

1 In vitro characterization of multidrug-resistant influenza A(H1N1)pdm09 viruses carrying a
2 dual amino acid substitution associated with reduced susceptibility to neuraminidase
3 inhibitors

4

5 Emi Takashita,^a Seiichiro Fujisaki,^a Masaru Yokoyama,^b Masayuki Shirakura,^a Kazuya
6 Nakamura,^a Tomoko Kuwahara,^a Noriko Kishida,^a Hironori Sato,^b Ikuko Doi,^c Yuji Sato,^d
7 Shinichi Takao,^e Yukie Shimazu,^e Takeshi Shimomura,^f Takuo Ito,^g Shinji Watanabe,^a
8 Takato Odagiri,^a# The Influenza Virus Surveillance Group of Japan^h

9

10 ^aInfluenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan

11 ^bPathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan

12 ^cIbaraki Prefectural Institute of Public Health, Ibaraki, Japan

13 ^dTsukuba Memorial Hospital, Ibaraki, Japan

14 ^eHiroshima Prefectural Technology Research Institute, Hiroshima, Japan

15 ^fHiroshima Nishi Medical Center, Hiroshima, Japan

16 ^gJapan National Hospital Organization Kure Medical Center, Hiroshima, Japan

17 ^hMembers of the Influenza Virus Surveillance Group of Japan are listed in the
18 Acknowledgments section.

19

20 Running Head: Multidrug-resistant influenza A(H1N1)pdm09 virus

21

22 #Address correspondence to Takato Odagiri, todagiri@nih.go.jp.

23 **Abstract**

24 We detected influenza A(H1N1)pdm09 viruses carrying dual H275Y/I223R, H275Y/I223K,
25 or H275Y/G147R substitutions in their neuraminidase protein, respectively. These viruses
26 showed cross-resistance to oseltamivir and peramivir and reduced susceptibility to zanamivir.
27 The H275Y/G147R virus retained its replication capability at least in vitro, but the
28 H275Y/I223R and H275Y/I223K viruses did not.

29

30 **Text**

31 In Japan, four neuraminidase (NA) inhibitors—oseltamivir, peramivir, zanamivir, and
32 laninamivir—are approved for the treatment of influenza. In addition, favipiravir, a viral
33 RNA-dependent RNA polymerase inhibitor, was approved and stockpiled for use against
34 novel influenza virus infections where existing antivirals are ineffective (1). The novel cap-
35 dependent endonuclease inhibitor baloxavir marboxil was approved on 23 February 2018 for
36 the treatment of influenza A and B virus infections and became available in hospitals from
37 14 March 2018 in Japan. Since nationwide monitoring is important for public health planning
38 and clinical management, we have been conducting surveillance of antiviral-resistant viruses.
39 In the 2013–2014 and 2015–2016 influenza seasons, we reported A(H1N1)pdm09 viruses
40 exhibiting enhanced cross-resistance to oseltamivir and peramivir (2-4). These viruses
41 possessed an I223R or a G147R substitution in combination with an H275Y substitution (N1
42 numbering) in their NA protein. In March 2016, we detected another dual H275Y mutant
43 virus carrying an additional I223K substitution in its NA protein.

44 A few dual H275Y mutant viruses have been detected in immunocompromised and
45 immunocompetent patients (5-7). Several studies have been carried out to understand the
46 impact of the H275Y/I223R substitution on viral fitness (8, 9); however, that of the
47 H275Y/I223K and H275Y/G147R viruses remains unknown. Here, we report our assessment
48 of the in vitro properties of the dual H275Y mutant viruses isolated from
49 immunocompromised patients.

50

51 First, we determined the NA inhibitor susceptibility of the dual H275Y mutant viruses by
52 using a fluorescence-based NA assay with the NA-Fluor influenza neuraminidase assay kit
53 (Applied Biosystems, Foster City, CA, USA). Oseltamivir carboxylate, peramivir, and
54 zanamivir were purchased from Carbosynth Ltd. (Berkshire, United Kingdom). Laninamivir
55 was kindly provided by Daiichi Sankyo Co. Ltd. (Tokyo, Japan). The H275Y/I223R,
56 H275Y/I223K, and H275Y/G147R viruses exhibited cross-resistance to oseltamivir and
57 peramivir and reduced susceptibility to zanamivir compared to the single H275Y viruses
58 (Table 1) (3, 4). The H275Y/I223R and H275Y/I223K viruses, but not the H275Y/G147R
59 virus, showed reduced susceptibility to laninamivir.

60 We then analyzed representative single H275Y and wild-type viruses from the same genetic
61 clade of each dual mutant virus in the same season (Table 2). The single H275Y and wild-
62 type viruses possessed almost the same gene sequences as the dual mutant viruses except the
63 dual substitutions in the NA. Statistical analyses were performed using GraphPad Prism
64 version 6.0 for Mac OS X (GraphPad Software, La Jolla, CA, US). Statistically significant
65 differences between groups were determined by using the Student's t-test or Welch's t-test

66 on the result of the F-test. P values of <0.05 were considered statistically significant. All
67 viruses tested were susceptible to favipiravir and no significant differences in susceptibility
68 were found among the viruses (Table 2). Favipiravir was provided by Toyama Chemical Co.
69 Ltd (Toyama, Japan).

