

1 sppIDer: a species identification tool to investigate hybrid genomes with high-throughput
2 sequencing
3 Quinn K. Langdon^{1,2}; David Peris^{1,2,3,4}; Brian Kyle²; Chris Todd Hittinger^{1,2,3}
4 1 Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Genome Center of
5 Wisconsin, University of Wisconsin–Madison, Madison, WI USA
6 2 Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI USA
7 3 DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison,
8 WI USA
9 4 Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA),
10 CSIC, Valencia Spain

11 **Abstract:**

12 The genomics era has expanded our knowledge about the diversity of the living world,
13 yet harnessing high-throughput sequencing data to investigate alternative evolutionary
14 trajectories, such as hybridization, is still challenging. Here we present sppIDer, a pipeline for
15 the characterization of interspecies hybrids and pure species, that illuminates the complete
16 composition of genomes. sppIDer maps short-read sequencing data to a combination genome
17 built from reference genomes of several species of interest and assesses the genomic contribution
18 and relative ploidy of each parental species, producing a series of colorful graphical outputs
19 ready for publication. As a proof-of-concept, we use the genus *Saccharomyces* to detect and
20 visualize both interspecies hybrids and pure strains, even with missing parental reference
21 genomes. Through simulation, we show that sppIDer is robust to variable reference genome
22 qualities and performs well with low-coverage data. We further demonstrate the power of this
23 approach in plants, animals, and other fungi. sppIDer is robust to many different inputs and
24 provides visually intuitive insight into genome composition that enables the rapid identification
25 of species and their interspecies hybrids. sppIDer exists as a Docker image, which is a reusable,
26 reproducible, transparent, and simple-to-run package that automates the pipeline and installation
27 of the required dependencies (<https://github.com/GLBRC/sppIDer>).
28

29 **Introduction:**

30 Interspecies hybrids play a large role in both natural and in industrial settings (Dunn and
31 Sherlock 2008; Soltis et al. 2015; Payseur and Rieseberg 2016; Peris et al. 2017c). However,

32 identification and characterization of the genomic contributions of hybrids can be difficult. High-
33 throughput sequencing can be used to address many of the barriers to identifying and
34 characterizing hybrids. With the influx of sequencing data, the quality and number of reference
35 genomes available is increasing at a rapid pace. Population genomic, ecological diversity, and
36 gene expression projects are underway in many fields. These studies are yielding a high volume
37 of short-read data, but determining the best way to leverage these data can be challenging. A key
38 goal of the modern genomic era is to be able to integrate and synthesize these data to further our
39 understanding of natural diversity (Richards 2017), including addressing key questions about the
40 frequency and genomic identities of hybrid and admixed lineages in the wild.

41 The number of reference genomes available has rapidly increased, but it is not complete
42 in most clades. To avoid the drawbacks of limited reference genomes, several new phylogenetic
43 approaches have been developed that do not require sequence alignments or whole-genome
44 assemblies, such as phylogeny-building approaches using kmers (Fan et al. 2015), de novo
45 identification of phylogenetically informative regions (Schwartz et al. 2015), and local
46 assemblies of target genes (Allen et al. 2015; Johnson et al. 2016). These methods can accurately
47 reconstruct known and simulated phylogenies of pure lineages. However, these methods have not
48 been tested on hybrid or admixed lineages. As hybrids are the result of an outcrossing event
49 between two independently evolving lineages, their origin is inherently not tree-like. Therefore,
50 placing hybrids on a bifurcating tree will not reflect the topology observed with pure lineages.
51 Placing hybrids on a phylogenetic network is more apt, but it is still untested with alignment-free
52 phylogenetic approaches. Other species identification methods based on local assembly of target
53 genes could lead to erroneous identification, depending on which parent the gene of interest is
54 retained from in the hybrid, or could lead to the assembly of a chimeric gene if the hybrid has
55 retained copies from multiple parents. Therefore, in organisms with alternative evolutionary
56 trajectories, such as hybrids with complex genomes, applying alignment-free phylogenetic
57 methods is difficult and could potentially result in imprecise conclusions.

58 Other methods to detect interspecies hybrids have been adapted from methods developed
59 for intraspecies diversity, such as F_{ST} , STRUCTURE analysis, phylogenetic discordance, linkage
60 disequilibrium, and PCA approaches (Payseur and Rieseberg 2016). There are numerous
61 drawbacks to using these methods to detect interspecies hybrids. For example, most definitions
62 of speciation require the cessation of gene flow and the accumulation of sequence divergence

63 well beyond the levels observed between populations, which are therefore beyond the
64 expectations of most of these approaches. Many of these methods were also developed for
65 diploid obligately outcrossing species, which makes problematic their application to
66 allopolyploids or species that primarily undergo selfing or other forms of inbreeding. Indeed, the
67 basic assumptions of these methods, including gene flow, demographic history, and natural
68 selection, are violated by most interspecies hybrids.

69 Here we present sppIDer as a novel, assumption-free method that rapidly provides visual
70 and intuitive insight into ancestry genome-wide, which will aid in the discovery and
71 characterization of interspecies hybrids. This method maps short-read data to combination
72 genome, built from available reference genomes chosen by the user. sppIDer allows for the
73 analysis and visualization of the genomic makeup of a single organism of interest, facilitating the
74 rapid discovery of hybrids and individuals with other unique genomic features, such as
75 aneuploidies and introgressions. Therefore, sppIDer is an unbiased method that provides unique
76 and intuitive insights into complex genomic ancestry and regions of differing evolutionary
77 history, which can complement existing methods in the characterization of hybrids.

78

79 **New Approaches**

80 Here we describe and make available a user-friendly short-read data analysis pipeline that
81 utilizes existing bioinformatic tools and custom scripts to determine species identity, hybrid
82 status, and chromosomal copy-number variants (CCNVs). Short-reads are mapped to a
83 combination reference genome of multiple species of interest, and the output is parsed for where,
84 how well, and how deeply the reads map across this combination genome. A colorful automated
85 output allows end-users to rapidly and intuitively assess the genomic contribution, either from a
86 single species or multiple species, and relative ploidy of an organism. Figure 1 illustrates the
87 basic workflow in a flow chart of each step. An upstream step creates a combination reference
88 genome, which is a concatenation of reference genomes of interest, before the main pipeline is
89 run. The main pipeline starts with mapping short-read data to this combination reference
90 genome. Then, this output is parsed for percentage and quality of reads that map to each
91 individual reference genome within the combination reference and percentage of unmapped
92 reads; this summary is then plotted so these metrics can be visualized. In parallel, the mapping
93 output is analyzed for depth of coverage. Reads with a mapping quality (MQ) greater than three

94 are retained and sorted into the combination reference genome order; then, coverage across the
95 combination reference genome is computed. A custom script then calculates the mean coverage
96 for each species, and the combination reference genome broken into windows. The output of
97 these analyses is then plotted so that coverage across the combination reference genome can be
98 visualized.

99 We have given this computational pipeline and wrapper a portmanteau of the pluralized
100 abbreviation of species (spp.) and identifier (IDer), to reflect its ability to identify hybrids of
101 multiple species. sppIDer also detects CCNVs, such as those caused by aneuploidy and other
102 genomic changes that do not meet the textbook definition of aneuploidy, including interspecies
103 loss-of-heterozygosity events, interspecies unbalanced translocations, and other differences in
104 relative ploidy. sppIDer is provided as an open source Docker (<http://www.docker.com>), which
105 organizes the pipeline and all the dependencies into a reusable, reproducible, transparent, and
106 simple-to-run package (<https://github.com/GLBRC/sppIDer>).

107 Here we present several applications of sppIDer in yeast, plant, and animal genomes.
108 Through simulations, we show that sppIDer can detect hybrids of closely or distantly related
109 species, and of recent or ancient origin. We use the genus *Saccharomyces* to 1) detect both
110 interspecies hybrids and pure strains; 2) detect hybrids, even with missing reference genomes;
111 and 3) determine how divergent lineages and poor-quality data and reference genomes affect
112 sppIDer's performance. Next, we test sppIDer's utility in non-*Saccharomyces* systems: another
113 yeast genus, *Lachancea*; an animal genus, *Drosophila*; and a plant genus, *Arabidopsis*. Finally,
114 we test an extension for non-nuclear DNA using mitochondrial genome data. Overall, sppIDer is
115 robust to many different inputs and can be used across organisms to provide rapid insight into the
116 species identity, hybrid status, and CCNVs of an organism.

117

118 **Results and Discussion:**

119 Species and interspecies hybrid identifications:

120 To test sppIDer, we first used the well-studied genus *Saccharomyces* (Hittinger 2013).
121 Seven of the eight species have reference genomes scaffolded at a near-chromosomal level, and
122 there are many interspecies hybrids (Goffeau et al. 1996; Fischer et al. 2000; Dunn and Sherlock
123 2008; Liti and Carter et al. 2009; Scannell and Zill et al. 2011; Liti et al. 2013; Baker et al. 2015;
124 Naseeb et al. 2017; Peris et al. 2017c). To test sppIDer's species-level classification ability for a

125 natural isolate, we used the short-read data available for a *Saccharomyces eubayanus* strain
126 isolated in New Zealand (P1C1) (Gayevskiy and Goddard 2016). The reads from this wild *S.*
127 *eubayanus* strain mapped preferentially to the *S. eubayanus* reference genome (Figure 2a), as
128 seen by normalized coverage only being above zero for the *S. eubayanus* genome. This strain
129 belongs to the same diverse lineage as the reference strain (Peris and Langdon et al. 2016), but as
130 the first isolate from Oceania, these results show that sppIDer can easily classify, to the species
131 level, a divergent wild strain isolated from a novel environment. To test sppIDer's utility for
132 industrial strains, we used short reads from an ale strain, Fosters O (Gonçalves et al. 2016). This
133 test shows that this brewing strain is a pure species; the *S. cerevisiae* genome is the only genome
134 that had normalized coverage above zero. However, normalized coverage differed within the *S.*
135 *cerevisiae* genome (Figure 2b & Figure S1a), implying aneuploidies. Coverage was lower for
136 chromosomes VII and XIV and increased for chromosome XIII, in comparison with the genome-
137 wide average coverage, indicating that there are more copies of chromosome XIII and fewer
138 copies of chromosome VIII and XIV. Additionally, we could detect regions of CCNV within a
139 chromosome, such as the small region within chromosome VII where the normalized coverage
140 returned to the genome average.

