation associated with bud dormancy release in peach. *Tree Genetics & Genomes* 11:
25 45

26 Erkina TY, Erkine AM (2006) Displacement of histones at promoters of *Saccharomyces cerevisiae* heat
27 shock genes is differentially associated with histone H3 acetylation. *Molecular and cellular biology* 26:
28 7587-7600

29 Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud Dormancy in Perennial Fruit Trees:
30 Physiological Basis for Dormancy Induction, Maintenance, and Release 32: 623

31 Gambino G, Perrone I, Gribaudo I (2008) A Rapid and effective method for RNA extraction from
32 different tissues of grapevine and other woody plants. *Phytochem. Anal.*, 19: 520-525.

33 Hara M, Yatsuzuka Y, Tabata K, Kuboi T (2010). Exogenously applied isothiocyanates enhance
34 glutathione S-transferase expression in *Arabidopsis* but act as herbicides at higher concentrations. *J.*
35 *Plant Physiol.* 167:643-649

36 Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin
37 immunoprecipitation: optimization, quantitative analysis and data normalization. *Plant methods* 3: 11

38 He Y, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in
39 *Arabidopsis*. *Science* (New York, N.Y.) 302: 1751-1754

40 Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of
41 DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. *Plant molecular biology* 73: 169-179

42 Hussey, S. G., Mizrahi, E., Groover, A., Berger, D. K., & Myburg, A. A. (2015). Genome-wide mapping of
43 histone H3 lysine 4 trimethylation in *Eucalyptus grandis* developing xylem. *BMC plant biology*, 15: 117

44 Ionescu IA, López-Ortega G, Burow M, Bayo-Canha A, Junge A, Gericke O, ... Sánchez-Pérez R (2017)
45 Transcriptome and Metabolite Changes during Hydrogen Cyanamide-Induced Floral Bud Break in
46 Sweet Cherry. *Frontiers in plant science* 8:1233

47 Kaufmann K, Muino JM, Osteras M, Farinelli L, Krajewski P, Angenent GC (2010) Chromatin
48 immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or
49 hybridization to whole genome arrays (ChIP-CHIP). *Nature protocols* 5: 457-472

50 Krichevsky A, Zaltsman A, Kozlovsky SV, Tian GW, Citovsky V (2009) Regulation of root elongation by
51 histone acetylation in *Arabidopsis*. *Journal of molecular biology* 385: 45-50

52 Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in
53 *Arabidopsis*. *Cell* 140: 136-147

1 Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short
2 DNA sequences to the human genome. *Genome biology* 10: R25

3 Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor
4 access to nucleosomal DNA. *Cell* 72: 73-84

5 Leida C, Conesa A, Llacer G, Badenes ML, Rios G (2012) Histone modifications and expression of DAM6
6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. *The New*
7 *phytologist* 193: 67-80

8 Li W, Lin YC, Li Q, Shi R, Lin CY, Chen H, Chuang L, Qu GZ, Sederoff RR, Chiang VL (2014) A robust
9 chromatin immunoprecipitation protocol for studying transcription factor-DNA interactions and
10 histone modifications in wood-forming tissue. *Nature protocols* 9: 2180-2193

11 Maurya JP, Bhalerao RP (2017) Photoperiod- and temperature-mediated control of growth cessation
12 and dormancy in trees: a molecular perspective. *Annals of botany* 120(3): 351-360

13 Meier U (2001) Growth stages of mono-and dicotyledonous plants

14 Mimida N, Saito T, Moriguchi T, Suzuki A, Komori S, Wada M (2015) Expression of DORMANCY-
15 ASSOCIATED MADS-BOX (DAM)-like genes in apple. *Biologia Plantarum* 59: 237-244

16 Miozzo F, Saberan-Djoneidi D, Mezger V (2015) HSFs, Stress Sensors and Sculptors of Transcription
17 Compartments and Epigenetic Landscapes. *Journal of molecular biology* 427: 3793-3816

18 Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored
19 mRNA in *Arabidopsis thaliana* seed germination: epigenetic and genetic regulation of transcription in
20 seed. *The Plant journal : for cell and molecular biology* 41: 697-709

21 Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin
22 structure and transcription. *Cell* 108: 475-487

23 Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation
24 (ChIP) method. *Nature protocols* 1: 179-185

25 Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect
26 plants from oxidative damage. *Plant Physiol* 147:1251-1263

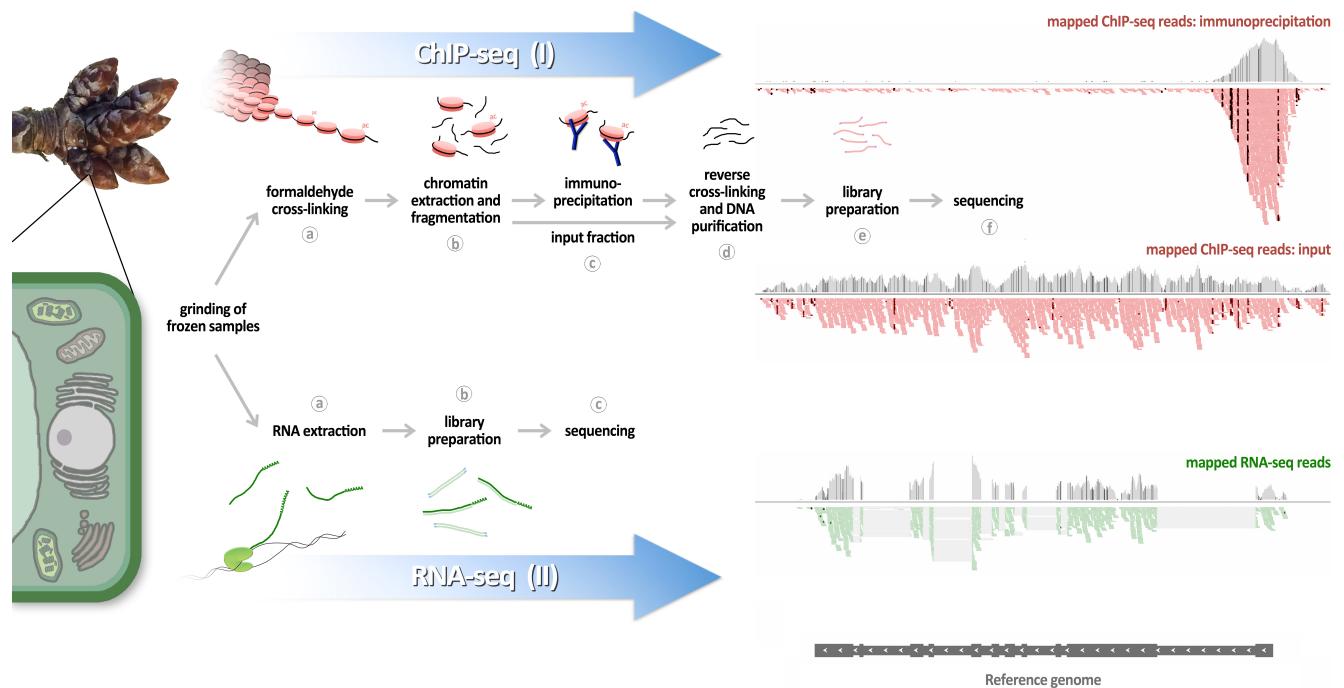
27 Ophir R, Pang X, Halaly T, Venkateswari J, David S, Etti Or G (2009) Gene-expression profiling of grape
28 bud response to two alternative dormancy-release stimuli expose possible links between impaired
29 mitochondrial activity, hypoxia, ethylene-ABA interplay and cell enlargement. *Plant Molecular Biology*
30 71:403

31 Plackett A, Powers S, Fernandez-Garcia N, Urbanova T, Takebayashi Y, Seo M, Jikumaru Y, Benlloch R,
32 Nilsson O, Ruiz-Rivero O, Phillips A, Wilson Z, Thomas S, Hedden P (2012) Analysis of the
33 Developmental Roles of the *Arabidopsis* Gibberellin 20-Oxidases Demonstrates That GA20ox1, -2, and -
34 3 Are the Dominant Paralogs. *The Plant Cell* 24:941-960

35 R Core Team (2014) R: A language and environment for statistical computing. Vienna, Austria: R
36 Foundation for Statistical Computing.

37 Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T (2016)
38 deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic Acids Research*.
39 44: 160-W165.

40 Ricardi MM, Gonzalez RM, Iusem ND (2010) Protocol: fine-tuning of a Chromatin Immunoprecipitation
41 (ChIP) protocol in tomato. *Plant methods* 6: 11


42 Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J, van der Schoot C (2011) Chilling of
43 dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to
44 reopen signal conduits and release dormancy in *Populus*. *The Plant cell* 23(1):130-146

45 Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011)
46 Integrative genomics viewer. *Nature biotechnology* 29: 24-26

47 Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO,
48 Green AR, Ali S, Chin S, Palmieri C, Caldas C, Carroll JS (2012). Differential oestrogen receptor binding is
49 associated with clinical outcome in breast cancer. *Nature*, 481, -4.

