

1 **Title: Pan-cancer machine learning predictors of primary site of origin and molecular**
2 **subtype**

3

4 **Authors**

Author	Symbol
William F. Flynn	1 [¶]
Sandeep Namburi	1 [¶]
Carolyn A. Paisie	1
Honey V. Reddi	1,2
Sheng Li	1,2*
R. Krishna Murthy Karuturi	1,2*
Joshy George	1,2*

5

6 **Affiliations**

7 1. The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington,

8 Connecticut, USA

9 2. The Jackson Laboratory Cancer Center, Bar Harbor, Maine, USA

10

11 ¶ These authors contributed equally to this work.

12 * Corresponding Authors: sheng.li@jax.org, krishna.karuturi@jax.org, joshy.george@jax.org

13

14

15 **ABSTRACT**

16 **Background:** It is estimated by the American Cancer Society that approximately 5% of all
17 metastatic tumors have no defined primary site (tissue) of origin and are classified as *cancers of*
18 *unknown primary* (CUPs). The current standard of care for CUP patients depends on
19 immunohistochemistry (IHC) based approaches to identify the primary site. The addition of post-
20 mortem evaluation to IHC based tests helps to reveal the identity of the primary site for only
21 25% of the CUPs, emphasizing the acute need for better methods of determination of the site of
22 origin. CUP patients are therefore given generic chemotherapeutic agents resulting in poor
23 prognosis. When the tissue of origin is known, patients can be given site specific therapy with
24 significant improvement in clinical outcome. Similarly, identifying the primary site of origin of
25 metastatic cancer is of great importance for designing treatment.

26

27 Identification of the primary site of origin is an import first step but may not be sufficient
28 information for optimal treatment of the patient. Recent studies, primarily from The Cancer
29 Genome Atlas (TCGA) project, and others, have revealed molecular subtypes in several cancer
30 types with distinct clinical outcome. The molecular subtype captures the fundamental
31 mechanisms driving the cancer and provides information that is essential for the optimal
32 treatment of a cancer. Thus, along with primary site of origin, molecular subtype of a tumor is
33 emerging as a criterion for personalized medicine and patient entry into clinical trials.

34

35 However, there is no comprehensive toolset available for precise identification of tissue of origin
36 or molecular subtype for precision medicine and translational research.

37

38 **Methods and Findings:** We posited that metastatic tumors will harbor the gene expression
39 profiles of the primary site of origin of the cancer. Therefore, we decided to learn the molecular
40 characteristics of the primary tumors using the large number of cancer genome profiles

41 available from the TCGA project. Our predictors were trained for 33 cancer types and for the 11
42 cancers where there are established molecular subtypes. We estimated the accuracy of several
43 machine learning models using cross-validation methods. The extensive testing using
44 independent test sets revealed that the predictors had a median sensitivity and specificity of
45 97.2% and 99.9% respectively without losing classification of any tumor. Subtype classifiers
46 achieved median sensitivity of 87.7% and specificity of 94.5% via cross validation and
47 presented median sensitivity of 79.6% and specificity of 94.6% in two external datasets of 1,999
48 total samples. Importantly, these external data shows that our classifiers can robustly predict the
49 primary site of origin from external microarray data, metastatic cancer data, and patient-derived
50 xenograft (PDX) data.

51

52 **Conclusion:** We have demonstrated the utility of gene expression profiles to solve the
53 important clinical challenge of identifying the primary site of origin and the molecular subtype of
54 cancers based on machine learning algorithms. We show, for the first time to our knowledge,
55 that our pan-cancer classifiers can predict multiple cancers' primary site of origin from
56 metastatic samples. The predictors will be made available as open source software, freely
57 available for academic non-commercial use.

58

59 **KEYWORDS**

60 Cancer; TCGA; RNA-seq; Classification; Subtypes; Transcriptome; Machine learning; Cell-of-
61 origin; Cancer-of-unknown-primary

62

63 **1. INTRODUCTION**

64 Precision cancer therapy requires the knowledge of primary site of origin and accurate
65 subtyping of the cancer to identify an appropriate therapeutic regimen. However, according to
66 the American Cancer Society, an estimated 2 to 5 percent of all cancer patients have metastatic
67 tumors for which routine testing cannot locate the primary site and is therefore classified as a
68 cancer of unknown primary (CUP). CUP patients have very poor prognosis, primarily because
69 the course of treatment is empiric and not tailored for a specific tumor type [1, 2]. In addition,
70 lack of knowledge of the true cancer type puts CUP patients under severe psychological
71 distress that may lead to clinically significant depressive symptoms [3].

72

73 In a study of CUP patients that were predicted to have primary tumors originating in the colon,
74 the median survival of patients increased in those that received site-specific chemotherapy as
75 compared to those who received empirically-determined treatments [4, 5]. Furthermore,
76 multiple studies have supported the use of molecular profiling to diagnose CUP and to
77 determine specific treatment based upon the predicted site of origin leading to an improvement
78 in overall survival [6-9]. Therefore, it is important to develop systematic methods to identify the
79 primary site of origin of the disease.

80

81 Currently, immunohistochemistry (IHC) utilizing antibodies targeted to certain tumor-specific
82 antigens is the main method for primary site identification in patients with CUP [2, 10].
83 However, there is not a single specific marker that can be used to conclusively diagnose the
84 primary tumor, leading to the use of multiple different IHC markers, and generating the
85 possibility that different clinicians will arrive at different diagnoses of the primary tumor type [2,
86 [11-14](#)]. Recent advances in genomics has led to the development of potential new means for
87 diagnosing these tumors; multiple studies have utilized gene expression profiles and other
88 molecular markers to diagnose CUP [2]. One such method involved comparisons of gene

89 expression profiles between CUPs and a set of primary and metastatic tumors with known
90 origins to predict the tissue of origin for the CUP [2, 6, 15-20]. None of these tools were able to
91 identify the tissue of origin with high sensitivity and specificity for all the CUP samples. For
92 example, the EPICUP tool, which had the best performance to date provides high accuracy for
93 only 87% of the CUP samples.

94

95 Several studies, including the Cancer Genome Atlas (TCGA) and International Cancer Genome
96 Consortium (ICGC) studies, have shown that the cancers from the primary tissue can be
97 classified into molecular subtypes with distinct clinical outcome and therapeutic options [21-28].
98 The molecular subtype information can also have predictive power. For example, Bevacizumab,
99 a monoclonal antibody that block angiogenesis, is shown to benefit patients of mesenchymal
100 and proliferative subtypes in ovarian cancer and therefore may be used as a criterion for the
101 entry into a clinical trial [29]. In addition, molecular subtype information can guide the selection
102 of targeted therapies and to suggest new treatment strategies (e.g. the potential use of JAK2
103 inhibitors and PD-L1/2 antagonists for the treatment of EBV-positive gastric cancer) [27].
104 However, identification of molecular subtypes is clinically challenging and thus clinicians are
105 unable to utilize molecular subtype information to inform treatment decisions [30, 31] due to a
106 lack of tools and assays for pan-cancer subtyping despite the availability of genomic
107 technologies for clinical diagnostics.

108

109 To fill this important gap in the clinical and translational research setting, using expression data
110 available from the TCGA project, we developed Machine Learning based predictors that enable
111 accurate identification of primary site of origin and subtype of cancer (Figure 1). Our predictors
112 were trained for 33 cancer types and for the 11 cancers where there are established molecular
113 subtypes. The extensive testing using independent test sets revealed that the predictors had a
114 median sensitivity and specificity of 97.2% and 99.9% respectively without failing to classify any

115 tumor using in total 1,959 samples. Subtype predictors achieved median sensitivity of 79.6%
116 and specificity of 94.6% using two external validation sets consisting of 1,999 breast and
117 ovarian cancer samples in total. Our gene expression-based pan-cancer classifier can, for the
118 first time to our knowledge, robustly predict multiple cancers' primary site of origin from
119 metastatic samples using an independent validation dataset (specificity: 99.3%, sensitivity:
120 82.1%) and predict molecular subtype. Compared to other pan-cancer classifiers based on
121 somatic mutations, our classifier is not limited to only cancer types with high mutation burden
122 and has much greater potential for clinical diagnosis and therapeutic design.

123

124 **2. METHODS**

125 **2.1 Expression datasets**

126 **2.1.1 Learning set: TCGA expression data**

127 RSEM [32] normalized mRNA expression matrices were downloaded for each of the 33 unique
128 cancer cohorts (listed in Table 1) available from the Broad Institute GDAC Firehose (run
129 2016_01_28) [33]. Individual cohort expression matrices were converted to Biobase
130 ExpressionSet objects [34] for standardization and then combined as an ExpressionSet stored
131 in Apache Feather format (version 0.4.0) to allow downstream analysis in both R and Python
132 (<https://github.com/wesm/feather>). The raw expression matrix consisted 11,330 samples and
133 20,531 genes, which was reduced to 10,446 samples and 9,642 genes after filtering (detailed
134 below).

135

136 **Table 1. 33 GDAC Cancer Cohorts**

Cohort Abbr.	Cases	Disease Name
ACC	92	Adrenocortical carcinoma
BLCA	412	Bladder urothelial carcinoma
BRCA	1,098	Breast invasive carcinoma
CESC	307	Cervical and endocervical cancers
CHOL	51	Cholangiocarcinoma
COAD	460	Colon adenocarcinoma
DLBC	58	Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

ESCA	185	Esophageal carcinoma
GBM	613	Glioblastoma multiforme
HNSC	528	Head and Neck squamous cell carcinoma
KICH	113	Kidney Chromophobe
KIRC	537	Kidney renal clear cell carcinoma
KIRP	323	Kidney renal papillary cell carcinoma
LAML	200	Acute Myeloid Leukemia
LGG	516	Brain Lower Grade Glioma
LIHC	377	Liver hepatocellular carcinoma
LUAD	585	Lung adenocarcinoma
LUSC	504	Lung squamous cell carcinoma
MESO	87	Mesothelioma
OV	602	Ovarian serous cystadenocarcinoma
PAAD	185	Pancreatic adenocarcinoma
PCPG	179	Pheochromocytoma and Paraganglioma
PRAD	499	Prostate adenocarcinoma
READ	171	Rectum adenocarcinoma
SARC	261	Sarcoma
SKCM	470	Skin Cutaneous Melanoma
STAD	443	Stomach adenocarcinoma
TGCT	150	Testicular Germ Cell Tumors
THCA	503	Thyroid carcinoma
THYM	124	Thymoma
UCEC	560	Uterine Corpus Endometrial Carcinoma
UCS	57	Uterine Carcinosarcoma
UVM	80	Uveal Melanoma

137

138 **2.1.2 External validation data**

139 External cancer gene expression datasets, i.e. those used exclusively for testing the
140 performance of models, were obtained from the publicly available Gene Expression Omnibus
141 (GEO) and the patient-derived xenograft (PDX) mouse models generated at the Jackson
142 Laboratory. These datasets were not introduced during model fitting (hence external validation)
143 and were generated using both RNA-seq and microarray technologies.