141 To test sppIDer's ability to delineate hybrids, we used short-read data from two *S.*
142 *cerevisiae* X *S. eubayanus* lager yeast lineages, Saaz (strain CBS1503) and Frohberg (strain
143 W34/70). These results recapitulated the known relative ploidy and rearrangements, where
144 ploidy differs both within and between genomes. Specifically, the Frohberg lineage contains
145 approximately two copies of each chromosome from both *S. cerevisiae* and *S. eubayanus*. Thus,
146 what was observed matched this expectation, where the average normalized coverage across both
147 the *S. cerevisiae* and *S. eubayanus* genomes were approximately at the same level, but there were
148 clear fluctuations, indicating ploidy changes (Figure 2c & Figure S1b). In our test with a
149 representative of the Saaz lineage, we observed that the *S. cerevisiae* genome had an average
150 normalized coverage of ~0.5, that fluctuated from none to two, and the *S. eubayanus* genome had
151 an average normalized coverage of 1.5, that fluctuated from zero to three (Figure 2d & Figure
152 S1c). These results match with previous observations that the Saaz lineage is approximately
153 haploid for the *S. cerevisiae* genome and diploid for the *S. eubayanus* genome. Additionally,
154 from the sppIDer plots, we also easily inferred the previously described aneuploidies and
155 translocations (Figure 2c-d) (Dunn and Sherlock 2008; Okuno et al. 2016).

156 As an additional hybrid test, we used short-read data from the wine strain Vin7, a *S.*
157 *cerevisiae* X *Saccharomyces kudriavzevii* hybrid. From the normalized coverage plot (Figure
158 2e), we could determine that Vin7 has retained complete copies of both parental genomes, but at
159 different ploidy levels. Specifically, the normalized coverage for *S. cerevisiae* was around two
160 across the genome, while the normalized coverage for *S. kudriavzevii* was consistently around
161 one across the genome. Here we could infer that this strain has double the number of copies of *S.*
162 *cerevisiae* chromosomes as it does of *S. kudriavzevii* chromosomes. Although exact ploidy
163 cannot be measured without direct measures of DNA content, the inferred ploidy is consistent
164 with previous studies (Borneman et al. 2012; Peris et al. 2012; Borneman et al. 2016).

165 As a final test of interspecies hybrids, we used data from the cider strain CBS2834
166 (Almeida et al. 2014). Here sppIDer detected large genetic contributions from *S. cerevisiae*, *S.*
167 *kudriavzevii*, and *Saccharomyces uvarum*, as well as introgressed contributions from *S.*
168 *eubayanus* (Figure 2f & Figure S1d). Although the *S. eubayanus* genetic contribution is quite
169 small, seen on chromosomes XII and XIV, it was still easily detected by sppIDer. These
170 examples show that sppIDer can easily detect higher-order interspecies hybrids, even those with
171 minor contributions from several species.

172

173 Testing the limits of sppIDer with a simulated phylogeny:

174 To test sppIDer's performance with hybrids of varying levels of parental divergence, we
175 used a simulated phylogeny. To build this phylogeny we started with the *S. cerevisiae* reference
176 genome and produced a phylogeny of 10 species through several rounds of simulating short-read
177 sequencing data, applying a set mutation rate, and assembling those reads. For these simulated
178 genomes, sister species were ~4% diverged, and the most distantly related species were ~20%
179 diverged (Figure 3a). This simulated phylogeny allowed us to test pseudo-hybrids from closely
180 and distantly related lineages. Further, the iterative process of phylogeny building allowed us to
181 create ancient pseudo-hybrids that simulated the result from hybridization of a common ancestor
182 predating a lineage split. sppIDer accurately mapped pure lineages to their corresponding
183 reference genome (Figure 3b). For all 10 species, >90% of the reads mapped to their
184 corresponding reference genome. The read simulation and assembly process resulted in varying
185 quality final references, but despite differences in genome quality, all reads still mapped
186 accurately and were not biased to the best reference genome.

187 To determine sppIDer's applicability to hybrids of both closely and distantly related
188 parents and of recent and ancient origin, we tested sppIDer with pseudo-hybrids of different
189 combinations of simulated species. sppIDer accurately detected all true hybrid parents. When
190 pseudo-hybrids were between sister species, <0.01% of the reads mapped promiscuously to other
191 species (Figure 3c). When we used more divergent pseudo-hybrids, sppIDer still detected the
192 true parents, with <5% of the reads mapped promiscuously to the sister species (Figure 3d).
193 Additionally, we simulated ancient pseudo-hybrids, between common ancestors before lineage
194 splits, and found that sppIDer mapped the reads of these hybrids to the references of the lineages
195 that descended from the ancestors that hybridized (Figure 3e). With complete knowledge of this
196 simulated phylogeny, we were able to test many different potential hybrid arrangements and
197 found that sppIDer detected the true parents of all hybrids.

198 Finally, we tested a scenario, which is common in biology, of incomplete knowledge of
199 the clade of interest. This dearth could due to many variables, such as a described species lacking
200 a reference genome or a species being unknown to science altogether. To test the effect of
201 missing a species, we removed one species' reference genome from the combination reference
202 genome, then mapped pure lineage and pseudo-hybrid reads to this permuted genome. With
203 reads of a simulated pseudo-hybrid of sister species, G and H, we observed that, when one parent
204 genome was missing, the reads mapped primarily to the reference genome of the remaining
205 parent, reference H, with slightly increased promiscuous mapping of reads to the next-closest
206 clade, references I and J (Figure 3f). Therefore, with incomplete reference genome knowledge,
207 detecting hybrids of closely related species is limited. However, we could still detect hybrids of
208 more distantly related species, such as a pseudo-hybrid of E and G and a pseudo-hybrid of the
209 common ancestor of A and the common ancestor of G and H (Figure S2), though our inference
210 of parentage was biased by the availability of reference genomes. Therefore, with incomplete
211 knowledge of reference genomes, hybrid detection is limited, and the inference of true parentage
212 can suffer in specific cases, but generally, distant and ancient hybrids can be detected.

213

214 Hybrid detection with missing reference genomes:

215 To empirically address how sppIDer would be affected by missing reference genomes,
216 such as for hybrids whose parents are themselves unknown (Hoot et al. 2004; Pryszcz et al.
217 2014), we focused again on the genus *Saccharomyces*. Specifically, we used the *S. cerevisiae* X

218 *S. kudriavzevii* hybrid (Vin7) and the *S. cerevisiae* X *S. eubayanus* Frohberg lager yeast
219 (W34/70) as examples. We tested the performance of sppIDer on short-read data from both
220 hybrids by removing the *S. cerevisiae* reference genome and, in a separate test, removing the
221 reference genome of the other parent. Our expectation was that reads would map to the genome
222 of the sister species, if it were available, or that they would fail to map or be distributed across
223 other genomes, if there were no close relatives.

224 When we removed the *S. eubayanus* reference genome for the lager example, the
225 proportion of reads that failed to map increased, as did those reads that mapped to *S. uvarum*, its
226 sister species (~93% identical in DNA sequence, Libkind and Hittinger et al. 2011), albeit with a
227 decreased mapping quality (MQ) (Figure 4c). We then tested sppIDer on Vin7 and W34/70 when
228 the *S. cerevisiae* reference genome was removed (Figure 4a & d). In both examples, the
229 proportion of reads that mapped to *Saccharomyces paradoxus*, *S. cerevisiae*'s sister species
230 (~87% identical in DNA sequence), increased (Figure 4a & d). Thus, the absence of a reference
231 genome for one of the parents of a hybrid led to increased mapping to its sister species, instead.
232 We also tested removing the *S. kudriavzevii* reference genome for Vin7. Since there is not a
233 sister species closely related to *S. kudriavzevii*, the number of unmapped reads increased, and the
234 remaining reads mapped to the reference genomes other species of the genus in approximately
235 equal proportions (Figure 4f).

236 From these tests, we would have easily inferred that W34/70 was a hybrid, regardless of
237 whether either parent genome was withheld (the actual state of affairs for *S. eubayanus* before
238 Libkind and Hittinger et al. 2011). Using the coverage plots, we were still even able to infer the
239 same CCNVs for W34/70 that we observed with the full suite of reference genomes. With Vin7,
240 we still easily inferred its hybrid status without including the *S. cerevisiae* genome. Without the
241 *S. kudriavzevii* reference genome, Vin7 produced an unusually high number of unmapped reads
242 without a decrease in mapping quality to *S. cerevisiae*, a result that should spur the investigator
243 to perform more detailed analyses to search for evidence of contributions by an unknown
244 species, such as de novo genome assembly and phylogenetics. Therefore, even without a full
245 complement of reference genomes, sppIDer can still be useful for rapid inference of interspecies
246 hybrids.

247

248 Hybrid detection with simulated low-quality reference genomes:

249 To test a scenario where not all of the reference genomes are ideal, we used iWGS (Zhou
250 et al. 2016) to independently simulate reads and then assemble de novo genomes for *S.*
251 *cerevisiae*, *S. kudriavzevii*, *S. uvarum*, and *S. eubayanus*. These simulations resulted in reference
252 genomes with many more scaffolds and with a lower N50 than the published genomes (Table
253 S1). These low-quality genomes were independently swapped for the high-quality references in
254 the combination reference genome and tested with short-read data. We started by testing
255 simulated pseudo-lager short reads where we expected reads to map both to the *S. cerevisiae* and
256 *S. eubayanus* reference genomes. Whether we swapped in the low-quality *S. cerevisiae* reference
257 (Figure S3a) or the low-quality *S. eubayanus* reference (Figure S3b), the reads still mapped
258 equally to the references that were used to simulate the reads with minimal promiscuously
259 mapped reads to their sister species reference genomes.

260 We next tested the limits of sppIDer with the empirical data for CBS2834 because it has
261 the most complex arrangement of contributions from four species. Tests with each simulated
262 low-quality reference genome independently showed that we could indeed recapitulate the same
263 inference of ancestry and that roughly the same proportion of reads mapped to each reference
264 genome (Figure S4) as with high-quality reference genomes (Figure S1d). Here, the inference of
265 approximate ploidy became more difficult, and visually interpreting translocations between
266 species was impossible. When both high-quality *S. cerevisiae* and *S. kudriavzevii* reference
267 genomes were used, we could infer translocations between these two genomes on chromosomes
268 IV, X, and XV due to mid-chromosome ploidy changes that are compensated for in the other
269 genome. There were more promiscuously mapped reads to the high-quality reference genomes of
270 the sister species, but not at the same level as mapped to the true parent reference genomes.
271 These tests with simulated low-quality de novo genomes showed that, both with simulated and
272 empirical data, proper hybrid genome contributions can still be identified, and ploidy shifts still
273 detected, despite the poor-quality reference genomes, but the inference of translocations and
274 ploidies of specific chromosomes becomes difficult.