50 Saito T, Bai S, Imai T, Ito A, Nakajima I, Moriguchi T (2015) Histone modification and signalling cascade
51 of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (*Pyrus pyrifolia*) during
52 endodormancy. *Plant, cell & environment* 38: 1157-1166

1 Saleh A, Alvarez-Venegas R, Avramova Z (2008) An efficient chromatin immunoprecipitation (ChIP)
2 protocol for studying histone modifications in *Arabidopsis* plants. *Nature protocols* 3: 1018-1025
3 Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R (2011) Functional and expressional
4 analyses of PmDAM genes associated with endodormancy in Japanese apricot. *Plant physiology* 157:
5 485-497
6 Shen Y, Devic M, Lepiniec L, Zhou D (2015) Chromodomain, Helicase and DNA-binding CHD1 protein,
7 CHR5, are involved in establishing active chromatin state of seed maturation genes. *Plant Biotechnol J*
8 13: 811-820
9 Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure
10 of a late embryogenesis abundant protein (LEA14) from *Arabidopsis thaliana*, a cellular stress-related
11 protein. *Protein Science*, 14: 2601-2609
12 Stark R, Brown G (2011). DiffBind: differential binding analysis of ChIP-Seq peak data.
13 Stokes TL, Kunkel BN, Richards EJ (2002) Epigenetic variation in *Arabidopsis* disease resistance. *Genes*
14 & development 16: 171-182
15 Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq.
16 *Bioinformatics* (Oxford, England) 25: 1105-1111
17 Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A et. al. (2010) The genome of the domesticated
18 apple (*Malus × domestica* Borkh). *Nature Genetics* 42: 833-839
19 Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, et al. (2017) The Peach v2.0 release:
20 high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and
21 contiguity. *BMC Genomics*. 18:225.
22 Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM
23 measure is inconsistent among samples. *Theory in biosciences = Theorie in den Biowissenschaften* 131:
24 281-285
25 Wal M, Pugh BF (2012) Genome-wide mapping of nucleosome positions in yeast using high-resolution
26 MNase ChIP-Seq. *Methods in enzymology* 513: 233-250
27 Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. *Science (New York, N.Y.)* 286:
28 481-486
29 Xie Z, Presting G (2016) Chromatin Immunoprecipitation to Study The Plant Epigenome. *Methods in*
30 *molecular biology* (Clifton, N.J.) 1429: 189-196
31 Yamaguchi N, Winter CM, Wu MF, Kwon CS, William DA, Wagner D (2014) PROTOCOLS: Chromatin
32 Immunoprecipitation from *Arabidopsis* Tissues. *The arabidopsis book* 12: e0170
33 Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011) Expressional regulation of PpDAM5 and
34 PpDAM6, peach (*Prunus persica*) dormancy-associated MADS-box genes, by low temperature and
35 dormancy-breaking reagent treatment. *Journal of experimental botany* 62: 3481-3488
36 Zheng C, Kwame Acheampong A, Shi Z, Halaly T, Kamiya Y, Ophir R, ... Or E (2018) Distinct gibberellin
37 functions during and after grapevine bud dormancy release. *Journal of experimental*
38 *botany*, 69(7):1635-1648
39 Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert HJ, Shi H, Yun DJ, Bressan
40 RA (2008) Involvement of *Arabidopsis* HOS15 in histone deacetylation and cold tolerance. *Proceedings*
41 *of the National Academy of Sciences of the United States of America* 105: 4945-4950
42 Zhu Y, Li Y, Xin D, Chen W, Shao X, Wang Y, Guo W (2015) RNA-Seq-based transcriptome analysis of
43 dormant flower buds of Chinese cherry (*Prunus pseudocerasus*). *Gene* 555: 362-376
44
45
46
47
48
49
50

1 **Figure 1** Workflow

2 Outline of the two main modules of the protocol: (I) ChIP-seq (top) and (II) RNA-seq (bottom). Each module starts with
3 the same biological material (ground frozen material). (I) (a) The ChIP-seq module starts with a cross-linking step on
4 frozen powder to stabilise interactions between DNA and proteins. (b) The chromatin is extracted using different buffers
5 and then fragmented by sonication or MNase digestion. (c) Proteins of interest, among the protein/DNA complexes, are
6 immunoprecipitated using specific antibodies coupled to magnetic beads. An aliquot of chromatin is set aside as an input
7 fraction. (d) After different wash steps, a reverse cross-linking step is performed, and the DNA is isolated using SPRI
8 beads. (e) The purified DNA is used in library preparation, and (f) is then sequenced. (II) (a) The RNA-seq module starts
9 with RNA extraction from the frozen powder. (b) This DNase treated RNA is then used in library preparation, and (c)
10 sequenced.

