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ABSTRACT

Background: It is estimated by the American Cancer Society that approximately 5% of all
metastatic tumors have no defined primary site (tissue) of origin and are classified as cancers of
unknown primary (CUPs). The current standard of care for CUP patients depends on
immunohistochemistry (IHC) based approaches to identify the primary site. The addition of post-
mortem evaluation to IHC based tests helps to reveal the identity of the primary site for only
25% of the CUPs, emphasizing the acute need for better methods of determination of the site of
origin. CUP patients are therefore given generic chemotherapeutic agents resulting in poor
prognosis. When the tissue of origin is known, patients can be given site specific therapy with
significant improvement in clinical outcome. Similarly, identifying the primary site of origin of

metastatic cancer is of great importance for designing treatment.

Identification of the primary site of origin is an import first step but may not be sufficient
information for optimal treatment of the patient. Recent studies, primarily from The Cancer
Genome Atlas (TCGA) project, and others, have revealed molecular subtypes in several cancer
types with distinct clinical outcome. The molecular subtype captures the fundamental
mechanisms driving the cancer and provides information that is essential for the optimal
treatment of a cancer. Thus, along with primary site of origin, molecular subtype of a tumor is

emerging as a criterion for personalized medicine and patient entry into clinical trials.

However, there is no comprehensive toolset available for precise identification of tissue of origin

or molecular subtype for precision medicine and translational research.

Methods and Findings: We posited that metastatic tumors will harbor the gene expression
profiles of the primary site of origin of the cancer. Therefore, we decided to learn the molecular

characteristics of the primary tumors using the large number of cancer genome profiles
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available from the TCGA project. Our predictors were trained for 33 cancer types and for the 11
cancers where there are established molecular subtypes. We estimated the accuracy of several
machine learning models using cross-validation methods. The extensive testing using
independent test sets revealed that the predictors had a median sensitivity and specificity of
97.2% and 99.9% respectively without losing classification of any tumor. Subtype classifiers
achieved median sensitivity of 87.7% and specificity of 94.5% via cross validation and
presented median sensitivity of 79.6% and specificity of 94.6% in two external datasets of 1,999
total samples. Importantly, these external data shows that our classifiers can robustly predict the
primary site of origin from external microarray data, metastatic cancer data, and patient-derived

xenograft (PDX) data.

Conclusion: We have demonstrated the utility of gene expression profiles to solve the
important clinical challenge of identifying the primary site of origin and the molecular subtype of
cancers based on machine learning algorithms. We show, for the first time to our knowledge,
that our pan-cancer classifiers can predict multiple cancers’ primary site of origin from
metastatic samples. The predictors will be made available as open source software, freely

available for academic non-commercial use.

KEYWORDS
Cancer; TCGA; RNA-seq; Classification; Subtypes; Transcriptome; Machine learning; Cell-of-

origin; Cancer-of-unknown-primary
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1. INTRODUCTION

Precision cancer therapy requires the knowledge of primary site of origin and accurate
subtyping of the cancer to identify an appropriate therapeutic regimen. However, according to
the American Cancer Society, an estimated 2 to 5 percent of all cancer patients have metastatic
tumors for which routine testing cannot locate the primary site and is therefore classified as a
cancer of unknown primary (CUP). CUP patients have very poor prognosis, primarily because
the course of treatment is empiric and not tailored for a specific tumor type [1, 2]. In addition,
lack of knowledge of the true cancer type puts CUP patients under severe psychological

distress that may lead to clinically significant depressive symptoms [3].

In a study of CUP patients that were predicted to have primary tumors originating in the colon,
the median survival of patients increased in those that received site-specific chemotherapy as
compared to those who received empirically-determined treatments [4, 5]. Furthermore,
multiple studies have supported the use of molecular profiling to diagnose CUP and to
determine specific treatment based upon the predicted site of origin leading to an improvement
in overall survival [6-9]. Therefore, it is important to develop systematic methods to identify the

primary site of origin of the disease.

Currently, immunohistochemistry (IHC) utilizing antibodies targeted to certain tumor-specific
antigens is the main method for primary site identification in patients with CUP [2, 10].
However, there is not a single specific marker that can be used to conclusively diagnose the
primary tumor, leading to the use of multiple different IHC markers, and generating the
possibility that different clinicians will arrive at different diagnoses of the primary tumor type [2,
11-14]. Recent advances in genomics has led to the development of potential new means for
diagnosing these tumors; multiple studies have utilized gene expression profiles and other

