bioRxiv preprint doi: https://doi.org/10.1101/334185; this version posted May 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1 Invitro characterization of multidrug-resistant influenza A(HLN1)pdmOQ9 viruses carrying a
2 dual amino acid substitution associated with reduced susceptibility to neuraminidase

3 inhibitors

5 Emi Takashita,® Seiichiro Fujisaki,® Masaru Yokoyama,” Masayuki Shirakura,® Kazuya
6  Nakamura,® Tomoko Kuwahara,® Noriko Kishida,® Hironori Sato,® Ikuko Doi,® Yuji Sato,
7  Shinichi Takao,® Yukie Shimazu,® Takeshi Shimomura,” Takuo Ito,% Shinji Watanabe,?

8  Takato Odagiri,® The Influenza Virus Surveillance Group of Japan"

10 ?Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
11  PPathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan

12 C“lbaraki Prefectural Institute of Public Health, Ibaraki, Japan

13 YTsukuba Memorial Hospital, Ibaraki, Japan

14 °®Hiroshima Prefectural Technology Research Institute, Hiroshima, Japan

15  "Hiroshima Nishi Medical Center, Hiroshima, Japan

16  9Japan National Hospital Organization Kure Medical Center, Hiroshima, Japan

17 "Members of the Influenza Virus Surveillance Group of Japan are listed in the
18  Acknowledgments section.

19

20  Running Head: Multidrug-resistant influenza A(HLN1)pdmOQ9 virus

21

22 #Address correspondence to Takato Odagiri, todagiri@nih.go.jp.


https://doi.org/10.1101/334185
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/334185; this version posted May 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

23 Abstract

24 We detected influenza A(H1N1)pdmOQ9 viruses carrying dual H275Y/1223R, H275Y/1223K,
25 or H275Y/G147R substitutions in their neuraminidase protein, respectively. These viruses
26  showed cross-resistance to oseltamivir and peramivir and reduced susceptibility to zanamivir.
27  The H275Y/G147R virus retained its replication capability at least in vitro, but the
28  H275Y/1223R and H275Y/1223K viruses did not.

29

30  Text

31 In Japan, four neuraminidase (NA) inhibitors—oseltamivir, peramivir, zanamivir, and
32 laninamivir—are approved for the treatment of influenza. In addition, favipiravir, a viral
33  RNA-dependent RNA polymerase inhibitor, was approved and stockpiled for use against
34 novel influenza virus infections where existing antivirals are ineffective (1). The novel cap-
35  dependent endonuclease inhibitor baloxavir marboxil was approved on 23 February 2018 for
36  the treatment of influenza A and B virus infections and became available in hospitals from
37 14 March 2018 in Japan. Since nationwide monitoring is important for public health planning
38 and clinical management, we have been conducting surveillance of antiviral-resistant viruses.
39 In the 2013-2014 and 2015-2016 influenza seasons, we reported A(HLN1)pdmQ9 viruses
40  exhibiting enhanced cross-resistance to oseltamivir and peramivir (2-4). These viruses
41  possessed an 1223R or a G147R substitution in combination with an H275Y substitution (N1
42 numbering) in their NA protein. In March 2016, we detected another dual H275Y mutant

43  virus carrying an additional 1223K substitution in its NA protein.
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44 A few dual H275Y mutant viruses have been detected in immunocompromised and
45  immunocompetent patients (5-7). Several studies have been carried out to understand the
46  impact of the H275Y/I223R substitution on viral fitness (8, 9); however, that of the
47  H275Y/1223K and H275Y/G147R viruses remains unknown. Here, we report our assessment
48 of the in vitro properties of the dual H275Y mutant viruses isolated from
49  immunocompromised patients.

