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ABSTRACT 15 

Background: It is estimated by the American Cancer Society that approximately 5% of all 16 

metastatic tumors have no defined primary site (tissue) of origin and are classified as cancers of 17 

unknown primary (CUPs). The current standard of care for CUP patients depends on 18 

immunohistochemistry (IHC) based approaches to identify the primary site. The addition of post-19 

mortem evaluation to IHC based tests helps to reveal the identity of the primary site for only 20 

25% of the CUPs, emphasizing the acute need for better methods of determination of the site of 21 

origin. CUP patients are therefore given generic chemotherapeutic agents resulting in poor 22 

prognosis. When the tissue of origin is known, patients can be given site specific therapy with 23 

significant improvement in clinical outcome. Similarly, identifying the primary site of origin of 24 

metastatic cancer is of great importance for designing treatment.  25 

 26 

Identification of the primary site of origin is an import first step but may not be sufficient 27 

information for optimal treatment of the patient.  Recent studies, primarily from The Cancer 28 

Genome Atlas (TCGA) project, and others, have revealed molecular subtypes in several cancer 29 

types with distinct clinical outcome. The molecular subtype captures the fundamental 30 

mechanisms driving the cancer and provides information that is essential for the optimal 31 

treatment of a cancer. Thus, along with primary site of origin, molecular subtype of a tumor is 32 

emerging as a criterion for personalized medicine and patient entry into clinical trials.   33 

 34 

However, there is no comprehensive toolset available for precise identification of tissue of origin 35 

or molecular subtype for precision medicine and translational research.  36 

 37 

Methods and Findings: We posited that metastatic tumors will harbor the gene expression 38 

profiles of the primary site of origin of the cancer. Therefore, we decided to learn the molecular 39 

characteristics of the primary tumors using the large number of cancer genome profiles 40 
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available from the TCGA project. Our predictors were trained for 33 cancer types and for the 11 41 

cancers where there are established molecular subtypes. We estimated the accuracy of several 42 

machine learning models using cross-validation methods. The extensive testing using 43 

independent test sets revealed that the predictors had a median sensitivity and specificity of 44 

97.2% and 99.9% respectively without losing classification of any tumor. Subtype classifiers 45 

achieved median sensitivity of 87.7% and specificity of 94.5% via cross validation and 46 

presented median sensitivity of 79.6% and specificity of 94.6% in two external datasets of 1,999 47 

total samples. Importantly, these external data shows that our classifiers can robustly predict the 48 

primary site of origin from external microarray data, metastatic cancer data, and patient-derived 49 

xenograft (PDX) data. 50 

 51 

Conclusion: We have demonstrated the utility of gene expression profiles to solve the 52 

important clinical challenge of identifying the primary site of origin and the molecular subtype of 53 

cancers based on machine learning algorithms. We show, for the first time to our knowledge, 54 

that our pan-cancer classifiers can predict multiple cancers’ primary site of origin from 55 

metastatic samples. The predictors will be made available as open source software, freely 56 

available for academic non-commercial use.  57 

 58 

KEYWORDS 59 

Cancer; TCGA; RNA-seq; Classification; Subtypes; Transcriptome; Machine learning; Cell-of-60 

origin; Cancer-of-unknown-primary 61 
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1. INTRODUCTION 63 

Precision cancer therapy requires the knowledge of primary site of origin and accurate 64 

subtyping of the cancer to identify an appropriate therapeutic regimen. However, according to 65 

the American Cancer Society, an estimated 2 to 5 percent of all cancer patients have metastatic 66 

tumors for which routine testing cannot locate the primary site and is therefore classified as a 67 

cancer of unknown primary (CUP).  CUP patients have very poor prognosis, primarily because 68 

the course of treatment is empiric and not tailored for a specific tumor type [1, 2].  In addition, 69 

lack of knowledge of the true cancer type puts CUP patients under severe psychological 70 

distress that may lead to clinically significant depressive symptoms [3].   71 

 72 

In a study of CUP patients that were predicted to have primary tumors originating in the colon, 73 

the median survival of patients increased in those that received site-specific chemotherapy as 74 

compared to those who received empirically-determined treatments [4, 5].  Furthermore, 75 

multiple studies have supported the use of molecular profiling to diagnose CUP and to 76 

determine specific treatment based upon the predicted site of origin leading to an improvement 77 

in overall survival [6-9]. Therefore, it is important to develop systematic methods to identify the 78 

primary site of origin of the disease. 79 

 80 

Currently, immunohistochemistry (IHC) utilizing antibodies targeted to certain tumor-specific 81 

antigens is the main method for primary site identification in patients with CUP [2, 10].  82 

However, there is not a single specific marker that can be used to conclusively diagnose the 83 

primary tumor, leading to the use of multiple different IHC markers, and generating the 84 

possibility that different clinicians will arrive at different diagnoses of the primary tumor type [2, 85 

11-14].  Recent advances in genomics has led to the development of potential new means for 86 

diagnosing these tumors; multiple studies have utilized gene expression profiles and other 87 

molecular markers to diagnose CUP [2].  One such method involved comparisons of gene 88 
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expression profiles between CUPs and a set of primary and metastatic tumors with known 89 

origins to predict the tissue of origin for the CUP [2, 6, 15-20].  None of these tools were able to 90 

identify the tissue of origin with high sensitivity and specificity for all the CUP samples.  For 91 

example, the EPICUP tool, which had the best performance to date provides high accuracy for 92 

only 87% of the CUP samples.  93 

 94 

Several studies, including the Cancer Genome Atlas (TCGA) and International Cancer Genome 95 