molecular markers to diagnose CUP [2]. One such method involved comparisons of gene
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89  expression profiles between CUPs and a set of primary and metastatic tumors with known
90 origins to predict the tissue of origin for the CUP [2, 6, 15-20]. None of these tools were able to
91 identify the tissue of origin with high sensitivity and specificity for all the CUP samples. For
92 example, the EPICUP tool, which had the best performance to date provides high accuracy for
93  only 87% of the CUP samples.
94
95  Several studies, including the Cancer Genome Atlas (TCGA) and International Cancer Genome
96 Consortium (ICGC) studies, have shown that the cancers from the primary tissue can be
97 classified into molecular subtypes with distinct clinical outcome and therapeutic options [21-28].
98 The molecular subtype information can also have predictive power. For example, Bevacizumab,
99 a monoclonal antibody that block angiogenesis, is shown to benefit patients of mesenchymal
100 and proliferative subtypes in ovarian cancer and therefore may be used as a criterion for the
101 entryinto a clinical trial [29]. In addition, molecular subtype information can guide the selection
102  of targeted therapies and to suggest new treatment strategies (e.g. the potential use of JAK2
103 inhibitors and PD-L1/2 antagonists for the treatment of EBV-positive gastric cancer) [27].
104  However, identification of molecular subtypes is clinically challenging and thus clinicians are
105 unable to utilize molecular subtype information to inform treatment decisions [30, 31] due to a
106 lack of tools and assays for pan-cancer subtyping despite the availability of genomic
107 technologies for clinical diagnostics.
108
109 To fill this important gap in the clinical and translational research setting, using expression data
110 available from the TCGA project, we developed Machine Learning based predictors that enable
111  accurate identification of primary site of origin and subtype of cancer (Figure 1). Our predictors
112  were trained for 33 cancer types and for the 11 cancers where there are established molecular
113  subtypes. The extensive testing using independent test sets revealed that the predictors had a

114  median sensitivity and specificity of 97.2% and 99.9% respectively without failing to classify any
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tumor using in total 1,959 samples. Subtype predictors achieved median sensitivity of 79.6%
and specificity of 94.6% using two external validation sets consisting of 1,999 breast and
ovarian cancer samples in total. Our gene expression-based pan-cancer classifier can, for the
first time to our knowledge, robustly predict multiple cancers’ primary site of origin from
metastatic samples using an independent validation dataset (specificity: 99.3%, sensitivity:
82.1%) and predict molecular subtype. Compared to other pan-cancer classifiers based on
somatic mutations, our classifier is not limited to only cancer types with high mutation burden

and has much greater potential for clinical diagnosis and therapeutic design.

2. METHODS

2.1 Expression datasets

2.1.1 Learning set: TCGA expression data

RSEM [32] normalized mRNA expression matrices were downloaded for each of the 33 unique
cancer cohorts (listed in Table 1) available from the Broad Institute GDAC Firehose (run
2016 01 28) [33]. Individual cohort expression matrices were converted to Biobase
ExpressionSet objects [34] for standardization and then combined as an ExpressionSet stored
in Apache Feather format (version 0.4.0) to allow downstream analysis in both R and Python

(https://github.com/wesm/feather). The raw expression matrix consisted 11,330 samples and

20,531 genes, which was reduced to 10,446 samples and 9,642 genes after filtering (detailed

below).

Table 1. 33 GDAC Cancer Cohorts

Cohort Abbr. Cases Disease Name

ACC 92 Adrenocortical carcinoma

BLCA 412 Bladder urothelial carcinoma
BRCA 1,098 Breast invasive carcinoma

CESC 307 Cervical and endocervical cancers
CHOL 51 Cholangiocarcinoma

COAD 460 Colon adenocarcinoma

DLBC 58 Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
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ESCA 185 Esophageal carcinoma

GBM 613 Glioblastoma multiforme

HNSC 528 Head and Neck squamous cell carcinoma
KICH 113 Kidney Chromophobe

KIRC 537 Kidney renal clear cell carcinoma

KIRP 323 Kidney renal papillary cell carcinoma
LAML 200 Acute Myeloid Leukemia

LGG 516 Brain Lower Grade Glioma

LIHC 377 Liver hepatocellular carcinoma

LUAD 585 Lung adenocarcinoma

LUSC 504 Lung squamous cell carcinoma

MESO 87 Mesothelioma

oV 602 Ovarian serous cystadenocarcinoma
PAAD 185 Pancreatic adenocarcinoma

PCPG 179 Pheochromocytoma and Paraganglioma
PRAD 499 Prostate adenocarcinoma

READ 171 Rectum adenocarcinoma

SARC 261 Sarcoma

SKCM 470 Skin Cutaneous Melanoma

STAD 443 Stomach adenocarcinoma

TGCT 150 Testicular Germ Cell Tumors

THCA 503 Thyroid carcinoma

THYM 124 Thymoma

UCEC 560 Uterine Corpus Endometrial Carcinoma
ucs 57 Uterine Carcinosarcoma

UvM 80 Uveal Melanoma

2.1.2 External validation data

External cancer gene expression datasets, i.e. those used exclusively for testing the
performance of models, were obtained from the publicly available Gene Expression Omnibus
(GEO) and the patient-derived xenograft (PDX) mouse models generated at the Jackson
Laboratory. These datasets were not introduced during model fitting (hence external validation)

and were generated using both RNA-seq and microarray technologies.