70 The NA activity of the H275Y/I223R and H275Y/I223K viruses was reduced compared with
71 that of wild-type virus, consistent with a previous study (Figure 1A–C) (8). The
72 H275Y/G147R virus showed comparable NA activity to that of the wild-type virus. These
73 results suggest that the H275Y/I223R and H275Y/I223K substitutions are associated with a
74 reduction in NA activity but that the H275Y/G147R substitution is not.

75 The impact of the dual substitutions on viral growth was assessed using MDCK-AX4 cells
76 (10), which overexpress the β -galactoside α 2,6-sialyltransferase I gene (Figure 1D–F).
77 MDCK-AX4 cells were kindly provided by Yoshihiro Kawaoka (University of Wisconsin,
78 Madison, WI, US). Viral titres of the H275Y/I223R virus were comparable to those of the
79 wild-type virus as previously described (9). The replication of the H275Y/I223K virus was
80 significantly reduced compared with that of the single H275Y and the wild-type viruses. The
81 H275Y/G147R and the wild-type viruses had comparable viral titres after 36 h post-infection,
82 although the dual mutant virus replicated more efficiently than the wild-type virus during the
83 initial cycle of infection. These results suggest that the H275Y/I223K substitutions
84 negatively affected viral growth in vitro but that the H275Y/I223R and H275Y/G147R
85 substitutions did not.

86 The competitive growth capability of each single or dual H275Y mutant virus with that of
87 the wild-type virus was compared as previously described (Figure 2) (11). The proportion of

88 the H275Y/I223R (Figure 2D) and H275Y/I223K (Figure 2E) viruses and their
89 corresponding single H275Y viruses (Figures 2A and 2B) to that of wild-type viruses
90 decreased significantly. However, the proportion of the single H275Y virus corresponding to
91 the H275Y/G147R virus was comparable to that of wild-type virus (Figure 2C). Furthermore,
92 the H275Y/G147R virus rapidly became dominant in the mixed virus populations at passages
93 1 and 2 (Figure 2F). These results indicate that the H275Y/G147R virus retained comparable
94 growth ability to that of the wild-type virus, at least in vitro.

95 To assess the potential effect of the amino acid substitutions on the stability of the NA, we
96 performed an in silico mutagenesis study as previously described (11). The changes in
97 stability caused by each of the substitutions I223R, I223K, and G147R were 1.32, 3.29, and
98 -2.72 kcal/mol, respectively. The I223R and I223K substitutions were predicted to destabilise
99 the NA structure, whereas the G147R substitution was predicted to stabilise the NA, which
100 suggests that the G147R substitution compensates for structural disadvantages caused by the
101 H275Y substitution (12).

102

103 The emergence of multidrug-resistant variants in patients treated with antiviral agents is a
104 concern. The dual H275Y/I223R, H275Y/I223K, and H275Y/G147R viruses exhibited
105 cross-resistance to oseltamivir and peramivir and reduced susceptibility to zanamivir. The
106 patient who was infected with the H275Y/I223R virus recovered after laninamivir treatment;
107 however, the other two died despite treatment with oseltamivir, peramivir and/or laninamivir.
108 The dual H275Y mutant viruses were susceptible to favipiravir, suggesting that favipiravir
109 could be a treatment option against these multidrug-resistant viruses.

110 The NA enzymatic active site includes catalytic residues that interact directly with the sialic
111 acid substrate and framework residues that stabilize the active site (13). Residue 223 is
112 located within the framework, and different substitutions at this position have different
113 effects on NA inhibitor susceptibility (14). Residue 147 is located in a 150-loop, which are
114 adjacent to the NA active site (2, 3). The G147R substitution may alter the conformation of
115 the 150-loop due to the larger size and positive charge of the side chain, negatively affecting
116 the binding of NA inhibitors (2, 3). In this study, the NA activity of the H275Y/I223R and
117 H275Y/I223K viruses was significantly reduced, whereas the H275Y/G147R virus retained
118 its NA activity. These differences may be explained by the positions of amino acids, inside
119 or outside, the NA active site.

120 The single H275Y virus corresponding to the H275Y/G147R virus showed significantly
121 increased NA activity, but reduced growth capability compared to the wild-type virus.
122 However, the NA activity and growth capability of the H275Y/G147R virus was comparable
123 to that of the wild-type virus. An optimal balance between hemagglutinin (HA) receptor-
124 binding and NA enzymatic activities is important for growth and transmissibility of influenza
125 viruses (15-17). Mismatched HA and NA pairs can be rescued by amino acid substitutions
126 that compensate for increased or decreased activities (18). Thus, the introduction of the
127 G147R substitution into the H275Y mutant NA may compensate for the high NA activity,
128 resulting in the restoration of viral growth.