11

12

13

14

15

16

17

18

19

20

21

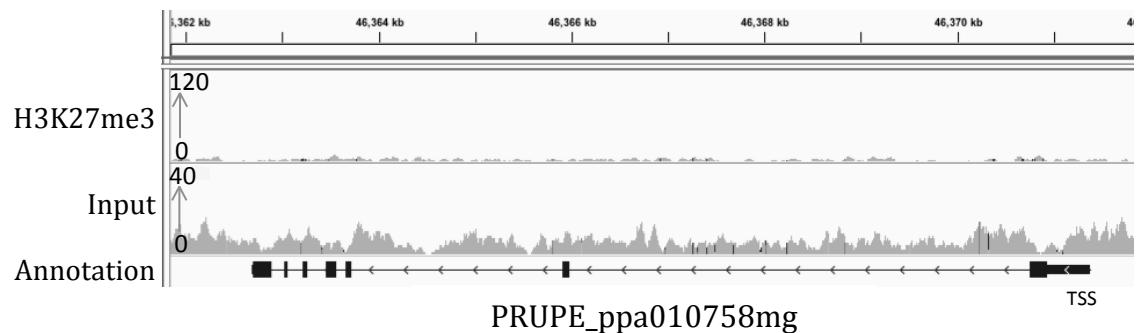
22

23

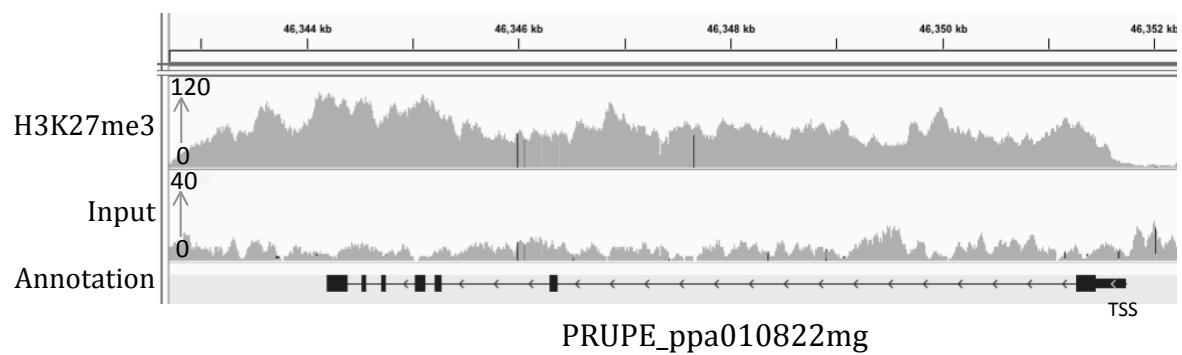
24

25

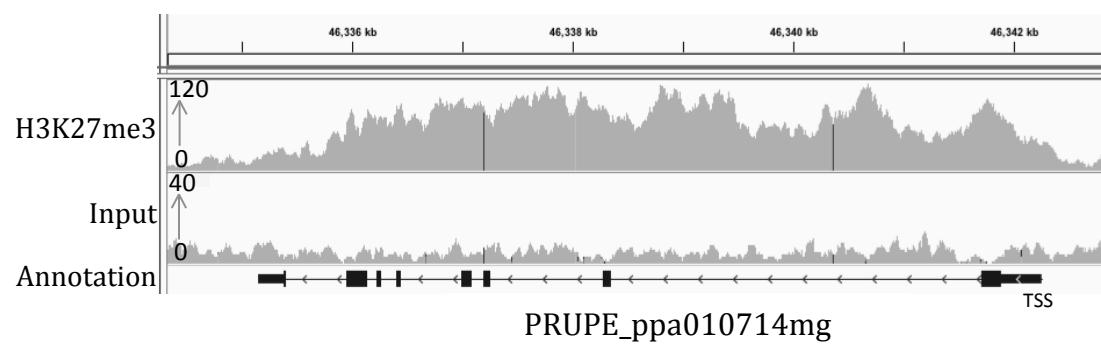
26


27

28

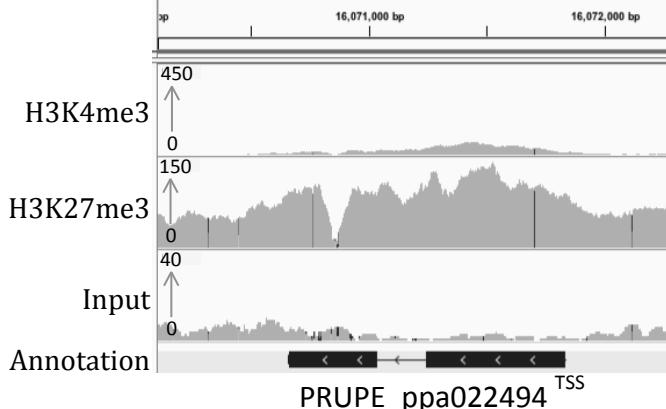

29

30

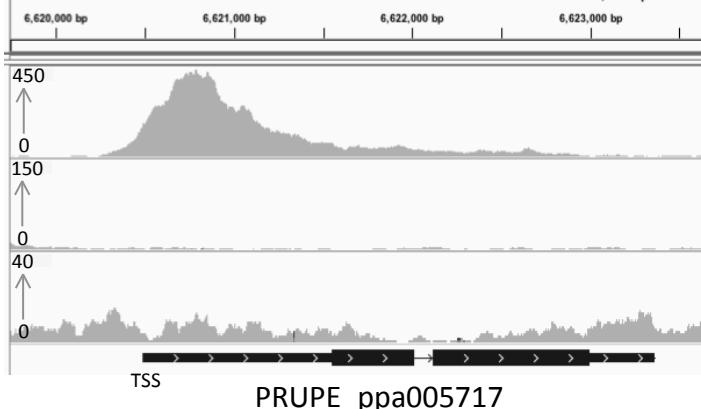

PpeDAM3

PpeDAM5

PpeDAM6

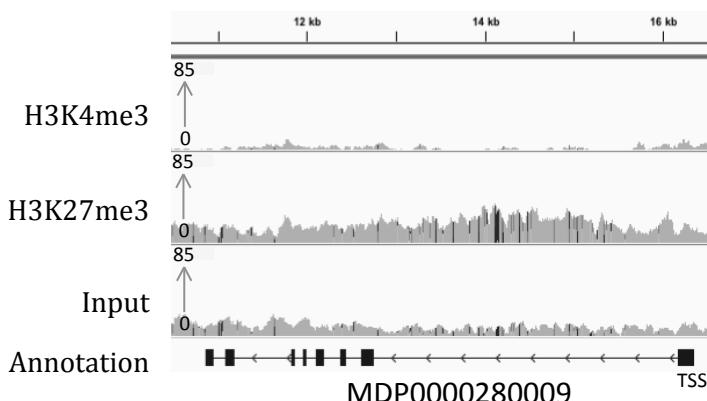


1 **Figure 2** H3K27me3 ChIP-seq profile at the *DAM* gene cluster in peach
2 IGV screenshot of ChIP-seq data for H3K27me3 and its corresponding input performed on non-dormant peach buds
3 (*Prunus persica*) at PpeDAM3, PpeDAM5 and PpeDAM6 genes. Genes are represented by black lines, with arrows
4 indicating gene directionality and rectangles representing exons.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

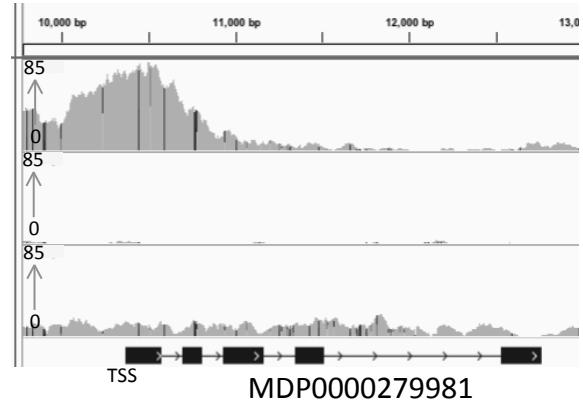

a

Peach

PpeAGAMOUS

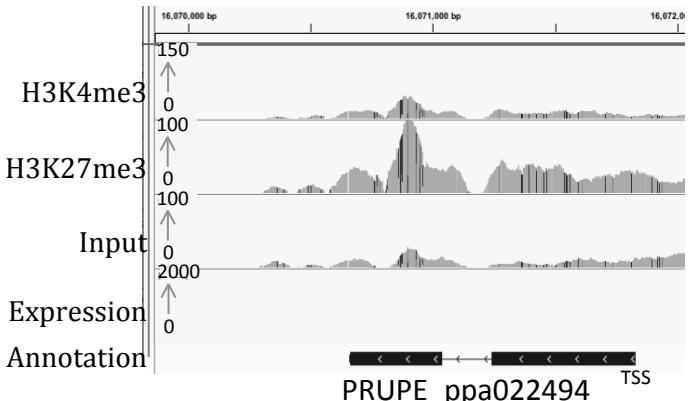


PpeELONGATION FACTOR 1

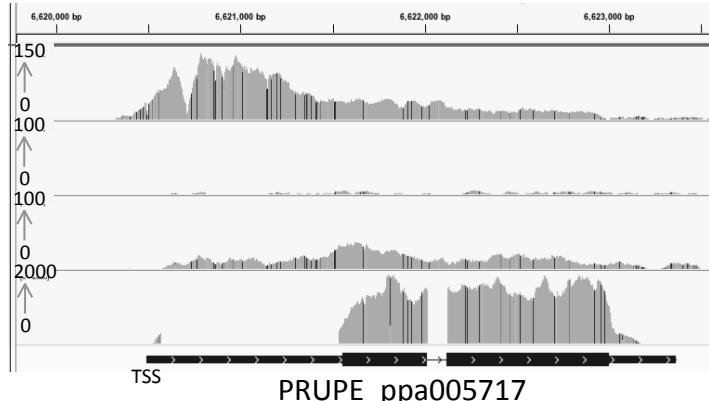

b

Apple

MdAGAMOUS



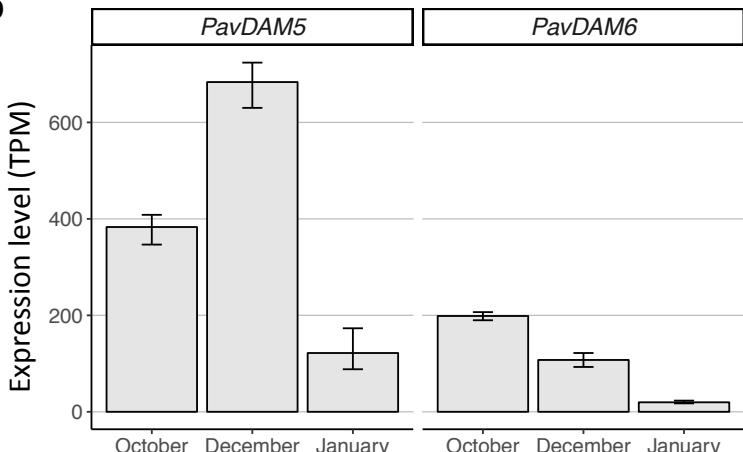
MdELONGATION FACTOR 1


c

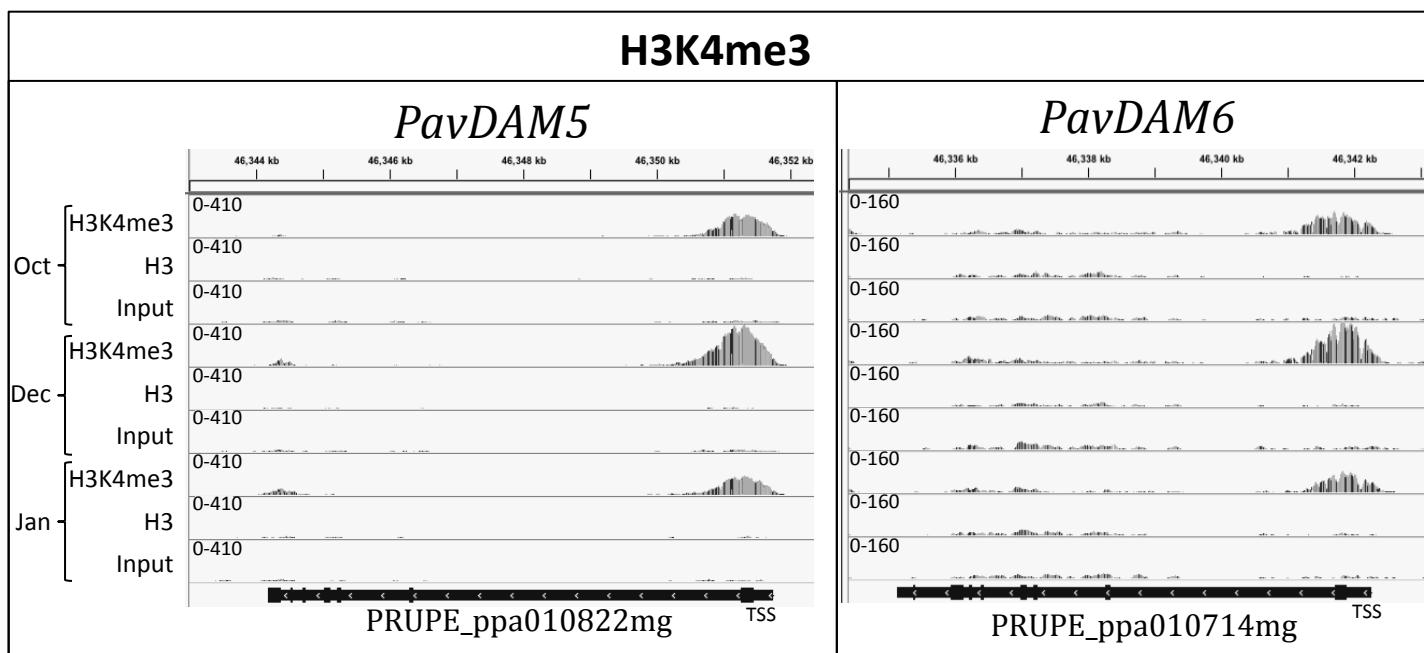
Cherry

PavAGAMOUS

PavELONGATION FACTOR 1



1 **Figure 3** H3K27me3 and H3K4me3 ChIP-seq and RNA-seq profiles three fruit tree species
2 IGV screenshot of ChIP-seq data for H3K27me3 and H3K4me3 and their corresponding inputs performed on peach (a),
3 apple (b) and sweet cherry buds (c) for two control genes: ELONGATION FACTOR 1 as a positive control of H3K4me3
4 and AGAMOUS as a positive control of H3K27me3. RNA-seq was also carried out on sweet cherry buds (c). Genes are
5 represented by black lines, with arrows indicating gene directionality and rectangles representing exons.
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29