The first dataset used to test the model accuracy was the microarray gene expression profile of
2,158 cancer samples from the expression project for oncology (expO, GSE2109) [35]. Of the
2,158 samples, we were able to identify relevant primary tumor types for 1,558 samples and
excluded LGG/GBM from classification due to too few samples, resulting in classification of

1,552 samples. The second dataset, GSE18549, contained expression profiles of 96 tumors
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150 from their metastatic sites [36]. We used 88 of these tumors whose primary sites could be

151 identified and those with more than 1 sample per primary site. The third dataset used contains
152 the expression profile of 338 PDX RNA-seq samples generated at the Jackson Laboratory and
153 available through the Mouse Tumor Biology (MTB) gene expression portal

154  (http://tumor.informatics.jax.org) [37]. Of these 338 samples, 325 samples could be mapped to

155 one of the 33 TCGA primary cancer types and the 7 OV samples were excluded as they
156 originate from the same two patients. The distribution of the primary types in the external
157 datasets used for validation are shown in Table 2.

158

159 Table 2. Distribution of samples in the three external datasets used to validate the

160 primary classification model

External dataset

Primary site GSE2109 GSE18549 PDX
BLCA 32 0 29
BRCA 354 14 41
COAD 312 35 68
DLBC 0 0 4
KIRC/KIRP/KIRH 281 6 8
LAML 0 0 13
LGG/GBM 6 0 5
LIHC 46 0 0
LUAD/LUSC 133 10 88
ov 279 14 7
PAAD 0 0 12
PRAD 83 9 0
READ 0 1 0
SARC 0 0 32
SKCM 0 0 18
THCA 32 0 0
N/A 600 7 13
Used 1,552 88 318
Total 2,158 96 338

161
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162  For external validation of our subtype predictors, we acquired two additional microarray
163 datasets. The first, accession number GSE9899, contains 215 ovarian cancer samples [15] and

164 the second, EGA study EGAS00000000083 (https://www.ebi.ac.uk/ega), contains 1,784 breast

165 cancer samples [38]. Both datasets comprise 4 molecular subtypes each: mesenchymal,

166 immunoreactive, differentiated, and proliferative for the ovarian set; and basal-like, HER2-

167 enriched, luminal A, and luminal B for the breast set.

168

169 2.1.3 Normalization, filtering, and preprocessing

170  All expression data was log2-transformed, and only genes with (a) maximum log2 expression
171 greater than 8 and (b) variance in log2 expression greater than 1 were retained. After filtering,
172 the genes in each dataset was scaled to zero mean expression and unit variance. This scaling
173 allows expression to be measured in terms of standard deviations and affords platform-

174  independent use of subsequently trained models.

175

176 2.1.4 Molecular subtype label curation

177  Molecular subtype information was downloaded from cBioPortal [39, 40] for 3,367 samples from
178 the following primary cancers: glioblastoma multiforme (GBM), stomach adenocarcinoma

179 (STAD), breast (BRCA), ovarian (OV), prostate (PRAD), and lung squamous cell cancers

180 (LUSC). Further annotations were curated from the following supplemental data files: lower
181 grade glioma (LGG) [41], head and neck squamous cell carcinoma (HNSC) [22], uterine corpus
182  endometrial carcinoma (UCEC) [42], cutaneous melanoma (SKCM) [43], papillary (KIRP) [44]
183 and clear cell (KIRC) [45] renal cancers, and lung adenocarcinoma (LUAD) [27]. R (version 3+)
184  scripts were written to extract relevant information (e.g. sample id, specific subtype) from

185 downloaded data and supplemental files. These scripts are available in the public project

186  GitHub repository as described under Code availability.
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187

188 2.1.5 Pan-organ group labels

189 A recently published study performed integrated clustering on the multiomic data from the

190 approximately 10,000 The Cancer Genome Atlas (TCGA) samples of 33 types of cancer. The
191  authors identified multi-cancer groups, which tend to span whole organs or related organ groups
192 [46]. We use these pan-organ group assignments to evaluate our classification results in a

193 individual- or multi-organ context. These classifications are reproduced here: central nervous
194  system (GBM LGG), core gastrointestinal (ESCA, STAD, COAD, READ), developmental

195 gastrointestinal (LIHC, PAAD, CHOL), endocrine (THCA and ACC), gynecologic (OV, UCEC
196 CESC BRCA), head and neck (HNSC), hematologic and lymphatic malignancies (LAML, DLBC,
197 THYM), melanocytic (SKCM and UVM), neural-crest-derived tissues (PCPG), soft tissue (SARC
198  and UCS), thoracic (LUAD, LUSC, MESO), urologic (BLCA, PRAD, TGCT, KIRC, KICH, KIRP).
199

200 2.2 Machine Learning Algorithms for Cancer Classification

201  We evaluated several popular machine learning algorithms to develop predictors for CUP

202 classification and subtype identification: DLDA, KNN, SVM and Random Forest. We used R-
203 packages sparsediscrim (version 0.2.4), base::knn, e1071 (version 1.6-8), and randomForest
204  (version 4.6-14), respectively for the training, testing; and caret (version 6.0-79) for tool

205 development. Unless otherwise specified, default parameters were chosen for model

206  construction.

