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Abstract 23 

We detected influenza A(H1N1)pdm09 viruses carrying dual H275Y/I223R, H275Y/I223K, 24 

or H275Y/G147R substitutions in their neuraminidase protein, respectively. These viruses 25 

showed cross-resistance to oseltamivir and peramivir and reduced susceptibility to zanamivir. 26 

The H275Y/G147R virus retained its replication capability at least in vitro, but the 27 

H275Y/I223R and H275Y/I223K viruses did not. 28 

 29 

Text 30 

In Japan, four neuraminidase (NA) inhibitors––oseltamivir, peramivir, zanamivir, and 31 

laninamivir––are approved for the treatment of influenza. In addition, favipiravir, a viral 32 

RNA-dependent RNA polymerase inhibitor, was approved and stockpiled for use against 33 

novel influenza virus infections where existing antivirals are ineffective (1). The novel cap-34 

dependent endonuclease inhibitor baloxavir marboxil was approved on 23 February 2018 for 35 

the treatment of influenza A and B virus infections and became available in hospitals from 36 

14 March 2018 in Japan. Since nationwide monitoring is important for public health planning 37 

and clinical management, we have been conducting surveillance of antiviral-resistant viruses. 38 

In the 2013–2014 and 2015–2016 influenza seasons, we reported A(H1N1)pdm09 viruses 39 

exhibiting enhanced cross-resistance to oseltamivir and peramivir (2-4). These viruses 40 

possessed an I223R or a G147R substitution in combination with an H275Y substitution (N1 41 

numbering) in their NA protein. In March 2016, we detected another dual H275Y mutant 42 

virus carrying an additional I223K substitution in its NA protein. 43 
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A few dual H275Y mutant viruses have been detected in immunocompromised and 44 

immunocompetent patients (5-7). Several studies have been carried out to understand the 45 

impact of the H275Y/I223R substitution on viral fitness (8, 9); however, that of the 46 

H275Y/I223K and H275Y/G147R viruses remains unknown. Here, we report our assessment 47 

of the in vitro properties of the dual H275Y mutant viruses isolated from 48 

immunocompromised patients. 49 

 50 

First, we determined the NA inhibitor susceptibility of the dual H275Y mutant viruses by 51 

using a fluorescence-based NA assay with the NA-Fluor influenza neuraminidase assay kit 52 

(Applied Biosystems, Foster City, CA, USA). Oseltamivir carboxylate, peramivir, and 53 

zanamivir were purchased from Carbosynth Ltd. (Berkshire, United Kingdom). Laninamivir 54 

was kindly provided by Daiichi Sankyo Co. Ltd. (Tokyo, Japan). The H275Y/I223R, 55 

H275Y/I223K, and H275Y/G147R viruses exhibited cross-resistance to oseltamivir and 56 

peramivir and reduced susceptibility to zanamivir compared to the single H275Y viruses 57 

(Table 1) (3, 4). The H275Y/I223R and H275Y/I223K viruses, but not the H275Y/G147R 58 

virus, showed reduced susceptibility to laninamivir. 59 

We then analyzed representative single H275Y and wild-type viruses from the same genetic 60 

clade of each dual mutant virus in the same season (Table 2). The single H275Y and wild-61 

type viruses possessed almost the same gene sequences as the dual mutant viruses except the 62 

dual substitutions in the NA. Statistical analyses were performed using GraphPad Prism 63 

version 6.0 for Mac OS X (GraphPad Software, La Jolla, CA, US). Statistically significant 64 

differences between groups were determined by using the Student’s t-test or Welch’s t-test 65 
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on the result of the F-test. P values of <0.05 were considered statistically significant. All 66 

viruses tested were susceptible to favipiravir and no significant differences in susceptibility 67 

were found among the viruses (Table 2). Favipiravir was provided by Toyama Chemical Co. 68 

Ltd (Toyama, Japan). 69 

The NA activity of the H275Y/I223R and H275Y/I223K viruses was reduced compared with 70 

that of wild-type virus, consistent with a previous study (Figure 1A–C) (8). The 71 

H275Y/G147R virus showed comparable NA activity to that of the wild-type virus. These 72 

results suggest that the H275Y/I223R and H275Y/I223K substitutions are associated with a 73 

reduction in NA activity but that the H275Y/G147R substitution is not. 74 

The impact of the dual substitutions on viral growth was assessed using MDCK-AX4 cells 75 

(10), which overexpress the β-galactoside α2,6-sialyltransferase I gene (Figure 1D–F). 76 