Consortium (ICGC)  studies, have shown that the  cancers from the primary tissue can be 96 

classified into molecular subtypes with distinct clinical outcome and therapeutic options [21-28].  97 

The molecular subtype information can also have predictive power. For example, Bevacizumab, 98 

a monoclonal antibody that block angiogenesis, is shown to benefit patients of mesenchymal 99 

and proliferative subtypes in ovarian cancer and therefore may be used as a criterion for the 100 

entry into a clinical trial [29]. In addition, molecular subtype information can guide the selection 101 

of targeted therapies and to suggest new treatment strategies (e.g. the potential use of JAK2 102 

inhibitors and PD-L1/2 antagonists for the treatment of EBV-positive gastric cancer) [27].  103 

However, identification of molecular subtypes is clinically challenging and thus clinicians are 104 

unable to utilize molecular subtype information to inform treatment decisions [30, 31] due to a 105 

lack of tools and assays for pan-cancer subtyping despite the availability of genomic 106 

technologies for clinical diagnostics.  107 

 108 

To fill this important gap in the clinical and translational research setting, using expression data 109 

available from the TCGA project, we developed Machine Learning based predictors that enable 110 

accurate identification of primary site of origin and subtype of cancer (Figure 1). Our predictors 111 

were trained for 33 cancer types and for the 11 cancers where there are established molecular 112 

subtypes. The extensive testing using independent test sets revealed that the predictors had a 113 

median sensitivity and specificity of 97.2% and 99.9% respectively without failing to classify any 114 
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tumor using in total 1,959 samples. Subtype predictors achieved median sensitivity of 79.6% 115 

and specificity of 94.6% using two external validation sets consisting of 1,999 breast and 116 

ovarian cancer samples in total. Our gene expression-based pan-cancer classifier can, for the 117 

first time to our knowledge, robustly predict multiple cancers’ primary site of origin from 118 

metastatic samples using an independent validation dataset (specificity: 99.3%, sensitivity: 119 

82.1%) and predict molecular subtype. Compared to other pan-cancer classifiers based on 120 

somatic mutations, our classifier is not limited to only cancer types with high mutation burden 121 

and has much greater potential for clinical diagnosis and therapeutic design. 122 

 123 

2. METHODS 124 

2.1 Expression datasets  125 

2.1.1 Learning set: TCGA expression data 126 

RSEM [32] normalized mRNA expression matrices were downloaded for each of the 33 unique 127 

cancer cohorts (listed in Table 1) available from the Broad Institute GDAC Firehose (run 128 

2016_01_28) [33].  Individual cohort expression matrices were converted to Biobase 129 

ExpressionSet objects [34] for standardization and then combined as an ExpressionSet stored 130 

in Apache Feather format (version 0.4.0) to allow downstream analysis in both R and Python 131 

(https://github.com/wesm/feather). The raw expression matrix consisted 11,330 samples and 132 

20,531 genes, which was reduced to 10,446 samples and 9,642 genes after filtering (detailed 133 

below). 134 

 135 
Table 1.  33 GDAC Cancer Cohorts 136 
Cohort Abbr. Cases Disease Name 
ACC 92 Adrenocortical carcinoma 
BLCA 412 Bladder urothelial carcinoma 
BRCA 1,098 Breast invasive carcinoma 
CESC 307 Cervical and endocervical cancers 
CHOL 51 Cholangiocarcinoma 
COAD 460 Colon adenocarcinoma 
DLBC 58 Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 
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ESCA 185 Esophageal carcinoma 
GBM 613 Glioblastoma multiforme 
HNSC 528 Head and Neck squamous cell carcinoma 
KICH 113 Kidney Chromophobe 
KIRC 537 Kidney renal clear cell carcinoma 
KIRP 323 Kidney renal papillary cell carcinoma 
LAML 200 Acute Myeloid Leukemia 
LGG 516 Brain Lower Grade Glioma 
LIHC 377 Liver hepatocellular carcinoma 
LUAD 585 Lung adenocarcinoma 
LUSC 504 Lung squamous cell carcinoma 
MESO 87 Mesothelioma 
OV 602 Ovarian serous cystadenocarcinoma  
PAAD 185 Pancreatic adenocarcinoma 
PCPG 179 Pheochromocytoma and Paraganglioma 
PRAD 499 Prostate adenocarcinoma 
READ 171 Rectum adenocarcinoma 
SARC 261 Sarcoma 
SKCM 470 Skin Cutaneous Melanoma 
STAD 443 Stomach adenocarcinoma 
TGCT 150 Testicular Germ Cell Tumors 
THCA 503 Thyroid carcinoma 
THYM 124 Thymoma 
UCEC 560 Uterine Corpus Endometrial Carcinoma 
UCS 57 Uterine Carcinosarcoma 
UVM 80 Uveal Melanoma 
 137 

2.1.2 External validation data 138 

External cancer gene expression datasets, i.e. those used exclusively for testing the 139 

performance of models, were obtained from the publicly available Gene Expression Omnibus 140 

(GEO) and the patient-derived xenograft (PDX) mouse models generated at the Jackson 141 