207

208 2.2.1 Diagonal Linear Discriminant Analysis (DLDA)

209 The DLDA classifier belongs to the family of Naive Bayes classifiers, where the distribution of
210 each class is assumed to be a multivariate normal and to share a common covariance matrix.

211 The DLDA classifier is a modification to LDA, where the off-diagonal elements of the pooled
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212  sample covariance matrix are set to zero [47]. DLDA was used as classifier in several genomic
213 based cancer classification tasks [48, 49].

214

215 2.2.2 k-Nearest Neighbor (KNN) classifier

216 A KNN classifier offers the simplest classifier training strategy, also referred to as ‘lazy

217  classifier’, and has been successfully applied in the classification of cancer and non-cancer

218 related classification tasks [50-52]. A KNN classifier uses the training samples as reference

219 vectors and, for every sample in the test set, the k nearest (in Euclidean distance) reference
220 vectors are found. The classification is decided by majority vote of the k-nearest neighbors’

221 class. Note that, if multiple nearest neighbor vectors are found with identical distances, all such
222  nearest neighbor vectors are included in the voting pool, which can lead to k being exceeded in
223  these cases [53].

224

225 2.2.3 Support Vector Machine (SVM)

226  An SVM algorithm builds a predictive model by constructing a representation of the training

227 samples as points in higher dimensional space and builds a linear model (separating linear

228 boundary) in that space such that the mapped samples of the different categories are separated
229 by agap that is as wide as possible. New examples are then mapped into that same space and
230 predicted to belong to a category based on which side of the separating boundary they fall. For
231 multiclass classification among N classes, N*(N-1)/2 binary SVM classifiers are constructed and
232 trained in a one-versus-one manner; ultimate class predictions come from voting amongst the
233  ensemble of binary classifiers. The implementation used for our classifiers employed a

234  Gaussian kernel. SVMs were successfully used for classification of samples in variety of studies
235  [54-56].

236

237 2.2.4 Random Forest
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238 The random forest algorithm employs a collection of decision trees constructed from

239  bootstrapped input data and classification is done by majority voting among the ensemble of
240 trees [57]. Single decision trees are prone to overfitting; multiple trees constructed from

241  randomly sampled copies of the input data allows the consensus classification to be robust and
242  extensible to new samples. Each of our random forest models constructed 1000 trees, each
243  tree constructed from randomly sampled input with replacement, and each decision tree node
244 uses 31 randomly selected features to partition the tree.

245

246 2.3 Model training and external validation

247  The schema for predictor design for primary site classification and subtype classification are
248  depicted in Figure 1.

249

250 2.3.1 Design of primary site (tumor type) predictor

251  All models were trained using the same feature selection and cross-validation schedule. Each
252 model was then trained using a 3-fold cross validation procedure as follows. The expression set
253 s partitioned into 3 random subsamples and for each partition: (1) the selected partition is used
254  as the testing set and the remaining 2 are combined into a training set; (2) the 100 most

255 differentially expressed genes in each class (cancer type) are selected, measured by log-fold-
256 change of differential expression between in-class and out-of-class samples (p < 0.001); (3) the
257 model is trained using the selected features; (4) predictions for the selected partition is

258 recorded. The cross-validation procedure yields an estimate of the model performance with the
259  selected parameters. The final model is then constructed using the entire set of samples and
260 1,971 unique genes selected via the procedure in (2) above.

261

262 2.3.2 Molecular subtype classification
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For each of the 11 primary cancer types with established molecular subtypes, a model is
constructed as described above using the scaled, log2-transformed expression of the sample
corresponding to the selected primary type as input. For each cancer type, similar to cancer
type classification, features are selected by computing the differential expression (p<0.001) in

each subtype in comparison with the other subtypes of the same cancer type.

2.3.3 Predictor performance metrics

Each classification algorithm (predictor) was compared using per class and overall positive
predictive value, sensitivity, and specificity. Additional metrics such as per-class balance
accuracy, and F1 score are included in the supplementary tables. Per class metrics are

computed using a one-versus-all scheme.

2.4 Visualization

An interactive web application was constructed using the Python Dash framework (version
0.21.0). The application shows the TCGA data embedded in three dimensions using UMAP
(umap-learn, version 0.2.1, [58]) and t-SNE (MulticoreTSNE, version 0.1, [59, 60]). Data points
are color coded by tumor type or primary site (with cancer and match normal samples), and

molecular subtype, which can be controlled interactively through the interface.

The web application and the associated code are freely available for non-commercial, academic

use at https://pccportal.jax.org (pan-cancer classification portal) and the source code is

available as described in the Code availability subsection.

2.5 Code availability

All code to download, process, train, and validate these data and models is
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288 available in the following GitHub repository:

289  https://github.com/TheJacksonLaboratory/tcga subtype classification. All results and the

290 figures can be easily reproduced by cloning and running make.