MDCK-AX4 cells were kindly provided by Yoshihiro Kawaoka (University of Wisconsin, 77 

Madison, WI, US). Viral titres of the H275Y/I223R virus were comparable to those of the 78 

wild-type virus as previously described (9). The replication of the H275Y/I223K virus was 79 

significantly reduced compared with that of the single H275Y and the wild-type viruses. The 80 

H275Y/G147R and the wild-type viruses had comparable viral titres after 36 h post-infection, 81 

although the dual mutant virus replicated more efficiently than the wild-type virus during the 82 

initial cycle of infection. These results suggest that the H275Y/I223K substitutions 83 

negatively affected viral growth in vitro but that the H275Y/I223R and H275Y/G147R 84 

substitutions did not. 85 

The competitive growth capability of each single or dual H275Y mutant virus with that of 86 

the wild-type virus was compared as previously described (Figure 2) (11). The proportion of 87 
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the H275Y/I223R (Figure 2D) and H275Y/I223K (Figure 2E) viruses and their 88 

corresponding single H275Y viruses (Figures 2A and 2B) to that of wild-type viruses 89 

decreased significantly. However, the proportion of the single H275Y virus corresponding to 90 

the H275Y/G147R virus was comparable to that of wild-type virus (Figure 2C). Furthermore, 91 

the H275Y/G147R virus rapidly became dominant in the mixed virus populations at passages 92 

1 and 2 (Figure 2F). These results indicate that the H275Y/G147R virus retained comparable 93 

growth ability to that of the wild-type virus, at least in vitro. 94 

To assess the potential effect of the amino acid substitutions on the stability of the NA, we 95 

performed an in silico mutagenesis study as previously described (11). The changes in 96 

stability caused by each of the substitutions I223R, I223K, and G147R were 1.32, 3.29, and 97 

-2.72 kcal/mol, respectively. The I223R and I223K substitutions were predicted to destabilise 98 

the NA structure, whereas the G147R substitution was predicted to stabilise the NA, which 99 

suggests that the G147R substitution compensates for structural disadvantages caused by the 100 

H275Y substitution (12). 101 

 102 

The emergence of multidrug-resistant variants in patients treated with antiviral agents is a 103 

concern. The dual H275Y/I223R, H275Y/I223K, and H275Y/G147R viruses exhibited 104 

cross-resistance to oseltamivir and peramivir and reduced susceptibility to zanamivir. The 105 

patient who was infected with the H275Y/I223R virus recovered after laninamivir treatment; 106 

however, the other two died despite treatment with oseltamivir, peramivir and/or laninamivir. 107 

The dual H275Y mutant viruses were susceptible to favipiravir, suggesting that favipiravir 108 

could be a treatment option against these multidrug-resistant viruses. 109 
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The NA enzymatic active site includes catalytic residues that interact directly with the sialic 110 

acid substrate and framework residues that stabilize the active site (13). Residue 223 is 111 

located within the framework, and different substitutions at this position have different 112 

effects on NA inhibitor susceptibility (14). Residue 147 is located in a 150-loop, which are 113 

adjacent to the NA active site (2, 3). The G147R substitution may alter the conformation of 114 

the 150-loop due to the larger size and positive charge of the side chain, negatively affecting 115 

the binding of NA inhibitors (2, 3). In this study, the NA activity of the H275Y/I223R and 116 

H275Y/I223K viruses was significantly reduced, whereas the H275Y/G147R virus retained 117 

its NA activity. These differences may be explained by the positions of amino acids, inside 118 

or outside, the NA active site. 119 

The single H275Y virus corresponding to the H275Y/G147R virus showed significantly 120 

increased NA activity, but reduced growth capability compared to the wild-type virus. 121 

However, the NA activity and growth capability of the H275Y/G147R virus was comparable 122 

to that of the wild-type virus. An optimal balance between hemagglutinin (HA) receptor-123 

binding and NA enzymatic activities is important for growth and transmissibility of influenza 124 

viruses (15-17). Mismatched HA and NA pairs can be rescued by amino acid substitutions 125 

that compensate for increased or decreased activities (18). Thus, the introduction of the 126 

G147R substitution into the H275Y mutant NA may compensate for the high NA activity, 127 

resulting in the restoration of viral growth. 128 

Our structural analysis predicts that the I223R and I223K substitutions destabilise the NA 129 

structure, but the stability score for I223R was lower than that for I223K. These results 130 
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suggest that an NA with the I223R substitution is more stable than an NA with the I223K 131 

substitution. 132 

Hooper et al. reported that the G147R substitution confers receptor-binding activity to the 133 