a

date	Buds at stage BBCH 53 (%)
21 October 2014	0
5 December 2014	0
27 January 2015	>80

b

C

1 **Figure 4** Expression and H3K4me3 profiles of *PavDAM5* and *PavDAM6* genes during dormancy in sweet cherry
2 flower buds
3 a) Evaluation of bud break percentage under forcing conditions (n=5).
4 b) Transcriptional dynamics of *PavDAM5* and *PavDAM6* genes at three different dates (October 21st 2014, December
5 5th 2014 and January 27th 2015; n=3). Expressions are represented in TPM (Transcripts Per kilobase Million).
6 C) IGV screenshot of the first biological replicate of ChIP-seq data for H3K4me3 and H3 at three different dates
7 (October 21st 2014, December 5th 2014 and January 27th 2015) and their corresponding inputs at *PavDAM5* and
8 *PavDAM6* loci. Genes are represented by black rectangles, with arrows indicating gene directionality and bigger
9 rectangles representing exons.

10

11

12

13

14

15

16

17

18

19

20

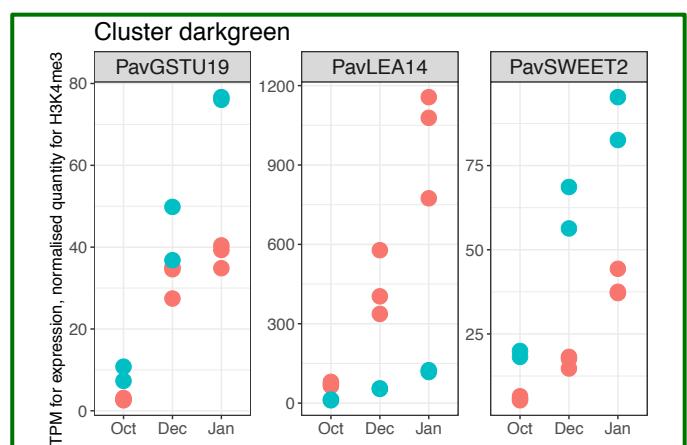
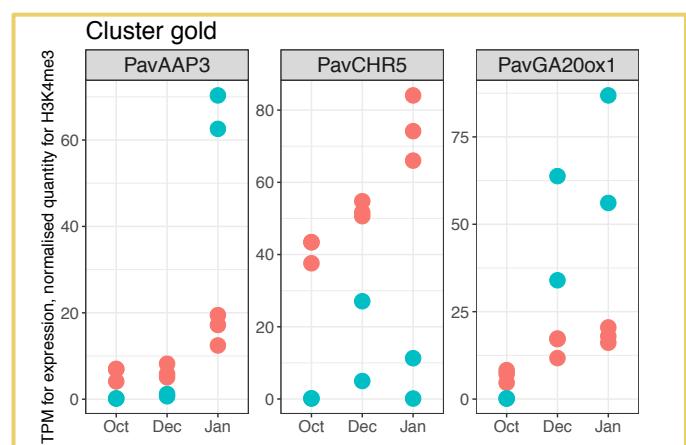
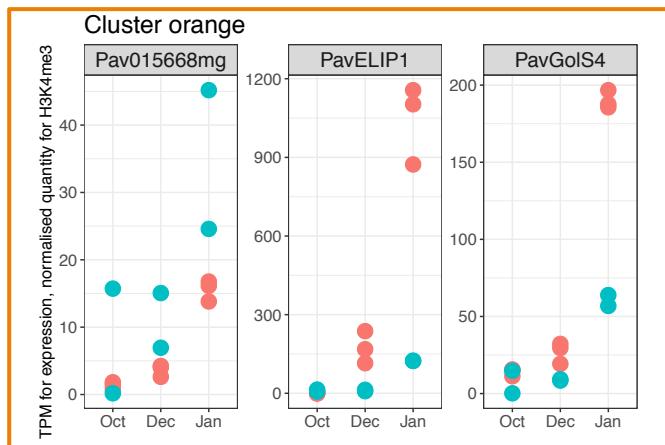
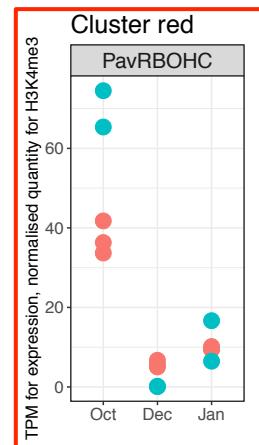
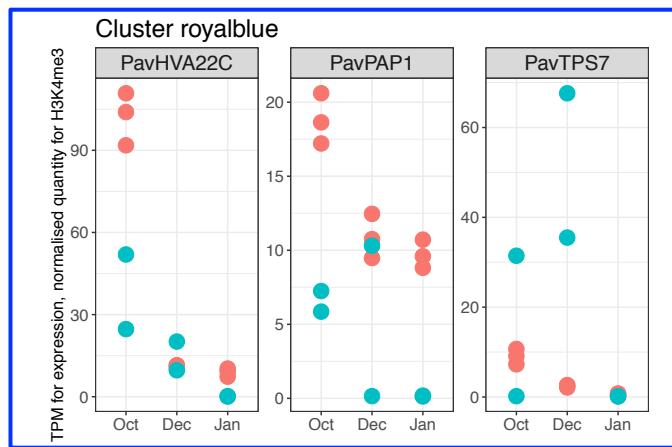
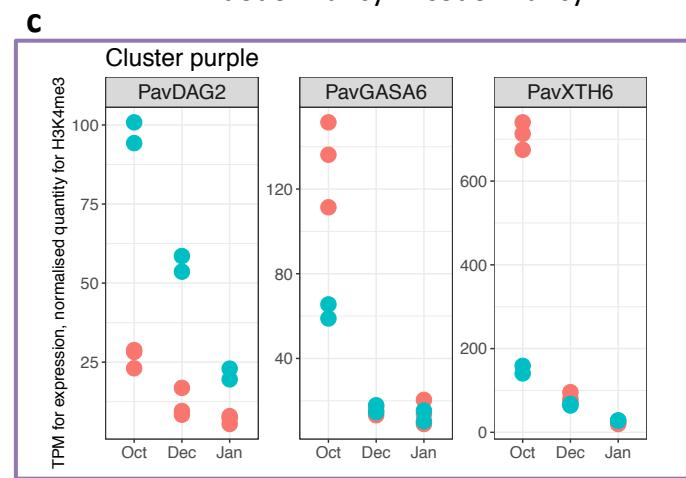
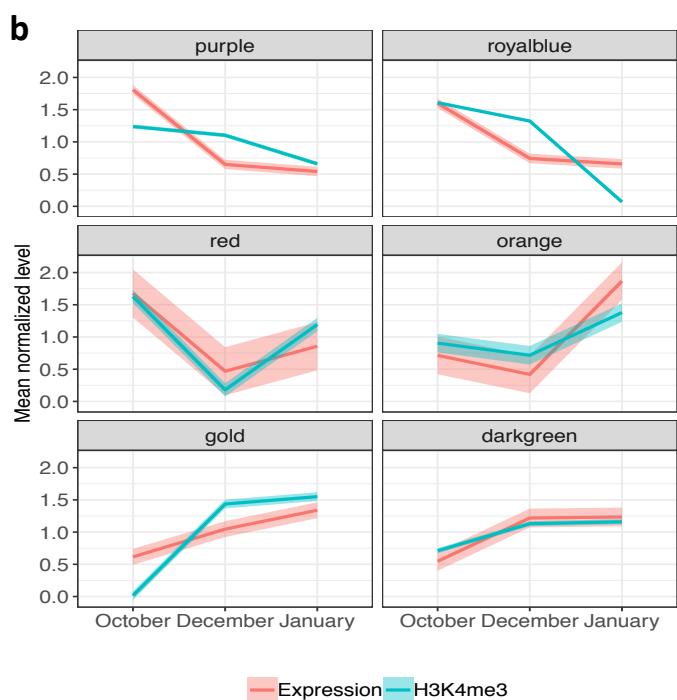
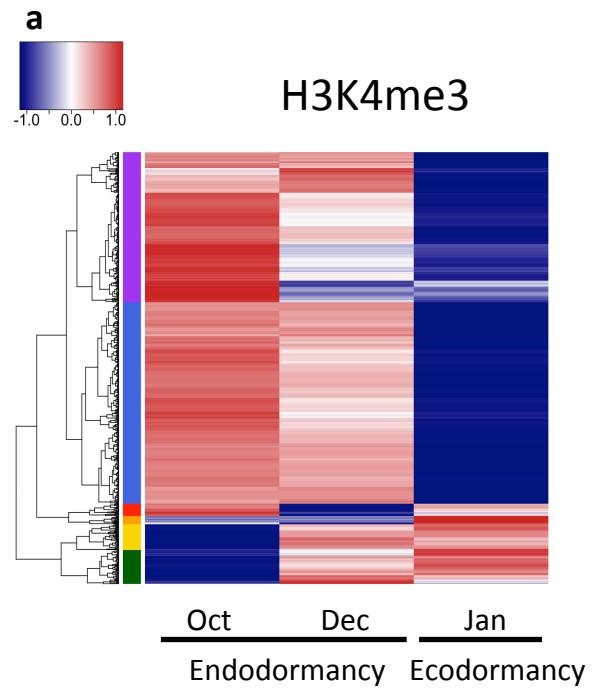
21