291

292 3. RESULTS

293 3.1 Precise classification of primary cancer types across platforms

294  The classification of the 33 primary cancer types from the TCGA cohort (9,642 samples) by
295 random forest is presented in Figure 2A. Classification yields a median sensitivity and

296  specificity of 97.2% and 99.9% (n=33), respectively (Figure 2C). The major misclassifications
297  are primarily within organ systems (Figure 2B). Indeed, when primary types are grouped by
298 pan-organ groups [46], the median sensitivity increases to 98.5% with a substantial

299 improvement in the minimum sensitivity to 86.0% (Figure 2B,D). It is important to note that
300 every sample was classified by our model; no samples were excluded from classification, either
301 by a sample quality metric or through lack of consensus during label assignment. The most
302 frequent misclassifications occur between nearby locations in the gastrointestinal tract: rectal
303 adenocarcinoma (READ) is completely misclassified as colon adenocarcinoma (COAD), and
304 esophageal carcinoma (ESCA) is often misclassified as stomach adenocarcinoma (STAD).
305 COAD and READ are so similar that they are typically considered as a single primary type,
306 colorectal carcinoma (CRC) [23]. Misclassification between ESCA and STAD is expected, as a
307 certain class of ESCAs (esophageal adenocarcinomas) present at the interface of the

308 esophagus and stomach [61]. Also of note is the misclassification of uterine carcinosarcoma
309 (UCS) as uterine corpus endometrial carcinoma (UCEC). Histologically, USC presents features
310 of both UCEC and sarcoma (SARC) [62].

311

312 To understand these misclassifications, the expression profiles of every training sample was

313 embedded into a two-dimensional latent space using UMAP (see Methods) and colored by
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314  primary tumor type, shown in Figure 3. Several anatomical and histological structures readily
315 emerge from the embedding. Some cancers are observed to form disparate, well-separated
316 clusters by organ system, such as brain (GBM-LGG), liver and gallbladder (LIHC, CHOL), and
317 kidneys (KIRC, KIRP, KIRH), while other cancers are grouped by histological features, such as
318 the melanomas (SKCM, UVM) and squamous cell cancers (BLCA, CECS, HNSC, LUSC, and
319 some ESCA) forming distinct clusters. The core gastrointestinal tract cancers cluster tightly, with
320 COAD and READ embedded into an inseparable mass which is adjoined by STAD and some
321 ESCA samples. ESCA samples clearly segregate into two populations, consistent with both
322 esophageal adenocarcinoma (clustered with STAD) and squamous cell carcinoma (clustered
323  with LUSC, HNSC, etc.) being classified under ESCA (Zheng 2013). Similarly, the known

324  similarities between USC, UCEC, and SARC clearly emerges, with the embedding of USC

325 forming a bridge between UCEC and SARC clusters; we also observe two distinct clusters of
326 SARC samples, one most similar to USC and the other most similar to UCEC. As this

327 embedding is heavily dependent on the input samples and number thereof, it may be that some
328 misclassifications are unavoidable without a larger cohort of samples.

329

330 3.1.1 Primary site predictor performed well on external expression data

331 To further validate the primary site predictor, we classified 1,552 samples across 9 primary

332  cancer types (Figure 4A) profiled using microarrays from the Expression Project for Oncology
333 (expO, GSE2109 [35]). Due to the age of the dataset, primary cancer types corresponding to
334  the brain (LGG, GBM), lung (LUAD, LUSC), and kidney (KIRC, KIRP, KIRH) were aggregated to
335 match the respective primary site annotations of the dataset. Further, the genes used for

336 classification were reduced to 1,788 genes from the initially selected genes of 1,971 in order to
337 match those found in the external dataset, and the model was retrained on the training set with
338 only these 1,788 features. This external validation set not only tests the predictor performance

339 independent of batch variation, but also its independence of the platform and robustness to
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340 feature loss which are critical for the application of the predictors in clinical and translational
341 research.

342

343 Classification by primary site, shown in Figure 4B, yields median specificity of 99.3% and

344  median sensitivity of 78.1% (n=9) (Figure 4C), with misclassifications largely within organ

345 systems. For example, misclassification arises between gastrointestinal cancers STAD, COAD,
346  and LIHC, and ovarian serous cystadenocarcinoma (OV) is misclassified as cancers with similar
347 histology or anatomical location. When the classification is reorganized by pan-organ group, as
348 shown in Figure 4D, median sensitivity increases to 86.0% (n=6) with the misclassification only
349  between core and developmental gastrointestinal cancers (Figure 4E).

350

351 3.1.2 Primary site predictor can identify cancer of unknown primary

352 Identification of the primary cancer (site) of origin from a metastatic sample is a significant

353 clinical challenge. As metastases are expected to retain the transcriptional signature of primary
354  tumor of origin, we hypothesize that our predictors can identify the primary tumor type from
355 metastatic samples. We examined the performance of our predictors using an external

356 validating dataset from metastatic tumors.