NA proteins and moderate resistance to neutralization by the Fab of a monoclonal antibody 134 

against the HA receptor-binding pocket (19). In this study, we showed that the 135 

H275Y/G147R virus retained its replication capability at least in vitro. In fact, the patient 136 

infected with the H275Y/G147R virus developed pneumonia without isolation of bacterial 137 

pathogens, suggesting viral pneumonia with this dual mutant virus (3). 138 

The multidrug-resistant viruses carrying the dual H275Y substitution were detected in 139 

immunocompromised patients after prolonged treatment with one or more NA inhibitors. 140 

Therefore, the emergence of resistant viruses during NA inhibitor administration should be 141 

closely monitored to improve clinical management. Furthermore, the surveillance of 142 

antiviral-resistant viruses should be continued to protect public health. 143 
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Figure legends 290 

FIG 1 (A–C) Neuraminidase (NA) activities of the dual H275Y mutant influenza 291 

A(H1N1)pdm09 viruses. Serial 2-fold dilutions of viruses beginning at infectious doses of 292 

7.5105 PFU/mL were subjected to the fluorescence-based NA assay in triplicate. The 293 

relative NA activities, normalized to that of the wild-type virus, are shown. Means and 294 

standard deviations are shown. (D–F) In vitro replication kinetics of the dual H275Y mutant 295 

influenza A(H1N1)pdm09 viruses. Confluent monolayers of MDCK-AX4 cells were 296 

infected in triplicate with viruses at a multiplicity of infection of 0.001 PFU/cell. The culture 297 

fluids were harvested at the indicated time points and were subjected to virus titration by 298 

using plaque assays in MDCK-AX4 cells. Means and standard deviations are shown. Wild-299 

type: A/Sakai/23/2013 (A, D), A/Yokohama/40/2016 (B, E), or A/Yokohama/59/2016 (C, 300 

F); H275Y: A/Osaka/8/2014 (A, D), A/Yokohama/94/2016 (B, E), or A/Aichi/83/2016 (C, 301 

F). 302 
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 303 

FIG 2 Competitive growth capabilities of the dual H275Y mutant influenza A(H1N1)pdm09 304 

and wild-type viruses. MDCK-AX4 cells were coinfected in triplicate with the single H275Y 305 

(A–C), dual H275Y/I223R, H275Y/I223K, or H275Y/G147R (D–F) mutant virus and with 306 

the corresponding wild-type virus at a multiplicity of infection of 0.01 PFU/cell. At 2 days 307 

post-infection, the culture fluid was subjected to virus titration by using plaque assays in 308 

MDCK-AX4 cells and to deep sequencing analysis to determine the relative proportion of 309 

each genotype. The viruses were serially passaged 3–4 times at a multiplicity of infection of 310 

0.01 PFU/cell. The error bars indicate the standard deviations. Wild-type: A/Sakai/23/2013 311 

(A, D), A/Yokohama/40/2016 (B, E), or A/Yokohama/59/2016 (C, F); H275Y: 312 

A/Osaka/8/2014 (A), A/Yokohama/94/2016 (B), or A/Aichi/83/2016 (C). 313 

 314 

Tables 315 

TABLE 1 Susceptibility to neuraminidase inhibitors of H275Y dual mutant influenza 316 

A(H1N1)pdm09 viruses detected in Japan 317 

Influenza 

season 

Virus 

NA 

substitution 

IC50*, nM (fold-change†) 

Oseltamivir Peramivir Zanamivir Laninamivir 

2013-2014 

A/Hiroshima/57/2014 

(H275Y/I223R dual mutant) 

H275Y/I223R 

6263.69 

(30,000) 

944.20 

(16,000) 

4.84 

(21) 

4.48 

(15) 

H275Y single mutant 

(n=40) 

H275Y 

173.80±90.15 

(830) 

22.58±29.51 

(380) 

0.29±0.13 

(1.2) 

0.60±0.21 

(2.0) 

Wild-type 

(n=201) 

None 0.21±0.23 0.06±0.07 0.23±0.21 0.30±0.25 
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2015-2016 

A/Ibaraki/54/2016 

(H275Y/I223K dual mutant) 

H275Y/I223K 

10161.87 

(21,000) 

501.62 

(6,300) 

2.48 

(8.3) 

1.94 

(6.9) 

A/Hiroshima/13/2016 

(H275Y/G147R dual mutant) 

H275Y/G147R 

1324.62 

(2,700) 

114.14 

(1,400) 

1.56 

(5.2) 

0.37 

(1.3) 

H275Y single mutant 

(n=34) 