50

51  First, we determined the NA inhibitor susceptibility of the dual H275Y mutant viruses by
52  using a fluorescence-based NA assay with the NA-Fluor influenza neuraminidase assay Kit
53  (Applied Biosystems, Foster City, CA, USA). Oseltamivir carboxylate, peramivir, and
54 zanamivir were purchased from Carbosynth Ltd. (Berkshire, United Kingdom). Laninamivir
55 was kindly provided by Daiichi Sankyo Co. Ltd. (Tokyo, Japan). The H275Y/I223R,
56  H275Y/1223K, and H275Y/G147R viruses exhibited cross-resistance to oseltamivir and
57  peramivir and reduced susceptibility to zanamivir compared to the single H275Y viruses
58 (Table 1) (3, 4). The H275Y/1223R and H275Y/1223K viruses, but not the H275Y/G147R
59  virus, showed reduced susceptibility to laninamivir.

60  We then analyzed representative single H275Y and wild-type viruses from the same genetic
61 clade of each dual mutant virus in the same season (Table 2). The single H275Y and wild-
62  type viruses possessed almost the same gene sequences as the dual mutant viruses except the
63  dual substitutions in the NA. Statistical analyses were performed using GraphPad Prism
64  version 6.0 for Mac OS X (GraphPad Software, La Jolla, CA, US). Statistically significant

65 differences between groups were determined by using the Student’s t-test or Welch’s t-test
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66  on the result of the F-test. P values of <0.05 were considered statistically significant. All
67  viruses tested were susceptible to favipiravir and no significant differences in susceptibility
68  were found among the viruses (Table 2). Favipiravir was provided by Toyama Chemical Co.
69 Ltd (Toyama, Japan).

70  The NA activity of the H275Y/1223R and H275Y/1223K viruses was reduced compared with
71  that of wild-type virus, consistent with a previous study (Figure 1A-C) (8). The
72 H275Y/G147R virus showed comparable NA activity to that of the wild-type virus. These
73 results suggest that the H275Y/1223R and H275Y/1223K substitutions are associated with a
74 reduction in NA activity but that the H275Y/G147R substitution is not.

75  The impact of the dual substitutions on viral growth was assessed using MDCK-AX4 cells
76  (10), which overexpress the B-galactoside a2,6-sialyltransferase | gene (Figure 1D-F).
77  MDCK-AX4 cells were kindly provided by Yoshihiro Kawaoka (University of Wisconsin,
78  Madison, WI, US). Viral titres of the H275Y/1223R virus were comparable to those of the
79  wild-type virus as previously described (9). The replication of the H275Y/1223K virus was
80  significantly reduced compared with that of the single H275Y and the wild-type viruses. The
81 H275Y/G147R and the wild-type viruses had comparable viral titres after 36 h post-infection,
82  although the dual mutant virus replicated more efficiently than the wild-type virus during the
83 initial cycle of infection. These results suggest that the H275Y/I223K substitutions
84  negatively affected viral growth in vitro but that the H275Y/1223R and H275Y/G147R
85  substitutions did not.

86  The competitive growth capability of each single or dual H275Y mutant virus with that of

87  the wild-type virus was compared as previously described (Figure 2) (11). The proportion of
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88 the H275Y/1223R (Figure 2D) and H275Y/1223K (Figure 2E) viruses and their
89  corresponding single H275Y viruses (Figures 2A and 2B) to that of wild-type viruses
90 decreased significantly. However, the proportion of the single H275Y virus corresponding to
91 the H275Y/G147R virus was comparable to that of wild-type virus (Figure 2C). Furthermore,
92  the H275Y/G147R virus rapidly became dominant in the mixed virus populations at passages
93 1land 2 (Figure 2F). These results indicate that the H275Y/G147R virus retained comparable
94  growth ability to that of the wild-type virus, at least in vitro.
95  To assess the potential effect of the amino acid substitutions on the stability of the NA, we
96 performed an in silico mutagenesis study as previously described (11). The changes in
97  stability caused by each of the substitutions 1223R, 1223K, and G147R were 1.32, 3.29, and
98  -2.72 kcal/mol, respectively. The 1223R and 1223K substitutions were predicted to destabilise
99  the NA structure, whereas the G147R substitution was predicted to stabilise the NA, which
100  suggests that the G147R substitution compensates for structural disadvantages caused by the
101  H275Y substitution (12).
102
103  The emergence of multidrug-resistant variants in patients treated with antiviral agents is a
104  concern. The dual H275Y/I1223R, H275Y/1223K, and H275Y/G147R viruses exhibited
105  cross-resistance to oseltamivir and peramivir and reduced susceptibility to zanamivir. The
106  patient who was infected with the H275Y/1223R virus recovered after laninamivir treatment;
107  however, the other two died despite treatment with oseltamivir, peramivir and/or laninamivir.
108  The dual H275Y mutant viruses were susceptible to favipiravir, suggesting that favipiravir