357

358 Primary site classification of expression profiles of 88 metastatic samples across 6 known

359  primary sites is shown in Figure 5A,B [36]. The median specificity is 99.3%, and the median
360 sensitivity is 82.1%. The most common misclassifications were, again, between COAD and
361 STAD, the vast majority involving metastatic tumors in the liver. Between-organ-system

362 classification (Figure 5C) shows the minimum sensitivity substantially improves from 20.0% to
363 69.0%, where predictions of these gastrointestinal cancers are combined (Figure 5D). Further
364 examination revealed that the most common metastases in the data, 30/88 (34%) samples, are

365 to the liver or lung from the colon, illustrated in Figure 5E. Of the 88 tumors, 52 metastases
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366 (59.1%) are classified to the correct primary tumor type, 72 metastases (81.8%) are classified to
367  the correct primary organ system, 7 metastases (7.9%) are classified as the tumor from the

368 respective metastasized sites, and 9 metastases (10.1%) are classified incorrectly (Figure 5F)
369 i.e. neither as tumor of primary site nor as the metastasized site.

370

371  We further validate our predictors independently using an external dataset from patient-derived
372  xenograft (PDX) models of cancer. PDX models of cancer are a great resource to evaluate

373  therapeutic regimens but can also be used as a tool to study metastatic cancer, as illustrated in
374  Figure 6A. Primary tumor is resected from human patients and tumor fragments are implanted
375 into a cohort of immunodeficient mice [63]. After a growth period, the mouse-grown tumor is
376 resected and implanted into a new generation of mice. This process can be repeated several
377  times.

378

379  We performed the primary site type classification of 318 PDX-derived mouse-grown tumors

380 (samples were taken from the second generation of mice) spanning 11 primary sites (Figure 6B-
381 C). Classification of primary cancer types yields a median specificity of 99.5% (n=11), and

382 median sensitivity of 76% (n=11) (Figure 6D). When classified by pan-organ system, the median
383  sensitivity increases to 83% (Figure 6E,F). Despite not being present in the set of primary

384  cancers, several tumors including COAD and PAAD are classified as STAD, possibly due to the
385 close proximity of anatomic positions.

386

387  These three external validations of our model overwhelmingly support the hypothesis that

388 metastatic and xenograft tumors retain the molecular signature of the primary tumor.

389 Application of such models in the clinic will allow for more effective treatments of CUPs.

390

391 3.2 Subtype specific classification accurately identifies molecular subtypes
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392  Molecular subtypes have been defined for 11 cancer types: BRCA, HNSC, KIRC, KIRP, LGG,
393 LUAD, LUSC, OV, PRAD, SKCM, and STAD. Each of these primary types has two to four

394  molecular subtypes. For example, breast cancers are frequently subtyped into Basal-like, Her2-
395 enriched, Luminal A and Luminal B. This subtyping has prognostic power and can be used as
396 predictive marker for therapeutic approaches [64].

397

398 Eleven models were constructed, one model for each primary tumor type, into its molecular
399  subtypes, as illustrated schematically in Figure 1. The positive predictive value, sensitivity,

400  specificity, and number of samples per subtype are shown in Figure 7A-D. The best performing
401  subtype predictors, LGG, LUAD, PRAD, have median sensitivity above 90%, with PRAD

402 vyielding nearly perfect classification.

403

404  3.2.1 Subtype predictors are accurate on external data of different platforms

405 To further validate the cancer subtype predictors, we classified samples from two external

406 datasets: ovarian cancer [15] and breast cancer [38] annotated with molecular subtypes, with
407 215 and 1,784 samples respectively. The ovarian cancer subtype predictor (Figure 7E,F)

408 attained a median specificity of 94.9% (the best performance is for mesenchymal: 99.2%) and a
409 median sensitivity of 88.4% (the best performance is proliferative: 97.2%). The breast cancer
410  subtype predictor, shown in Figure 7G,H, presented a median specificity of 95% (the best

411  performance is for basal-like: 99.9%) and a median sensitivity of 72.4% (the best performance is
412  for luminal-A subtype: 95%). Notably, the basal-like molecular subtype of breast cancer is a
413 particularly aggressive subtype and patients relapse rapidly. The accurate classification of this
414  subtype is important for precise treatment—recently, a diabetes drug has been shown as a

415 potential therapy for basal-like breast cancer patients [65]. The two external validation datasets
416  from 1,999 patients with breast or ovarian cancers demonstrate that our subtype predictors can

417  distinguish clinically favorable subtypes from those associated with poor prognosis.
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418

419 Together with the identification of primary origin for metastatic tumors, followed by subtype
420 classification together allows for informed therapeutic decision making for clinicians, thereby
421  improving treatment outcomes for CUP patients.