144

145 The first dataset used to test the model accuracy was the microarray gene expression profile of
146 2,158 cancer samples from the expression project for oncology (expO, GSE2109) [35]. Of the
147 2,158 samples, we were able to identify relevant primary tumor types for 1,558 samples and
148 excluded LGG/GBM from classification due to too few samples, resulting in classification of
149 1,552 samples. The second dataset, GSE18549, contained expression profiles of 96 tumors

150 from their metastatic sites [36]. We used 88 of these tumors whose primary sites could be
151 identified and those with more than 1 sample per primary site. The third dataset used contains
152 the expression profile of 338 PDX RNA-seq samples generated at the Jackson Laboratory and
153 available through the Mouse Tumor Biology (MTB) gene expression portal
154 (<http://tumor.informatics.jax.org>) [37]. Of these 338 samples, 325 samples could be mapped to
155 one of the 33 TCGA primary cancer types and the 7 OV samples were excluded as they
156 originate from the same two patients. The distribution of the primary types in the external
157 datasets used for validation are shown in Table 2.

158

159 **Table 2. Distribution of samples in the three external datasets used to validate the**
160 **primary classification model**

Primary site	External dataset		
	GSE2109	GSE18549	PDX
BLCA	32	0	29
BRCA	354	14	41
COAD	312	35	68
DLBC	0	0	4
KIRC/KIRP/KIRH	281	6	8
LAML	0	0	13
LGG/GBM	6	0	5
LIHC	46	0	0
LUAD/LUSC	133	10	88
OV	279	14	7
PAAD	0	0	12
PRAD	83	9	0
READ	0	1	0
SARC	0	0	32
SKCM	0	0	18
THCA	32	0	0
N/A	600	7	13
Used	1,552	88	318
Total	2,158	96	338

161

162 For external validation of our subtype predictors, we acquired two additional microarray
163 datasets. The first, accession number GSE9899, contains 215 ovarian cancer samples [15] and
164 the second, EGA study EGAS00000000083 (<https://www.ebi.ac.uk/ega>), contains 1,784 breast
165 cancer samples [38]. Both datasets comprise 4 molecular subtypes each: mesenchymal,
166 immunoreactive, differentiated, and proliferative for the ovarian set; and basal-like, HER2-
167 enriched, luminal A, and luminal B for the breast set.

168

169 **2.1.3 Normalization, filtering, and preprocessing**

170 All expression data was log2-transformed, and only genes with (a) maximum log2 expression
171 greater than 8 and (b) variance in log2 expression greater than 1 were retained. After filtering,
172 the genes in each dataset was scaled to zero mean expression and unit variance. This scaling
173 allows expression to be measured in terms of standard deviations and affords platform-
174 independent use of subsequently trained models.

175

176 **2.1.4 Molecular subtype label curation**

177 Molecular subtype information was downloaded from cBioPortal [39, 40] for 3,367 samples from
178 the following primary cancers: glioblastoma multiforme (GBM), stomach adenocarcinoma
179 (STAD), breast (BRCA), ovarian (OV), prostate (PRAD), and lung squamous cell cancers
180 (LUSC). Further annotations were curated from the following supplemental data files: lower
181 grade glioma (LGG) [41], head and neck squamous cell carcinoma (HNSC) [22], uterine corpus
182 endometrial carcinoma (UCEC) [42], cutaneous melanoma (SKCM) [43], papillary (KIRP) [44]
183 and clear cell (KIRC) [45] renal cancers, and lung adenocarcinoma (LUAD) [27]. R (version 3+)
184 scripts were written to extract relevant information (e.g. sample id, specific subtype) from
185 downloaded data and supplemental files. These scripts are available in the public project
186 GitHub repository as described under Code availability.

187

188 **2.1.5 Pan-organ group labels**

189 A recently published study performed integrated clustering on the multiomic data from the
190 approximately 10,000 The Cancer Genome Atlas (TCGA) samples of 33 types of cancer. The
191 authors identified multi-cancer groups, which tend to span whole organs or related organ groups
192 [46]. We use these pan-organ group assignments to evaluate our classification results in a
193 individual- or multi-organ context. These classifications are reproduced here: central nervous
194 system (GBM LGG), core gastrointestinal (ESCA, STAD, COAD, READ), developmental
195 gastrointestinal (LIHC, PAAD, CHOL), endocrine (THCA and ACC), gynecologic (OV, UCEC
196 CESC BRCA), head and neck (HNSC), hematologic and lymphatic malignancies (LAML, DLBC,
197 THYM), melanocytic (SKCM and UVM), neural-crest-derived tissues (PCPG), soft tissue (SARC
198 and UCS), thoracic (LUAD, LUSC, MESO), urologic (BLCA, PRAD, TGCT, KIRC, KICH, KIRP).

199

200 **2.2 Machine Learning Algorithms for Cancer Classification**

201 We evaluated several popular machine learning algorithms to develop predictors for CUP
202 classification and subtype identification: DLDA, KNN, SVM and Random Forest. We used R-
203 packages *sparsediscrim* (version 0.2.4), *base::knn*, *e1071* (version 1.6-8), and *randomForest*
204 (version 4.6-14), respectively for the training, testing; and *caret* (version 6.0-79) for tool
205 development. Unless otherwise specified, default parameters were chosen for model
206 construction.

207

208 **2.2.1 Diagonal Linear Discriminant Analysis (DLDA)**

209 The DLDA classifier belongs to the family of Naive Bayes classifiers, where the distribution of
210 each class is assumed to be a multivariate normal and to share a common covariance matrix.
211 The DLDA classifier is a modification to LDA, where the off-diagonal elements of the pooled

212 sample covariance matrix are set to zero [47]. DLDA was used as classifier in several genomic
213 based cancer classification tasks [48, 49].

214

215 **2.2.2 k-Nearest Neighbor (KNN) classifier**

216 A KNN classifier offers the simplest classifier training strategy, also referred to as 'lazy
217 classifier', and has been successfully applied in the classification of cancer and non-cancer
218 related classification tasks [50-52]. A KNN classifier uses the training samples as reference
219 vectors and, for every sample in the test set, the k nearest (in Euclidean distance) reference
220 vectors are found. The classification is decided by majority vote of the k-nearest neighbors'
221 class. Note that, if multiple nearest neighbor vectors are found with identical distances, all such
222 nearest neighbor vectors are included in the voting pool, which can lead to k being exceeded in
223 these cases [53].

224

225 **2.2.3 Support Vector Machine (SVM)**

226 An SVM algorithm builds a predictive model by constructing a representation of the training
227 samples as points in higher dimensional space and builds a linear model (separating linear
228 boundary) in that space such that the mapped samples of the different categories are separated
229 by a gap that is as wide as possible. New examples are then mapped into that same space and
230 predicted to belong to a category based on which side of the separating boundary they fall. For
231 multiclass classification among N classes, $N^*(N-1)/2$ binary SVM classifiers are constructed and
232 trained in a one-versus-one manner; ultimate class predictions come from voting amongst the
233 ensemble of binary classifiers. The implementation used for our classifiers employed a
234 Gaussian kernel. SVMs were successfully used for classification of samples in variety of studies
235 [54-56].

236

237 **2.2.4 Random Forest**

238 The random forest algorithm employs a collection of decision trees constructed from
239 bootstrapped input data and classification is done by majority voting among the ensemble of
240 trees [57]. Single decision trees are prone to overfitting; multiple trees constructed from
241 randomly sampled copies of the input data allows the consensus classification to be robust and
242 extensible to new samples. Each of our random forest models constructed 1000 trees, each
243 tree constructed from randomly sampled input with replacement, and each decision tree node
244 uses 31 randomly selected features to partition the tree.

245

246 **2.3 Model training and external validation**

247 The schema for predictor design for primary site classification and subtype classification are
248 depicted in Figure 1.

249

250 **2.3.1 Design of primary site (tumor type) predictor**

251 All models were trained using the same feature selection and cross-validation schedule. Each
252 model was then trained using a 3-fold cross validation procedure as follows. The expression set
253 is partitioned into 3 random subsamples and for each partition: (1) the selected partition is used
254 as the testing set and the remaining 2 are combined into a training set; (2) the 100 most
255 differentially expressed genes in each class (cancer type) are selected, measured by log-fold-
256 change of differential expression between in-class and out-of-class samples ($p < 0.001$); (3) the
257 model is trained using the selected features; (4) predictions for the selected partition is
258 recorded. The cross-validation procedure yields an estimate of the model performance with the
259 selected parameters. The final model is then constructed using the entire set of samples and
260 1,971 unique genes selected via the procedure in (2) above.

261

262 **2.3.2 Molecular subtype classification**

263 For each of the 11 primary cancer types with established molecular subtypes, a model is
264 constructed as described above using the scaled, log2-transformed expression of the sample
265 corresponding to the selected primary type as input. For each cancer type, similar to cancer
266 type classification, features are selected by computing the differential expression ($p < 0.001$) in
267 each subtype in comparison with the other subtypes of the same cancer type.

268

269 **2.3.3 Predictor performance metrics**

270 Each classification algorithm (predictor) was compared using per class and overall positive
271 predictive value, sensitivity, and specificity. Additional metrics such as per-class balance
272 accuracy, and F1 score are included in the supplementary tables. Per class metrics are
273 computed using a one-versus-all scheme.

274

275 **2.4 Visualization**

276 An interactive web application was constructed using the Python Dash framework (version
277 0.21.0). The application shows the TCGA data embedded in three dimensions using UMAP
278 (umap-learn, version 0.2.1, [58]) and t-SNE (MulticoreTSNE, version 0.1, [59, 60]). Data points
279 are color coded by tumor type or primary site (with cancer and match normal samples), and
280 molecular subtype, which can be controlled interactively through the interface.

281

282 The web application and the associated code are freely available for non-commercial, academic
283 use at <https://pccportal.jax.org> (pan-cancer classification portal) and the source code is
284 available as described in the Code availability subsection.

285

286 **2.5 Code availability**

287 All code to download, process, train, and validate these data and models is

288 available in the following GitHub repository:

289 https://github.com/TheJacksonLaboratory/tcga_subtype_classification. All results and the
290 figures can be easily reproduced by cloning and running make.

291

292 **3. RESULTS**

293 **3.1 Precise classification of primary cancer types across platforms**

294 The classification of the 33 primary cancer types from the TCGA cohort (9,642 samples) by
295 random forest is presented in Figure 2A. Classification yields a median sensitivity and
296 specificity of 97.2% and 99.9% (n=33), respectively (Figure 2C). The major misclassifications
297 are primarily within organ systems (Figure 2B). Indeed, when primary types are grouped by
298 pan-organ groups [46], the median sensitivity increases to 98.5% with a substantial
299 improvement in the minimum sensitivity to 86.0% (Figure 2B,D). It is important to note that
300 every sample was classified by our model; no samples were excluded from classification, either
301 by a sample quality metric or through lack of consensus during label assignment. The most
302 frequent misclassifications occur between nearby locations in the gastrointestinal tract: rectal
303 adenocarcinoma (READ) is completely misclassified as colon adenocarcinoma (COAD), and
304 esophageal carcinoma (ESCA) is often misclassified as stomach adenocarcinoma (STAD).
305 COAD and READ are so similar that they are typically considered as a single primary type,
306 colorectal carcinoma (CRC) [23]. Misclassification between ESCA and STAD is expected, as a
307 certain class of ESCAs (esophageal adenocarcinomas) present at the interface of the
308 esophagus and stomach [61]. Also of note is the misclassification of uterine carcinosarcoma
309 (UCS) as uterine corpus endometrial carcinoma (UCEC). Histologically, USC presents features
310 of both UCEC and sarcoma (SARC) [62].