275

276 Hybrid detection with low-coverage and long-read data:

277 To further explore the power of sppIDer, we wanted to test how little coverage was
278 needed to still detect the proper ancestry (Figure S5). Using data simulated at varying coverages,
279 we found that only 0.5X coverage was needed to recover the true ancestry for a single species

280 (Figure S5a-b), single species with aneuploidies (Figure S5c-d), and interspecies hybrids (Figure
281 S5e-f). We also tested empirical data by down-sampling the FASTQ files of CBS2834 and found
282 that we could still detect contributions from the four species at as low as ~0.05X coverage
283 (Figure S5g), but we lost the ability to infer ploidy at around ~0.5X coverage (Figure S5h).
284 These low coverage tests show how powerful sppIDer is, even with scant data, which could be a
285 boon in many systems with large genomes or when sequencing resources are limited.

286 We also tested sppIDer with simulated PacBio long-read data from the *S. cerevisiae*
287 genome and a hybrid pseudo-lager genome with equal contributions from the *S. cerevisiae* and *S.*
288 *eubayanus* reference genomes. We found that we could still easily determine the species
289 contribution for each (Figure S6), suggesting sppIDer's utility will continue if long-read
290 technologies eventually supplant short-read sequencing technologies.

291

292 Divergent lineages and poor-quality data:

293 Since sppIDer relies on reference genomes, we recognized that it might be biased in its
294 ability to work with lineages that were highly divergent from the reference genome, as might be
295 the case in many systems. We tested this scenario with an example from *S. paradoxus*, one of the
296 most diverse *Saccharomyces* species (Liti and Carter et al. 2009; Leducq et al. 2016). Compared
297 to a representative of the reference genome's lineage, fewer reads from the divergent lineage
298 (~96% identical) mapped and with poorer quality (Figure S7a-b). We also tested this effect in *S.*
299 *kudriavzevii* using poor-quality data (36-bp reads from a first-generation Illumina Genome
300 Analyzer run by Hittinger et al. 2010) and found qualitatively similar results, but many more
301 unmapped reads. Thus, while divergence from the reference genome affected map-ability,
302 sppIDer still worked generally as expected. However, when mapping percentage and quality
303 decline substantially, such as seen in these test cases, sppIDer can provide an early indication
304 that the organism may be highly divergent from the reference genome, which may merit further
305 investigation.

306

307 Comparison to alignment-free phylogenetic methods:

308 Alignment and assembly (AA)-free phylogeny-building methods are gaining popularity,
309 but they have not previously been applied to hybrid data. Therefore, we also tested how AA-free
310 phylogenetic methods, such as AAF (Fan et al. 2015) or SISRS (Schwartz et al. 2015),

311 performed in detecting and visualizing hybrids compared to sppIDer. We found that these
312 methods performed well when given only pure lineages, but when hybrids were included, they
313 either failed completely or produced incorrect phylogenies. We tested both our simulated
314 phylogeny and empirical *Saccharomyces* data. For the simulated data, both AAF and SISRS
315 produced the correct phylogeny when given the 10 simulated species. However, when given any
316 hybrid data, AAF failed to produce the correct phylogeny and instead clustered the hybrid with
317 its parents, while SISRS failed to complete at all. With the empirical data, we saw similar results;
318 with AAF, we could recapitulate the phylogeny of the genus *Saccharomyces* when using only
319 pure samples, but when we included any hybrid, an incorrect phylogeny was produced (Figure
320 S8a and c). SISRS had similar issues with producing the correct phylogeny with hybrids, but its
321 output allowed for more nuanced network visualizations. For CBS2834, the SISRS output
322 allowed us to infer the shared background with *S. cerevisiae*, *S. kudriavzevii*, *S. uvarum*, and *S.*
323 *eubayanus* (Figure S8d), but the proportion of contribution from each species was difficult to
324 estimate compared to the sppIDer output. Overall, we found that these methods have serious
325 limitations when used with hybrids, but they could be used as a complement to sppIDer to make
326 inferences about pure parental lineages.

327 Methods that assemble targeted genes from short read-data, such as aTRAM and
328 HybPiper, can be used with poor-quality references and/or references that may be missing genes
329 of interest. We tested these tools with a panel of loci that can be used to delineate the *S.*
330 *eubayanus* populations (Peris and Langdon et al. 2016). HybPiper and aTRAM were able to
331 match short-reads to a locus of interest 59% or 34% of the time, respectively, but they could only
332 assemble these reads 23% or 28% of the time, respectively. Neither method could assemble one
333 locus for all 15 strains tested, including both hybrids and non-hybrids (Table S1). While these
334 methods can be powerful when applied in a targeted manner to pure strains, they fail when
335 applied to hybrid data.

336

337 Non-*Saccharomyces* examples

338 *Lachancea*: refining the interpretation of voucher specimens

339 With the publication of 10 high-quality *Lachancea* genome sequences (Vakirlis et al.
340 2016) and another two recently-described and fully-sequenced species (González et al. 2013;
341 Freel et al. 2015; Sarilar et al. 2015; Freel et al. 2016), this genus is becoming a powerful yeast

342 model. As molecular techniques improve, initial identifications in culture and museum
343 collections can yield new interpretations. For example, the strain CBS6924 was initially
344 identified as *Lachancea thermotolerans*, but recent evidence suggested it as a candidate for a
345 novel species (*Lachancea fantastica* nom. nud. Vakirlis et al. 2016). Its closest relative,
346 *Lachancea lanzarotensis*, was also recently described (González et al. 2013). To test sppIDer's
347 utility for determining whether a strain or voucher specimen is or is not properly classified, we
348 tested mapping reads from CBS6924 to a combination genome with all *Lachancea* reference
349 genomes (Figure S9a), then removing the '*L. fantastica*' reference genome (Figure S9b), and then
350 removing both the '*L. fantastica*' and *L. lanzarotensis* reference genomes (Figure S9c). When
351 both reference genomes were removed, the reads were spread across many genomes, and the
352 initial classification of the strain as *L. thermotolerans* would have been easily falsified. By
353 including the *L. lanzarotensis* reference genome, most reads mapped to that reference, but still
354 poorly enough to warrant additional investigation. When the '*L. fantastica*' reference genome was
355 included, CBS6924 reads mapped unambiguously to this reference. These results demonstrate
356 sppIDer's utility outside of the genus *Saccharomyces* to aid in reclassifying provisional species
357 identifications of voucher specimens from culture and museum collections.

358

359 *Drosophila*

360 To test sppIDer with larger genomes, we examined the animal genus *Drosophila*, which
361 is a large genus with many available reference genomes (Adams et al. 2000; *Drosophila* 12
362 Genomes Consortium 2007; Alekseyenko et al. 2013; Sanchez-Flores et al. 2016), as well as
363 several species still lacking reference genomes. The difference in reference genome qualities led
364 us to remove contigs <10Kb from our combination reference genome; this paring down sped up
365 computation time, reduced memory usage, and improved the visualization, but otherwise did not
366 affect the results (Figure S10a). To test the ability of sppIDer to distinguish closely related
367 species, we started with the *Drosophila yakuba* species complex (Turissini et al. 2015), where *D.*
368 *yakuba* has a sequenced reference genome available, but its close relative *Drosophila santomeae*
369 and more distant relative *Drosophila teissieri* do not. Here we observed that short reads from a
370 *D. yakuba* (Comeault et al. 2016) representative mapped well to the *D. yakuba* reference
371 genome. As we moved from the close relative *D. santomeae* (Figure 5b) to a more distant one, *D.*
372 *teissieri* (Figure 5c), the mapping percentage and quality decreased with increased promiscuous

373 mapping to other relatives (Figure 5a-c). Thus, as in yeasts, sppIDer can classify pure species
374 and their close relatives well and provide insight to guide downstream analyses.

375 We also used *Drosophila* short-read data to test sppIDer's ability to detect hybrids in
376 non-fungal systems. In this case, we used genomic data from a pure parent and RNA-seq data
377 from a F₁ interspecies hybrid (Coolon et al. 2014). We found that sppIDer could easily detect
378 hybrids in an animal model, but as expected, detection of CCNVs using RNA-seq was not
379 possible (Figure S11).

380

381 *Arabidopsis*

382 The study of hybrid speciation and allopolyploidy in plants has a long history (Rieseberg
383 1997; Soltis et al. 2015), and we choose *Arabidopsis* as our plant test case because it has
384 reference genomes available for *Arabidopsis halleri*, *Arabidopsis thaliana*, and *Arabidopsis*
385 *lyrata* (Swarbreck et al. 2008). There are drastic differences in the quality of reference genomes
386 available: the *A. thaliana* reference has seven scaffolds with an N50 of 23,459,830, whereas the
387 *A. halleri* reference has 282,453 scaffolds with an N50 of 17,686. To control for this limitation,
388 we again removed contigs <10KB from our combination reference genome, which helped with
389 run time and memory usage but did not affect the conclusions (Figure S10b). These tests in
390 *Arabidopsis* provide an empirical illustration of sppIDer's performance with differing quality
391 reference genomes. *Arabidopsis* also provides a useful test of detecting hybrids in a plant system,
392 as there are two well-supported allotetraploid species in the genus, *Arabidopsis suecica* and
393 *Arabidopsis kamchatica* (Shimizu-Inatsugi et al. 2009; Schmickl et al. 2010). First, we tested
394 short-read data from a divergent lineage of *A. thaliana* (Durvasula et al. 2017) and found that the
395 reads mapped well to the *A. thaliana* reference genome (Figure 5d). As expected, reads from the
396 interspecies hybrid *A. kamchatica* (Novikova et al. 2016) mapped both to *A. lyrata* and to *A.*
397 *halleri* (Figure 5e), approximately equally, confirming that *A. kamchatica* indeed has genomic
398 contributions from these two species and that sppIDer can detect hybrids, even when the
399 combination reference genome contains reference genomes of substantially varying quality.
400 Thus, sppIDer can accurately detect interspecies hybrid in a plant model and will likely become
401 more generally useful in other plant systems, where allopolyploidy is frequent (Soltis et al.
402 2015), as more reference genomes become available.