129 Our structural analysis predicts that the I223R and I223K substitutions destabilise the NA
130 structure, but the stability score for I223R was lower than that for I223K. These results

131 suggest that an NA with the I223R substitution is more stable than an NA with the I223K
132 substitution.

133 Hooper et al. reported that the G147R substitution confers receptor-binding activity to the
134 NA proteins and moderate resistance to neutralization by the Fab of a monoclonal antibody
135 against the HA receptor-binding pocket (19). In this study, we showed that the
136 H275Y/G147R virus retained its replication capability at least in vitro. In fact, the patient
137 infected with the H275Y/G147R virus developed pneumonia without isolation of bacterial
138 pathogens, suggesting viral pneumonia with this dual mutant virus (3).

139 The multidrug-resistant viruses carrying the dual H275Y substitution were detected in
140 immunocompromised patients after prolonged treatment with one or more NA inhibitors.
141 Therefore, the emergence of resistant viruses during NA inhibitor administration should be
142 closely monitored to improve clinical management. Furthermore, the surveillance of
143 antiviral-resistant viruses should be continued to protect public health.

144

145 **Acknowledgments**

146 We thank Rie Ogawa, Hideka Miura, Miki Akimoto, Aya Sato, Kayo Watanabe, and Hiromi
147 Sugawara for technical assistance. We also thank Susan Watson for scientific editing.

148 This work was supported by a Grant-in-Aid for Emerging and Reemerging Infectious
149 Diseases from the Ministry of Health, Labour and Welfare, Japan (grant no. 10110400) and
150 by JSPS KAKENHI Grant number 18K10036.

151

152 Members of the Influenza Virus Surveillance Group of Japan are Rika Komagome (Hokkaido
153 Institute of Public Health), Asami Ohnishi (Sapporo City Institute of Public Health), Rika
154 Tsutsui (Aomori Prefectural Public Health and Environment Center), Masaki Takahashi
155 (Iwate Prefectural Research Institute for Environmental Sciences and Public Health), Yuko
156 Suzuki (Miyagi Prefectural Institute of Public Health and Environment), Makiko Ushimizu
157 (Sendai City Institute of Public Health), Chihiro Shibata (Akita Prefectural Research Center
158 for Public Health and Environment), Shizuka Tanaka (Yamagata Prefectural Institute of
159 Public Health), Yoshiko Kashiwagi (Fukushima Prefectural Institute of Public Health), Chika
160 Hirokawa (Niigata Prefectural Institute of Public Health and Environmental Sciences),
161 Kazunari Yamamoto (Niigata City Institute of Public Health and Environment), Takako
162 Suzuki (Tochigi Prefectural Institute of Public Health and Environmental Sciences),
163 Shunsuke Kataoka (Utsunomiya City Institute of Public Health and Environment Science),
164 Hiroyuki Tsukagoshi (Gunma Prefectural Institute of Public Health and Environmental
165 Sciences), Noriko Suzuki (Saitama Institute of Public Health), Yuka Uno (Saitama City
166 Institute of Health Science and Research), Noriko Oitate (Chiba Prefectural Institute of
167 Public Health), Wakako Nishikawa (Chiba City Institute of Health and Environment),
168 Sachiko Harada (Tokyo Metropolitan Institute of Public Health), Sumi Watanabe (Kanagawa
169 Prefectural Institute of Public Health), Chiharu Kawakami (Yokohama City Institute of
170 Public Health), Hideaki Shimizu (Kawasaki City Institute of Public Health), Hazime Amano
171 (Yokosuka Institute of Public Health), Sayoko Arakawa (Sagamihara City Institute of Public
172 Health), Masayuki Oonuma (Yamanashi Institute for Public Health), Michiko Takeuchi
173 (Nagano Environmental Conservation Research Institute), Yuichiro Okamura (Nagano City

174 Health Center), Yukiko Sakai (Shizuoka Institute of Environment and Hygiene), Takaharu
175 Maehata (Shizuoka City Institute of Environmental Sciences and Public Health), Toshihiko
176 Furuta (Hamamatsu City Health Environment Research Center), Masatsugu Obuchi (Toyama
177 Institute of Health), Hiroe Kodama (Ishikawa Prefectural Institute of Public Health and
178 Environmental science), Kaori Sato (Fukui Prefectural Institute of Public Health and
179 Environmental Science), Masahiro Nishioka (Gifu Prefectural Research Institute for Health
180 and Environmental Sciences), Yusuke Sato (Gifu Municipal Institute of Public Health),
181 Yoshihiro Yasui (Aichi Prefectural Institute of Public Health), Takuya Yano (Mie Prefecture
182 Health and Environment Research Institute), Hiromi Kodama (Shiga Prefectural Institute of
183 Public Health), Akiko Nagasao (Kyoto City Institute of Health and Environmental Sciences),
184 Satoshi Hiroi and Hideyuki Kubo (Osaka Institute of Public Health), Fumika Okayama
185 (Sakai City Institute of Public Health), Tomohiro Oshibe (Hyogo Prefectural Institute of
186 Public Health and Consumer Sciences), Ai Mori (Kobe Institute of Health), Misako Fujitani
187 (Nara Prefecture Institute of Health), Yuki Matsui (Wakayama Prefectural Research Center
188 of Environment and Public Health), Hidenobu Ekawa (Wakayama City Institute of Public
189 Health), Nobuyuki Kato (Tottori Prefectural Institute of Public Health and Environmental
190 Science), Tetsuo Mita (Shimane Prefectural Institute of Public Health and Environmental
191 Science), Yasuhiro Matsuoka (Okayama Prefectural Institute for Environmental Science and
192 Public Health), Miwako Yamamoto (Hiroshima City Institute of Public Health), Shoichi
193 Toda (Yamaguchi Prefectural Institute of Public Health and Environment), Yumiko
194 Kawakami (Tokushima Prefectural Public Health, Pharmaceutical and Environmental
195 Sciences Center), Yukari Terajima (Kagawa Prefectural Research Institute for