311

312 To understand these misclassifications, the expression profiles of every training sample was
313 embedded into a two-dimensional latent space using UMAP (see Methods) and colored by

314 primary tumor type, shown in Figure 3. Several anatomical and histological structures readily
315 emerge from the embedding. Some cancers are observed to form disparate, well-separated
316 clusters by organ system, such as brain (GBM-LGG), liver and gallbladder (LIHC, CHOL), and
317 kidneys (KIRC, KIRP, KIRH), while other cancers are grouped by histological features, such as
318 the melanomas (SKCM, UVM) and squamous cell cancers (BLCA, CECS, HNSC, LUSC, and
319 some ESCA) forming distinct clusters. The core gastrointestinal tract cancers cluster tightly, with
320 COAD and READ embedded into an inseparable mass which is adjoined by STAD and some
321 ESCA samples. ESCA samples clearly segregate into two populations, consistent with both
322 esophageal adenocarcinoma (clustered with STAD) and squamous cell carcinoma (clustered
323 with LUSC, HNSC, etc.) being classified under ESCA (Zheng 2013). Similarly, the known
324 similarities between USC, UCEC, and SARC clearly emerges, with the embedding of USC
325 forming a bridge between UCEC and SARC clusters; we also observe two distinct clusters of
326 SARC samples, one most similar to USC and the other most similar to UCEC. As this
327 embedding is heavily dependent on the input samples and number thereof, it may be that some
328 misclassifications are unavoidable without a larger cohort of samples.

329

330 **3.1.1 Primary site predictor performed well on external expression data**

331 To further validate the primary site predictor, we classified 1,552 samples across 9 primary
332 cancer types (Figure 4A) profiled using microarrays from the Expression Project for Oncology
333 (expO, GSE2109 [[35](#)]). Due to the age of the dataset, primary cancer types corresponding to
334 the brain (LGG, GBM), lung (LUAD, LUSC), and kidney (KIRC, KIRP, KIRH) were aggregated to
335 match the respective primary site annotations of the dataset. Further, the genes used for
336 classification were reduced to 1,788 genes from the initially selected genes of 1,971 in order to
337 match those found in the external dataset, and the model was retrained on the training set with
338 only these 1,788 features. This external validation set not only tests the predictor performance
339 independent of batch variation, but also its independence of the platform and robustness to

340 feature loss which are critical for the application of the predictors in clinical and translational
341 research.

342

343 Classification by primary site, shown in Figure 4B, yields median specificity of 99.3% and
344 median sensitivity of 78.1% (n=9) (Figure 4C), with misclassifications largely within organ
345 systems. For example, misclassification arises between gastrointestinal cancers STAD, COAD,
346 and LIHC, and ovarian serous cystadenocarcinoma (OV) is misclassified as cancers with similar
347 histology or anatomical location. When the classification is reorganized by pan-organ group, as
348 shown in Figure 4D, median sensitivity increases to 86.0% (n=6) with the misclassification only
349 between core and developmental gastrointestinal cancers (Figure 4E).

350

351 **3.1.2 Primary site predictor can identify cancer of unknown primary**

352 Identification of the primary cancer (site) of origin from a metastatic sample is a significant
353 clinical challenge. As metastases are expected to retain the transcriptional signature of primary
354 tumor of origin, we hypothesize that our predictors can identify the primary tumor type from
355 metastatic samples. We examined the performance of our predictors using an external
356 validating dataset from metastatic tumors.

357

358 Primary site classification of expression profiles of 88 metastatic samples across 6 known
359 primary sites is shown in Figure 5A,B [36]. The median specificity is 99.3%, and the median
360 sensitivity is 82.1%. The most common misclassifications were, again, between COAD and
361 STAD, the vast majority involving metastatic tumors in the liver. Between-organ-system
362 classification (Figure 5C) shows the minimum sensitivity substantially improves from 20.0% to
363 69.0%, where predictions of these gastrointestinal cancers are combined (Figure 5D). Further
364 examination revealed that the most common metastases in the data, 30/88 (34%) samples, are
365 to the liver or lung from the colon, illustrated in Figure 5E. Of the 88 tumors, 52 metastases

366 (59.1%) are classified to the correct primary tumor type, 72 metastases (81.8%) are classified to
367 the correct primary organ system, 7 metastases (7.9%) are classified as the tumor from the
368 respective metastasized sites, and 9 metastases (10.1%) are classified incorrectly (Figure 5F)
369 i.e. neither as tumor of primary site nor as the metastasized site.

370

371 We further validate our predictors independently using an external dataset from patient-derived
372 xenograft (PDX) models of cancer. PDX models of cancer are a great resource to evaluate
373 therapeutic regimens but can also be used as a tool to study metastatic cancer, as illustrated in
374 Figure 6A. Primary tumor is resected from human patients and tumor fragments are implanted
375 into a cohort of immunodeficient mice [63]. After a growth period, the mouse-grown tumor is
376 resected and implanted into a new generation of mice. This process can be repeated several
377 times.

378

379 We performed the primary site type classification of 318 PDX-derived mouse-grown tumors
380 (samples were taken from the second generation of mice) spanning 11 primary sites (Figure 6B-
381 C). Classification of primary cancer types yields a median specificity of 99.5% (n=11), and
382 median sensitivity of 76% (n=11) (Figure 6D). When classified by pan-organ system, the median
383 sensitivity increases to 83% (Figure 6E,F). Despite not being present in the set of primary
384 cancers, several tumors including COAD and PAAD are classified as STAD, possibly due to the
385 close proximity of anatomic positions.

386

387 These three external validations of our model overwhelmingly support the hypothesis that
388 metastatic and xenograft tumors retain the molecular signature of the primary tumor.
389 Application of such models in the clinic will allow for more effective treatments of CUPs.

390

391 **3.2 Subtype specific classification accurately identifies molecular subtypes**

392 Molecular subtypes have been defined for 11 cancer types: BRCA, HNSC, KIRC, KIRP, LGG,
393 LUAD, LUSC, OV, PRAD, SKCM, and STAD. Each of these primary types has two to four
394 molecular subtypes. For example, breast cancers are frequently subtyped into Basal-like, Her2-
395 enriched, Luminal A and Luminal B. This subtyping has prognostic power and can be used as
396 predictive marker for therapeutic approaches [64].

397

398 Eleven models were constructed, one model for each primary tumor type, into its molecular
399 subtypes, as illustrated schematically in Figure 1. The positive predictive value, sensitivity,
400 specificity, and number of samples per subtype are shown in Figure 7A-D. The best performing
401 subtype predictors, LGG, LUAD, PRAD, have median sensitivity above 90%, with PRAD
402 yielding nearly perfect classification.

403

404 **3.2.1 Subtype predictors are accurate on external data of different platforms**

405 To further validate the cancer subtype predictors, we classified samples from two external
406 datasets: ovarian cancer [15] and breast cancer [38] annotated with molecular subtypes, with
407 215 and 1,784 samples respectively. The ovarian cancer subtype predictor (Figure 7E,F)
408 attained a median specificity of 94.9% (the best performance is for mesenchymal: 99.2%) and a
409 median sensitivity of 88.4% (the best performance is proliferative: 97.2%). The breast cancer
410 subtype predictor, shown in Figure 7G,H, presented a median specificity of 95% (the best
411 performance is for basal-like: 99.9%) and a median sensitivity of 72.4% (the best performance is
412 for luminal-A subtype: 95%). Notably, the basal-like molecular subtype of breast cancer is a
413 particularly aggressive subtype and patients relapse rapidly. The accurate classification of this
414 subtype is important for precise treatment—recently, a diabetes drug has been shown as a
415 potential therapy for basal-like breast cancer patients [65]. The two external validation datasets
416 from 1,999 patients with breast or ovarian cancers demonstrate that our subtype predictors can
417 distinguish clinically favorable subtypes from those associated with poor prognosis.

418

419 Together with the identification of primary origin for metastatic tumors, followed by subtype
420 classification together allows for informed therapeutic decision making for clinicians, thereby
421 improving treatment outcomes for CUP patients.

422

423 **4. DISCUSSION**

424 It is widely appreciated that cancer is a disease at the scale of the entire genome, but it remains
425 difficult to effectively translate this complexity into clinical utility. Two important pieces of
426 information that are relevant in clinical care and translational research are knowledge of tissue
427 of origin, or CUP, and subtype of the cancer. Identifying tissue of origin of CUPs and molecular
428 subtype is critical for personalized medicine, where the treatment is tailored to the molecular
429 profile of individual tumor [66]. Because of the lack of primary site information, CUP patients
430 receive palliative chemotherapy that lacks the precision of modern targeted cancer medicine
431 and results in no clear benefit in survival [67, 68]. Various approved targeted therapies for
432 cancer by the Food and Drug Administration (FDA) include signal transduction inhibitors, gene
433 expression modulators, apoptosis inducers, angiogenesis inhibitors, immunotherapies. The
434 targeted therapies have been approved for the treatment of over 28 types of cancer. As CUP
435 may retain molecular signatures of its primary site, CUP patients with primary or metastatic
436 tumor might benefit from established therapeutic regimens appropriate for cancers of that
437 tissue; therefore, identifying the primary site is key to choosing effective therapeutic options.

438

439 Another major challenge in clinical cancer research is accurately classifying cancers into
440 appropriate homogeneous subtypes to improve prognosis and treatment [5]. Analyses of The
441 Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) have
442 established that a cancer at any primary site can be further classified into molecular subtypes

443 with potentially distinct clinical outcome and therapeutic options [21-28, 62]. For example, the
444 EBV-positive subtype of gastric cancer is associated with overexpression of JAK2, PD-L1 and
445 PD-L2 genes, suggesting that PD-L1/2 antagonists and JAK2 inhibitors are potential therapeutic
446 options for these tumors [64]. Similar clinical and therapeutic relevance of subtype information
447 has been demonstrated in multiple cancers [21, 23-25, 27, 28]. Increasingly, tumor molecular
448 subtype is being considered as an eligibility criterion for the entry into clinical trials [29].
449 However, for many cancers, the molecular subtype information is not available for use in clinical
450 practice because of the difficulty in identifying the subtype of a given tumor [30, 31]. Besides
451 being an important factor in clinical decision making, the knowledge of the molecular subtype
452 will be helpful in translational research. For example, cancer avatar trials use PDX models to
453 test panels of drugs to determine the best regime for personalized human therapy. Knowledge
454 of subtype of the tumor may narrow down the choice of treatment regimens to test which
455 increases efficiency of the cancer avatar trials.

456

457 We developed predictors of high sensitivity and specificity for classification of primary site of
458 origin of 33 cancers and molecular subtyping of 11 cancers using gene expression data from
459 the TCGA. We show, for the first time to our knowledge, our pan-cancer classifiers can predict
460 multiple cancers' primary site of origin from metastatic samples. Compared to the other
461 predictors based on somatic mutations [69], our predictors are not limited to only cancer types
462 with high mutation burden and has much greater potential for clinical diagnosis and therapeutic
463 design. Further, the predictors designed based on the TCGA RNA-seq data generalize to
464 different cohorts of primary and metastatic samples profiled using RNA-seq and microarray
465 sequencing technologies. Such external validation qualifies our predictors to be robust across
466 technology platforms, batches and sample processing protocols. A combination of primary

467 tissue of origin and subtype classification from metastases will serve as important tools for
468 clinicians in effectively treating CUPs.

469

470 The classification tools discriminated all cancers from each other well, except among the gastro-
471 intestinal cancers. However, the classification by cancer group could be achieved with very high
472 sensitivity and specificity. Different cancers among gastrointestinal cancers are less
473 distinguishable due to their anatomic proximity and molecular similarity, as shown in Figure 3.