Laboratory.  These datasets were not introduced during model fitting (hence external validation) 142 

and were generated using both RNA-seq and microarray technologies. 143 

 144 

The first dataset used to test the model accuracy was the microarray gene expression profile of 145 

2,158 cancer samples from the expression project for oncology (expO, GSE2109) [35].  Of the 146 

2,158 samples, we were able to identify relevant primary tumor types for 1,558 samples and 147 

excluded LGG/GBM from classification due to too few samples, resulting in classification of 148 

1,552 samples. The second dataset, GSE18549, contained expression profiles of 96 tumors 149 
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from their metastatic sites [36]. We used 88 of these tumors whose primary sites could be 150 

identified and those with more than 1 sample per primary site. The third dataset used contains 151 

the expression profile of 338 PDX RNA-seq samples generated at the Jackson Laboratory and 152 

available through the Mouse Tumor Biology (MTB) gene expression portal 153 

(http://tumor.informatics.jax.org) [37]. Of these 338 samples, 325 samples could be mapped to 154 

one of the 33 TCGA primary cancer types and the 7 OV samples were excluded as they 155 

originate from the same two patients. The distribution of the primary types in the external 156 

datasets used for validation are shown in Table 2. 157 

 158 

Table 2.  Distribution of samples in the three external datasets used to validate the 159 

primary classification model 160 

 External dataset 
Primary site GSE2109 GSE18549 PDX 
BLCA 32 0 29 
BRCA 354 14 41 
COAD 312 35 68 
DLBC 0 0 4 
KIRC/KIRP/KIRH 281 6 8 
LAML 0 0 13 
LGG/GBM 6 0 5 
LIHC 46 0 0 
LUAD/LUSC 133 10 88 
OV 279 14 7 
PAAD 0 0 12 
PRAD 83 9 0 
READ 0 1 0 
SARC 0 0 32 
SKCM 0 0 18 
THCA 32 0 0 
N/A 600 7 13 
Used 1,552 88 318 
Total 2,158 96 338 
 161 
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For external validation of our subtype predictors, we acquired two additional microarray 162 

datasets. The first, accession number GSE9899, contains 215 ovarian cancer samples [15] and 163 

the second, EGA study EGAS00000000083 (https://www.ebi.ac.uk/ega), contains 1,784 breast 164 

cancer samples [38].  Both datasets comprise 4 molecular subtypes each: mesenchymal, 165 

immunoreactive, differentiated, and proliferative for the ovarian set; and basal-like, HER2-166 

enriched, luminal A, and luminal B for the breast set.  167 

 168 

2.1.3 Normalization, filtering, and preprocessing  169 

All expression data was log2-transformed, and only genes with (a) maximum log2 expression 170 

greater than 8 and (b) variance in log2 expression greater than 1 were retained.  After filtering, 171 

the genes in each dataset was scaled to zero mean expression and unit variance.  This scaling 172 

allows expression to be measured in terms of standard deviations and affords platform-173 

independent use of subsequently trained models. 174 

 175 

2.1.4 Molecular subtype label curation 176 

Molecular subtype information was downloaded from cBioPortal [39, 40] for 3,367 samples from 177 

the following primary cancers: glioblastoma multiforme (GBM), stomach adenocarcinoma 178 

(STAD), breast (BRCA), ovarian (OV), prostate (PRAD), and lung squamous cell cancers 179 

(LUSC).  Further annotations were curated from the following supplemental data files:  lower 180 

grade glioma (LGG) [41], head and neck squamous cell carcinoma (HNSC) [22], uterine corpus 181 

endometrial carcinoma (UCEC) [42], cutaneous melanoma (SKCM) [43], papillary (KIRP) [44] 182 

and clear cell (KIRC) [45] renal cancers, and lung adenocarcinoma (LUAD) [27].  R (version 3+) 183 

scripts were written to extract relevant information (e.g. sample id, specific subtype) from 184 

downloaded data and supplemental files.  These scripts are available in the public project 185 

GitHub repository as described under Code availability. 186 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2018. ; https://doi.org/10.1101/333914doi: bioRxiv preprint 

https://doi.org/10.1101/333914
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 187 

2.1.5 Pan-organ group labels 188 

A recently published study performed integrated clustering on the multiomic data from the 189 

approximately 10,000 The Cancer Genome Atlas (TCGA) samples of 33 types of cancer. The 190 

authors identified multi-cancer groups, which tend to span whole organs or related organ groups 191 

[46].  We use these pan-organ group assignments to evaluate our classification results in a 192 

individual- or multi-organ context. These classifications are reproduced here: central nervous 193 

system (GBM LGG), core gastrointestinal (ESCA, STAD, COAD, READ), developmental 194 

gastrointestinal (LIHC, PAAD, CHOL), endocrine (THCA and ACC), gynecologic (OV, UCEC 195 

CESC BRCA), head and neck (HNSC), hematologic and lymphatic malignancies (LAML, DLBC, 196 

THYM), melanocytic (SKCM and UVM), neural-crest-derived tissues (PCPG), soft tissue (SARC 197 

and UCS), thoracic (LUAD, LUSC, MESO), urologic (BLCA, PRAD, TGCT, KIRC, KICH, KIRP). 198 

 199 

2.2 Machine Learning Algorithms for Cancer Classification 200 

We evaluated several popular machine learning algorithms to develop predictors for CUP 201 

classification and subtype identification: DLDA, KNN, SVM and Random Forest. We used R-202 

packages sparsediscrim (version 0.2.4), base::knn, e1071 (version 1.6-8), and randomForest 203 