196 Environmental Sciences and Public Health), Akie Ochi (Ehime Prefecture Institute of Public
197 Health and Environmental Science), Noriko Yorimitsu (Kochi Public Health and Sanitation
198 Institute), Yuki Ashizuka (Fukuoka Institute of Health and Environmental Sciences), Shuichi
199 Zaitsu (Fukuoka City Institute of Health and Environment), Takashi Kimura (Kitakyushu
200 City Institute of Health and Environmental Sciences), Katsuyuki Ando (Saga Prefectural
201 Institute of Public Health and Pharmaceutical Research), Kana Miura (Nagasaki Prefectural
202 Institute for Environment Research and Public Health), Kenta Yoshioka (Kumamoto
203 Prefectural Institute of Public-Health and Environmental Science), Kaori Nishizawa
204 (Kumamoto City Environmental Research Center), Miki Kato (Oita Prefectural Institute of
205 Health and Environment), Miho Miura (Miyazaki Prefectural Institute for Public Health and
206 Environment), Yuka Iwamoto (Kagoshima Prefectural Institute for Environmental Research
207 and Public Health), and Yumani Kuba (Okinawa Prefectural Institute of Health and
208 Environment).

209

210 **References**

- 211 1. Takashita E, Ejima M, Ogawa R, Fujisaki S, Neumann G, Furuta Y, Kawaoka Y,
212 Tashiro M, Odagiri T. 2016. Antiviral susceptibility of influenza viruses isolated
213 from patients pre- and post-administration of favipiravir. *Antiviral Res* 132:170-7.
- 214 2. Gubareva LV, Besselaar TG, Daniels RS, Fry A, Gregory V, Huang W, Hurt AC,
215 Jorquera PA, Lackenby A, Leang SK, Lo J, Pereyaslov D, Rebelo-de-Andrade H,
216 Siqueira MM, Takashita E, Odagiri T, Wang D, Zhang W, Meijer A. 2017. Global

217 update on the susceptibility of human influenza viruses to neuraminidase inhibitors,
218 2015-2016. *Antiviral Res* 146:12-20.

219 3. Takashita E, Fujisaki S, Shirakura M, Nakamura K, Kishida N, Kuwahara T,
220 Shimazu Y, Shimomura T, Watanabe S, Odagiri T. 2016. Influenza
221 A(H1N1)pdm09 virus exhibiting enhanced cross-resistance to oseltamivir and
222 peramivir due to a dual H275Y/G147R substitution, Japan, March 2016. *Euro*
223 *Surveill* 21.

224 4. Takashita E, Meijer A, Lackenby A, Gubareva L, Rebelo-de-Andrade H, Besselaar
225 T, Fry A, Gregory V, Leang SK, Huang W, Lo J, Pereyaslov D, Siqueira MM,
226 Wang D, Mak GC, Zhang W, Daniels RS, Hurt AC, Tashiro M. 2015. Global
227 update on the susceptibility of human influenza viruses to neuraminidase inhibitors,
228 2013-2014. *Antiviral Res* 117:27-38.

229 5. Anonymous. 2009. Oseltamivir-resistant 2009 pandemic influenza A (H1N1) virus
230 infection in two summer campers receiving prophylaxis--North Carolina, 2009.
231 *MMWR Morb Mortal Wkly Rep* 58:969-72.

232 6. Nguyen HT, Fry AM, Loveless PA, Klimov AI, Gubareva LV. 2010. Recovery of a
233 multidrug-resistant strain of pandemic influenza A 2009 (H1N1) virus carrying a
234 dual H275Y/I223R mutation from a child after prolonged treatment with
235 oseltamivir. *Clin Infect Dis* 51:983-4.

236 7. Nguyen HT, Trujillo AA, Sheu TG, Levine M, Mishin VP, Shaw M, Ades EW,
237 Klimov AI, Fry AM, Gubareva LV. 2012. Analysis of influenza viruses from

238 patients clinically suspected of infection with an oseltamivir resistant virus during
239 the 2009 pandemic in the United States. *Antiviral Res* 93:381-6.