474 To circumvent this problem, in our future work, we will adopt a hierarchical classification of
475 tumors: (1) granular classification by organ system (2) finer classification by cancer type in each
476 organ system. In addition, we can include features from copy number, mutation and methylation
477 data to augment our feature set for both accuracy as well as robustness for technology and
478 batch variations. Molecular subtyping can also benefit from adding features from heterogeneous
479 data as several subtypes were identified to exhibit genomic features that span whole spectrum
480 of omics data. For example, the CIN subtype in gastric cancer is known to exhibit large
481 structural variations which may not be captured accurately by expression data. Thus, our future
482 work will encompass comprehensive multi-omic data to identify tissue of origin and molecular
483 subtyping.

484

485 Though the overall performance of the predictors designed using DLDA, SVM and KNN is not
486 as good as Random Forest on this data, their performance is on par with or better than Random
487 Forest based predictors on certain tumor type and subtype classification. However, the
488 classification predicted by Random Forest predictors is easier to interpret.

489

490 As we continue to enhance the predictor, we do recognize that the clinical utility of the
491 predictors is dependent on their ability to classify FFPE (formalin-fixed paraffin-embedded)
492 samples, which is the standard specimen type used for molecular profiling of cancers in clinical

493 diagnostics in addition to fresh-frozen samples. We have previously shown that the predictors
494 designed to work on microarray data can also work with FFPE samples if they are profiled using
495 nanoString arrays [70]. Therefore, it is feasible to generalize our predictors to work on FFPE
496 samples for clinical applications. In summary, we have demonstrated the utility of gene
497 expression profiles to solve the important clinical challenge of identifying the primary site of
498 origin and the molecular subtype of cancers based on machine learning algorithms. These
499 predictors will be made available as open source software, freely available for academic non-
500 commercial use.

501

502 In an effort to make these tools available to as wide an audience as possible, we offer our
503 models and results in two publicly available forms: a web-based portal and a software package
504 which can be used to apply these tools to other datasets and to reproduce the results presented
505 here. The web-based portal provides interactive visualizations showing the expression profiles
506 of the TCGA cancer samples and the classification results of our predictors. These
507 visualizations allow for the exploration of relationships between cancer types in the context of
508 pan-cancer expression profiles.

509

510 **SUPPORTING INFORMATION**

511 Table S1. Contingency tables and performance metrics for all primary site predictors

512 Table S2. Cross-validation performance metrics of subtype predictors

513 Table S3. External validation performance metrics of subtype predictors

514

515 **ACKNOWLEDGEMENTS**

516 Research reported in this publication was partially supported by the National Cancer Institute of
517 the National Institutes of Health under Award Number P30CA034196. The content is solely the

518 responsibility of the authors and does not necessarily represent the official views of the National
519 Institutes of Health. This study makes use of data generated by the Molecular Taxonomy of
520 Breast Cancer International Consortium. Funding for the project was provided by Cancer
521 Research UK and the British Columbia Cancer Agency Branch.

522

523 **AUTHOR CONTRIBUTIONS**

524 R.K.M.K. and J.G. designed research. S.L., R.K.M.K. and J.G. guided the project. C.A.P. and
525 J.G. performed data acquisition. W.F.F. and J.G. wrote software and performed analysis. H.R.
526 provided input on clinical oncology and contributed to the interpretation of the results. S.N.
527 provided computational support. W.F.F., S.N., C.A.P., H.R., S.L., R.K.M.K., J.G. wrote the
528 manuscript.

529

530 **FIGURE LEGENDS**

531 **Figure 1. Platform-independent learning and validation from TCGA transcriptomes.**

532 (A) Schematic showing the learning procedure used to train machine learning models from
533 labeled TCGA transcriptomes spanning 33 cancer types and 11 molecular subtypes. Models
534 were trained and evaluated using k-fold cross validation on normalized and standard scaled
535 expression profiles. For each fold, N features were selected from each class (see Methods) and
536 pooled, which were used to train the classification model. Using this schema, we constructed
537 one primary type and eleven molecular subtype predictors for each type of model: random
538 forest (RF), support vector machine (SVM), k-nearest neighbor classifier (kNN), and diagonal
539 linear discriminant analysis (DLDA). (B) Classification performance was evaluated via cross-
540 validation on the learning set and external validation utilizing five datasets; using two of these
541 datasets, we challenged the predictors to infer primary tumor types from transcriptomes of
542 metastatic or passaged patient-derived xenograft samples.

543

544 **Figure 2. Precise classification of tumors by primary type and organ system.**

545 (A-B) Random forest classification of primary cancer types and grouped by pan-organ system.
546 Text in contingency table cell $c_{j,i}$ shows tumor of class i classified as class j . Grayscale shading
547 of table cells is proportional to the number of samples of each primary site, represented as bars
548 above the table. Color shading along the main diagonal shows pan-organ groups. Positive
549 predictive value (precision) for each prediction class are shown to the right of the table. (C-D)
550 Sensitivity and specificity for each classification in (A) and (B), respectively.

551

552 **Figure 3. Unsupervised embedding of expression profiles reveals relationships among**
553 **primary sites.**

554 Expression profiles from all samples were embedded into two dimensions using uniform
555 manifold approximation and projection (UMAP) [58] and colored by primary cancer type. For

556 each cancer, labels are placed near the centroid of the expression profile in the UMAP latent
557 space. Anatomical and histological relationships are emergent and add context to the most
558 common misclassifications in Figure 2. The following groups of cancers are highlighted with
559 green, blue, and purple ellipses, respectively: COAD, READ, STAD; BLCA, CESC, ESCA,
560 HNSC, LUSC; OV, SARC, UCEC, UCS.

561

562 **Figure 4. External validation of primary site predictor using microarray data.**

563 1,552 microarray expression profiles (GSE2109) from 9 cancer types or related cancer types
564 (LUSC/LUAD and KIRC/KIRP/KICH) were classified to further validate the primary site predictor
565 (A). Markers in (A) are scaled by the number of samples in each class. Classification was
566 evaluated by primary site (B) and pan-organ group (C). (D-E) Sensitivity and specificity for each
567 classification in (B) and (C), respectively.

568

569 **Figure 5. Predictor infers primary cancer of origin from metastatic tumor samples.**

570 (A-B) 88 expression profiles of metastatic tumors (GSE18549) from primary site of origin
571 spanning 6 organs were classified by primary cancer type and primary pan-organ group. (C-D)
572 Sensitivity and specificity for each classification in (A) and (B), respectively. (E) 30/88 (34%) of
573 samples are liver or lung metastases from the colon. (F) The majority of misclassifications of
574 primary site are within pan-organ system; of the remainder, 7 misclassifications identify the
575 metastatic tumor whereas 9 are true misclassifications.

576

577 **Figure 6. Predictor infers primary cancer of origin from passaged patient-derived
578 xenografts.**

579 (A) 295 expression profiles of resected passaged patient-derived xenograft (PDX) tumors from
580 primary sites spanning 11 organs were classified by primary site (samples generated at the
581 Jackson Laboratory, available via MTB [37]). PDX tumor samples were taken for sequencing

582 from the second generation of mice. Classification of primary site identification was evaluated
583 by primary site (B) and pan-organ group (C). (D-E) Sensitivity and specificity for each
584 classification in (B) and (C), respectively.

585

586 **Figure 7. Cross- and external validation of molecular subtype predictors.**

587 A predictor of molecular subtypes was constructed for each of 11 primary cancer types,
588 spanning 38 molecular subtypes. (A) Per-class positive predictive value, (B) specificity, and (C)
589 sensitivity of molecular subtype classifications evaluated through cross-validation (Figure 1).
590 (D) Number of training samples for each molecular subtype. To further validate these subtype
591 predictors, breast (E) and ovarian (F) subtype predictors were used to predict the respective
592 molecular subtypes in two external datasets (GSE9899 and EGAS0000000083, respectively).
593 (G-H) Sensitivity and specificity for each classification in (E) and (F), respectively.

594

595 **REFERENCES**

596

597 1. Pavlidis N, Khaled H, Gaafar R. A mini review on cancer of unknown primary site: A
598 clinical puzzle for the oncologists. *J Adv Res.* 2015;6(3):375-82. Epub 2015/08/11. doi:
599 10.1016/j.jare.2014.11.007. PubMed PMID: 26257935; PubMed Central PMCID: PMC4522587.

600 2. Moran S, Martinez-Cardus A, Boussios S, Esteller M. Precision medicine based on
601 epigenomics: the paradigm of carcinoma of unknown primary. *Nat Rev Clin Oncol.*
602 2017;14(11):682-94. Epub 2017/07/05. doi: 10.1038/nrclinonc.2017.97. PubMed PMID:
603 28675165.

604 3. Hyphantis T, Papadimitriou I, Petrakis D, Fountzilas G, Repana D, Assimakopoulos K, et
605 al. Psychiatric manifestations, personality traits and health-related quality of life in cancer of
606 unknown primary site. *Psychooncology.* 2013;22(9):2009-15. Epub 2013/01/30. doi:
607 10.1002/pon.3244. PubMed PMID: 23359412.

608 4. Hainsworth JD, Schnabel CA, Erlander MG, Haines DW, 3rd, Greco FA. A retrospective
609 study of treatment outcomes in patients with carcinoma of unknown primary site and a
610 colorectal cancer molecular profile. *Clin Colorectal Cancer.* 2012;11(2):112-8. Epub 2011/10/18.
611 doi: 10.1016/j.clcc.2011.08.001. PubMed PMID: 22000811.

612 5. Varadhachary GR, Talantov D, Raber MN, Meng C, Hess KR, Jatkoe T, et al. Molecular
613 profiling of carcinoma of unknown primary and correlation with clinical evaluation. *J Clin Oncol.*
614 2008;26(27):4442-8. Epub 2008/09/20. doi: 10.1200/JCO.2007.14.4378. PubMed PMID:
615 18802157.

616 6. Yoon HH, Foster NR, Meyers JP, Steen PD, Visscher DW, Pillai R, et al. Gene
617 expression profiling identifies responsive patients with cancer of unknown primary treated with
618 carboplatin, paclitaxel, and everolimus: NCCTG N0871 (alliance). *Ann Oncol.* 2016;27(2):339-
619 44. Epub 2015/11/19. doi: 10.1093/annonc/mdv543. PubMed PMID: 26578722; PubMed
620 Central PMCID: PMC4907341.

621 7. Varadhachary GR, Spector Y, Abbruzzese JL, Rosenwald S, Wang H, Aharonov R, et al. Prospective gene signature study using microRNA to identify the tissue of origin in patients
622 with carcinoma of unknown primary. *Clin Cancer Res.* 2011;17(12):4063-70. Epub 2011/05/03.
623 doi: 10.1158/1078-0432.CCR-10-2599. PubMed PMID: 21531815.

624 8. Hainsworth JD, Rubin MS, Spigel DR, Boccia RV, Raby S, Quinn R, et al. Molecular
625 gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients
626 with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon research
627 institute. *J Clin Oncol.* 2013;31(2):217-23. Epub 2012/10/04. doi: 10.1200/JCO.2012.43.3755.
628 PubMed PMID: 23032625.

629 9. Varadhachary GR, Karanth S, Qiao W, Carlson HR, Raber MN, Hainsworth JD, et al. Carcinoma of unknown primary with gastrointestinal profile: immunohistochemistry and survival
630 data for this favorable subset. *Int J Clin Oncol.* 2014;19(3):479-84. Epub 2013/07/03. doi:
631 10.1007/s10147-013-0583-0. PubMed PMID: 23813044.