(version 4.6-14), respectively for the training, testing; and caret (version 6.0-79) for tool 204 

development.  Unless otherwise specified, default parameters were chosen for model 205 

construction. 206 

 207 

2.2.1 Diagonal Linear Discriminant Analysis (DLDA) 208 

The DLDA classifier belongs to the family of Naive Bayes classifiers, where the distribution of 209 

each class is assumed to be a multivariate normal and to share a common covariance matrix. 210 

The DLDA classifier is a modification to LDA, where the off-diagonal elements of the pooled 211 
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sample covariance matrix are set to zero [47]. DLDA was used as classifier in several genomic 212 

based cancer classification tasks [48, 49]. 213 

 214 

2.2.2 k-Nearest Neighbor (KNN) classifier 215 

A KNN classifier offers the simplest classifier training strategy, also referred to as ‘lazy 216 

classifier’, and has been successfully applied in the classification of cancer and non-cancer 217 

related classification tasks [50-52]. A KNN classifier uses the training samples as reference 218 

vectors and, for every sample in the test set, the k nearest (in Euclidean distance) reference 219 

vectors are found. The classification is decided by majority vote of the k-nearest neighbors’ 220 

class. Note that, if multiple nearest neighbor vectors are found with identical distances, all such 221 

nearest neighbor vectors are included in the voting pool, which can lead to k being exceeded in 222 

these cases [53].  223 

 224 

2.2.3 Support Vector Machine (SVM) 225 

An SVM algorithm builds a predictive model by constructing a representation of the training 226 

samples as points in higher dimensional space and builds a linear model (separating linear 227 

boundary) in that space such that the mapped samples of the different categories are separated 228 

by a gap that is as wide as possible. New examples are then mapped into that same space and 229 

predicted to belong to a category based on which side of the separating boundary they fall. For 230 

multiclass classification among N classes, N*(N-1)/2 binary SVM classifiers are constructed and 231 

trained in a one-versus-one manner; ultimate class predictions come from voting amongst the 232 

ensemble of binary classifiers.  The implementation used for our classifiers employed a 233 

Gaussian kernel. SVMs were successfully used for classification of samples in variety of studies 234 

[54-56]. 235 

 236 

2.2.4 Random Forest 237 
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The random forest algorithm employs a collection of decision trees constructed from 238 

bootstrapped input data and classification is done by majority voting among the ensemble of 239 

trees [57].  Single decision trees are prone to overfitting; multiple trees constructed from 240 

randomly sampled copies of the input data allows the consensus classification to be robust and 241 

extensible to new samples.  Each of our random forest models constructed 1000 trees, each 242 

tree constructed from randomly sampled input with replacement, and each decision tree node 243 

uses 31 randomly selected features to partition the tree. 244 

 245 

2.3 Model training and external validation 246 

The schema for predictor design for primary site classification and subtype classification are 247 

depicted in Figure 1. 248 

 249 

2.3.1 Design of primary site (tumor type) predictor 250 

All models were trained using the same feature selection and cross-validation schedule.  Each 251 

model was then trained using a 3-fold cross validation procedure as follows.  The expression set 252 

is partitioned into 3 random subsamples and for each partition: (1) the selected partition is used 253 

as the testing set and the remaining 2 are combined into a training set; (2) the 100 most 254 

differentially expressed genes in each class (cancer type) are selected, measured by log-fold-255 

change of differential expression between in-class and out-of-class samples (p < 0.001); (3) the 256 

model is trained using the selected features; (4) predictions for the selected partition is 257 

recorded. The cross-validation procedure yields an estimate of the model performance with the 258 

selected parameters.  The final model is then constructed using the entire set of samples and 259 

1,971 unique genes selected via the procedure in (2) above.  260 

 261 

2.3.2 Molecular subtype classification 262 
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For each of the 11 primary cancer types with established molecular subtypes, a model is 263 

constructed as described above using the scaled, log2-transformed expression of the sample 264 

corresponding to the selected primary type as input. For each cancer type, similar to cancer 265 

type classification, features are selected by computing the differential expression (p<0.001) in 266 

each subtype in comparison with the other subtypes of the same cancer type.  267 

 268 

2.3.3 Predictor performance metrics 269 

Each classification algorithm (predictor) was compared using per class and overall positive 270 

predictive value, sensitivity, and specificity.  Additional metrics such as per-class balance 271 

accuracy, and F1 score are included in the supplementary tables.  Per class metrics are 272 

computed using a one-versus-all scheme.   273 

 274 

2.4 Visualization 275 

An interactive web application was constructed using the Python Dash framework (version 276 

0.21.0).  The application shows the TCGA data embedded in three dimensions using UMAP 277 

(umap-learn, version 0.2.1, [58]) and t-SNE (MulticoreTSNE, version 0.1, [59, 60]).  Data points 278 

are color coded by tumor type or primary site (with cancer and match normal samples), and 279 

molecular subtype, which can be controlled interactively through the interface.  280 