240 8. LeGoff J, Rousset D, Abou-Jaoude G, Scemla A, Ribaud P, Mercier-Delarue S,
241 Caro V, Enouf V, Simon F, Molina JM, van der Werf S. 2012. I223R mutation in
242 influenza A(H1N1)pdm09 neuraminidase confers reduced susceptibility to
243 oseltamivir and zanamivir and enhanced resistance with H275Y. *PLoS One*
244 7:e37095.

245 9. Pizzorno A, Abed Y, Bouhy X, Beaulieu E, Mallett C, Russell R, Boivin G. 2012.
246 Impact of mutations at residue I223 of the neuraminidase protein on the resistance
247 profile, replication level, and virulence of the 2009 pandemic influenza virus.
248 *Antimicrob Agents Chemother* 56:1208-14.

249 10. Hatakeyama S, Sakai-Tagawa Y, Kiso M, Goto H, Kawakami C, Mitamura K,
250 Sugaya N, Suzuki Y, Kawaoka Y. 2005. Enhanced expression of an alpha2,6-linked
251 sialic acid on MDCK cells improves isolation of human influenza viruses and
252 evaluation of their sensitivity to a neuraminidase inhibitor. *J Clin Microbiol*
253 43:4139-46.

254 11. Takashita E, Kiso M, Fujisaki S, Yokoyama M, Nakamura K, Shirakura M, Sato H,
255 Odagiri T, Kawaoka Y, Tashiro M. 2015. Characterization of a large cluster of
256 influenza A(H1N1)pdm09 viruses cross-resistant to oseltamivir and peramivir
257 during the 2013-2014 influenza season in Japan. *Antimicrob Agents Chemother*
258 59:2607-17.

259 12. Hurt AC, Hardie K, Wilson NJ, Deng YM, Osbourn M, Leang SK, Lee RT,
260 Iannello P, Gehrig N, Shaw R, Wark P, Caldwell N, Givney RC, Xue L, Maurer-
261 Stroh S, Dwyer DE, Wang B, Smith DW, Levy A, Booy R, Dixit R, Merritt T,
262 Kelso A, Dalton C, Durrheim D, Barr IG. 2012. Characteristics of a widespread
263 community cluster of H275Y oseltamivir-resistant A(H1N1)pdm09 influenza in
264 Australia. *J Infect Dis* 206:148-57.

265 13. Colman PM, Hoyne PA, Lawrence MC. 1993. Sequence and structure alignment of
266 paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase.
267 *Journal of Virology* 67:2972-2980.

268 14. Samson M, Pizzorno A, Abed Y, Boivin G. 2013. Influenza virus resistance to
269 neuraminidase inhibitors. *Antiviral Res* 98:174-85.

270 15. Lakdawala SS, Lamirande EW, Sugitan AL, Jr., Wang W, Santos CP, Vogel L,
271 Matsuoka Y, Lindsley WG, Jin H, Subbarao K. 2011. Eurasian-origin gene
272 segments contribute to the transmissibility, aerosol release, and morphology of the
273 2009 pandemic H1N1 influenza virus. *PLoS Pathog* 7:e1002443.

274 16. Xu R, Zhu X, McBride R, Nycholat CM, Yu W, Paulson JC, Wilson IA. 2012.
275 Functional balance of the hemagglutinin and neuraminidase activities accompanies
276 the emergence of the 2009 H1N1 influenza pandemic. *J Virol* 86:9221-32.

277 17. Yen HL, Liang CH, Wu CY, Forrest HL, Ferguson A, Choy KT, Jones J, Wong
278 DD, Cheung PP, Hsu CH, Li OT, Yuen KM, Chan RW, Poon LL, Chan MC,
279 Nicholls JM, Krauss S, Wong CH, Guan Y, Webster RG, Webby RJ, Peiris M.
280 2011. Hemagglutinin-neuraminidase balance confers respiratory-droplet

281 transmissibility of the pandemic H1N1 influenza virus in ferrets. Proc Natl Acad Sci
282 U S A 108:14264-9.

283 18. Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D,
284 Kawaoka Y. 2000. Balanced hemagglutinin and neuraminidase activities are critical
285 for efficient replication of influenza A virus. J Virol 74:6015-20.

286 19. Hooper KA, Crowe JE, Jr., Bloom JD. 2015. Influenza viruses with receptor-
287 binding N1 neuraminidases occur sporadically in several lineages and show no
288 attenuation in cell culture or mice. J Virol 89:3737-45.

289

290 **Figure legends**

291 FIG 1 (A–C) Neuraminidase (NA) activities of the dual H275Y mutant influenza
292 A(H1N1)pdm09 viruses. Serial 2-fold dilutions of viruses beginning at infectious doses of
293 7.5×10^5 PFU/mL were subjected to the fluorescence-based NA assay in triplicate. The
294 relative NA activities, normalized to that of the wild-type virus, are shown. Means and
295 standard deviations are shown. (D–F) In vitro replication kinetics of the dual H275Y mutant
296 influenza A(H1N1)pdm09 viruses. Confluent monolayers of MDCK-AX4 cells were
297 infected in triplicate with viruses at a multiplicity of infection of 0.001 PFU/cell. The culture
298 fluids were harvested at the indicated time points and were subjected to virus titration by
299 using plaque assays in MDCK-AX4 cells. Means and standard deviations are shown. Wild-
300 type: A/Sakai/23/2013 (A, D), A/Yokohama/40/2016 (B, E), or A/Yokohama/59/2016 (C,
301 F); H275Y: A/Osaka/8/2014 (A, D), A/Yokohama/94/2016 (B, E), or A/Aichi/83/2016 (C,
302 F).