632 10. Green AC. Cancer of unknown primary: does the key lie in molecular diagnostics?
633 *Cytopathology.* 2015;26(1):61-3. Epub 2015/02/17. doi: 10.1111/cyt.12235. PubMed PMID:
634 25683360.

635 11. Kandalaft PL, Gown AM. Practical Applications in Immunohistochemistry: Carcinomas of
636 Unknown Primary Site. *Arch Pathol Lab Med.* 2016;140(6):508-23. Epub 2015/10/13. doi:
637 10.5858/arpa.2015-0173-CP. PubMed PMID: 26457625.

638 12. Conner JR, Hornick JL. Metastatic carcinoma of unknown primary: diagnostic approach
639 using immunohistochemistry. *Adv Anat Pathol.* 2015;22(3):149-67. Epub 2015/04/07. doi:
640 10.1097/PAP.0000000000000069. PubMed PMID: 25844674.

641 13. Rubin BP, Skarin AT, Pisick E, Rizk M, Salgia R. Use of cytokeratins 7 and 20 in
642 determining the origin of metastatic carcinoma of unknown primary, with special emphasis on

643

644

645 lung cancer. *Eur J Cancer Prev.* 2001;10(1):77-82. Epub 2001/03/27. PubMed PMID: 646 11263595.

647 14. Gunia S, Koch S, May M. Is CDX2 immunostaining useful for delineating anorectal from 648 penile/vulvar squamous cancer in the setting of squamous cell carcinoma with clinically 649 unknown primary site presenting with histologically confirmed inguinal lymph node metastasis? 650 *J Clin Pathol.* 2013;66(2):109-12. Epub 2012/10/30. doi: 10.1136/jclinpath-2012-201138. 651 PubMed PMID: 23105122.

652 15. Tothill RW, Kowalczyk A, Rischin D, Bousioutas A, Haviv I, van Laar RK, et al. An 653 expression-based site of origin diagnostic method designed for clinical application to cancer of 654 unknown origin. *Cancer Res.* 2005;65(10):4031-40. Epub 2005/05/19. doi: 10.1158/0008- 655 5472.CAN-04-3617. PubMed PMID: 15899792.

656 16. Horlings HM, van Laar RK, Kerst JM, Helgason HH, Wesseling J, van der Hoeven JJ, et 657 al. Gene expression profiling to identify the histogenetic origin of metastatic adenocarcinomas of 658 unknown primary. *J Clin Oncol.* 2008;26(27):4435-41. Epub 2008/09/20. doi: 10.1200/JCO.2007.14.6969. 659 PubMed PMID: 18802156.

660 17. Varadhanay GR, Raber MN, Matamoros A, Abbruzzese JL. Carcinoma of unknown 661 primary with a colon-cancer profile-changing paradigm and emerging definitions. *Lancet Oncol.* 662 2008;9(6):596-9. Epub 2008/05/31. doi: 10.1016/S1470-2045(08)70151-7. PubMed PMID: 663 18510991.

664 18. van Laar RK, Ma XJ, de Jong D, Wehkamp D, Floore AN, Warmoes MO, et al. 665 Implementation of a novel microarray-based diagnostic test for cancer of unknown primary. *Int J 666 Cancer.* 2009;125(6):1390-7. Epub 2009/06/19. doi: 10.1002/ijc.24504. PubMed PMID: 667 19536816.

668 19. Handorf CR, Kulkarni A, Grenert JP, Weiss LM, Rogers WM, Kim OS, et al. A 669 multicenter study directly comparing the diagnostic accuracy of gene expression profiling and 670 immunohistochemistry for primary site identification in metastatic tumors. *Am J Surg Pathol.* 671 2013;37(7):1067-75. Epub 2013/05/08. doi: 10.1097/PAS.0b013e31828309c4. PubMed PMID: 672 23648464; PubMed Central PMCID: PMC5266589.

673 20. Greco FA, Lennington WJ, Spigel DR, Hainsworth JD. Molecular profiling diagnosis in 674 unknown primary cancer: accuracy and ability to complement standard pathology. *J Natl Cancer 675 Inst.* 2013;105(11):782-90. Epub 2013/05/04. doi: 10.1093/jnci/djt099. PubMed PMID: 676 23641043.

677 21. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. 678 *Nature.* 2012;490(7418):61-70. Epub 2012/09/25. doi: 10.1038/nature11412. PubMed PMID: 679 23000897; PubMed Central PMCID: PMC3465532.

680 22. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck 681 squamous cell carcinomas. *Nature.* 2015;517(7536):576-82. Epub 2015/01/30. doi: 682 10.1038/nature14129. PubMed PMID: 25631445; PubMed Central PMCID: PMC4311405.

683 23. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon 684 and rectal cancer. *Nature.* 2012;487(7407):330-7. Epub 2012/07/20. doi: 10.1038/nature11252. 685 PubMed PMID: 22810696; PubMed Central PMCID: PMC3401966.

686 24. Cancer Genome Atlas Research N. Comprehensive genomic characterization defines 687 human glioblastoma genes and core pathways. *Nature.* 2008;455(7216):1061-8. Epub 688 2008/09/06. doi: 10.1038/nature07385. PubMed PMID: 18772890; PubMed Central PMCID: 689 PMC2671642.

690 25. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. 691 *Nature.* 2011;474(7353):609-15. Epub 2011/07/02. doi: 10.1038/nature10166. PubMed PMID: 692 21720365; PubMed Central PMCID: PMC3163504.

693 26. Cancer Genome Atlas Research N. Comprehensive genomic characterization of 694 squamous cell lung cancers. *Nature.* 2012;489(7417):519-25. Epub 2012/09/11. doi: 695 10.1038/nature11404. PubMed PMID: 22960745; PubMed Central PMCID: PMC3466113.

696 27. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung
697 adenocarcinoma. *Nature*. 2014;511(7511):543-50. Epub 2014/08/01. doi: 10.1038/nature13385.
698 PubMed PMID: 25079552; PubMed Central PMCID: PMC4231481.

699 28. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate
700 Cancer. *Cell*. 2015;163(4):1011-25. Epub 2015/11/07. doi: 10.1016/j.cell.2015.10.025. PubMed
701 PMID: 26544944; PubMed Central PMCID: PMC4695400.

702 29. Kommoos S, Winterhoff B, Oberg AL, Konecny GE, Wang C, Riska SM, et al. Bevacizumab May Differentially Improve Ovarian Cancer Outcome in Patients with Proliferative
703 and Mesenchymal Molecular Subtypes. *Clin Cancer Res*. 2017;23(14):3794-801. Epub
704 2017/02/06. doi: 10.1158/1078-0432.CCR-16-2196. PubMed PMID: 28159814; PubMed Central
705 PMCID: PMC5661884.

706 30. Prat A, Fan C, Fernandez A, Hoadley KA, Martinello R, Vidal M, et al. Response and
707 survival of breast cancer intrinsic subtypes following multi-agent neoadjuvant chemotherapy.
708 *BMC Med*. 2015;13:303. Epub 2015/12/20. doi: 10.1186/s12916-015-0540-z. PubMed PMID:
709 26684470; PubMed Central PMCID: PMC4683815.

710 31. Prat A, Pineda E, Adamo B, Galvan P, Fernandez A, Gaba L, et al. Clinical implications
711 of the intrinsic molecular subtypes of breast cancer. *Breast*. 2015;24 Suppl 2:S26-35. Epub
712 2015/08/09. doi: 10.1016/j.breast.2015.07.008. PubMed PMID: 26253814.

713 32. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or
714 without a reference genome. *BMC Bioinformatics*. 2011;12(1). doi: 10.1186/1471-2105-12-323.

715 33. Center BITGDA. Analysis-ready standardized TCGA data from Broad GDAC Firehose
716 2016_01_28 run. Broad Institute of MIT and Harvard: Broad Institute of MIT and Harvard; 2016.

717 34. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. *Nat Methods*.
718 2015;12(2):115-21. Epub 2015/01/31. doi: 10.1038/nmeth.3252. PubMed PMID: 25633503;
719 PubMed Central PMCID: PMC4509590.

720 35. Singh R, Maganti RJ, Jabba SV, Wang M, Deng G, Heath JD, et al. Microarray-based
721 comparison of three amplification methods for nanogram amounts of total RNA. *American
722 Journal of Physiology-Cell Physiology*. 2005;288(5):C1179-C89. doi:
723 10.1152/ajpcell.00258.2004.

724 36. Hsu SD, Kim MK, Foye A, Silvestri A, Lyerly HK, Morse M, et al. Use of gene expression
725 signatures to identify origin of primary and therapeutic strategies for patients with advanced
726 solid tumors. *Journal of Clinical Oncology*. 2010;28(15_suppl):10504-. doi:
727 10.1200/jco.2010.28.15_suppl.10504.

728 37. Krupke DM, Begley DA, Sundberg JP, Bult CJ, Eppig JT. The Mouse Tumor Biology
729 database. *Nat Rev Cancer*. 2008;8(6):459-65. Epub 2008/04/25. doi: 10.1038/nrc2390. PubMed
730 PMID: 18432250; PubMed Central PMCID: PMC2574871.

731 38. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic
732 and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. *Nature*.
733 2012;486(7403):346-52. Epub 2012/04/24. doi: 10.1038/nature10983. PubMed PMID:
734 22522925; PubMed Central PMCID: PMC3440846.

735 39. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer
736 genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer
737 Discov*. 2012;2(5):401-4. Epub 2012/05/17. doi: 10.1158/2159-8290.CD-12-0095. PubMed
738 PMID: 22588877; PubMed Central PMCID: PMC3956037.

739 40. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative
740 analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Sci Signal*.
741 2013;6(269):pl1. Epub 2013/04/04. doi: 10.1126/scisignal.2004088. PubMed PMID: 23550210;
742 PubMed Central PMCID: PMC4160307.

743 41. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. Molecular
744 Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in

747 Diffuse Glioma. *Cell*. 2016;164(3):550-63. Epub 2016/01/30. doi: 10.1016/j.cell.2015.12.028.
748 PubMed PMID: 26824661; PubMed Central PMCID: PMC4754110.

749 42. Getz G, Gabriel SB, Cibulskis K, Lander E, Sivachenko A, Sougnez C, et al. Integrated
750 genomic characterization of endometrial carcinoma. *Nature*. 2013;497(7447):67-73. doi:
751 10.1038/nature12113.

752 43. Akbani R, Akdemir Kadir C, Aksoy BA, Albert M, Ally A, Amin Samirkumar B, et al.
753 Genomic Classification of Cutaneous Melanoma. *Cell*. 2015;161(7):1681-96. doi:
754 10.1016/j.cell.2015.05.044.

755 44. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. *New
756 England Journal of Medicine*. 2016;374(2):135-45. doi: 10.1056/NEJMoa1505917.

757 45. Comprehensive molecular characterization of clear cell renal cell carcinoma. *Nature*.
758 2013;499(7456):43-9. doi: 10.1038/nature12222.

759 46. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-Origin Patterns
760 Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. *Cell*.
761 2018;173(2):291-304 e6. Epub 2018/04/07. doi: 10.1016/j.cell.2018.03.022. PubMed PMID:
762 29625048; PubMed Central PMCID: PMC5957518.

763 47. Dudoit S, Fridlyand J, Speed TP. Comparison of Discrimination Methods for the
764 Classification of Tumors Using Gene Expression Data. *Journal of the American Statistical
765 Association*. 2002;97(457):77-87. doi: 10.1198/016214502753479248.