403

404 mitoSppIDer

405 Applications of sppIDer with non-nuclear sequencing data are also of considerable
406 interest. Organelle genomes (e.g. mitochondria, chloroplast) have a different mode of
407 inheritance, and increasing data suggest widespread reticulation and cases where their ancestries
408 differ from the nuclear genomes (Peris et al. 2014; Wu et al. 2015; Leducq et al. 2017; Peris et
409 al. 2017a; Peris et al. 2017c; Sulo et al. 2017). We developed mitoSppIDer as an extension to
410 explore these non-nuclear inherited elements. Since mitochondrial genomes are generally small,
411 the coding regions can be easily visualized, which allows precise mapping of introgressions in
412 both coding and non-coding regions. However, more cautious interpretation is warranted,
413 because mitochondrial reads are often at low and variable abundance, and quality can differ
414 between DNA isolations and sequencing runs. Again, we tested using the genus *Saccharomyces*
415 because of the availability of mitochondrial reference genomes (Foury et al. 1998; Procházka et
416 al. 2012; Baker et al. 2015). We first tested mitoSppIDer with a strain of *S. uvarum* (ZP1021)
417 (Almeida et al. 2014) and found that, of the reads that mapped to any mitochondrial genome,
418 >99% mapped to the *S. uvarum* mitochondrial genome (Figure S12a). Next, we examined Vin7,
419 a hybrid strain of *S. cerevisiae* X *S. kudriavzevii*, and mitoSppIDer revealed that this strain
420 inherited the mitochondrial genome of *S. kudriavzevii* with intergenic introgressions from
421 multiple non-*S. kudriavzevii* mitochondrial genomes (Figure S12b) (Peris et al. 2017c). As with
422 conventional sppIDer, mitoSppIDer rapidly highlights interesting regions for further analysis,
423 such as detailed phylogenetic analyses of introgression candidates.

424

425 Summary

426 Altogether, these tests show the versatility of sppIDer across clades: in fungi, plants, and
427 animals. sppIDer allows for the rapid exploration and visualization of short-read sequencing data
428 to answer a variety of questions, including species identification; determination of the genome
429 composition of natural, synthetic, and experimentally evolved interspecies hybrids; and inference
430 of CCNVs (Brickwedde et al. 2017; Gorter de Vries et al. 2017; Peris et al. 2017b). With
431 examples from the genus *Saccharomyces*, sppIDer could detect contributions from up to four
432 species and recapitulated the known relative ploidy and aneuploidies of brewing strains. From a
433 simulated phylogeny, we found that sppIDer accurately detected hybrids from a range of
434 divergences in the parents and even detected ancient hybrids. In systems with low-quality or

435 varying quality references genomes, sppIDer performs well without much promiscuous mapping
436 between varying reference qualities, but its ability to infer translocations and CCNVs is limited.
437 Even in systems missing reference genomes, sppIDer still enables rapid inferences by using the
438 reference genomes of closely related species, with the caveat that mapping quality declines with
439 sequence divergence. Additionally, sppIDer works on long-read data and with coverage as low
440 as 0.5X. Finally, sppIDer can be extended to non-nuclear data, allowing for the exploration of
441 alternative evolutionary trajectories of mitochondria or chloroplasts. As more high-quality
442 reference genomes become available across the tree of life, we expect sppIDer will become an
443 increasingly useful and versatile tool to quickly provide a first-pass summary and intuitive
444 visualization of the genomic makeup in diverse organisms and interspecies hybrids.

445

446 **Methods:**

447 The sppIDer workflow to identify pure species, interspecies hybrids, and CCNVs consists
448 of one main pipeline that utilizes common bioinformatics programs, as well as several custom
449 summary and visualization scripts (Figure 1). An upstream step is required to prepare the
450 combination reference genome to test the desired comparison species. The inputs for the main
451 sppIDer pipeline are this combination reference genome and short-read FASTQ file(s) from the
452 organism to test. The output consists of several plots showing to which reference genomes the
453 short-reads mapped, how this mapping varies across the combination reference genome, and
454 several text files of summary information. Additionally, the pipeline retains all the intermediate
455 files used to make the plots and summary files; these contain much more detailed information
456 and may be useful as inputs to various other potential downstream analyses. We are releasing
457 sppIDer as a Docker, which runs as an isolated, self-contained package, without the need to
458 download dependencies and change environmental settings. Packaging complex bioinformatics
459 pipelines as Docker containers increases their reusability and reproducibility, while simplifying
460 their ease of use (Boettiger 2015; Di Tommaso et al. 2015). sppIDer can be found here
461 (<https://github.com/GLBRC/sppIDer>), where a transparent Dockerfile lays out the technical
462 prerequisites, platform, how they work in combination, and is a repository for all the custom
463 scripts. A manual for sppIDer can be found both at the GitHub page and at
464 <http://sppider.readthedocs.io>.

465

466 The pipeline:

467 Before running the main sppIDer script, a combination reference genome must first be
468 created and properly formatted (top of Figure 1). This is a separate script,
469 `combineRefGenomes.py`, that takes multiple FASTA-formatted reference genomes and a key
470 listing the reference genomes to use and a unique ID for each. The script concatenates the
471 reference genomes together in the order given in the input key, outputting a combination
472 reference FASTA where the chromosomes/scaffolds are renamed to reflect their reference
473 unique ID and their numerical position within the reference-specific portion of the combination
474 output. For reference genomes that contain many short and uninformative scaffolds, there is an
475 option to remove scaffolds below a desired base-pair length. This option improves speed,
476 memory usage, and visual analysis for large genomes with many scaffolds and low N50 values.
477 Setting a threshold usually does not affect the conclusions (Figure S10), but we recommend
478 trying different thresholds to determine how much information is lost. The choice of reference
479 genomes to concatenate is completely at the discretion of the user and their knowledge of the
480 system to which they are applying sppIDer. We recommend choosing multiple phylogenetically
481 distinct lineages or species, where gene flow and incomplete lineage sorting are limited, from a
482 single genus. We caution that, for ease of analysis and interpretation, less than 30 reference
483 genomes should be used at once. To illustrate the power of sppIDer, for our examples, we used
484 all available species-level reference genomes for the genera tested, but we excluded lineages and
485 strains within species. However, sppIDer could be applied iteratively with different combinations
486 of reference genomes that are more targeted for a particular lineage or question. For example,
487 with an experimentally evolved hybrid, just the parental genomes could be included to detect
488 CCNVs that occurred during the evolution, but with a suspected hybrid isolated from the wild or
489 industry, all potential parent species reference genomes should be included.

490 The main body of sppIDer (Figure 1b) uses a custom `python 2` (Python Software
491 Foundation) script to run published tools and custom scripts to map short-reads to a combination
492 reference genome and parse the output. The first step uses the `mem` algorithm in `BWA` (Li and
493 Durbin 2009) to map the reads to the combined concatenated reference genome. Two custom
494 scripts use this output to count and collect the distribution of mapping qualities (MQ) for the
495 reads that map to each reference genome and produce plots of percentage and MQ of reads that
496 map to each reference genome. The `BWA` output is also used by `samtools view` and `sort`

497 (Li et al. 2009) to keep only reads that map with a MQ > 3, a filter that removes reads that map
498 ambiguously. From here, the number of reads that map to each base pair can be analyzed using
499 `bedtools genomeCoverageBed` (Quinlan and Hall 2010), for smaller genomes using the
500 per-basepair option (`-d`) and, for large genomes, the `-bga` option. The depth of coverage output
501 is used by an R (Wickham 2009; R Core Team 2013) script that determines the mean coverage of
502 the combined reference genome that is subdivided into 10,000 windows of equal size. Finally, a
503 plot for the average coverage for each component reference genome and a second plot of average
504 coverage for the windows are produced.

505

506 The metrics:

507 Several different metrics are used to summarize the data. Depth of coverage is a count of
508 how many reads cover each base pair or region of the genome. Coverage can vary greatly from
509 sequencing run to sequencing run; hence, a \log_2 conversion is used to normalize to the mean
510 coverage. As discussed in the Results, depth of coverage plots can be used to infer the species,
511 the parents of hybrids, and ploidy changes either between or within a genome. sppIDer also
512 reports the percentage of reads that map to each reference genome. Finally, sppIDer uses the
513 established MAPPing Quality (MQ) score introduced in Li et al. (2008) to bin reads by their
514 map-ability on a 0-60 scale. A score of zero is used for reads where it is unlikely that their
515 placement is correct, so sppIDer reports these as “unmapped”, along with reads that cannot be
516 mapped and therefore do not receive a MQ score. The mapping quality scale can therefore
517 provide a rough assessment of data quality, as well as divergence to the provided reference
518 genomes.

519

520 Tested reference genomes and data:

521 For the *Saccharomyces* tests, we used reference genomes that are scaffolded to a
522 chromosomal level. In some cases, there is only one reference genome available per species, and
523 for the others, we used the first available near-complete reference; see Table S1 for those used.
524 For systems with multiple reference genomes available, the choice could be more targeted, such
525 as utilizing lineage specific references or references that contains unplaced scaffolds with genes
526 of interest. Alternatively, for systems where few genomes are available, we have shown here that
527 a close relative works as a proxy. For the *Saccharomyces* references, each ordered “ultra-

528 “scaffolds” genome was downloaded from <http://www.saccharomycessensustricto.org/> or for *S.*
529 *arboricola* and *S. eubayanus* from NCBI. The published *S. uvarum* genome (Scannell and Zill et
530 al 2011) had chromosome X swapped with chromosome XII, which was fixed manually. These
531 genomes were concatenated together using the python script `combineRefGenomes.py`, creating a
532 combination reference FASTA with all *Saccharomyces* species. This combination reference
533 genome can then be used repeatedly to test any dataset of interest. For the *Saccharomyces* tests,
534 we used publicly available FASTQ data from a number of publications, all available on NCBI
535 (Table S1 contains all accession numbers). Using the data for each strain separately and the
536 combination reference genome created above, we then called `sppIDer.py` with, `--out uniqueID`,
537 `ref SaccharomycesCombo.fasta`, `--r1 read1.fastq`, and optionally `--r2 read2.fastq`. `sppIDer` is
538 written to test one sample’s FASTQ file(s) against one combination reference genome at a time,
539 but this could be easily parallelized.

540 For the tests to determine if hybrids could be detected with missing reference genomes,
541 new combination reference genomes without one species’ genomes were created by removing
542 the desired species’ reference name from the reference genome key before running
543 `combineRefGenomes.py`. Since both Vin7 and W34/70 contain contributions from *S. cerevisiae*,
544 the combination reference genome lacking the *S. cerevisiae* reference was tested for each set for
545 FASTQ files for Vin7 and W34/70. The same process was followed to remove the *S.*
546 *kudriavzevii* reference genome from the combination reference to test Vin7, as well as to remove
547 the *S. eubayanus* reference genome from the combination reference to test W34/70.

548 For the *Lachancea* test, all of the genomes were available and downloaded from
549 <http://gryc.inra.fr/>. The FASTQ data for CBS6924 was downloaded from NCBI. A combination
550 reference genome with all available genomes was created and used. Then, sequentially, the
551 “*Lachancea fantastica*” and *Lachancea lanzarotensis* genomes were removed by modifying the
552 input key and rerunning `combineRefGenomes.py`. The FASTQ data for CBS6924 was tested
553 against all three of these combination reference genomes. See Table S1 for the full accessions.