303

304 FIG 2 Competitive growth capabilities of the dual H275Y mutant influenza A(H1N1)pdm09
305 and wild-type viruses. MDCK-AX4 cells were coinfecte^d in triplicate with the single H275Y
306 (A–C), dual H275Y/I223R, H275Y/I223K, or H275Y/G147R (D–F) mutant virus and with
307 the corresponding wild-type virus at a multiplicity of infection of 0.01 PFU/cell. At 2 days
308 post-infection, the culture fluid was subjected to virus titration by using plaque assays in
309 MDCK-AX4 cells and to deep sequencing analysis to determine the relative proportion of
310 each genotype. The viruses were serially passaged 3–4 times at a multiplicity of infection of
311 0.01 PFU/cell. The error bars indicate the standard deviations. Wild-type: A/Sakai/23/2013
312 (A, D), A/Yokohama/40/2016 (B, E), or A/Yokohama/59/2016 (C, F); H275Y:
313 A/Osaka/8/2014 (A), A/Yokohama/94/2016 (B), or A/Aichi/83/2016 (C).

314

315 **Tables**

316 TABLE 1 Susceptibility to neuraminidase inhibitors of H275Y dual mutant influenza
317 A(H1N1)pdm09 viruses detected in Japan

Influenza season	Virus	NA substitution	IC ₅₀ [*] , nM (fold-change [†])			
			Oseltamivir	Peramivir	Zanamivir	Laninamivir
2013-2014	A/Hiroshima/57/2014 (H275Y/I223R dual mutant)	H275Y/I223R	6263.69 (30,000)	944.20 (16,000)	4.84 (21)	4.48 (15)
	H275Y single mutant (n=40)	H275Y	173.80±90.15 (830)	22.58±29.51 (380)	0.29±0.13 (1.2)	0.60±0.21 (2.0)
	Wild-type (n=201)	None	0.21±0.23	0.06±0.07	0.23±0.21	0.30±0.25

2015-2016	A/Ibaraki/54/2016 (H275Y/I223K dual mutant)	H275Y/I223K	10161.87 (21,000)	501.62 (6,300)	2.48 (8.3)	1.94 (6.9)
	A/Hiroshima/13/2016 (H275Y/G147R dual mutant)	H275Y/G147R	1324.62 (2,700)	114.14 (1,400)	1.56 (5.2)	0.37 (1.3)
	H275Y single mutant (n=34)	H275Y	474.24±85.55 (970)	22.60±4.95 (280)	0.35±0.11 (1.2)	0.80±0.24 (2.9)
	Wild-type (n=256)	None	0.49±0.34	0.08±0.04	0.30±0.13	0.28±0.20

318 NA: neuraminidase; IC₅₀: drug concentration required to inhibit NA activity by 50%.

319 *IC₅₀ values were determined by using a fluorescent NA inhibition assay. The values are
320 presented as the median ± SD.

321 †Fold change in IC₅₀ values compared with the median IC₅₀ values of wild-type viruses in
322 the same influenza season.

323

324 TABLE 2 Influenza A(H1N1)pdm09 viruses used in this study

Virus	GISAID Isolate ID	HA genetic clade	NA substitution	Favipiravir susceptibility EC ₅₀ *, μM
A/Hiroshima/57/2014 (H275Y/I223R dual mutant)	EPI_ISL_160499		H275Y/I223R	7.99±0.66
A/Osaka/8/2014 (H275Y single mutant)	EPI_ISL_155839	6B	H275Y	4.76±0.94
A/Sakai/23/2013 (Wild-type)	EPI_ISL_154461		None	6.64±0.84
A/Ibaraki/54/2016 (H275Y/I223K dual mutant)	EPI_ISL_221789	6B.1	H275Y/I223K	10.20±3.94

A/Yokohama/94/2016 (H275Y single mutant)	EPI_ISL_218900	H275Y	21.40±0.71
A/Yokohama/40/2016 (Wild-type)	EPI_ISL_217919	None	10.01±2.56
A/Hiroshima/13/2016 (H275Y/G147R dual mutant)	EPI_ISL_220376	H275Y/G147R	15.13±1.88
A/Aichi/83/2016 (H275Y single mutant)	EPI_ISL_233222	6B.2	H275Y
A/Yokohama/59/2016 (Wild-type)	EPI_ISL_217920	None	14.83±0.56
			8.81±1.91

325 GISAID: Global Initiative on Sharing All Influenza Data; HA: hemagglutinin; NA:
326 neuraminidase; EC₅₀: 50% effective concentration.
327 *EC₅₀ values were determined by using a cytopathic effect reduction assay. The values are
328 presented as the mean ± SD.