766 48. Tabchy A, Valero V, Vidaurre T, Lluch A, Gomez H, Martin M, et al. Evaluation of a 30-
767 gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response
768 predictor in a multicenter randomized trial in breast cancer. *Clin Cancer Res*. 2010;16(21):5351-
769 61. Epub 2010/09/11. doi: 10.1158/1078-0432.CCR-10-1265. PubMed PMID: 20829329;
770 PubMed Central PMCID: PMC4181852.

771 49. Kurokawa C, Iankov ID, Anderson SK, Aderca I, Leontovich AA, Maurer MJ, et al.
772 Constitutive Interferon Pathway Activation in Tumors as an Efficacy Determinant Following
773 Oncolytic Virotherapy. *J Natl Cancer Inst*. 2018. Epub 2018/05/23. doi: 10.1093/jnci/djy033.
774 PubMed PMID: 29788332.

775 50. Khondoker M, Dobson R, Skirrow C, Simmons A, Stahl D. A comparison of machine
776 learning methods for classification using simulation with multiple real data examples from
777 mental health studies. *Stat Methods Med Res*. 2016;25(5):1804-23. Epub 2013/09/21. doi:
778 10.1177/0962280213502437. PubMed PMID: 24047600; PubMed Central PMCID:
779 PMC5081132.

780 51. Li Y, Kang K, Krahn JM, Croutwater N, Lee K, Umbach DM, et al. A comprehensive
781 genomic pan-cancer classification using The Cancer Genome Atlas gene expression data. *BMC
782 Genomics*. 2017;18(1):508. Epub 2017/07/05. doi: 10.1186/s12864-017-3906-0. PubMed PMID:
783 28673244; PubMed Central PMCID: PMC5496318.

784 52. Li Z, Mao Y, Li H, Yu G, Wan H, Li B. Differentiating brain metastases from different
785 pathological types of lung cancers using texture analysis of T1 postcontrast MR. *Magn Reson
786 Med*. 2016;76(5):1410-9. Epub 2015/12/02. doi: 10.1002/mrm.26029. PubMed PMID:
787 26621795.

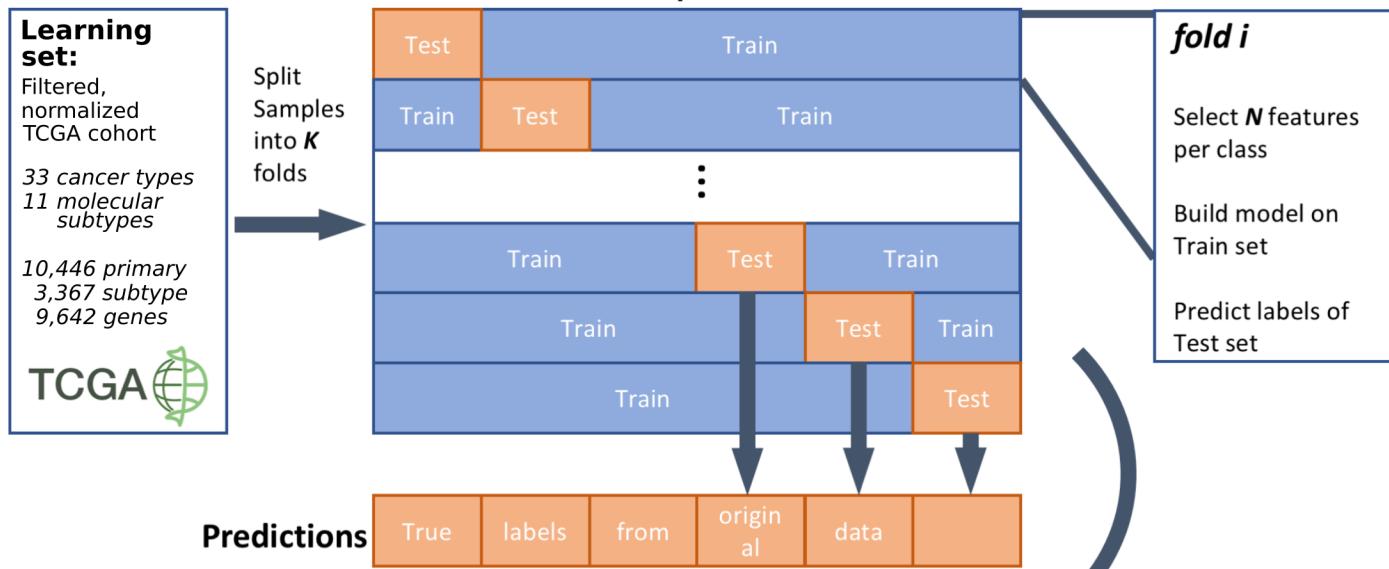
788 53. Venables WN, Ripley BD. *Modern Applied Statistics with S*2002.

789 54. Wang S, Cai Y. Identification of the functional alteration signatures across different
790 cancer types with support vector machine and feature analysis. *Biochim Biophys Acta*.
791 2018;1864(6 Pt B):2218-27. Epub 2017/12/27. doi: 10.1016/j.bbadi.2017.12.026. PubMed
792 PMID: 29277326.

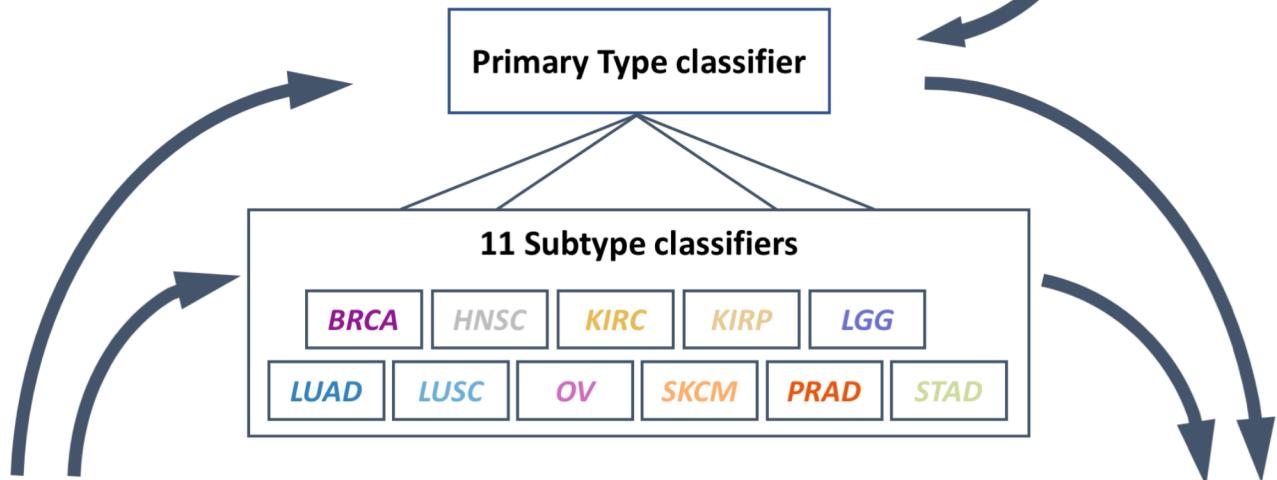
793 55. Galvez JM, Castillo D, Herrera LJ, San Roman B, Valenzuela O, Ortuno FM, et al.
794 Multiclass classification for skin cancer profiling based on the integration of heterogeneous gene
795 expression series. *PLoS One*. 2018;13(5):e0196836. Epub 2018/05/12. doi:
796 10.1371/journal.pone.0196836. PubMed PMID: 29750795; PubMed Central PMCID:
797 PMC5947894.

798 56. Zhi J, Sun J, Wang Z, Ding W. Support vector machine classifier for prediction of the
799 metastasis of colorectal cancer. *Int J Mol Med*. 2018;41(3):1419-26. Epub 2018/01/13. doi:
800 10.3892/ijmm.2018.3359. PubMed PMID: 29328363; PubMed Central PMCID: PMC5819940.
801 57. Breiman L. Consistency for a simple model of random forests. Univ. California, Berkeley,
802 CA: 2004 Contract No.: Technical Report 670.
803 58. McInnes L, Healy J. UMAP: Uniform Manifold Approximation and Projection for
804 Dimension Reduction. ArXiv e-prints [Internet]. 2018.
805 59. van der Maaten L. Accelerating t-SNE using Tree-Based Algorithms. *Journal of Machine
806 Learning Research*. 2014;15:3221-45.
807 60. Ulyanov D. Multicore-TSNE. GitHub; 2016.
808 61. Zhang Y. Epidemiology of esophageal cancer. *World J Gastroenterol*. 2013;19(34):5598-
809 606. Epub 2013/09/17. doi: 10.3748/wjg.v19.i34.5598. PubMed PMID: 24039351; PubMed
810 Central PMCID: PMC3769895.
811 62. Cherniack AD, Shen H, Walter V, Stewart C, Murray BA, Bowlby R, et al. Integrated
812 Molecular Characterization of Uterine Carcinosarcoma. *Cancer Cell*. 2017;31(3):411-23. Epub
813 2017/03/16. doi: 10.1016/j.ccr.2017.02.010. PubMed PMID: 28292439; PubMed Central
814 PMCID: PMC5599133.
815 63. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al. Patient-derived
816 xenograft models: an emerging platform for translational cancer research. *Cancer Discov*.
817 2014;4(9):998-1013. Epub 2014/09/04. doi: 10.1158/2159-8290.CD-14-0001. PubMed PMID:
818 25185190; PubMed Central PMCID: PMC4167608.
819 64. Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B, et al. Comprehensive
820 molecular characterization of gastric adenocarcinoma. *Nature*.
821 2014;513(7517):202-9. doi: 10.1038/nature13480.
822 65. Wu X, Li X, Fu Q, Cao Q, Chen X, Wang M, et al. AKR1B1 promotes basal-like breast
823 cancer progression by a positive feedback loop that activates the EMT program. *The Journal of
824 Experimental Medicine*. 2017;214(4):1065-79. doi: 10.1084/jem.20160903.
825 66. Varadhanay GR, Abbruzzese JL, Lenzi R. Diagnostic strategies for unknown primary
826 cancer. *Cancer*. 2004;100(9):1776-85. Epub 2004/04/28. doi: 10.1002/cncr.20202. PubMed
827 PMID: 15112256.
828 67. Fizazi K, Greco FA, Pavlidis N, Daugaard G, Oien K, Pentheroudakis G, et al. Cancers
829 of unknown primary site: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-
830 up. *Ann Oncol*. 2015;26 Suppl 5:v133-8. Epub 2015/09/01. doi: 10.1093/annonc/mdv305.
831 PubMed PMID: 26314775.
832 68. Lee J, Hahn S, Kim J, Kang SN, Rha SY, et al. Evaluation of survival benefits
833 by platinums and taxanes for an unfavourable subset of carcinoma of unknown primary: a
834 systematic review and meta-analysis. *Br J Cancer*. 2013;108(1):39-48. Epub 2012/11/24. doi:
835 10.1038/bjc.2012.516. PubMed PMID: 23175147; PubMed Central PMCID: PMC3553519.
836 69. Chen Y, Sun J, Huang L-C, Xu H, Zhao Z. Classification of Cancer Primary Sites Using
837 Machine Learning and Somatic Mutations. *BioMed Research International*. 2015;2015:1-9. doi:
838 10.1155/2015/491502.
839 70. Leong HS, Galletta L, Etemadmoghadam D, George J, Australian Ovarian Cancer S,
840 Kobel M, et al. Efficient molecular subtype classification of high-grade serous ovarian cancer. *J
841 Pathol*. 2015;236(3):272-7. Epub 2015/03/27. doi: 10.1002/path.4536. PubMed PMID:
842 25810134.
843