554 For the non-*Saccharomyces* tests, we used the most complete reference genome available
555 for each species in the genus (accessions Table S1). Therefore, there is quite a bit of variation
556 between different references. For the *Drosophila* and *Arabidopsis* genomes, we tested removing
557 contigs, using the `--trim` option, with `combineRefGenomes.py`, as well as not removing contigs,
558 and found the cleanest results when we removed contigs less than 10 Kb. The combined

559 reference genomes of both *Drosophila* and *Arabidopsis* were both larger than four gigabases;
560 therefore, the --byGroup option was used with sppIDer.py to speed up processing and reduce
561 memory usage. The data we tested came from a variety of publications, but we targeted data of
562 divergent or hybrid lineages. See Table S1 for complete information.

563 For the mitoSppIDer test, we used the complete species-level *Saccharomyces*
564 mitochondrial reference genomes available on NCBI, which do not necessarily correspond to the
565 same strain that was used to build nuclear genomic reference (Table S1). Again,
566 combineRefGenomes.py was used to concatenate these references. An additional script,
567 combineGFF.py, was used to create a combination GFF file that was used to denote the coding
568 regions on the output plots. mitoSppIDer.py has an additional flag for the GFF file, but it
569 otherwise runs in a similar manner to sppIDer.py; the same input FASTQ file(s) can even be
570 used. Whole genome sequencing data contains varying amounts of mitochondrial sequences;
571 therefore, using the raw FASTQ data works sufficiently, even when many of the genomic reads
572 will be classified as “unmapped”.

573

574 Simulations:

575 To create the simulated low-quality de novo genomes, we used the software *iWGS* (Zhou
576 et al. 2016) to simulate 100bp paired-end reads with an average inter-read insert size of 350bp
577 (sd 10) at 2X coverage from the reference genomes of *S. cerevisiae*, *S. kudriavzevii*, *S. uvarum*,
578 and *S. eubayanus*. For the simulated de novo *Saccharomyces* genomes the N50 scores ranged
579 from 1254-1274 and the number of scaffolds ranged from 10023-10426 (Table S1).

580 To simulate short-read data, we used DWGSIM (<https://github.com/nh13/DWGSIM>),
581 which allowed us to vary the coverage, error rate, and mutation rate as needed. The *S. cerevisiae*
582 reference genome was used to simulate single species reads and a concatenation of the *S.*
583 *cerevisiae* and *S. eubayanus* reference genomes was used for hybrid pseudo-lager reads. As a test
584 of an aneuploid genome, we also manually manipulated the *S. cerevisiae* reference genome so
585 that it contained zero copies of chromosomes I and III and duplicate copies of chromosome XII.,
586 All simulated reads were 100bp paired-end reads with an average insert size of 500bp. For the
587 coverage tests, we varied the coverage from 0.01-10X. For the short reads used against the low-
588 quality de novo genomes, we used 10X coverage and a 3% mutation rate. To simulate PacBio-

589 style long reads, we used iWGS on the hybrid pseudo-lager concatenated genome with the
590 default settings of 30X coverage, average read accuracy of 0.9, and SD of read accuracy 0.1.

591 To make our simulated phylogeny, we used the *S. cerevisiae* reference genome as a base
592 and simulated reads with DWGSIM at a 2% mutation rate as 100bp paired-end reads with an
593 average insert size of 500bp at 10X coverage. iWGS was used to assemble these reads. The
594 resulting assembly was again simulated with a 2% mutation rate, and those reads were
595 assembled. This procedure was followed for 6 rounds with one lineage being independently
596 simulated twice each round to produce a speciation event. This simulation resulted in 10 species
597 in the phylogenetic arrangement shown in Figure 3a. Summaries of the final assemblies can be
598 found in Table S1, but the median of the final assemblies was 5100 scaffolds, N50 of 1335, and
599 total length of 6.4MB. Each simulated species was ~12% diverged from *S. cerevisiae*, the most
600 closely related species were ~4% diverged, and the most distantly related species were ~20%
601 diverged. The reads used to produce the final assemblies were used to test whether sppIDer
602 mapped each set of reads to their corresponding reference genomes. The reads of different
603 references were concatenated to simulate pseudo-hybrids of different divergences. To simulate
604 ancient hybrids, the reads from earlier rounds of simulation, before speciation events, were
605 concatenated and tested against the final assemblies with sppIDer. As with the empirical data, to
606 simulate a missing reference genome, that reference was removed from the input key prior to
607 running combineRefGenomes.py.

608

609 Alignment-free phylogenetic methods:

610 We tested four alignment-free phylogenetic methods: two that build phylogenies using
611 short-read data, SISRS (Schwartz et al. 2015) and AAF (Fan et al. 2015), and two that assemble
612 targeted loci from short-read data, aTRAM (Allen et al. 2015) and HybPiper (Johnson et al.
613 2016). We simulated 10X coverage paired-end, 100bp data for each *Saccharomyces* reference
614 genome at a mutation rate of 0 with DWGSIM to use as input for these methods. For SISRS, we
615 used the default settings with a genome size of 12Mb, first using only the reference
616 *Saccharomyces* data, then including empirical data for hybrids. SISRS failed at the missing data
617 filtering step when data from the lager strain W34/70 was used, even when we allowed for all but
618 one sample to have missing data. SISRS nexus outputs were visualized with SplitsTree
619 (Huson and Bryant 2006). For AAF, we found that a *k* of 17 accurately recapitulated the

620 *Saccharomyces* phylogeny, even with the inclusion of empirical data from other pure lineages.
621 Once we determined the optimal k , we tested including empirical hybrid data. We also used AAF
622 with our simulated phylogeny, which constructed the tree that matched the simulations with the
623 default k of 25. The output of AAF was visualized with iTol (Letunic and Bork 2016).

624 For the targeted loci methods, we used 13 loci that can delineate *S. eubayanus*
625 populations (Peris and Langdon et al. 2016), as well as the ITS sequences for *S. cerevisiae*
626 (AY046146.1) (Kurtzman and Robnett 2003) and *S. eubayanus* (JF786673.1) (Libkind and
627 Hittinger et al. 2011) as bait, all obtained from NCBI. We tested the simulated *Saccharomyces*
628 reads, as well as the empirical data for P1C1, Fosters O, CBS1503, CBS2834, Vin7, and
629 W34/70. For aTRAM, we used the default settings and the option for the Velvet assembler. For
630 HybPiper, we used the default settings and the SPADES assembler.

631

632 **Acknowledgments**

633 We thank Drew Doering for the portmanteau sppIDer and EmilyClare Baker and María Lairón
634 Peris for beta testing. This material is based upon work supported by the National Science
635 Foundation under Grant Nos. DGE-1256259 (Graduate Research Fellowship to QKL) and DEB-
636 1253634 (to CTH), the Robert Draper Technology Innovation Fund from the Wisconsin Alumni
637 Research Foundation (to CTH), the USDA National Institute of Food and Agriculture under
638 Hatch Project 1003258 (to CTH), and funded in part by the DOE Great Lakes Bioenergy
639 Research Center (DOE BER Office of Science DE-SC0018409 and DE-FC02-07ER64494).
640 QKL was also supported by the Predoctoral Training Program in Genetics, funded by the
641 National Institutes of Health (5T32GM007133). DP is a Marie Skłodowska-Curie fellow of the
642 European Union's Horizon 2020 research and innovation programme, grant agreement No.
643 747775. CTH is a Pew Scholar in the Biomedical Sciences and a Vilas Faculty Early Career
644 Investigator, supported by the Pew Charitable Trusts and the Vilas Trust Estate, respectively.
645

646 **Reference:**

647 Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li
648 PW, Hoskins RA, Galle RF, et al. 2000. The Genome Sequence of *Drosophila*
649 *melanogaster*. *Science*. 287:2185–2196.
650 Alekseyenko AA, Ellison CE, Gorchakov AA, Zhou Q, Kaiser VB, Toda N, Walton Z, Peng S,

651 Park PJ, Bachtrog D, et al. 2013. Conservation and de novo acquisition of dosage
652 compensation on newly evolved sex chromosomes in *Drosophila*. *Genes Dev.* 27:853–858.

653 Allen JM, Huang DI, Cronk QC, Johnson KP. 2015. aTRAM - automated target restricted
654 assembly method: a fast method for assembling loci across divergent taxa from next-
655 generation sequencing data. *BMC Bioinformatics* 16:1–7.

656 Almeida P, Gonçalves C, Teixeira S, Libkind D, Bontrager M, Masneuf-Pomarède I, Albertin W,
657 Durrens P, Sherman DJ, Marullo P, et al. 2014. A Gondwanan imprint on global diversity
658 and domestication of wine and cider yeast *Saccharomyces uvarum*. *Nat. Commun.* 5:4044.

659 Baker E, Wang B, Bellora N, Peris D, Hulfachor AB, Koshalek JA, Adams M, Libkind D,
660 Hittinger CT. 2015. The genome sequence of *Saccharomyces eubayanus* and the
661 domestication of lager-brewing yeasts. *Mol. Biol. Evol.* 32:2818–2831.

662 Boettiger C. 2015. An introduction to Docker for reproducible research, with examples from the
663 R environment. Unpubl. Data [Internet]. Available from: <https://arxiv.org/abs/1410.0846v1>

664 Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M,
665 Chambers PJ. 2012. The genome sequence of the wine yeast VIN7 reveals an allotriploid
666 hybrid genome with *Saccharomyces cerevisiae* and *Saccharomyces kudriavzevii* origins.
667 FEMS Yeast Res. 12:88–96.

668 Borneman AR, Forgan AH, Kolouchova R, Fraser JA, Schmidt SA. 2016. Whole Genome
669 Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the
670 Spectrum of Commercial Wine Strains of *Saccharomyces cerevisiae*. *G3* 6:957–971.

671 Brickwedde A, van den Broek M, Geertman J-MA, Magalhães F, Kuijpers NGA, Gibson B,
672 Pronk JT, Daran J-MG. 2017. Evolutionary Engineering in Chemostat Cultures for
673 Improved Maltotriose Fermentation Kinetics in *Saccharomyces pastorianus* Lager Brewing
674 Yeast. *Front. Microbiol.* 8:1–15.

675 Comeault AA, Venkat A, Matute DR. 2016. Correlated evolution of male and female
676 reproductive traits drive a cascading effect of reinforcement in *Drosophila yakuba*. *Proc. R.*
677 *Soc. B* 283.