109  could be a treatment option against these multidrug-resistant viruses.
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110  The NA enzymatic active site includes catalytic residues that interact directly with the sialic
111  acid substrate and framework residues that stabilize the active site (13). Residue 223 is
112  located within the framework, and different substitutions at this position have different
113  effects on NA inhibitor susceptibility (14). Residue 147 is located in a 150-loop, which are
114  adjacent to the NA active site (2, 3). The G147R substitution may alter the conformation of
115  the 150-loop due to the larger size and positive charge of the side chain, negatively affecting
116  the binding of NA inhibitors (2, 3). In this study, the NA activity of the H275Y/1223R and
117 H275Y/1223K viruses was significantly reduced, whereas the H275Y/G147R virus retained
118 its NA activity. These differences may be explained by the positions of amino acids, inside
119  or outside, the NA active site.

120  The single H275Y virus corresponding to the H275Y/G147R virus showed significantly
121  increased NA activity, but reduced growth capability compared to the wild-type virus.
122 However, the NA activity and growth capability of the H275Y/G147R virus was comparable
123  to that of the wild-type virus. An optimal balance between hemagglutinin (HA) receptor-
124  binding and NA enzymatic activities is important for growth and transmissibility of influenza
125  viruses (15-17). Mismatched HA and NA pairs can be rescued by amino acid substitutions
126  that compensate for increased or decreased activities (18). Thus, the introduction of the
127  G147R substitution into the H275Y mutant NA may compensate for the high NA activity,
128  resulting in the restoration of viral growth.

129  Our structural analysis predicts that the 1223R and 1223K substitutions destabilise the NA

130  structure, but the stability score for 1223R was lower than that for 1223K. These results
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131  suggest that an NA with the 1223R substitution is more stable than an NA with the 1223K
132 substitution.

133 Hooper et al. reported that the G147R substitution confers receptor-binding activity to the
134 NA proteins and moderate resistance to neutralization by the Fab of a monoclonal antibody
135 against the HA receptor-binding pocket (19). In this study, we showed that the
136  H275Y/G147R virus retained its replication capability at least in vitro. In fact, the patient
137  infected with the H275Y/G147R virus developed pneumonia without isolation of bacterial
138  pathogens, suggesting viral pneumonia with this dual mutant virus (3).

139  The multidrug-resistant viruses carrying the dual H275Y substitution were detected in
140  immunocompromised patients after prolonged treatment with one or more NA inhibitors.
141  Therefore, the emergence of resistant viruses during NA inhibitor administration should be
142 closely monitored to improve clinical management. Furthermore, the surveillance of
143  antiviral-resistant viruses should be continued to protect public health.
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291 FIG 1 (A-C) Neuraminidase (NA) activities of the dual H275Y mutant influenza
292 A(H1IN1)pdmO9 viruses. Serial 2-fold dilutions of viruses beginning at infectious doses of
293  7.5x10° PFU/mL were subjected to the fluorescence-based NA assay in triplicate. The
294  relative NA activities, normalized to that of the wild-type virus, are shown. Means and
295  standard deviations are shown. (D-F) In vitro replication kinetics of the dual H275Y mutant
296  influenza A(HL1N21)pdmQ9 viruses. Confluent monolayers of MDCK-AX4 cells were
297  infected in triplicate with viruses at a multiplicity of infection of 0.001 PFU/cell. The culture
298  fluids were harvested at the indicated time points and were subjected to virus titration by
299  using plaque assays in MDCK-AX4 cells. Means and standard deviations are shown. Wild-
300 type: A/Sakai/23/2013 (A, D), A/Yokohama/40/2016 (B, E), or A/Yokohama/59/2016 (C,
301 F); H275Y: A/Osaka/8/2014 (A, D), AlYokohama/94/2016 (B, E), or A/Aichi/83/2016 (C,