422

423 4. DISCUSSION

424 1t is widely appreciated that cancer is a disease at the scale of the entire genome, but it remains
425  difficult to effectively translate this complexity into clinical utility. Two important pieces of

426 information that are relevant in clinical care and translational research are knowledge of tissue
427  of origin, or CUP, and subtype of the cancer. Identifying tissue of origin of CUPs and molecular
428  subtype is critical for personalized medicine, where the treatment is tailored to the molecular
429  profile of individual tumor [66]. Because of the lack of primary site information, CUP patients
430 receive palliative chemotherapy that lacks the precision of modern targeted cancer medicine
431 and results in no clear benefit in survival [67, 68]. Various approved targeted therapies for

432  cancer by the Food and Drug Administration (FDA) include signal transduction inhibitors, gene
433  expression modulators, apoptosis inducers, angiogenesis inhibitors, immunotherapies. The
434  targeted therapies have been approved for the treatment of over 28 types of cancer. As CUP
435 may retain molecular signatures of its primary site, CUP patients with primary or metastatic

436  tumor might benefit from established therapeutic regimens appropriate for cancers of that

437  tissue; therefore, identifying the primary site is key to choosing effective therapeutic options.
438

439  Another major challenge in clinical cancer research is accurately classifying cancers into
440  appropriate homogeneous subtypes to improve prognosis and treatment [5]. Analyses of The
441  Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) have

442  established that a cancer at any primary site can be further classified into molecular subtypes
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443  with potentially distinct clinical outcome and therapeutic options [21-28, 62]. For example, the
444  EBV-positive subtype of gastric cancer is associated with overexpression of JAK2, PD-L1 and
445  PD-L2 genes, suggesting that PD-L1/2 antagonists and JAK2 inhibitors are potential therapeutic
446  options for these tumors [64]. Similar clinical and therapeutic relevance of subtype information
447  has been demonstrated in multiple cancers [21, 23-25, 27, 28]. Increasingly, tumor molecular
448  subtype is being considered as an eligibility criterion for the entry into clinical trials [29].

449  However, for many cancers, the molecular subtype information is not available for use in clinical
450 practice because of the difficulty in identifying the subtype of a given tumor [30, 31]. Besides
451 being an important factor in clinical decision making, the knowledge of the molecular subtype
452  will be helpful in translational research. For example, cancer avatar trials use PDX models to
453 test panels of drugs to determine the best regime for personalized human therapy. Knowledge
454  of subtype of the tumor may narrow down the choice of treatment regimens to test which

455 increases efficiency of the cancer avatar trials.
456

457  We developed predictors of high sensitivity and specificity for classification of primary site of
458  origin of 33 cancers and molecular subtyping of 11 cancers using gene expression data from
459 the TCGA. We show, for the first time to our knowledge, our pan-cancer classifiers can predict
460 multiple cancers’ primary site of origin from metastatic samples. Compared to the other

461 predictors based on somatic mutations [69], our predictors are not limited to only cancer types
462  with high mutation burden and has much greater potential for clinical diagnosis and therapeutic
463  design. Further, the predictors designed based on the TCGA RNA-seq data generalize to

464  different cohorts of primary and metastatic samples profiled using RNA-seq and microarray
465  sequencing technologies. Such external validation qualifies our predictors to be robust across

466 technology platforms, batches and sample processing protocols. A combination of primary
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467  tissue of origin and subtype classification from metastases will serve as important tools for

468 clinicians in effectively treating CUPs.

469

470  The classification tools discriminated all cancers from each other well, except among the gastro-
471 intestinal cancers. However, the classification by cancer group could be achieved with very high
472  sensitivity and specificity. Different cancers among gastrointestinal cancers are less

473  distinguishable due to their anatomic proximity and molecular similarity, as shown in Figure 3.
474  To circumvent this problem, in our future work, we will adopt a hierarchical classification of

475  tumors: (1) granular classification by organ system (2) finer classification by cancer type in each
476  organ system. In addition, we can include features from copy number, mutation and methylation
477  data to augment our feature set for both accuracy as well as robustness for technology and

478  batch variations. Molecular subtyping can also benefit from adding features from heterogeneous
479 data as several subtypes were identified to exhibit genomic features that span whole spectrum
480 of omics data. For example, the CIN subtype in gastric cancer is known to exhibit large

481  structural variations which may not be captured accurately by expression data. Thus, our future
482  work will encompass comprehensive multi-omic data to identify tissue of origin and molecular
483  subtyping.

484

485  Though the overall performance of the predictors designed using DLDA, SVM and KNN is not
486 as good as Random Forest on this data, their performance is on par with or better than Random
487  Forest based predictors on certain tumor type and subtype classification. However, the

488 classification predicted by Random Forest predictors is easier to interpret.

489

490 As we continue to enhance the predictor, we do recognize that the clinical utility of the

491 predictors is dependent on their ability to classify FFPE (formalin-fixed paraffin-embedded)

492  samples, which is the standard specimen type used for molecular profiling of cancers in clinical
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diagnostics in addition to fresh-frozen samples. We have previously shown that the predictors
designed to work on microarray data can also work with FFPE samples if they are profiled using
nanoString arrays [70]. Therefore, it is feasible to generalize our predictors to work on FFPE
samples for clinical applications. In summary, we have demonstrated the utility of gene
expression profiles to solve the important clinical challenge of identifying the primary site of
origin and the molecular subtype of cancers based on machine learning algorithms. These
predictors will be made available as open source software, freely available for academic non-

commercial use.