22

23

24

25









26

27

28

29

30

1 **Figure 5** Genome wide comparison of H3K4me3 and expression in sweet cherry flower buds in endodormancy and
2 ecodormancy

3 a) Hierarchical clustering of genes showing a change in H3K4me3 level between the time points, based on the Z-score of
4 the normalised H3K4me3 level around the TSS of each gene [Z-score = (signal for a time point - average over all time
5 points)/ STD across all time points]. The result is represented as a heatmap where red indicates a high Z-score and blue a
6 low Z-score. The genes were separated into six clusters, indicated by the side coloured bar.

7 b) Average signal in each time point for genes in clusters showing changes in H3K4me3 over time (identified in figure
8 5a) for expression (red) and H3K4me3 (blue). Mean normalised expression and H3K4me3 levels was used (level in one
9 time-point/ average across the entire time course for a given gene). The standard deviation is also shown as a transparent
10 ribbon.

11 c) Expression level (TPM) and normalised H3K4me3 signal over time for a few individual genes in each of the 6 clusters
12 identified on Figure 5a. Each point represents one biological replicate. Normalised H3K4me3 signal corresponds to the
13 number of H3K4me3 ChIP reads in a 2000bp window around the TSS of each gene normalised by the number of H3
14 ChIP reads in the same window.

15

16

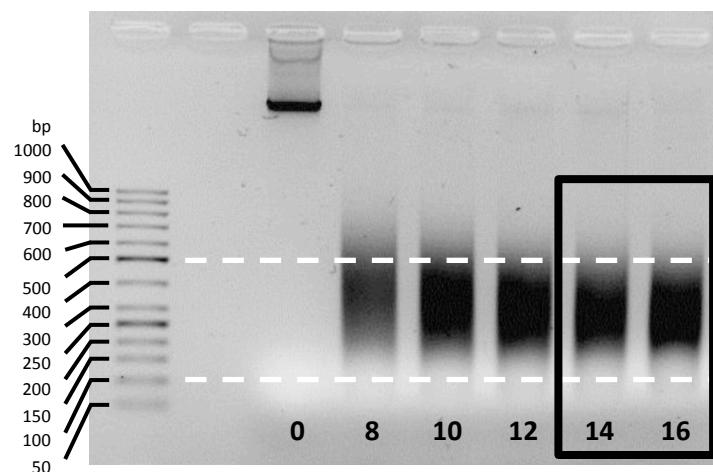
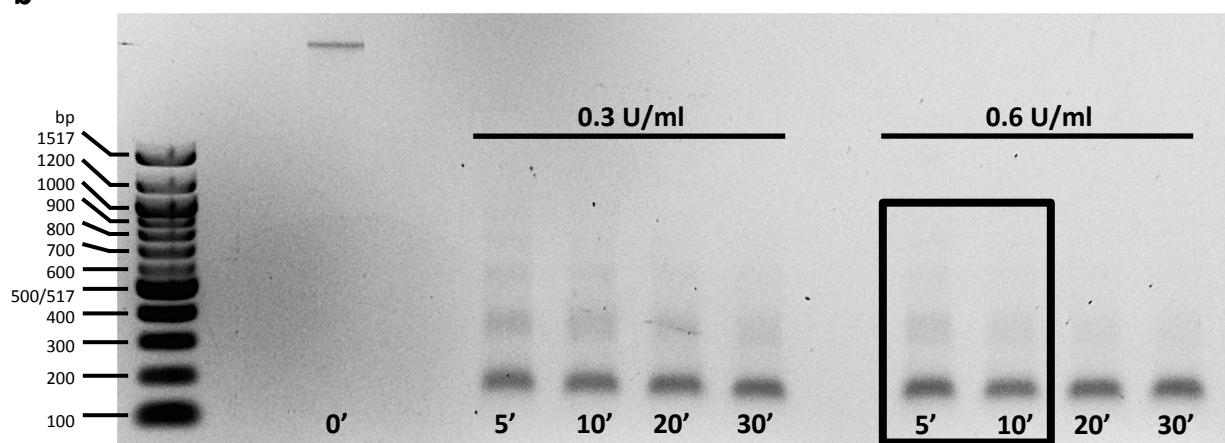
17

18

19

20

21

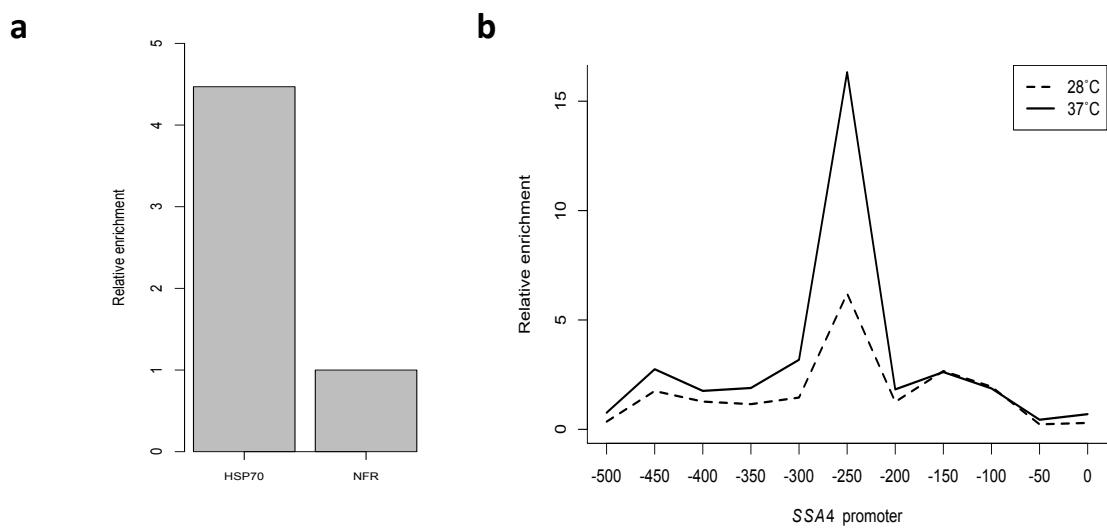


22

23

24

25

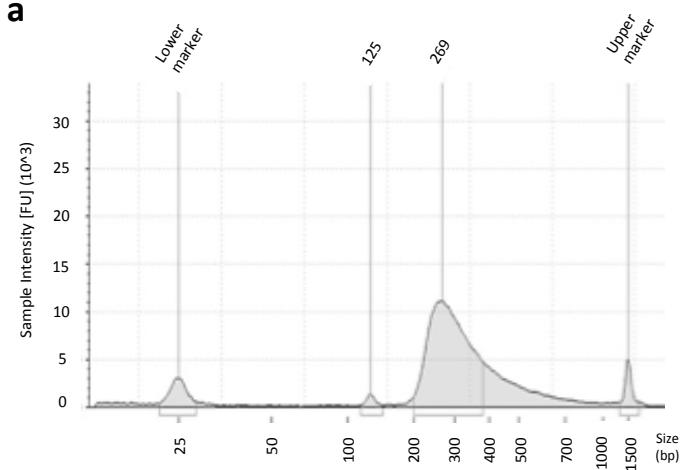
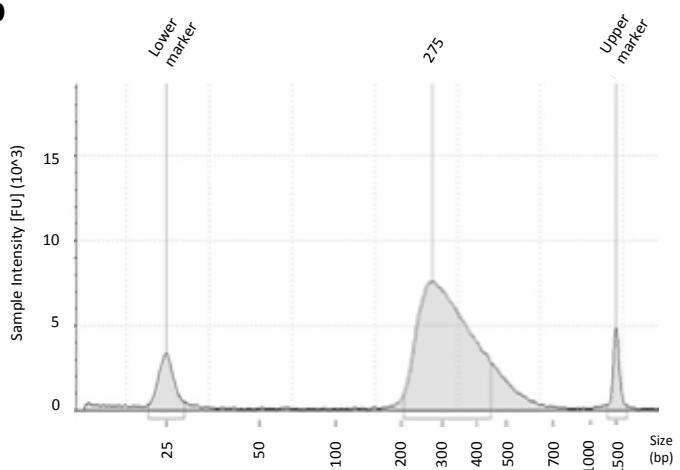
26