302 F).
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303

304  FIG 2 Competitive growth capabilities of the dual H275Y mutant influenza A(H1N1)pdmOQ9
305  and wild-type viruses. MDCK-AX4 cells were coinfected in triplicate with the single H275Y
306 (A-C), dual H275Y/1223R, H275Y/1223K, or H275Y/G147R (D-F) mutant virus and with
307  the corresponding wild-type virus at a multiplicity of infection of 0.01 PFU/cell. At 2 days
308  post-infection, the culture fluid was subjected to virus titration by using plaque assays in
309 MDCK-AX4 cells and to deep sequencing analysis to determine the relative proportion of
310 each genotype. The viruses were serially passaged 3—4 times at a multiplicity of infection of
311  0.01 PFU/cell. The error bars indicate the standard deviations. Wild-type: A/Sakai/23/2013
312 (A, D), AlYokohama/40/2016 (B, E), or A/Yokohama/59/2016 (C, F); H275Y:
313  A/Osaka/8/2014 (A), AlYokohama/94/2016 (B), or A/Aichi/83/2016 (C).

314

315 Tables

316  TABLE 1 Susceptibility to neuraminidase inhibitors of H275Y dual mutant influenza

317  A(H1N1)pdmO09 viruses detected in Japan

Influenza NA ICso*, nM (fold-changet)
Virus
season substitution Oseltamivir Peramivir Zanamivir  Laninamivir
A/Hiroshima/57/2014 6263.69 944.20 4.84 4.48
H275Y/1223R
(H275Y/1223R dual mutant) (30,000) (16,000) 21 (15)
H275Y single mutant 173.80490.15  22.58+29.51  0.29+0.13 0.60+0.21
2013-2014 H275Y
(n=40) (830) (380) (1.2) (2.0)
Wild-type
None 0.21+0.23 0.06+0.07 0.23+0.21 0.30+0.25
(n=201)
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A/lbaraki/54/2016 10161.87 501.62 2.48 1.94
H275Y/1223K
(H275Y/1223K dual mutant) (21,000) (6,300) (8.3) (6.9)
A/Hiroshima/13/2016 1324.62 114.14 1.56 0.37
H275Y/G147R
(H275Y/G147R dual mutant) (2,700) (1,400) (5.2) (1.3)
2015-2016
H275Y single mutant 474.24485.55  22.60+4.95 0.35+0.11 0.80+0.24
H275Y
(n=34) (970) (280) (1.2) (2.9)
Wild-type
None 0.49+0.34 0.08+0.04 0.30+0.13 0.28+0.20
(n=256)

318  NA: neuraminidase; I1Cso: drug concentration required to inhibit NA activity by 50%.

319  *ICso values were determined by using a fluorescent NA inhibition assay. The values are
320  presented as the median £ SD.

321  fFold change in ICso values compared with the median ICso values of wild-type viruses in
322  the same influenza season.

323

324  TABLE 2 Influenza A(H1IN1)pdmO9 viruses used in this study

Favipiravir
HA genetic
Virus GISAID Isolate ID NA substitution susceptibility
clade
ECso*, pM
A/Hiroshima/57/2014
EPI_ISL 160499 H275Y/1223R 7.99+0.66
(H275Y/1223R dual mutant)
A/Osaka/8/2014
EPI_ISL 155839 6B H275Y 4.76£0.94
(H275Y single mutant)
A/Sakai/23/2013
EPI ISL 154461 None 6.6410.84
(Wild-type)
A/Ibaraki/54/2016
EPI_ISL 221789 6B.1 H275Y/1223K 10.20+3.94