In an effort to make these tools available to as wide an audience as possible, we offer our
models and results in two publicly available forms: a web-based portal and a software package
which can be used to apply these tools to other datasets and to reproduce the results presented
here. The web-based portal provides interactive visualizations showing the expression profiles
of the TCGA cancer samples and the classification results of our predictors. These
visualizations allow for the exploration of relationships between cancer types in the context of

pan-cancer expression profiles.

SUPPORTING INFORMATION
Table S1. Contingency tables and performance metrics for all primary site predictors
Table S2. Cross-validation performance metrics of subtype predictors

Table S3. External validation performance metrics of subtype predictors
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FIGURE LEGENDS

Figure 1. Platform-independent learning and validation from TCGA transcriptomes.

(A) Schematic showing the learning procedure used to train machine learning models from
labeled TCGA transcriptomes spanning 33 cancer types and 11 molecular subtypes. Models
were trained and evaluated using k-fold cross validation on normalized and standard scaled
expression profiles. For each fold, N features were selected from each class (see Methods) and
pooled, which were used to train the classification model. Using this schema, we constructed
one primary type and eleven molecular subtype predictors for each type of model: random
forest (RF), support vector machine (SVM), k-nearest neighbor classifier (kNN), and diagonal
linear discriminant analysis (DLDA). (B) Classification performance was evaluated via cross-
validation on the learning set and external validation utilizing five datasets; using two of these
datasets, we challenged the predictors to infer primary tumor types from transcriptomes of

metastatic or passaged patient-derived xenograft samples.

Figure 2. Precise classification of tumors by primary type and organ system.

(A-B) Random forest classification of primary cancer types and grouped by pan-organ system.
Text in contingency table cell ¢;; shows tumor of class i classified as class j. Grayscale shading
of table cells is proportional to the number of samples of each primary site, represented as bars
above the table. Color shading along the main diagonal shows pan-organ groups. Positive
predictive value (precision) for each prediction class are shown to the right of the table. (C-D)

Sensitivity and specificity for each classification in (A) and (B), respectively.

Figure 3. Unsupervised embedding of expression profiles reveals relationships among
primary sites.
Expression profiles from all samples were embedded into two dimensions using uniform

manifold approximation and projection (UMAP) [58] and colored by primary cancer type. For
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each cancer, labels are placed near the centroid of the expression profile in the UMAP latent
space. Anatomical and histological relationships are emergent and add context to the most
common misclassifications in Figure 2. The following groups of cancers are highlighted with
green, blue, and purple ellipses, respectively: COAD, READ, STAD; BLCA, CESC, ESCA,

HNSC, LUSC; OV, SARC, UCEC, UCS.

Figure 4. External validation of primary site predictor using microarray data.

1,552 microarray expression profiles (GSE2109) from 9 cancer types or related cancer types
(LUSC/LUAD and KIRC/KIRP/KICH) were classified to further validate the primary site predictor
(A). Markers in (A) are scaled by the number of samples in each class. Classification was
evaluated by primary site (B) and pan-organ group (C). (D-E) Sensitivity and specificity for each

classification in (B) and (C), respectively.

Figure 5. Predictor infers primary cancer of origin from metastatic tumor samples.

(A-B) 88 expression profiles of metastatic tumors (GSE18549) from primary site of origin
spanning 6 organs were classified by primary cancer type and primary pan-organ group. (C-D)
Sensitivity and specificity for each classification in (A) and (B), respectively. (E) 30/88 (34%) of
samples are liver or lung metastases from the colon. (F) The majority of misclassifications of
primary site are within pan-organ system; of the remainder, 7 misclassifications identify the

metastatic tumor whereas 9 are true misclassifications.

Figure 6. Predictor infers primary cancer of origin from passaged patient-derived
xenografts.

(A) 295 expression profiles of resected passaged patient-derived xenograft (PDX) tumors from
primary sites spanning 11 organs were classified by primary site (samples generated at the

Jackson Laboratory, available via MTB [37]). PDX tumor samples were taken for sequencing
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from the second generation of mice. Classification of primary site identification was evaluated
by primary site (B) and pan-organ group (C). (D-E) Sensitivity and specificity for each

classification in (B) and (C), respectively.

Figure 7. Cross- and external validation of molecular subtype predictors.

A predictor of molecular subtypes was constructed for each of 11 primary cancer types,
spanning 38 molecular subtypes. (A) Per-class positive predictive value, (B) specificity, and (C)
sensitivity of molecular subtype classifications evaluated through cross-validation (Figure 1).
(D) Number of training samples for each molecular subtype. To further validate these subtype
predictors, breast (E) and ovarian (F) subtype predictors were used to predict the respective
molecular subtypes in two external datasets (GSE9899 and EGAS00000000083, respectively).

(G-H) Sensitivity and specificity for each classification in (E) and (F), respectively.
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