678 Coolon JD, Mcmanus CJ, Stevenson KR, Graveley BR, Wittkopp PJ. 2014. Tempo and mode of
679 regulatory evolution in *Drosophila*. *Genome Res.* 24:797–808.

680 Di Tommaso P, Palumbo E, Chatzou M, Prieto P, Heuer ML, Notredame C. 2015. The impact of
681 Docker containers on the performance of genomic pipelines. *PeerJ* 3:e1273.

682 Dunn B, Sherlock G. 2008. Reconstruction of the genome origins and evolution of the hybrid
683 lager yeast *Saccharomyces pastorianus*. *Genome Res.* 18:1610–1623.

684 *Drosophila* 12 Genomes Consortium. 2007. Evolution of genes and genomes on the *Drosophila*
685 phylogeny. *Nature* 450:203–218.

686 Durvasula A, Fulgione A, Gutaker RM, Irez S, Flood PJ, Neto C, Tsuchimatsu T, Burbano HA,
687 Picó FX, Alonso-Blanco C, et al. 2017. African genomes illuminate the early history and
688 transition to selfing in *Arabidopsis thaliana*. *PNAS* 114:5213–5218.

689 Fan H, Ives AR, Surget-Groba Y, Cannon CH. 2015. An assembly and alignment-free method of
690 phylogeny reconstruction from next-generation sequencing data. *BMC Genomics* 16:1–18.

691 Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ. 2000. Chromosomal evolution in
692 *Saccharomyces*. *Nature* 405:451–454.

693 Foury F, Roganti T, Lecrenier N, Purnelle B. 1998. The complete sequence of the mitochondrial
694 genome of *Saccharomyces cerevisiae*. *FEBS Lett.* 440:325–331.

695 Freel KC, Charron G, Leducq J-B, Landry CR, Schacherer J. 2015. *Lachancea quebecensis* sp.
696 nov., a yeast species consistently isolated from tree bark in the Canadian province of
697 Quebec. *Int. J. Syst. Evol. Microbiol.* 65:3392–3399.

698 Freel KC, Friedrich A, Sarilar V, Devillers H, Neuvéglise C, Schacherer J. 2016. Whole-Genome
699 Sequencing and Intraspecific Analysis of the Yeast Species *Lachancea quebecensis*. *GBE*
700 8:733–741.

701 Gayevskiy V, Goddard MR. 2016. *Saccharomyces eubayanus* and *Saccharomyces arboricola*
702 reside in North Island native New Zealand forests. *Environ. Microbiol.* 18:1137–1147.

703 Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD,
704 Jacq C, Johnston M, et al. 1996. Life with 6000 Genes. *Science*. 274:546+563-567.

705 Gonçalves M, Pontes A, Almeida P, Barbosa R, Serra M, Libkind D, Hutzler M, Gonçalves P,
706 Sampaio JP. 2016. Distinct Domestication Trajectories in Top- Fermenting Beer Yeasts and
707 Wine Yeasts Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine
708 Yeasts. *Curr. Biol.* 26:1–12.

709 González SS, Alcoba-Flórez J, Laich F. 2013. *Lachancea lanzarotensis* sp. nov., an
710 ascomycetous yeast isolated from grapes and wine fermentation in Lanzarote , Canary
711 Islands. *Int. J. Syst. Evol. Microbiol.* 63:358–363.

712 Gorter De Vries AR, Pronk JT, Daran J-MG. 2017. Industrial Relevance of Chromosomal Copy

713 Number Variation in *Saccharomyces* Yeasts. *Appl. Environ. Microbiol.* 83:1–15.

714 Hittinger CT. 2013. *Saccharomyces* diversity and evolution: a budding model genus. *Trends*
715 *Genet.* 29:309–317.

716 Hittinger CT, Gonçalves P, Sampaio JP, Dover J, Johnston M, Rokas A. 2010. Remarkably
717 ancient balanced polymorphisms in a multi-locus gene network. *Nature* 464:54–58.

718 Hoot SB, Napier NS, Taylor WC. 2004. Revealing Unknown or Extinct Lineages within *Isoetes*
719 (Isoetaceae) Using DNA Sequences from Hybrids. *Am. J. Bot.* 91:899–904.

720 Huson DH, Bryant D. 2006. Application of Phylogenetic Networks in Evolutionary Studies.
721 *Mol. Biol. Evol.* 23:254–267.

722 Johnson MG, Gardner EM, Liu Y, Medina R, Goffinet B, Shaw J, Zerega NJC, Wickett NJ.
723 2016. HybPiper: Extracting Coding Sequence and Introns for Phylogenetics from High-
724 Throughput Sequencing Reads Using Target Enrichment. *Appl. Plant Sci.* 4.

725 Kurtzman CP, Robnett CJ. 2003. Phylogenetic relationships among yeasts of the
726 ‘*Saccharomyces* complex’ determined from multigene sequence analyses. *FEMS Yeast Res.*
727 3:417–432.

728 Leducq J-B, Henault M, Charron G, Nielly-Thibault L, Terrat Y, Fiumera HL, Shapiro BJ,
729 Landry CR. 2017. Mitochondrial Recombination and Introgression during Speciation by
730 Hybridization. *Mol. Biol. Evol.* 34:1947–1959.

731 Leducq J-B, Nielly-Thibault L, Charron G, Eberlein C, Verta J-P, Samani P, Sylvester K,
732 Hittinger CT, Bell G, Landry CR. 2016. Speciation driven by hybridization and
733 chromosomal plasticity in a wild yeast. *Nat. Microbiol.* 1:1–10.

734 Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and
735 annotation of phylogenetic and other trees. *Nucleic Acids Res.* 44:W242–W245.

736 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows – Wheeler
737 transform. *Bioinformatics* 25:1754–1760.

738 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
739 Subgroup 1000 Genome Project Data Processing. 2009. The Sequence Alignment/Map
740 format and SAMtools. *Bioinformatics* 25:2078–2079.

741 Li H, Ruan J, Durbin R. 2008. Mapping short DNA sequencing reads and calling variants using
742 mapping quality scores. *Genome Res.* 18:1851–1858.

743 Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio

744 JP. 2011. Microbe domestication and the identification of the wild genetic stock of lager-
745 brewing yeast. *Proc. Natl. Acad. Sci. U.S.A.* 108:14539–14544.

746 Liti G, Carter DM, Moses AM, Warringer J, Parts L, James S a, Davey RP, Roberts IN, Burt A,
747 Koufopanou V, et al. 2009. Population genomics of domestic and wild yeasts. *Nature*
748 458:337–341.

749 Liti G, Nguyen Ba AN, Blythe M, Müller CA, Bergström A, Cubillos FA, Dafhnis-Calas F,
750 Khoshraftar S, Malla S, Mehta N, et al. 2013. High quality de novo sequencing and
751 assembly of the *Saccharomyces arboricola* genome. *BMC Genomics* 14.

752 Naseeb S, James SA, Alsammar H, Michaels CJ, Gini B, Nueno-palop C, Bond CJ, Mcgheie H,
753 Roberts IN, Delneri D. 2017. *Saccharomyces jurei* sp. nov., isolation and genetic
754 identification of a novel yeast species from *Quercus robur*. *Microbiology* 67:2046–2052.

755 Novikova PY, Hohmann N, Nizhynska V, Tsuchimatsu T, Ali J, Muir G, Guggisberg A, Paape
756 T, Schmid K, Fedorenko OM, et al. 2016. Sequencing of the genus *Arabidopsis* identifies a
757 complex history of nonbifurcating speciation and abundant trans-specific polymorphism.
758 *Nat. Genet.* 48:1077–1082.

759 Okuno M, Kajitani R, Ryusui R, Morimoto H, Kodama Y, Itoh T. 2016. Next-generation
760 sequencing analysis of lager brewing yeast strains reveals the evolutionary history of
761 interspecies hybridization. *DNA Res.* 1:1–14.

762 Payseur BA, Rieseberg LH. 2016. A genomic perspective on hybridization and speciation. *Mol.*
763 *Ecol.* 25:2337-2360.

764 Peris D, Arias A, Orlic S, Belloch C, Pérez-Través L, Querol A, Barrio E. 2017a. Molecular
765 Phylogenetics and Evolution Mitochondrial introgression suggests extensive ancestral
766 hybridization events among *Saccharomyces* species. *Mol. Phylogenet. Evol.* 108:49–60.

767 Peris D, Langdon QK, Moriarty R V, Sylvester K, Bontrager M, Charron G, Leducq J, Landry
768 CR, Libkind D, Hittinger CT. 2016. Complex Ancestries of Lager-Brewing Hybrids Were
769 Shaped by Standing Variation in the Wild Yeast *Saccharomyces eubayanus*. *PLoS Genet.*
770 12.

771 Peris D, Lopes CA, Arias A, Barrio E. 2012. Reconstruction of the Evolutionary History of
772 *Saccharomyces cerevisiae* x *S. kudriavzevii* Hybrids Based on Multilocus Sequence
773 Analysis. *PLoS One* 7.

774 Peris D, Moriarty R V, Alexander WG, Baker E, Sylvester K, Sardi M, Langdon QK, Libkind D,

775 Wang QM, Bai FY, et al. 2017b. Biotechnology for Biofuels Hybridization and adaptive
776 evolution of diverse *Saccharomyces* species for cellulosic biofuel production. *Biotechnol.*
777 *Biofuels* 10:1–19.

778 Peris D, Pérez-Torrado R, Hittinger CT, Barrio E, Querol A. 2017c. On the origins and industrial
779 applications of *Saccharomyces cerevisiae* × *Saccharomyces kudriavzevii* hybrids. *Yeast.*
780 Peris D, Sylvester K, Libkind D, Gonçalves P, Sampaio JP, Alexander WG, Hittinger CT. 2014.
781 Population structure and reticulate evolution of *Saccharomyces eubayanus* and its lager-
782 brewing hybrids. *Mol. Ecol.* 23:2031–2045.

783 Procházka E, Franko F, Poláková S, Sulo P. 2012. A complete sequence of *Saccharomyces*
784 *paradoxus* mitochondrial genome that restores the respiration in *S. cerevisiae*. *FEMS Yeast*
785 *Res.* 12:819–830.

786 Prysucz LP, Németh T, Gácser A, Gabaldón T. 2014. Genome Comparison of *Candida*
787 *orthopsis* Clinical Strains Reveals the Existence of Hybrids between Two Distinct
788 Subspecies. *Genome Biol. Evol.* 6:1069–1078.

789 Python Software Foundation. Python Language Reference, version 2.7.

790 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic
791 features. *Bioinformatics* 26:841–842.