a**b**

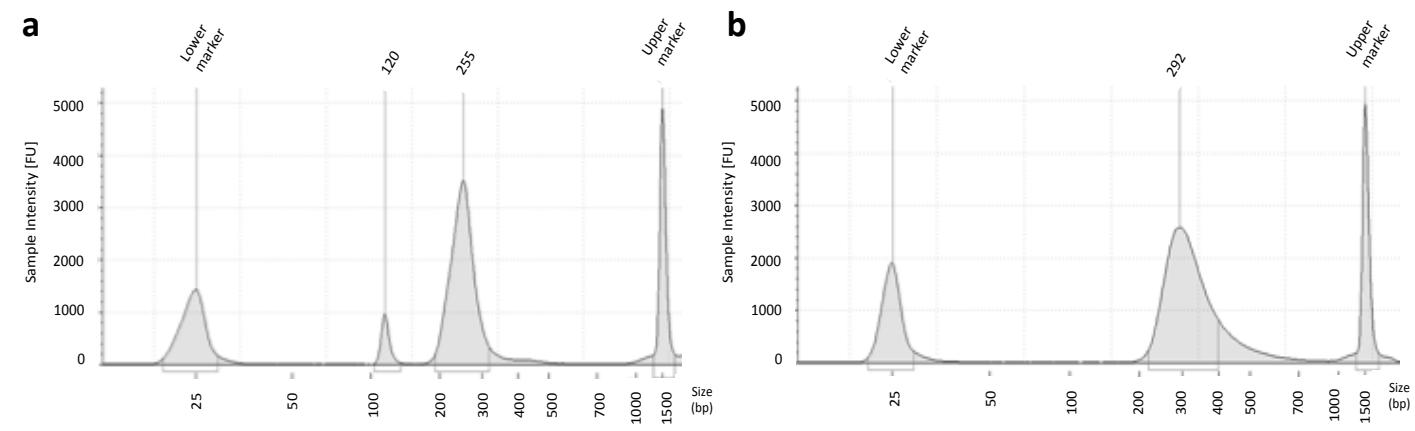
1 **Figure 6** DNA profiles for MNase-digested and sonicated chromatin (*Prunus avium* L.)

2 a) DNA profiles of chromatin fragmented with different numbers of sonication cycles (0-16). The dotted white lines
3 represent the optimal range of DNA fragments size (100-500 bp). Optimal sonication profiles are indicated with the
4 black rectangle.

5 b) DNA profiles of chromatin digested with different concentrations of MNase (0.3 and 0.6 U/ml) for various durations
6 (5, 10, 20 and 30 minutes). Optimal MNase digestion profiles, with ~80% of chromatin in mono-nucleosome form, are
7 indicated with the black rectangle.



8

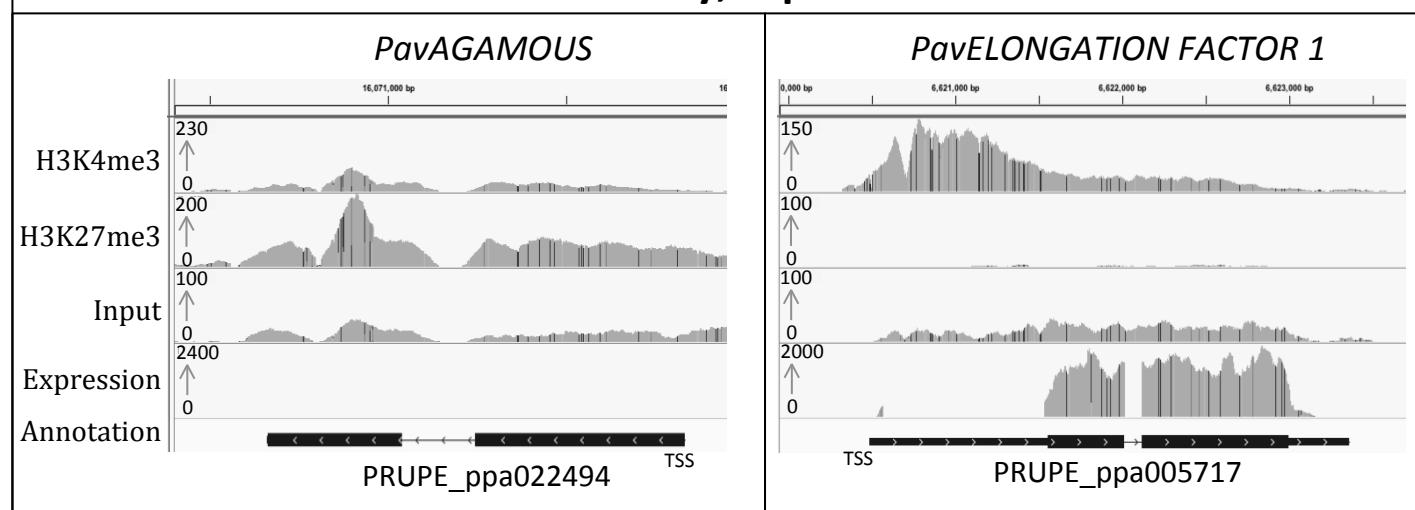
Supplemental figure 1 ChIP results in different biological systems


a) ChIP-qPCR on *Arabidopsis thaliana* seedlings. 7-day-old Col-0 seedlings grown at 22°C were harvested after 15-minute incubation at 17°C and flash frozen. ChIP was performed as outlined in the protocol, with an anti-HTA9 antibody (44). Quantitative PCR was carried out using primers specifically amplifying the genomic region occupied by the +1 nucleosome of the HSP70/AT3G12580 or the upstream nucleosome-free region (NFR). Occupancy is normalised to the input fraction.

b) ChIP-qPCR on *Saccharomyces cerevisiae* (budding yeast). YEF473a cells expressing FLAG \times 3-tagged Hsf1 were grown in YPD medium until mid log phase at 28°C and subjected to 5-minute heat treatment at 37°C, after which they were harvested by centrifugation and flash frozen. ChIP was performed as outlined in the protocol, with an anti-FLAG antibody. Quantitative PCR was carried out using primers specifically amplifying distinct regions of the promoter of Hsf1-target gene SSA4 (denoted as distance from the start of the coding sequence). Occupancy is normalised to the input fraction.

a**b**

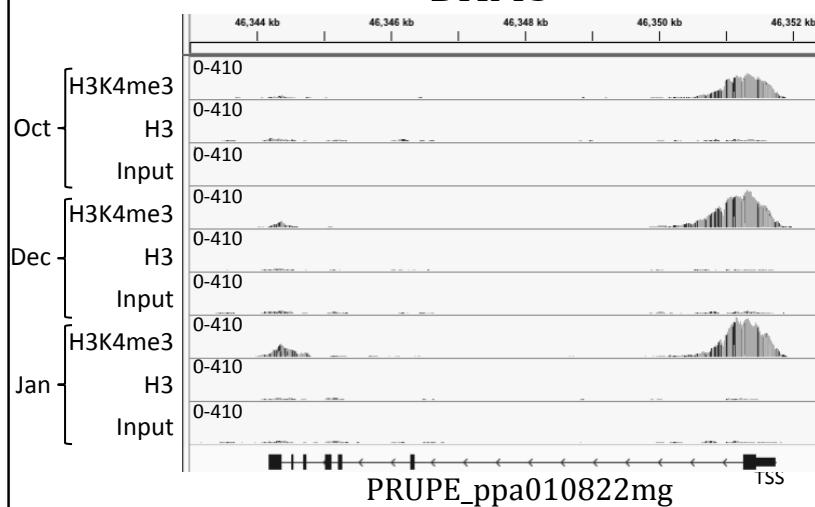
Supplemental figure 2


Example of ChIP-seq library profile with (a) and without (b) adapter contamination. The peak at 125 bp corresponds to adapter contaminations. A size selection using SPRI beads is carried out to remove the adapter contamination prior sequencing. DNA profiles were obtained using TapeStation 4200 (Agilent Genomics).