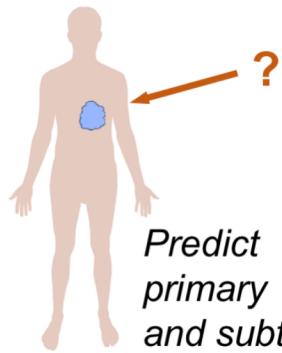
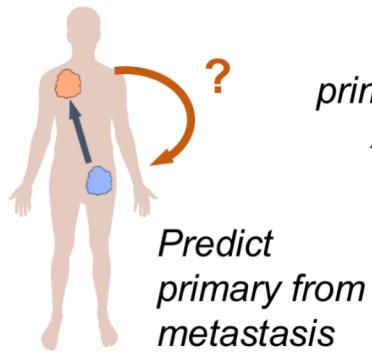
A



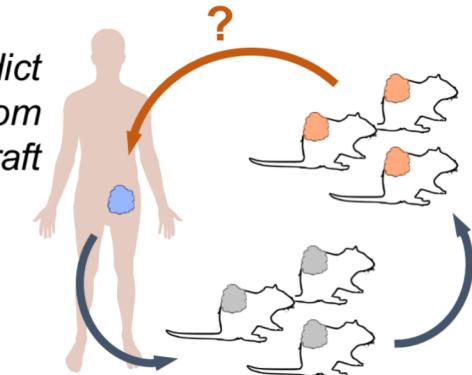
B

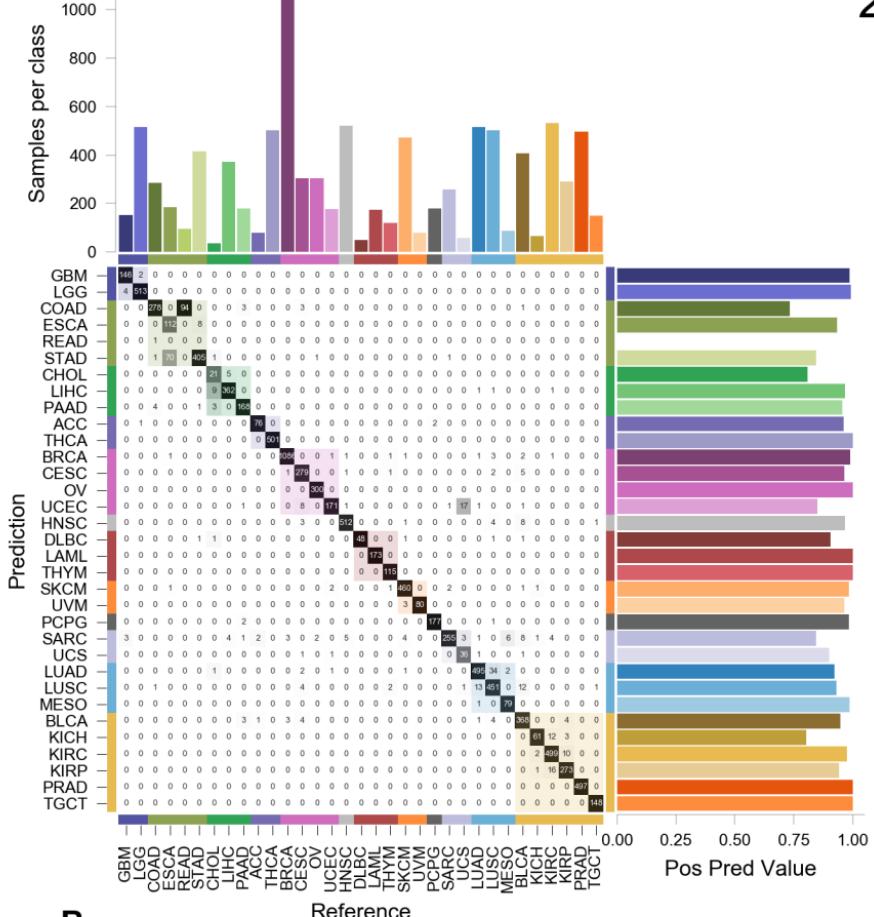


External validations

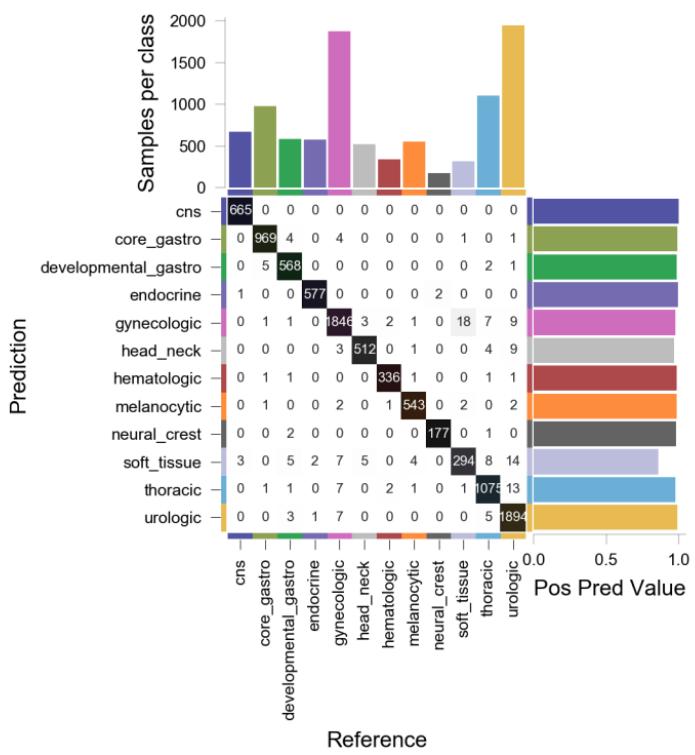


Predict primary from xenograft

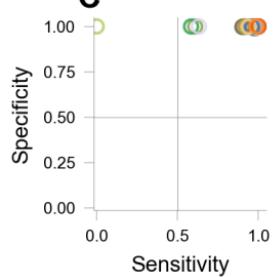




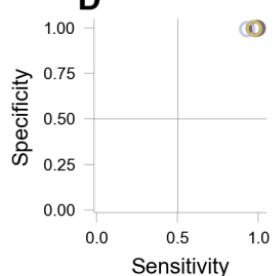
B Reference

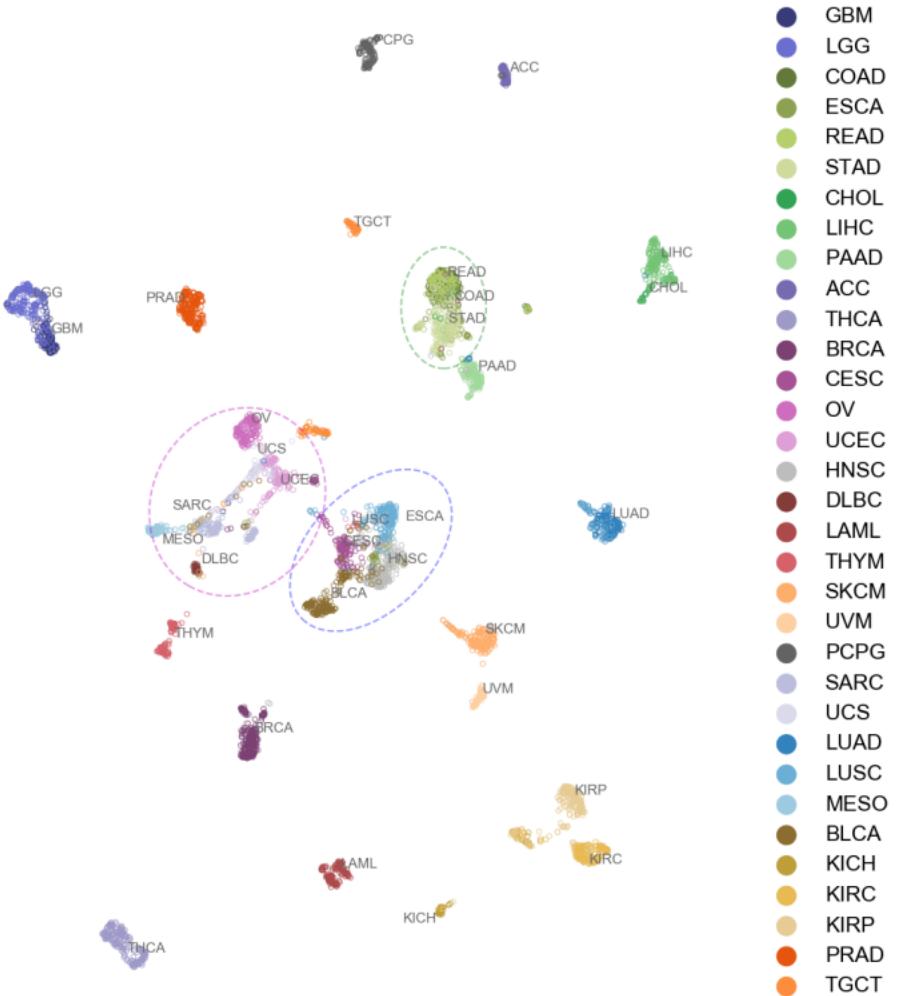


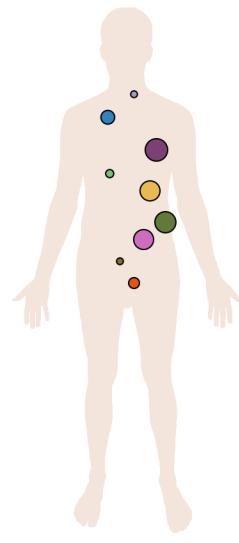
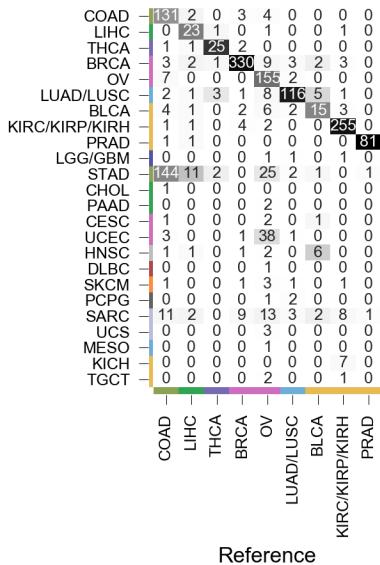
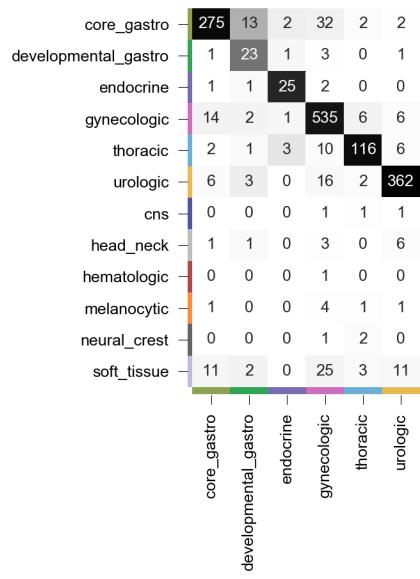
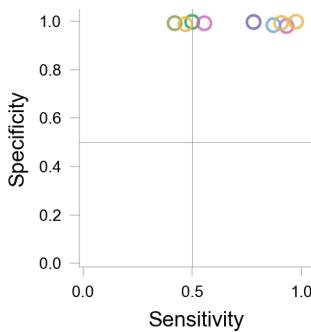
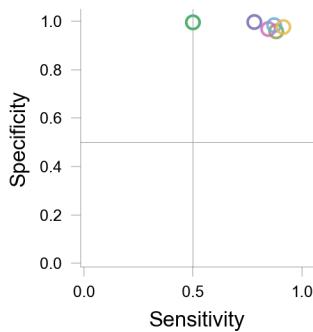
C