792 R Core Team. 2013. R: A Language and Environment for Statistical Computing.

793 Richards S. 2017. It's more than stamp collecting: how genome sequencing can unify biological
794 research. *Trends Genet.* 31:411–421.

795 Rieseberg LH. 1997. Hybrid Origins of Plant Species. *Annu. Rev. Ecol. Evol. Syst.* 28:359–389.

796 Sanchez-Flores A, Peñaloza F, Carpintero-Ponce J, Nazario-Yepiz N, Abreu-Goodger C,
797 Machado CA, Markow TA. 2016. Genome Evolution in Three Species of Cactophilic
798 *Drosophila*. *G3* 6:3097–3105.

799 Sarilar V, Devillers H, Freel KC, Schacherer J, Neuvéglise C. 2015. Draft Genome Sequence of
800 *Lachancea lanzarotensis* CBS 12615 T, an Ascomycetous Yeast Isolated from Grapes.
801 *Genome Announc.* 3:1–2.

802 Scannell DR, Zill OA, Rokas A, Payen C, Dunham MJ, Eisen MB, Rine J, Johnston M, Hittinger
803 CT. 2011. The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences
804 and Strain Resources for the *Saccharomyces* *sensu stricto* Genus. *G3* 1:11–25.

805 Schmickl R, Jørgensen MH, Brysting AK, Koch MA. 2010. The evolutionary history of the

806 *Arabidopsis lyrata* complex: a hybrid in the amphi-Beringian area closes a large distribution
807 gap and builds up a genetic barrier. *BMC Evol. Biol.* 10:1–18.

808 Schwartz RS, Harkins KM, Stone AC, Cartwright RA. 2015. A composite genome approach to
809 identify phylogenetically informative data from next-generation sequencing. *BMC*
810 *Bioinformatics* 16:1–10.

811 Shimizu-Inatsugi R, Lihová J, Iwanaga H, Kudoh H, Marhold K, Savolainen O, Watanabe K,
812 Yakubov V V., Shimizu KK. 2009. The allopolyploid *Arabidopsis kamchatica* originated
813 from multiple individuals of *Arabidopsis lyrata* and *Arabidopsis halleri*. *Mol. Ecol.*
814 18:4024–4048.

815 Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. 2015. Polyploidy and genome evolution in
816 plants. *Curr. Opin. Genet. Dev.* 35:119–125.

817 Sulo P, Szabóová D, Bielik P, Poláková S, Šoltys K, Jatzová K, Szemes T. 2017. The
818 evolutionary history of *Saccharomyces* species inferred from completed mitochondrial
819 genomes and revision in the ‘yeast mitochondrial genetic code.’ *DNA Res.* 24:571–583.

820 Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-hernandez M, Foerster H, Li D, Meyer
821 T, Muller R, Ploetz L, et al. 2008. The *Arabidopsis* Information Resource (TAIR): gene
822 structure and function annotation. *Nucleic Acids Res.* 36:1009–1014.

823 Turissini DA, Liu G, David JR, Matute DR. 2015. The evolution of reproductive isolation in the
824 *Drosophila yakuba* complex of species. *J. Evol. Biol.* 28:557–575.

825 Vakirlis N, Sarilar V, Drillon G, Fleiss A, Agier N, Meyniel J-P, Blanpain L, Carbone A,
826 Devillers H, Dubois K, et al. 2016. Reconstruction of ancestral chromosome architecture
827 and gene repertoire reveals principles of genome evolution in a model yeast genus. *Genome*
828 *Res.* 26:918–932.

829 Wickham H. 2009. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York

830 Wu B, Buljic A, Hao W. 2015. Extensive Horizontal Transfer and Homologous Recombination
831 Generate Highly Chimeric Mitochondrial Genomes in Yeast. *Mol. Biol. Evol.* 32:2559–
832 2570.

833 Zhou X, Peris D, Kominek J, Kurtzman CP, Hittinger CT, Rokas A. 2016. In Silico Whole
834 Genome Sequencer and Analyzer (iWGS): a Computational Pipeline to Guide the Design
835 and Analysis of de novo Genome Sequencing Studies. *G3* 6:3655–3662.

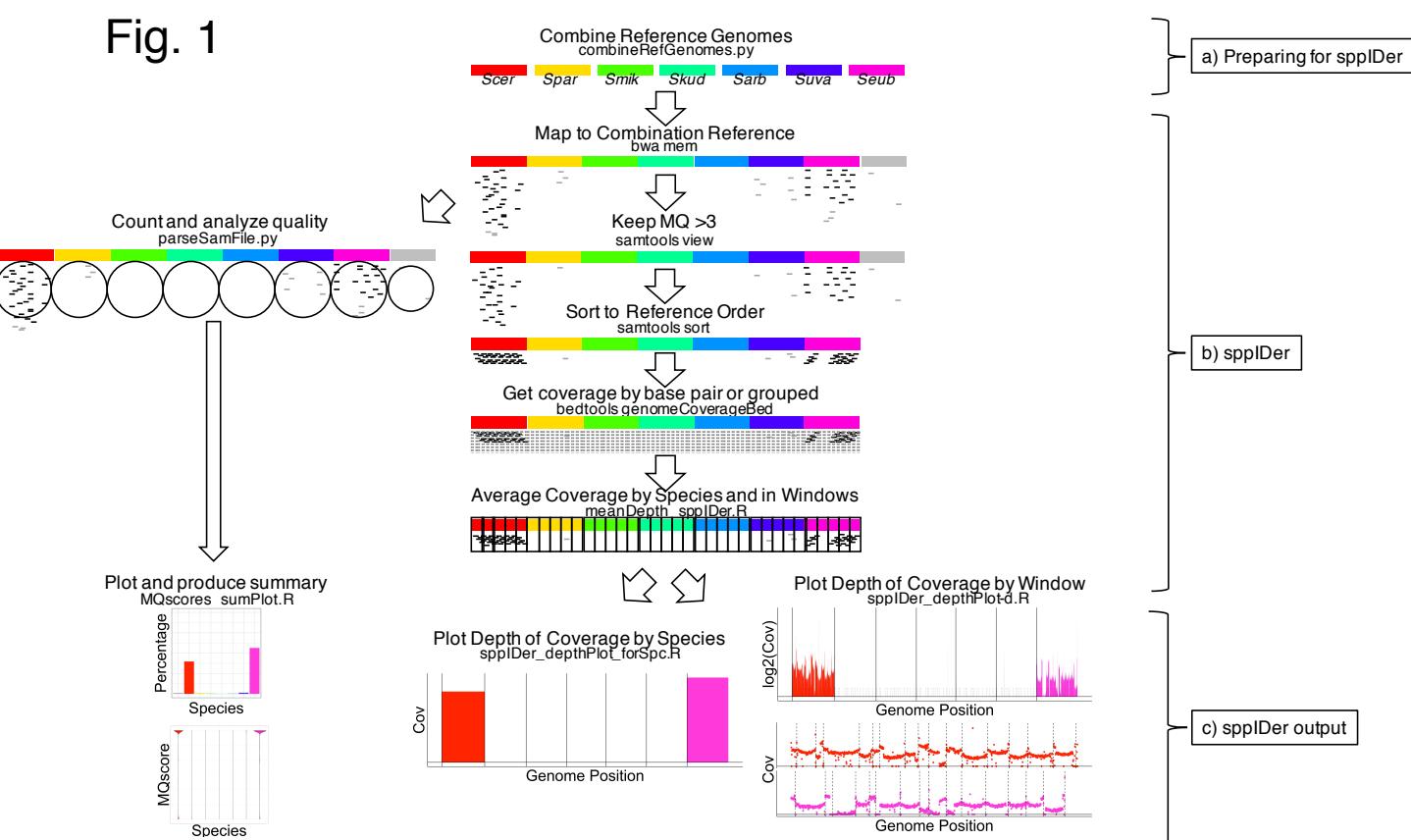
836

837 **Figure legends**

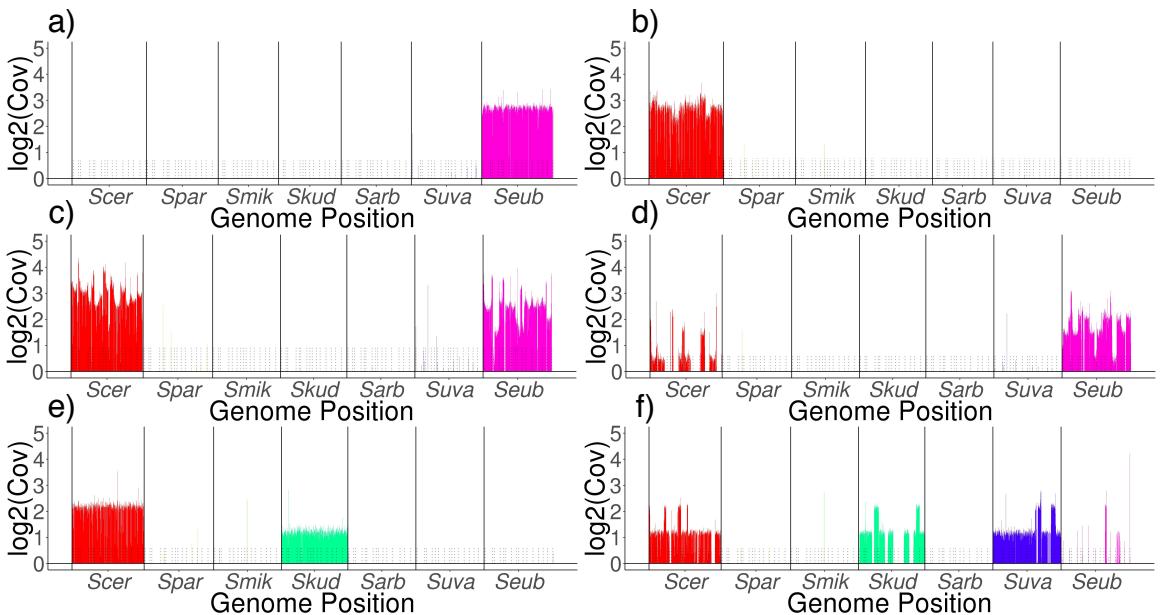
838

839 **Figure 1.** Workflow of sppIDer. (a) An upstream step concatenates all the desired reference
840 genomes (represented by colored bars). Generally, references should be distinct species (see
841 methods for advice about choosing references). This combination reference genome can be used
842 for many analyses. (b) The main sppIDer pipeline. First, reads (short lines) are mapped. This
843 output is used to parse for quality and percentage (left) or for coverage (right). On the left,
844 quality (high MQ black lines versus low MQ light lines) is parsed, and the percentage of reads
845 that map to each genome or do not map (grey bar) is calculated. To determine coverage, only
846 MQ>3 reads (black lines) are kept and sorted into the combination reference genome order.
847 These reads are then counted, either for each base pair or, for large genomes (combination length
848 >4Gb), in groups. Then, the combination reference genome is broken into equally sized pieces,
849 and the average coverage is calculated. (c) Several plots are produced. Shown here are examples
850 of Percentage Mapped and Mapping Quality plots, a plot showing average coverage by species,
851 and two ways to show coverage by windows with species side-by-side or stacked. *Scer* = *S.*
852 *cerevisiae*, *Spar* = *S. paradoxus*, *Smik* = *Saccharomyces mikatae*, *Skud* = *S. kudriavzevii*, *Sarb* =
853 *Saccharomyces arboricola*, *Suva* = *S. uvarum*, *Seub* = *S. eubayanus*.