H275Y 

474.24±85.55 

(970) 

22.60±4.95 

(280) 

0.35±0.11 

(1.2) 

0.80±0.24 

(2.9) 

Wild-type 

(n=256) 

None 0.49±0.34 0.08±0.04 0.30±0.13 0.28±0.20 

NA: neuraminidase; IC50: drug concentration required to inhibit NA activity by 50%. 318 

*IC50 values were determined by using a fluorescent NA inhibition assay. The values are 319 

presented as the median ± SD. 320 

†Fold change in IC50 values compared with the median IC50 values of wild-type viruses in 321 

the same influenza season. 322 

 323 

TABLE 2 Influenza A(H1N1)pdm09 viruses used in this study 324 

Virus GISAID Isolate ID 

HA genetic 

clade 

NA substitution 

Favipiravir 

susceptibility 

EC50*, µM 

A/Hiroshima/57/2014 

(H275Y/I223R dual mutant) 

EPI_ISL_160499 

6B 

H275Y/I223R 7.990.66 

A/Osaka/8/2014 

(H275Y single mutant) 

EPI_ISL_155839 H275Y 4.760.94 

A/Sakai/23/2013 

(Wild-type) 

EPI_ISL_154461 None 6.640.84 

A/Ibaraki/54/2016 

(H275Y/I223K dual mutant) 

EPI_ISL_221789 6B.1 H275Y/I223K 10.203.94 
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A/Yokohama/94/2016 

(H275Y single mutant) 

EPI_ISL_218900 H275Y 21.400.71 

A/Yokohama/40/2016 

(Wild-type) 

EPI_ISL_217919 None 10.012.56 

A/Hiroshima/13/2016 

(H275Y/G147R dual mutant) 

EPI_ISL_220376 

6B.2 

H275Y/G147R 15.131.88 

A/Aichi/83/2016 

(H275Y single mutant) 

EPI_ISL_233222 H275Y 14.830.56 

A/Yokohama/59/2016 

(Wild-type) 

EPI_ISL_217920 None 8.811.91 

GISAID: Global Initiative on Sharing All Influenza Data; HA: hemagglutinin; NA: 325 

neuraminidase; EC50: 50% effective concentration. 326 

*EC50 values were determined by using a cytopathic effect reduction assay. The values are 327 

presented as the mean ± SD. 328 
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FIG 1 (A–C) Neuraminidase (NA) activities of the dual H275Y mutant influenza

A(H1N1)pdm09 viruses. Serial 2-fold dilutions of viruses beginning at infectious doses of

7.5´105 PFU/mL were subjected to the fluorescence-based NA assay in triplicate. The relative

NA activities, normalized to that of the wild-type virus, are shown. Means and standard

deviations are shown. (D–F) In vitro replication kinetics of the dual H275Y mutant influenza

A(H1N1)pdm09 viruses. Confluent monolayers of MDCK-AX4 cells were infected in triplicate

with viruses at a multiplicity of infection of 0.001 PFU/cell. The culture fluids were harvested

at the indicated time points and were subjected to virus titration by using plaque assays in

MDCK-AX4 cells. Means and standard deviations are shown. Wild-type: A/Sakai/23/2013 (A,

D), A/Yokohama/40/2016 (B, E), or A/Yokohama/59/2016 (C, F); H275Y: A/Osaka/8/2014 (A,

D), A/Yokohama/94/2016 (B, E), or A/Aichi/83/2016 (C, F).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/334185doi: bioRxiv preprint 

https://doi.org/10.1101/334185
http://creativecommons.org/licenses/by/4.0/


FIG 2 Competitive growth capabilities of the dual H275Y mutant influenza A(H1N1)pdm09 and

wild-type viruses. MDCK-AX4 cells were coinfected in triplicate with the single H275Y (A–C),

dual H275Y/I223R, H275Y/I223K, or H275Y/G147R (D–F) mutant virus and with the

corresponding wild-type virus at a multiplicity of infection of 0.01 PFU/cell. At 2 days post-

infection, the culture fluid was subjected to virus titration by using plaque assays in MDCK-AX4

cells and to deep sequencing analysis to determine the relative proportion of each genotype. The

viruses were serially passaged 3–4 times at a multiplicity of infection of 0.01 PFU/cell. The error

bars indicate the standard deviations. Wild-type: A/Sakai/23/2013 (A, D), A/Yokohama/40/2016

(B, E), or A/Yokohama/59/2016 (C, F); H275Y: A/Osaka/8/2014 (A), A/Yokohama/94/2016 (B),

or A/Aichi/83/2016 (C).
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