 281 

The web application and the associated code are freely available for non-commercial, academic 282 

use at https://pccportal.jax.org (pan-cancer classification portal) and the source code is 283 

available as described in the Code availability subsection. 284 

 285 

2.5 Code availability 286 

All code to download, process, train, and validate these data and models is 287 
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available in the following GitHub repository: 288 

https://github.com/TheJacksonLaboratory/tcga_subtype_classification.  All results and the 289 

figures can be easily reproduced by cloning and running make. 290 

 291 

3. RESULTS 292 

3.1 Precise classification of primary cancer types across platforms 293 

The classification of the 33 primary cancer types from the TCGA cohort (9,642 samples) by 294 

random forest is presented in Figure 2A.  Classification yields a median sensitivity and 295 

specificity of 97.2% and 99.9% (n=33), respectively (Figure 2C). The major misclassifications 296 

are primarily within organ systems (Figure 2B).  Indeed, when primary types are grouped by 297 

pan-organ groups [46], the median sensitivity increases to 98.5% with a substantial 298 

improvement in the minimum sensitivity to 86.0% (Figure 2B,D).  It is important to note that 299 

every sample was classified by our model; no samples were excluded from classification, either 300 

by a sample quality metric or through lack of consensus during label assignment.  The most 301 

frequent misclassifications occur between nearby locations in the gastrointestinal tract: rectal 302 

adenocarcinoma (READ) is completely misclassified as colon adenocarcinoma (COAD), and 303 

esophageal carcinoma (ESCA) is often misclassified as stomach adenocarcinoma (STAD). 304 

 COAD and READ are so similar that they are typically considered as a single primary type, 305 

colorectal carcinoma (CRC) [23].  Misclassification between ESCA and STAD is expected, as a 306 

certain class of ESCAs (esophageal adenocarcinomas) present at the interface of the 307 

esophagus and stomach [61]. Also of note is the misclassification of uterine carcinosarcoma 308 

(UCS) as uterine corpus endometrial carcinoma (UCEC).  Histologically, USC presents features 309 

of both UCEC and sarcoma (SARC) [62]. 310 

  311 

To understand these misclassifications, the expression profiles of every training sample was 312 

embedded into a two-dimensional latent space using UMAP (see Methods) and colored by 313 
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primary tumor type, shown in Figure 3. Several anatomical and histological structures readily 314 

emerge from the embedding. Some cancers are observed to form disparate, well-separated 315 

clusters by organ system, such as brain (GBM-LGG), liver and gallbladder (LIHC, CHOL), and 316 

kidneys (KIRC, KIRP, KIRH), while other cancers are grouped by histological features, such as 317 

the melanomas (SKCM, UVM) and squamous cell cancers (BLCA, CECS, HNSC, LUSC, and 318 

some ESCA) forming distinct clusters. The core gastrointestinal tract cancers cluster tightly, with 319 

COAD and READ embedded into an inseparable mass which is adjoined by STAD and some 320 

ESCA samples. ESCA samples clearly segregate into two populations, consistent with both 321 

esophageal adenocarcinoma (clustered with STAD) and squamous cell carcinoma (clustered 322 

with LUSC, HNSC, etc.) being classified under ESCA (Zheng 2013). Similarly, the known 323 

similarities between USC, UCEC, and SARC clearly emerges, with the embedding of USC 324 

forming a bridge between UCEC and SARC clusters; we also observe two distinct clusters of 325 

SARC samples, one most similar to USC and the other most similar to UCEC. As this 326 

embedding is heavily dependent on the input samples and number thereof, it may be that some 327 

misclassifications are unavoidable without a larger cohort of samples. 328 

  329 

3.1.1 Primary site predictor performed well on external expression data 330 

To further validate the primary site predictor, we classified 1,552 samples across 9 primary 331 

cancer types (Figure 4A) profiled using microarrays from the Expression Project for Oncology 332 

(expO, GSE2109 [35]). Due to the age of the dataset, primary cancer types corresponding to 333 

the brain (LGG, GBM), lung (LUAD, LUSC), and kidney (KIRC, KIRP, KIRH) were aggregated to 334 

match the respective primary site annotations of the dataset. Further, the genes used for 335 

classification were reduced to 1,788 genes from the initially selected genes of 1,971 in order to 336 

match those found in the external dataset, and the model was retrained on the training set with 337 

only these 1,788 features. This external validation set not only tests the predictor performance 338 

independent of batch variation, but also its independence of the platform and robustness to 339 
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feature loss which are critical for the application of the predictors in clinical and translational 340 

research. 341 

  342 

Classification by primary site, shown in Figure 4B, yields median specificity of 99.3% and 343 

median sensitivity of 78.1% (n=9) (Figure 4C), with misclassifications largely within organ 344 

systems. For example, misclassification arises between gastrointestinal cancers STAD, COAD, 345 

and LIHC, and ovarian serous cystadenocarcinoma (OV) is misclassified as cancers with similar 346 

histology or anatomical location. When the classification is reorganized by pan-organ group, as 347 

shown in Figure 4D, median sensitivity increases to 86.0% (n=6) with the misclassification only 348 

between core and developmental gastrointestinal cancers (Figure 4E).  349 

 350 

3.1.2 Primary site predictor can identify cancer of unknown primary  351 

Identification of the primary cancer (site) of origin from a metastatic sample is a significant 352 

clinical challenge. As metastases are expected to retain the transcriptional signature of primary 353 

tumor of origin, we hypothesize that our predictors can identify the primary tumor type from 354 

metastatic samples.  We examined the performance of our predictors using an external 355 

validating dataset from metastatic tumors. 356 

  357 

Primary site classification of expression profiles of 88 metastatic samples across 6 known 358 

primary sites is shown in Figure 5A,B [36]. The median specificity is 99.3%, and the median 359 

sensitivity is 82.1%. The most common misclassifications were, again, between COAD and 360 