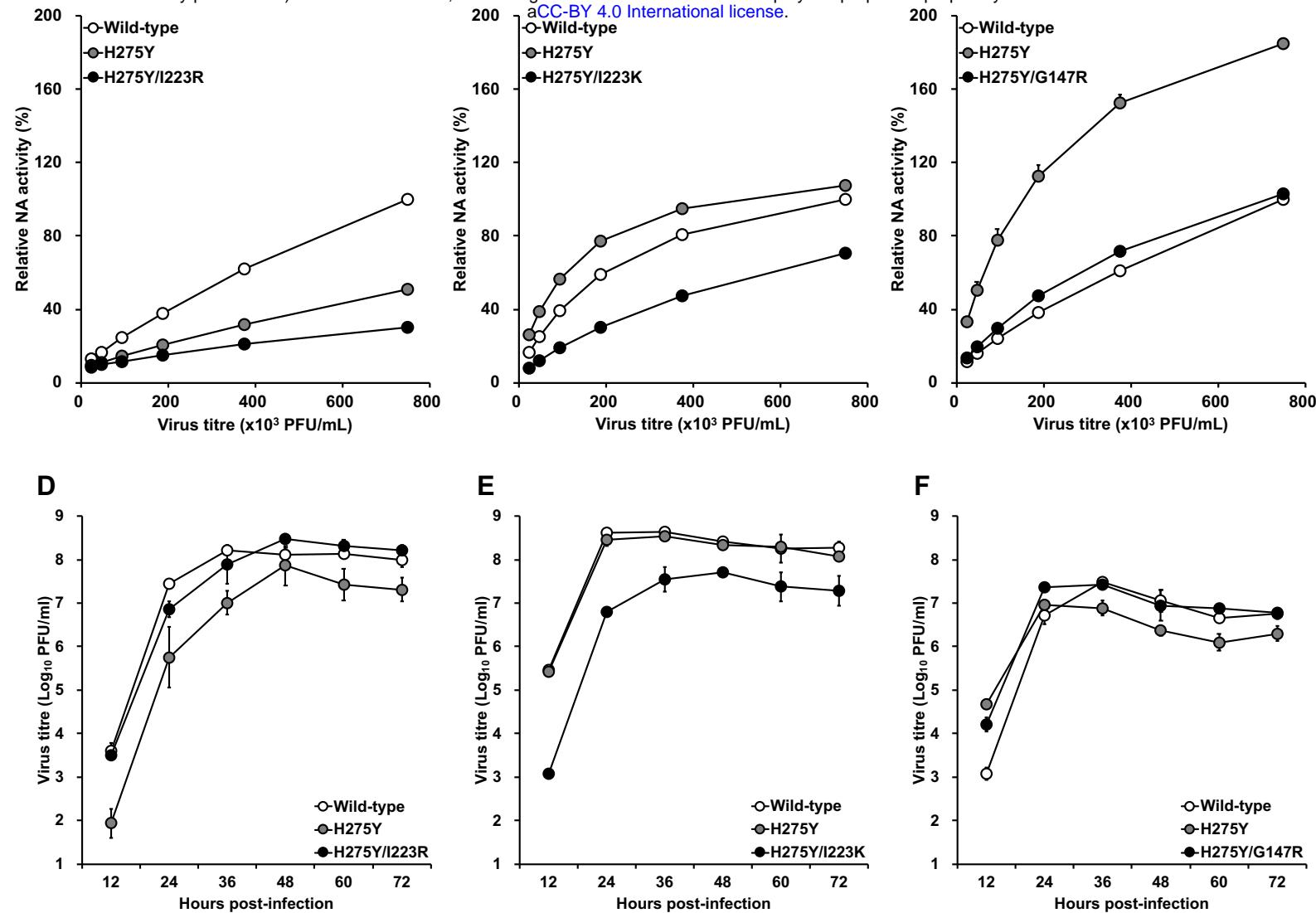
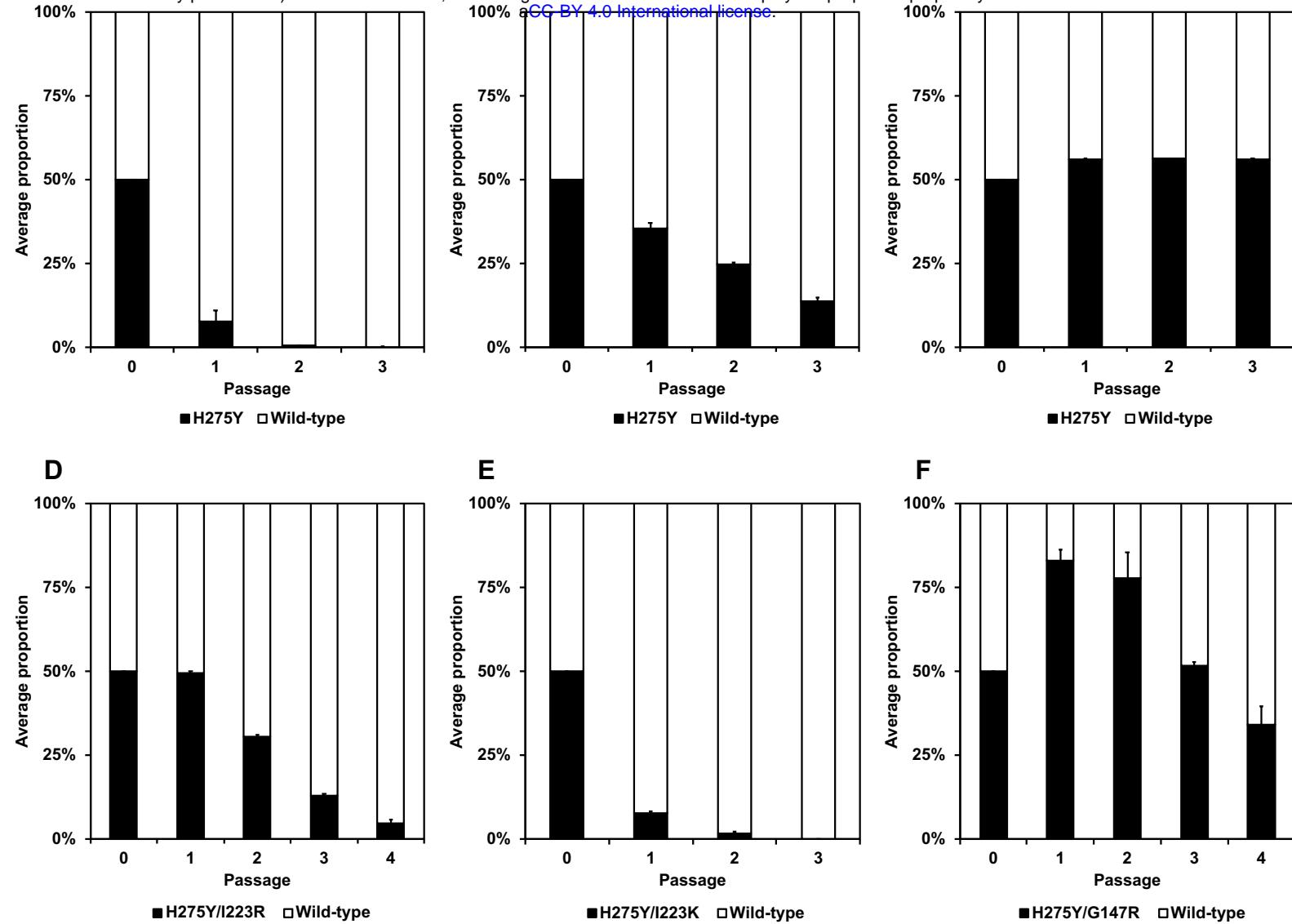