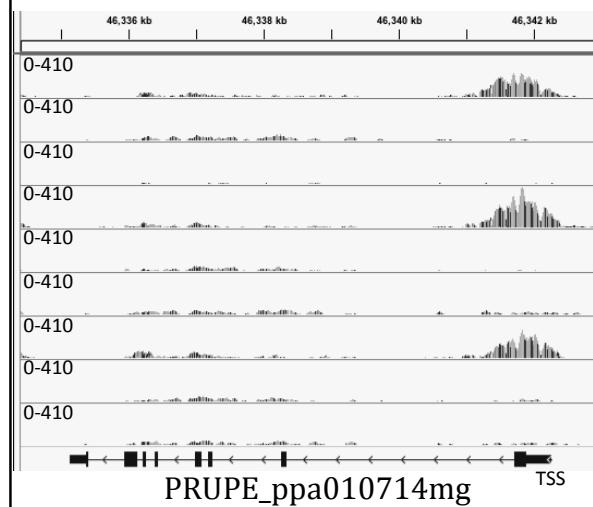
Supplemental figure 3

Example of RNA-seq library profile with (a) and without (b) adapter contamination. The peak at 120 bp corresponds to adapter contaminations. A size selection using SPRI beads is carried out to remove the adapter contamination prior sequencing. DNA profiles were obtained using TapeStation 4200 (Agilent Genomics).

Cherry, rep2

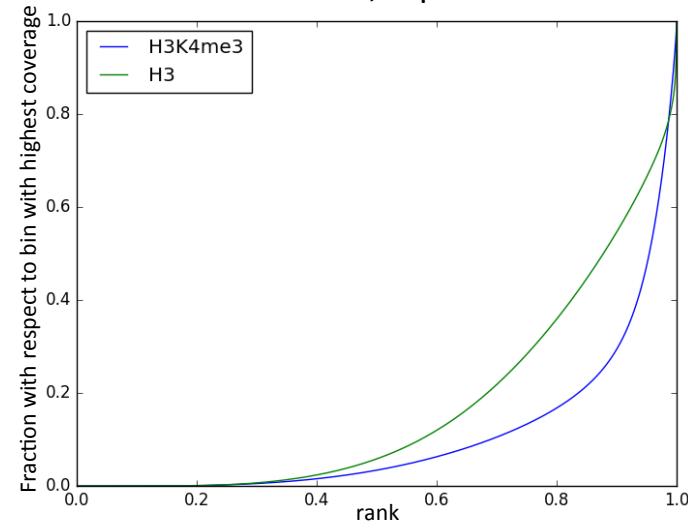


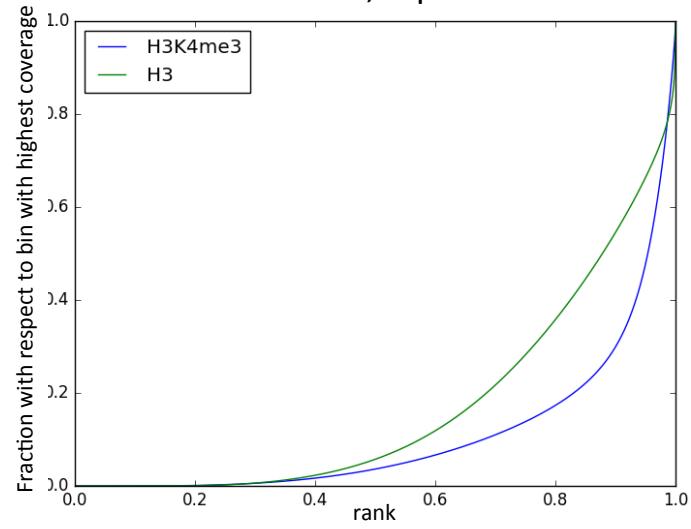
Supplemental figure 4


IGV screenshot of ChIP-seq data for H3K27me3 and H3K4me3 their corresponding input and expression in sweet cherry buds. Replicate 1 is shown in Figure 3c. Genes are represented by black rectangles, with arrows indicating gene directionality and taller boxes within the rectangles representing exons.

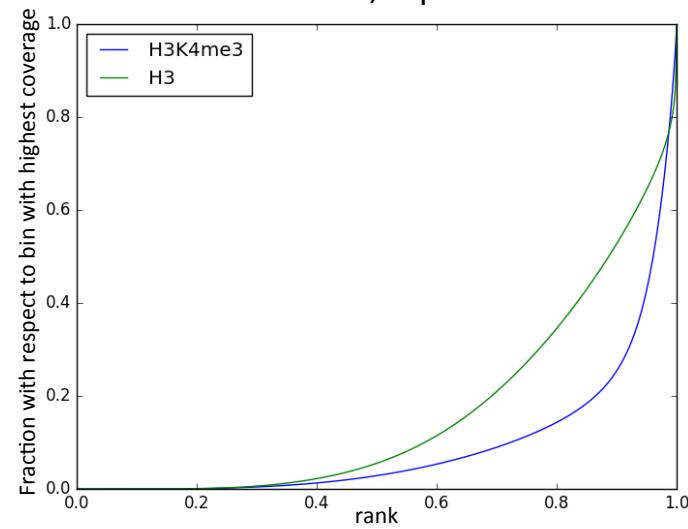
H3K4me3, rep2

DAM5

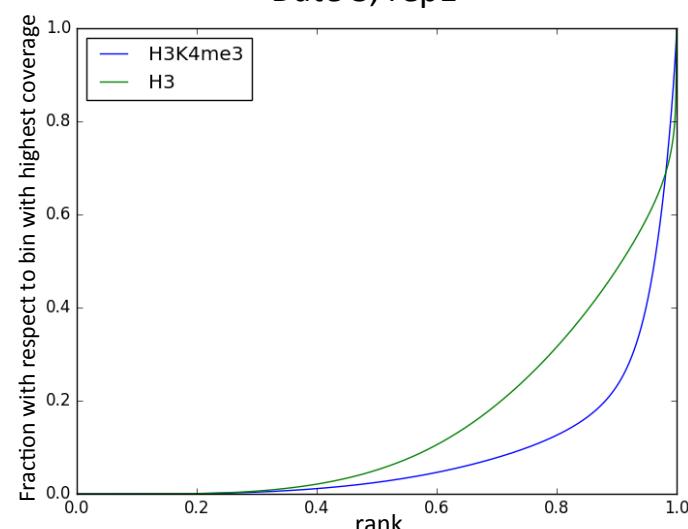

DAM6

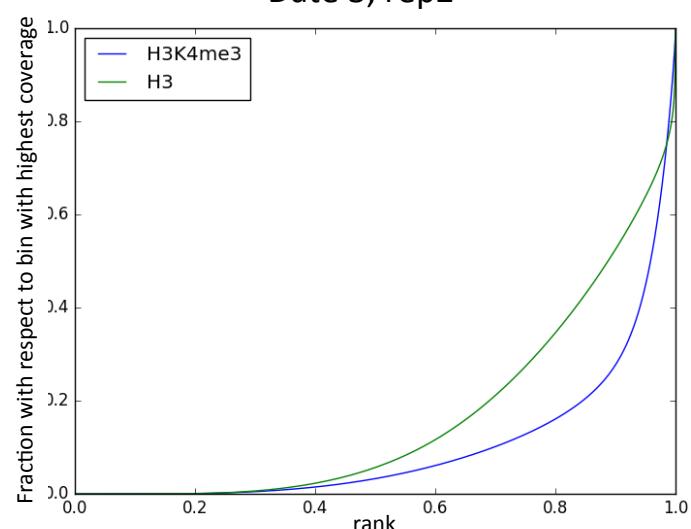

Supplemental figure 5

IGV screenshot of the second biological replicate of ChIP-seq data for H3K4me3 and H3 at three different dates (21st October 2014, 5th December 2014 and 27th January 2015) and their corresponding inputs at *PavDAM5* and *PavDAM6* loci. Replicate 1 is shown in Figure 4c. Genes are represented by black rectangles, with arrows indicating gene directionality and taller boxes within the rectangles representing exons.