(H275Y/1223K dual mutant)
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A/Yokohama/94/2016
EPI_ISL 218900 H275Y 21.40+0.71
(H275Y single mutant)
A/Yokohama/40/2016
EPI_ISL 217919 None 10.01£2.56
(Wild-type)
A/Hiroshima/13/2016
EPI _ISL 220376 H275Y/G147R 15.13£1.88
(H275Y/G147R dual mutant)
A/Aichi/83/2016
EPI_ISL 233222 6B.2 H275Y 14.83%0.56
(H275Y single mutant)
A/Yokohama/59/2016
EPI ISL 217920 None 8.81£1.91

(Wild-type)

325 GISAID: Global Initiative on Sharing All Influenza Data; HA: hemagglutinin; NA:
326  neuraminidase; ECso: 50% effective concentration.
327  *ECso values were determined by using a cytopathic effect reduction assay. The values are

328  presented as the mean + SD.
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FIG 1 (A-C) Neuraminidase (NA) activities of the dual H275Y mutant influenza
AHIN1)pdmO09 viruses. Serial 2-fold dilutions of viruses beginning at infectious doses of
7.5x10° PFU/mL were subjected to the fluorescence-based NA assay in triplicate. The relative
NA activities, normalized to that of the wild-type virus, are shown. Means and standard
deviations are shown. (D-F) In vitro replication kinetics of the dual H275Y mutant influenza
A(HINT)pdm09 viruses. Confluent monolayers of MDCK-AX4 cells were infected in triplicate
with viruses at a multiplicity of infection of 0.001 PFU/cell. The culture fluids were harvested
at the indicated time points and were subjected to virus titration by using plaque assays in
MDCK-AX4 cells. Means and standard deviations are shown. Wild-type: A/Sakai/23/2013 (A,
D), A/Yokohama/40/2016 (B, E), or A/Yokohama/59/2016 (C, F); H275Y: A/Osaka/8/2014 (A,
D), A/Yokohama/94/2016 (B, E), or A/Aichi/83/2016 (C, F).


https://doi.org/10.1101/334185
http://creativecommons.org/licenses/by/4.0/

A bioRxiv preprint doi: https://doi.org/lO.1101/33435; this version posted May 30, 2018. The copyright hol@r for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
y= 0,

100% 100% gSG-BY4-0nterngtonraficerse: 100%
75% 4 75% 4 75% A
c c c
L =] k]
t t t
o ] o
=3 =% =3
o o o
s 50% g 50% A a 50% A
[} [ (]
o <) =)
© © ©
[ S S
2 $ 2
< < <
25% 4 25% 4 I 25% 4
0% A T i T T 0% - v r r l 0% - r r
0 1 2 3 0 1 2 3 0 1 2
Passage Passage Passage
B H275Y OWild-type mH275Y oOWild-type mH275Y OWild-type
D E F
100% 100% 100%
75% 4 75% 4 75% 1
c c c
=] =] 2
t t t
o o o
=% =3 -3
o o o
c 50% 4 g 50% A a 50% A
(] (] ]
o o =)
© © ©
I S S
g g g
< < <
25% A 25% 4 25% A
0% - 0% A T - T T 0% -
0 1 2 3 4 0 1 2 3 0 1 2 3
Passage Passage Passage
mH275Y/1223R OWild-type WH275Y/1223K 0OWild-type mH275Y/G147R OWild-type

FIG 2 Competitive growth capabilities of the dual H275Y mutant influenza A(HIN1)pdm09 and
wild-type viruses. MDCK-AX4 cells were coinfected in triplicate with the single H275Y (A-C),
dual H275Y/1223R, H275Y/1223K, or H275Y/G147R (D-F) mutant virus and with the
corresponding wild-type virus at a multiplicity of infection of 0.01 PFU/cell. At 2 days post-
infection, the culture fluid was subjected to virus titration by using plaque assays in MDCK-AX4
cells and to deep sequencing analysis to determine the relative proportion of each genotype. The
viruses were serially passaged 3—4 times at a multiplicity of infection of 0.01 PFU/cell. The error
bars indicate the standard deviations. Wild-type: A/Sakai/23/2013 (A, D), A/Yokohama/40/2016
(B, E), or A/Yokohama/59/2016 (C, F); H275Y: A/Osaka/8/2014 (A), A/Yokohama/94/2016 (B),
or A/Aichi/83/2016 (C).
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