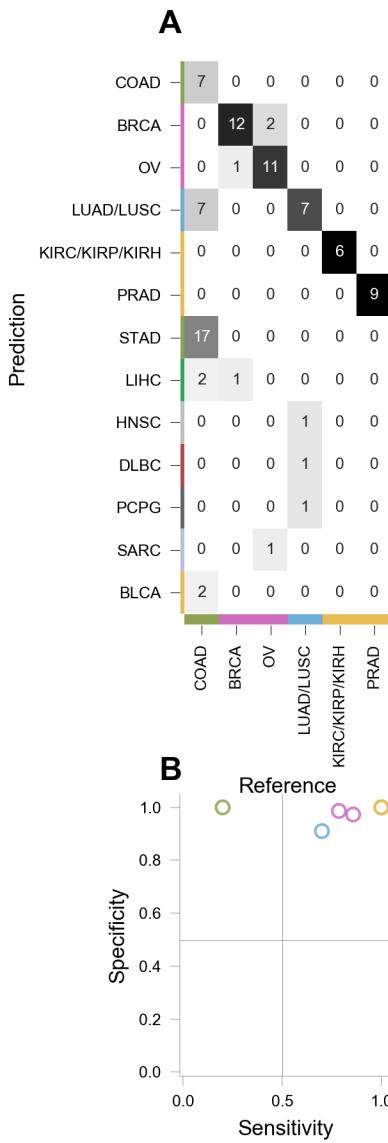
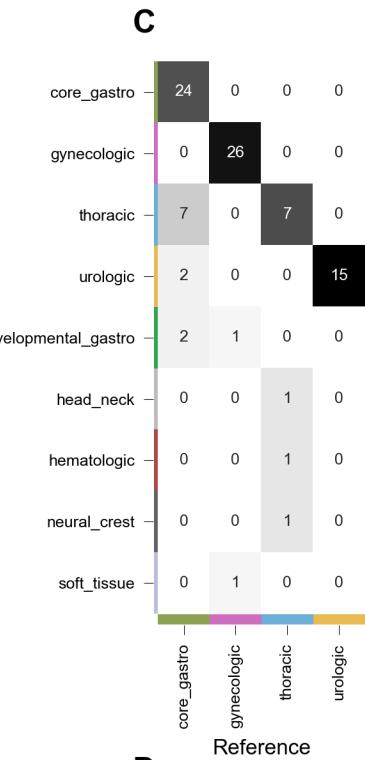
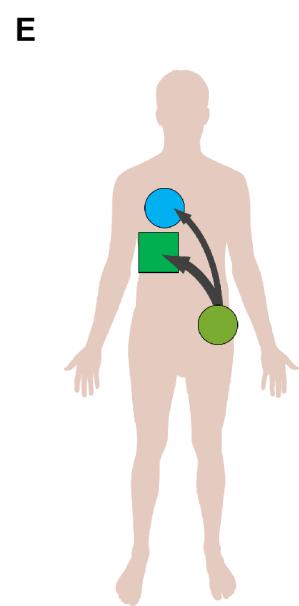
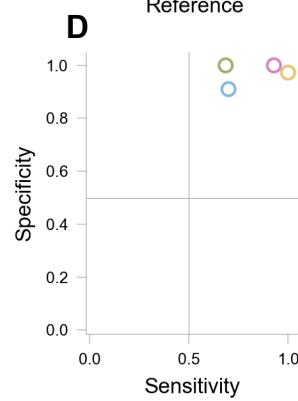
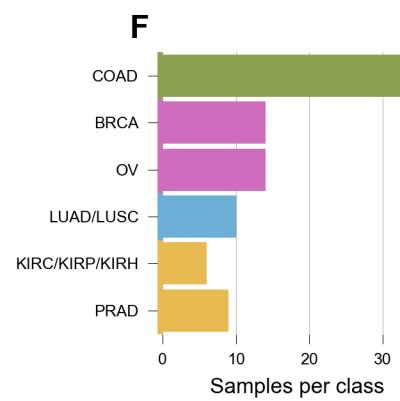


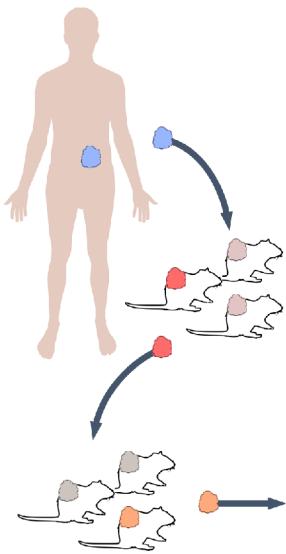
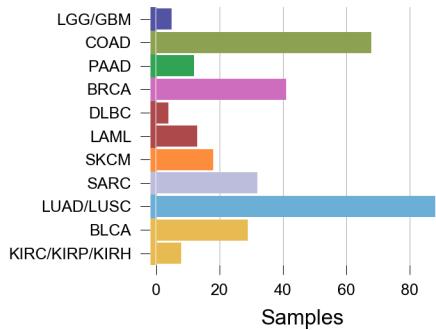
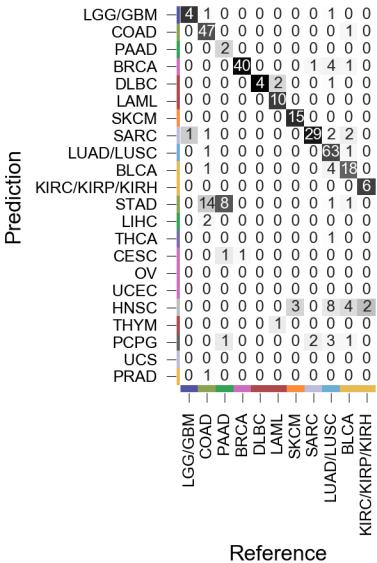
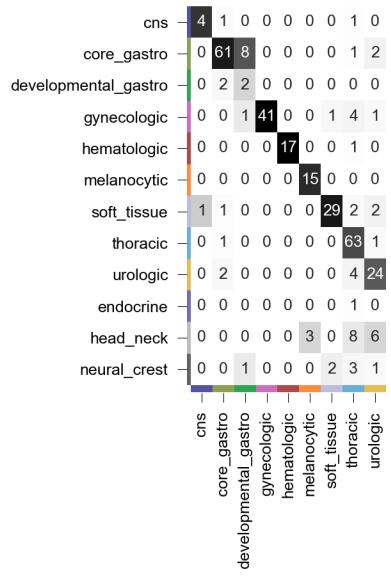
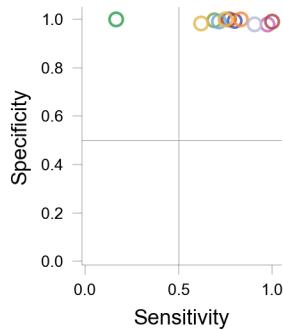
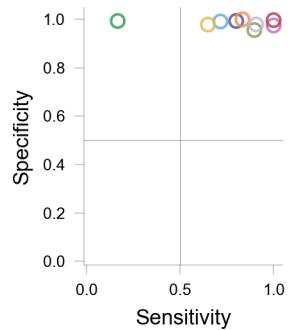
D

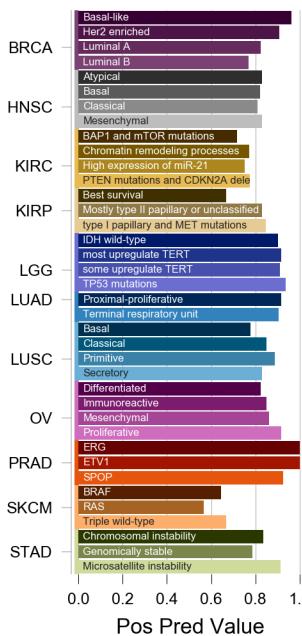
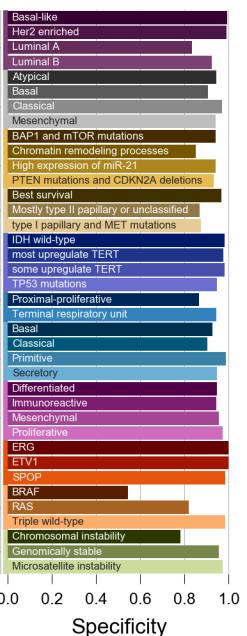
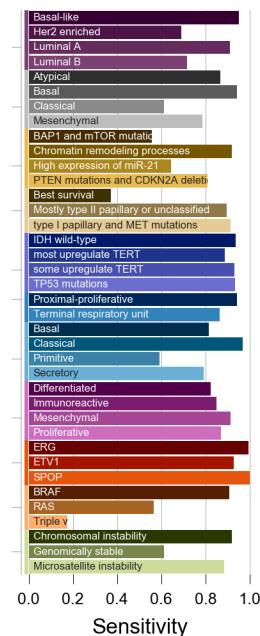
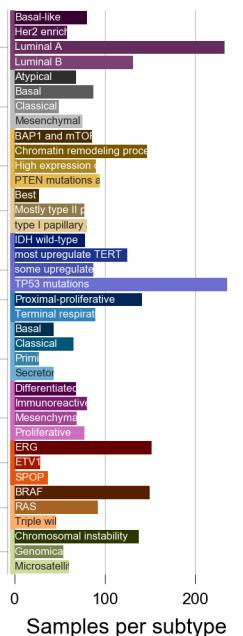
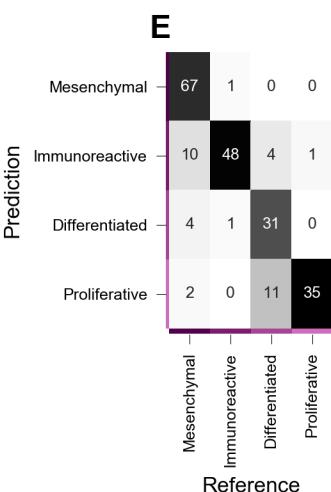
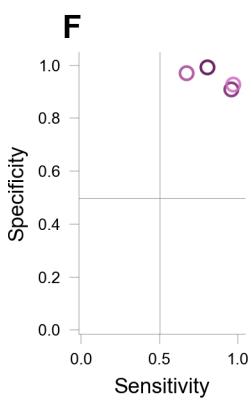
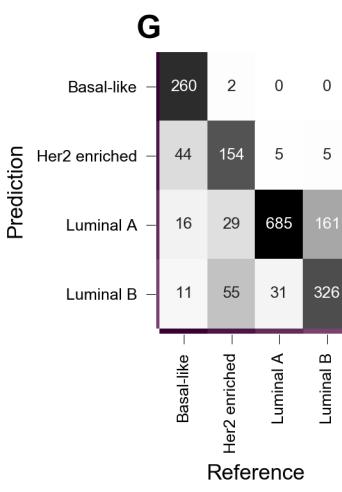




A**B****D****C****E**



A**B****C****E****D****F**

A**B****C****D****E****F****G****H**