FIG 1 (A–C) Neuraminidase (NA) activities of the dual H275Y mutant influenza A(H1N1)pdm09 viruses. Serial 2-fold dilutions of viruses beginning at infectious doses of 7.5×10^5 PFU/mL were subjected to the fluorescence-based NA assay in triplicate. The relative NA activities, normalized to that of the wild-type virus, are shown. Means and standard deviations are shown. (D–F) In vitro replication kinetics of the dual H275Y mutant influenza A(H1N1)pdm09 viruses. Confluent monolayers of MDCK-AX4 cells were infected in triplicate with viruses at a multiplicity of infection of 0.001 PFU/cell. The culture fluids were harvested at the indicated time points and were subjected to virus titration by using plaque assays in MDCK-AX4 cells. Means and standard deviations are shown. Wild-type: A/Sakai/23/2013 (A, D), A/Yokohama/40/2016 (B, E), or A/Yokohama/59/2016 (C, F); H275Y: A/Osaka/8/2014 (A, D), A/Yokohama/94/2016 (B, E), or A/Aichi/83/2016 (C, F).

FIG 2 Competitive growth capabilities of the dual H275Y mutant influenza A(H1N1)pdm09 and wild-type viruses. MDCK-AX4 cells were coinfecte in triplicate with the single H275Y (A–C), dual H275Y/I223R, H275Y/I223K, or H275Y/G147R (D–F) mutant virus and with the corresponding wild-type virus at a multiplicity of infection of 0.01 PFU/cell. At 2 days post-infection, the culture fluid was subjected to virus titration by using plaque assays in MDCK-AX4 cells and to deep sequencing analysis to determine the relative proportion of each genotype. The viruses were serially passaged 3–4 times at a multiplicity of infection of 0.01 PFU/cell. The error bars indicate the standard deviations. Wild-type: A/Sakai/23/2013 (A, D), A/Yokohama/40/2016 (B, E), or A/Yokohama/59/2016 (C, F); H275Y: A/Osaka/8/2014 (A), A/Yokohama/94/2016 (B), or A/Aichi/83/2016 (C).