STAD, the vast majority involving metastatic tumors in the liver. Between-organ-system 361 

classification (Figure 5C) shows the minimum sensitivity substantially improves from 20.0% to 362 

69.0%, where predictions of these gastrointestinal cancers are combined (Figure 5D). Further 363 

examination revealed that the most common metastases in the data, 30/88 (34%) samples, are 364 

to the liver or lung from the colon, illustrated in Figure 5E. Of the 88 tumors, 52 metastases 365 
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(59.1%) are classified to the correct primary tumor type, 72 metastases (81.8%) are classified to 366 

the correct primary organ system, 7 metastases (7.9%) are classified as the tumor from the 367 

respective metastasized sites, and 9 metastases (10.1%) are classified incorrectly (Figure 5F) 368 

i.e. neither as tumor of primary site nor as the metastasized site.  369 

 370 

We further validate our predictors independently using an external dataset from patient-derived 371 

xenograft (PDX) models of cancer. PDX models of cancer are a great resource to evaluate 372 

therapeutic regimens but can also be used as a tool to study metastatic cancer, as illustrated in 373 

Figure 6A. Primary tumor is resected from human patients and tumor fragments are implanted 374 

into a cohort of immunodeficient mice [63]. After a growth period, the mouse-grown tumor is 375 

resected and implanted into a new generation of mice. This process can be repeated several 376 

times.  377 

  378 

We performed the primary site type classification of 318 PDX-derived mouse-grown tumors 379 

(samples were taken from the second generation of mice) spanning 11 primary sites (Figure 6B-380 

C). Classification of primary cancer types yields a median specificity of 99.5% (n=11), and 381 

median sensitivity of 76% (n=11) (Figure 6D). When classified by pan-organ system, the median 382 

sensitivity increases to 83% (Figure 6E,F). Despite not being present in the set of primary 383 

cancers, several tumors including COAD and PAAD are classified as STAD, possibly due to the 384 

close proximity of anatomic positions.  385 

  386 

These three external validations of our model overwhelmingly support the hypothesis that 387 

metastatic and xenograft tumors retain the molecular signature of the primary tumor. 388 

 Application of such models in the clinic will allow for more effective treatments of CUPs. 389 

 390 

3.2 Subtype specific classification accurately identifies molecular subtypes 391 
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Molecular subtypes have been defined for 11 cancer types: BRCA, HNSC, KIRC, KIRP, LGG, 392 

LUAD, LUSC, OV, PRAD, SKCM, and STAD.  Each of these primary types has two to four 393 

molecular subtypes.  For example, breast cancers are frequently subtyped into Basal-like, Her2-394 

enriched, Luminal A and Luminal B. This subtyping has prognostic power and can be used as 395 

predictive marker for therapeutic approaches [64].   396 

  397 

Eleven models were constructed, one model for each primary tumor type, into its molecular 398 

subtypes, as illustrated schematically in Figure 1. The positive predictive value, sensitivity, 399 

specificity, and number of samples per subtype are shown in Figure 7A-D.  The best performing 400 

subtype predictors, LGG, LUAD, PRAD, have median sensitivity above 90%, with PRAD 401 

yielding nearly perfect classification. 402 

 403 

3.2.1 Subtype predictors are accurate on external data of different platforms 404 

To further validate the cancer subtype predictors, we classified samples from two external 405 

datasets: ovarian cancer [15] and breast cancer [38] annotated with molecular subtypes, with 406 

215 and 1,784 samples respectively.  The ovarian cancer subtype predictor (Figure 7E,F) 407 

attained a median specificity of 94.9% (the best performance is for mesenchymal: 99.2%) and a 408 

median sensitivity of 88.4% (the best performance is proliferative: 97.2%). The breast cancer 409 

subtype predictor, shown in Figure 7G,H, presented a median specificity of 95% (the best 410 

performance is for basal-like: 99.9%) and a median sensitivity of 72.4% (the best performance is 411 

for luminal-A subtype: 95%). Notably, the basal-like molecular subtype of breast cancer is a 412 

particularly aggressive subtype and patients relapse rapidly. The accurate classification of this 413 

subtype is important for precise treatment—recently, a diabetes drug has been shown as a 414 

potential therapy for basal-like breast cancer patients [65]. The two external validation datasets 415 

from 1,999 patients with breast or ovarian cancers demonstrate that our subtype predictors can 416 

distinguish clinically favorable subtypes from those associated with poor prognosis. 417 
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 418 

Together with the identification of primary origin for metastatic tumors, followed by subtype 419 

classification together allows for informed therapeutic decision making for clinicians, thereby 420 

improving treatment outcomes for CUP patients. 421 

 422 

4. DISCUSSION 423 

It is widely appreciated that cancer is a disease at the scale of the entire genome, but it remains 424 

difficult to effectively translate this complexity into clinical utility. Two important pieces of 425 

information that are relevant in clinical care and translational research are knowledge of tissue 426 

of origin, or CUP, and subtype of the cancer.  Identifying tissue of origin of CUPs and molecular 427 

subtype is critical for personalized medicine, where the treatment is tailored to the molecular 428 

profile of individual tumor [66]. Because of the lack of primary site information, CUP patients 429 

receive palliative chemotherapy that lacks the precision of modern targeted cancer medicine 430 

and results in no clear benefit in survival [67, 68]. Various approved targeted therapies for 431 

cancer by the Food and Drug Administration (FDA) include signal transduction inhibitors, gene 432 

expression modulators, apoptosis inducers, angiogenesis inhibitors, immunotherapies. The 433 

targeted therapies have been approved for the treatment of over 28 types of cancer. As CUP 434 

may retain molecular signatures of its primary site, CUP patients with primary or metastatic 435 

tumor might benefit from established therapeutic regimens appropriate for cancers of that 436 

tissue; therefore, identifying the primary site is key to choosing effective therapeutic options. 437 