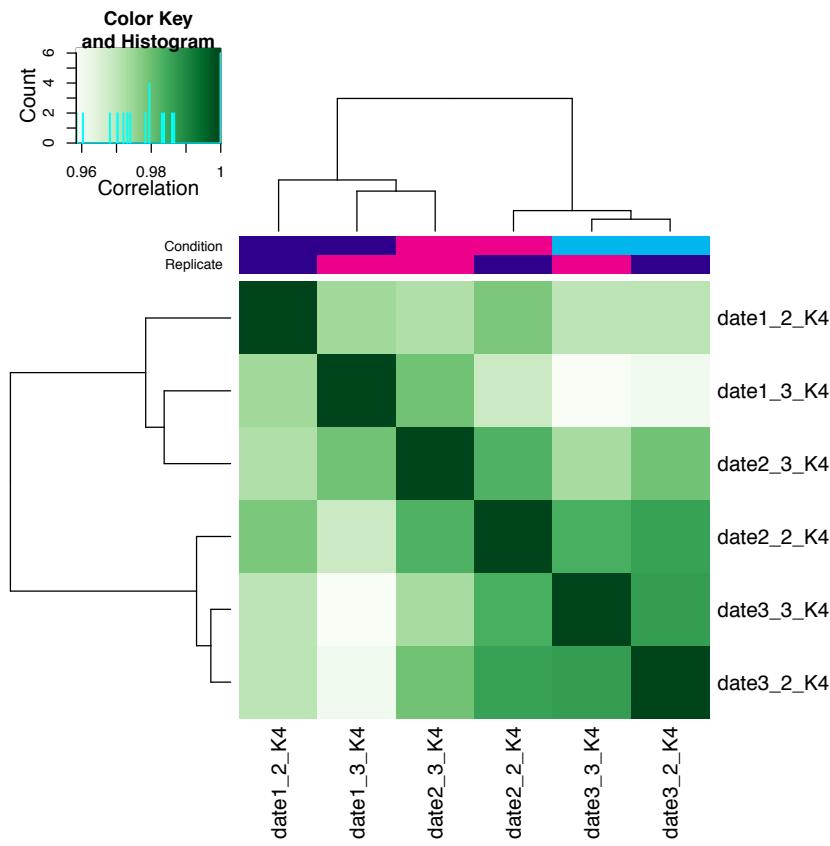

a Date 1, rep1


Date 1, rep2

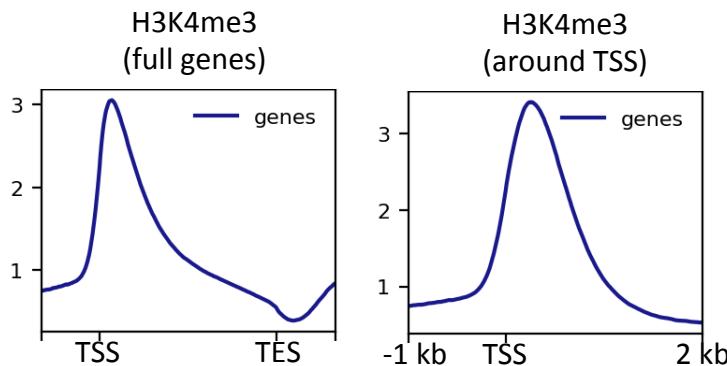
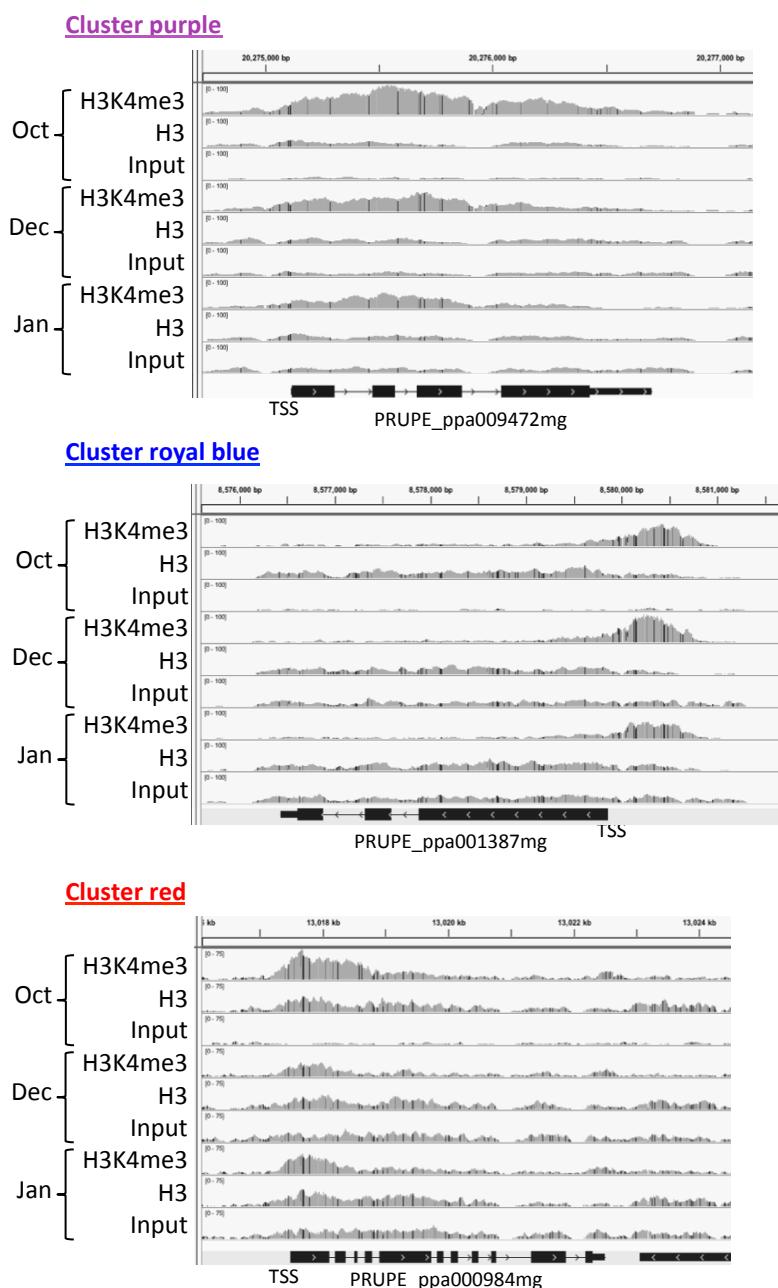

Date 2, rep1


Date 2, rep2

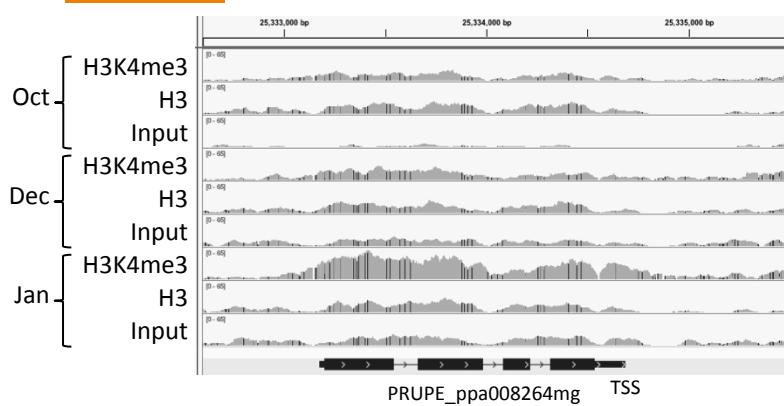
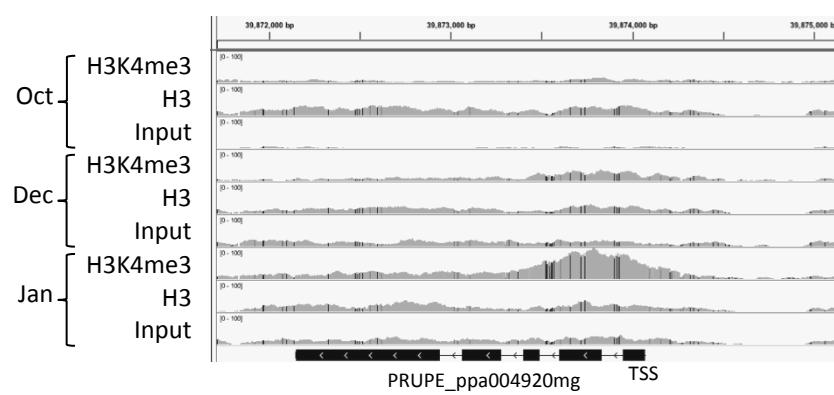
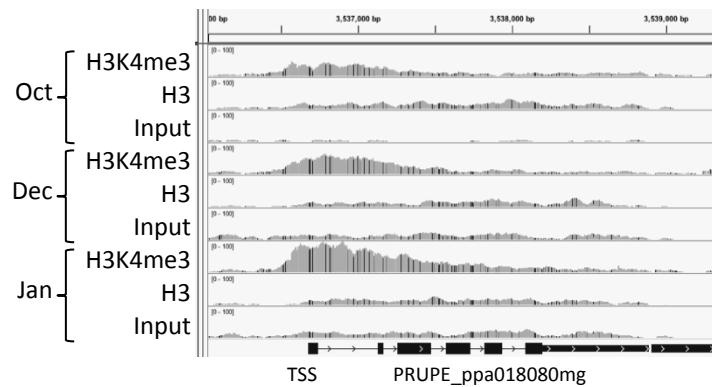
Date 3, rep1



Date 3, rep2

Supplemental figure 6




a) Fingerplots of H3 and H3K4me3 ChIP-seq. Each plot is for a replicate of a time-point.
b) Heatmap of correlation between H3K4me3 ChIP-seq samples. The correlation is based on the H3K4me3 signal around TSS for all genes, normalised by H3.

b**Supplemental figure 6 (continued)**

- a) Fingerplots of H3 and H3K4me3 ChIP-seq. Each plot is for a replicate of a time-point.
- b) Heatmap of correlation between H3K4me3 ChIP-seq samples. The correlation is based on the H3K4me3 signal around TSS for all genes, normalised by H3.

a**b****Supplemental figure 7**

- Average profile of H3K4me3 in the gene body of all genes, or around the TSS of all genes. Based on Cherry tree H3K4me3 ChIP-seq mapped in Peach genome.
- Example of H3K4me3 profile at the three dates for one gene in each of the six clusters.

b**Cluster orange****Cluster gold****Cluster dark green****Supplemental figure 7 (continued)**

- Average profile of H3K4me3 in the gene body of all genes, or around the TSS of all genes. Based on Cherry tree H3K4me3 ChIP-seq mapped in Peach genome.
- Example of H3K4me3 profile at the three dates for one gene in each of the six clusters.