 438 

Another major challenge in clinical cancer research is accurately classifying cancers into 439 

appropriate homogeneous subtypes to improve prognosis and treatment [5]. Analyses of The 440 

Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) have 441 

established that a cancer at any primary site can be further classified into molecular subtypes 442 
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with potentially distinct clinical outcome and therapeutic options [21-28, 62]. For example, the 443 

EBV-positive subtype of gastric cancer is associated with overexpression of JAK2, PD-L1 and 444 

PD-L2 genes, suggesting that PD-L1/2 antagonists and JAK2 inhibitors are potential therapeutic 445 

options for these tumors [64]. Similar clinical and therapeutic relevance of subtype information 446 

has been demonstrated in multiple cancers [21, 23-25, 27, 28]. Increasingly, tumor molecular 447 

subtype is being considered as an eligibility criterion for the entry into clinical trials [29]. 448 

However, for many cancers, the molecular subtype information is not available for use in clinical 449 

practice because of the difficulty in identifying the subtype of a given tumor [30, 31]. Besides 450 

being an important factor in clinical decision making, the knowledge of the molecular subtype 451 

will be helpful in translational research. For example, cancer avatar trials use PDX models to 452 

test panels of drugs to determine the best regime for personalized human therapy. Knowledge 453 

of subtype of the tumor may narrow down the choice of treatment regimens to test which 454 

increases efficiency of the cancer avatar trials.   455 

 456 

We developed predictors of high sensitivity and specificity for classification of primary site of 457 

origin of 33 cancers and molecular subtyping of 11 cancers using gene expression data from 458 

the TCGA. We show, for the first time to our knowledge, our pan-cancer classifiers can predict 459 

multiple cancers’ primary site of origin from metastatic samples. Compared to the other 460 

predictors based on somatic mutations [69], our predictors are not limited to only cancer types 461 

with high mutation burden and has much greater potential for clinical diagnosis and therapeutic 462 

design.  Further, the predictors designed based on the TCGA RNA-seq data generalize to 463 

different cohorts of primary and metastatic samples profiled using RNA-seq and microarray 464 

sequencing technologies. Such external validation qualifies our predictors to be robust across 465 

technology platforms, batches and sample processing protocols.  A combination of primary 466 
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tissue of origin and subtype classification from metastases will serve as important tools for 467 

clinicians in effectively treating CUPs. 468 

 469 

The classification tools discriminated all cancers from each other well, except among the gastro-470 

intestinal cancers. However, the classification by cancer group could be achieved with very high 471 

sensitivity and specificity. Different cancers among gastrointestinal cancers are less 472 

distinguishable due to their anatomic proximity and molecular similarity, as shown in Figure 3. 473 

To circumvent this problem, in our future work, we will adopt a hierarchical classification of 474 

tumors: (1) granular classification by organ system (2) finer classification by cancer type in each 475 

organ system. In addition, we can include features from copy number, mutation and methylation 476 

data to augment our feature set for both accuracy as well as robustness for technology and 477 

batch variations. Molecular subtyping can also benefit from adding features from heterogeneous 478 

data as several subtypes were identified to exhibit genomic features that span whole spectrum 479 

of omics data. For example, the CIN subtype in gastric cancer is known to exhibit large 480 

structural variations which may not be captured accurately by expression data. Thus, our future 481 

work will encompass comprehensive multi-omic data to identify tissue of origin and molecular 482 

subtyping. 483 

  484 

Though the overall performance of the predictors designed using DLDA, SVM and KNN is not 485 

as good as Random Forest on this data, their performance is on par with or better than Random 486 

Forest based predictors on certain tumor type and subtype classification. However, the 487 

classification predicted by Random Forest predictors is easier to interpret.  488 

  489 

As we continue to enhance the predictor, we do recognize that the clinical utility of the 490 

predictors is dependent on their ability to classify FFPE (formalin-fixed paraffin-embedded) 491 

samples, which is the standard specimen type used for molecular profiling of cancers in clinical 492 
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diagnostics in addition to fresh-frozen samples.  We have previously shown that the predictors 493 

designed to work on microarray data can also work with FFPE samples if they are profiled using 494 

nanoString arrays [70]. Therefore, it is feasible to generalize our predictors to work on FFPE 495 

samples for clinical applications. In summary, we have demonstrated the utility of gene 496 

expression profiles to solve the important clinical challenge of identifying the primary site of 497 

origin and the molecular subtype of cancers based on machine learning algorithms. These 498 

predictors will be made available as open source software, freely available for academic non-499 

commercial use. 500 

 501 

In an effort to make these tools available to as wide an audience as possible, we offer our 502 

models and results in two publicly available forms: a web-based portal and a software package 503 

which can be used to apply these tools to other datasets and to reproduce the results presented 504 

here.  The web-based portal provides interactive visualizations showing the expression profiles 505 

of the TCGA cancer samples and the classification results of our predictors.  These 506 

visualizations allow for the exploration of relationships between cancer types in the context of 507 

pan-cancer expression profiles. 508 

 509 

SUPPORTING INFORMATION 510 

Table S1.  Contingency tables and performance metrics for all primary site predictors 511 

Table S2.  Cross-validation performance metrics of subtype predictors 512 

Table S3.  External validation performance metrics of subtype predictors 513 

 514 
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FIGURE LEGENDS 530 

Figure 1.  Platform-independent learning and validation from TCGA transcriptomes.  531 

(A) Schematic showing the learning procedure used to train machine learning models from 532 

labeled TCGA transcriptomes spanning 33 cancer types and 11 molecular subtypes.  Models 533 

were trained and evaluated using k-fold cross validation on normalized and standard scaled 534 

expression profiles.  For each fold, N features were selected from each class (see Methods) and 535 

pooled, which were used to train the classification model.  Using this schema, we constructed 536 

one primary type and eleven molecular subtype predictors for each type of model: random 537 

forest (RF), support vector machine (SVM), k-nearest neighbor classifier (kNN), and diagonal 538 

linear discriminant analysis (DLDA).  (B) Classification performance was evaluated via cross-539 

validation on the learning set and external validation utilizing five datasets; using two of these 540 

datasets, we challenged the predictors to infer primary tumor types from transcriptomes of 541 

metastatic or passaged patient-derived xenograft samples.  542 

 543 

Figure 2. Precise classification of tumors by primary type and organ system. 544 

(A-B) Random forest classification of primary cancer types and grouped by pan-organ system. 545 

Text in contingency table cell cj,i shows tumor of class i classified as class j.  Grayscale shading 546 

of table cells is proportional to the number of samples of each primary site, represented as bars 547 

above the table.  Color shading along the main diagonal shows pan-organ groups. Positive 548 

predictive value (precision) for each prediction class are shown to the right of the table. (C-D) 549 

Sensitivity and specificity for each classification in (A) and (B), respectively.  550 

 551 

Figure 3. Unsupervised embedding of expression profiles reveals relationships among 552 

primary sites. 553 

Expression profiles from all samples were embedded into two dimensions using uniform 554 

manifold approximation and projection (UMAP) [58] and colored by primary cancer type.  For 555 
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each cancer, labels are placed near the centroid of the expression profile in the UMAP latent 556 

space.  Anatomical and histological relationships are emergent and add context to the most 557 

common misclassifications in Figure 2. The following groups of cancers are highlighted with 558 

green, blue, and purple ellipses, respectively: COAD, READ, STAD; BLCA, CESC, ESCA, 559 

HNSC, LUSC; OV, SARC, UCEC, UCS. 560 

 561 

Figure 4. External validation of primary site predictor using microarray data. 562 

1,552 microarray expression profiles (GSE2109) from 9 cancer types or related cancer types 563 

(LUSC/LUAD and KIRC/KIRP/KICH) were classified to further validate the primary site predictor 564 

(A). Markers in (A) are scaled by the number of samples in each class.  Classification was 565 

evaluated by primary site (B) and pan-organ group (C).  (D-E) Sensitivity and specificity for each 566 

classification in (B) and (C), respectively. 567 

 568 

Figure 5. Predictor infers primary cancer of origin from metastatic tumor samples. 569 

(A-B) 88 expression profiles of metastatic tumors (GSE18549) from primary site of origin 570 

spanning 6 organs were classified by primary cancer type and primary pan-organ group.  (C-D) 571 

Sensitivity and specificity for each classification in (A) and (B), respectively.  (E) 30/88 (34%) of 572 

samples are liver or lung metastases from the colon. (F) The majority of misclassifications of 573 

primary site are within pan-organ system; of the remainder, 7 misclassifications identify the 574 

metastatic tumor whereas 9 are true misclassifications. 575 

 576 

Figure 6. Predictor infers primary cancer of origin from passaged patient-derived 577 

xenografts. 578 

(A) 295 expression profiles of resected passaged patient-derived xenograft (PDX) tumors from 579 

primary sites spanning 11 organs were classified by primary site (samples generated at the 580 

Jackson Laboratory, available via MTB [37]). PDX tumor samples were taken for sequencing 581 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2018. ; https://doi.org/10.1101/333914doi: bioRxiv preprint 

https://doi.org/10.1101/333914
http://creativecommons.org/licenses/by-nc/4.0/


 

 

from the second generation of mice.  Classification of primary site identification was evaluated 582 

by primary site (B) and pan-organ group (C).  (D-E) Sensitivity and specificity for each 583 

classification in (B) and (C), respectively. 584 

 585 

Figure 7. Cross- and external validation of molecular subtype predictors. 586 

A predictor of molecular subtypes was constructed for each of 11 primary cancer types, 587 

spanning 38 molecular subtypes. (A) Per-class positive predictive value, (B) specificity, and (C) 588 

sensitivity of molecular subtype classifications evaluated through cross-validation (Figure 1).  589 

(D) Number of training samples for each molecular subtype. To further validate these subtype 590 

predictors, breast (E) and ovarian (F) subtype predictors were used to predict the respective 591 

molecular subtypes in two external datasets (GSE9899 and EGAS00000000083, respectively). 592 

(G-H) Sensitivity and specificity for each classification in (E) and (F), respectively. 593 

  594 
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