854 **Figure 2.** Normalized coverage plots of *Saccharomyces* test cases. (a) Reads from a New
855 Zealand isolate of *S. eubayanus*, P1C1, mapped to the *S. eubayanus* reference genome
856 (magenta). (b) Reads from an ale strain, FostersO, mapped to the *S. cerevisiae* reference genome
857 (red), with visually detectable aneuploidies. (c) Reads from a hybrid Frohberg lager strain,
858 W34/70, mapped to both the *S. cerevisiae* and *S. eubayanus* reference genomes in an average
859 approximately 1:1 ratio with visually detectable translocations and aneuploidies. (d) Reads from
860 a hybrid Saaz lager strain, CBS1503, mapped to both *S. cerevisiae* and *S. eubayanus* reference
861 genomes in an average approximately 1:2 (respectively) ratio with visually detectable
862 translocations and aneuploidies. (e) Reads from a wine hybrid strain, Vin7, mapped to *S.*
863 *cerevisiae* and *S. kudriavzevii* (green) reference genomes in an average approximately 2:1
864 (respectively) ratio. (f) Reads from a hybrid cider-producing strain, CBS2834, mapped to four
865 reference genomes: *S. cerevisiae*, *S. kudriavzevii*, *S. uvarum* (purple), and *S. eubayanus*.


866 **Figure 3.** Simulated phylogeny of 10 species and sppIDer's detection of hybrids from this
867 phylogeny. (a) Phylogeny built with AAF. (b) Reads from G mapped to the G reference genome.

868 (c) Reads from a pseudo-hybrid of the closely related species G and H mapped to the G and H
869 references. (d) Reads from more distant pseudo-hybrid of E and G mapped to references E and
870 G. (e) Reads of ancient pseudo-hybrid of A and a common ancestor of G and H mapped to the
871 references of A, G, and H, which are the lineages that descended from the hybrid's parents. (f)
872 Without the G reference genome, reads from a pseudo-hybrid of the closely related species G
873 and H mapped to the H reference genome, with some mapped promiscuously to references I and
874 J.


875 **Figure 4.** Comparison of the percentage of reads that mapped when different reference genomes
876 were excluded, compared to when all possible reference genomes for *Saccharomyces* were
877 available (middle panels). (a) When the *S. cerevisiae* reference genome was not provided and
878 reads from a Frohberg lager strain, W34/70, were mapped, more reads failed to map (grey) or
879 mapped to the *S. paradoxus* reference genome (yellow). (b) When the full array of
880 *Saccharomyces* genomes was provided, reads for the lager strain mapped to both *S. cerevisiae*
881 and *S. eubayanus*. (c) When the *S. eubayanus* reference genome was removed, more reads from
882 the lager strain failed to map or mapped to the *S. uvarum* reference genome (purple). (d) With
883 the removal of the *S. cerevisiae* reference genome, reads from the *S. cerevisiae* X *S. kudriavzevii*
884 hybrid strain Vin7, which would normally map to *S. cerevisiae*, instead failed to map or mapped
885 to *S. paradoxus*. (e) When all genomes were used, reads mapped to both *S. cerevisiae* and *S.*
886 *kudriavzevii*. (f) With the removal of the *S. kudriavzevii* reference genome, reads that would
887 normally map to *S. kudriavzevii* instead failed to map or were distributed across all other
888 genomes.

889 **Figure 5.** Examples using animal and plant genomes. (a) Reads from a *D. yakuba* individual
890 mapped primarily (>99%) to the *D. yakuba* reference genome. (b) Reads from the sister species
891 *D. santomeae* mapped best to the *D. yakuba* reference genome with some mapped promiscuously
892 to other reference genomes. (c) Reads from the more distantly related species *D. teissieri* mapped
893 mostly to the *D. yakuba* reference genome, but with more reads not mapped and mapped
894 promiscuously to other related reference genomes. (d) Reads from an *Arabidopsis thaliana*
895 accession from Tanzania mapped back to the European reference genome for *A. thaliana*. The
896 repetitive nature of centromeres causes the coverage to fluctuate around those regions. (e) Reads
897 from the hybrid species *A. kamchatica* mapped to the two parental reference genomes: *A. halleri*
898 and *A. lyrata*.

Fig. 1

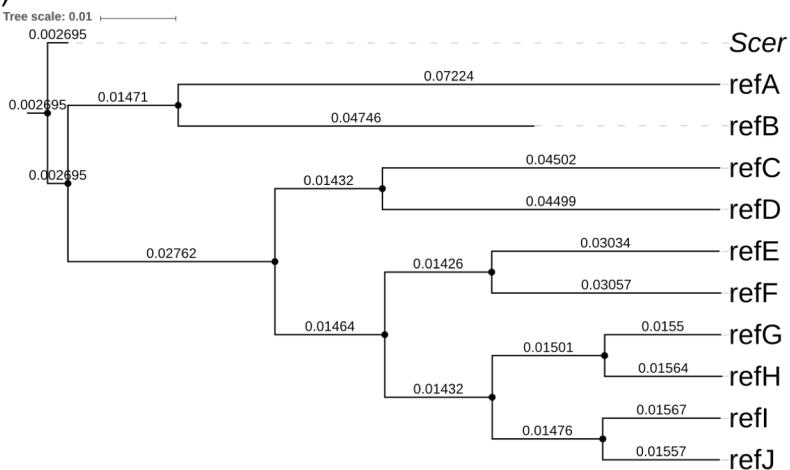


Fig. 2

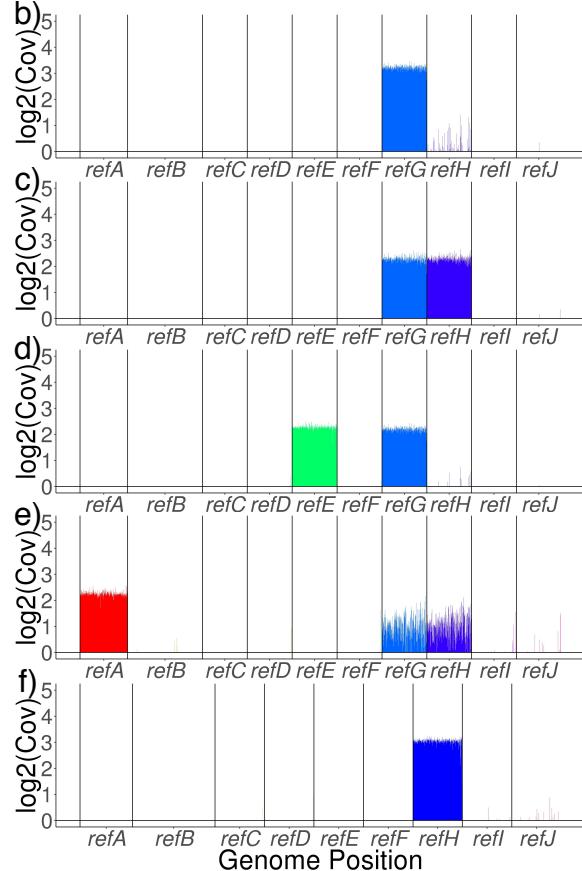


Fig. 3

a)

b)

Fig. 4

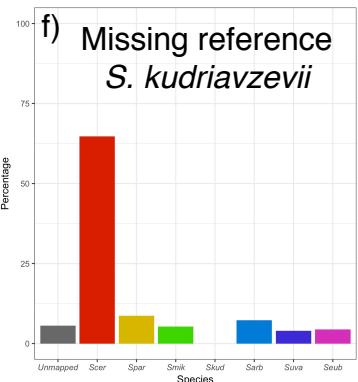
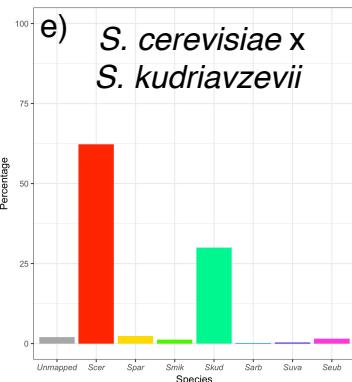
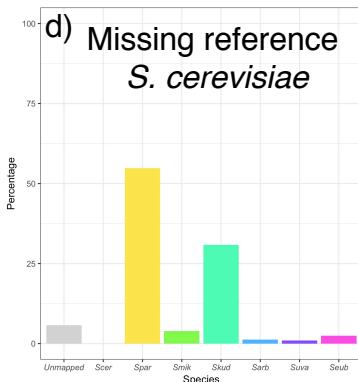
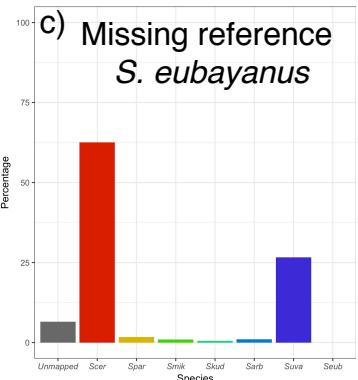
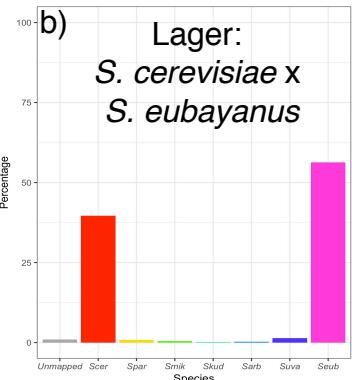
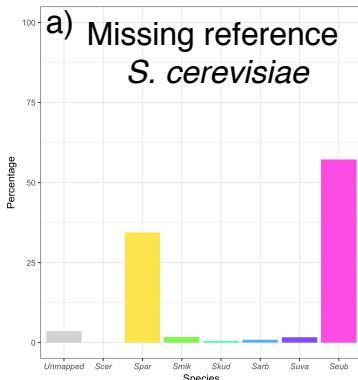
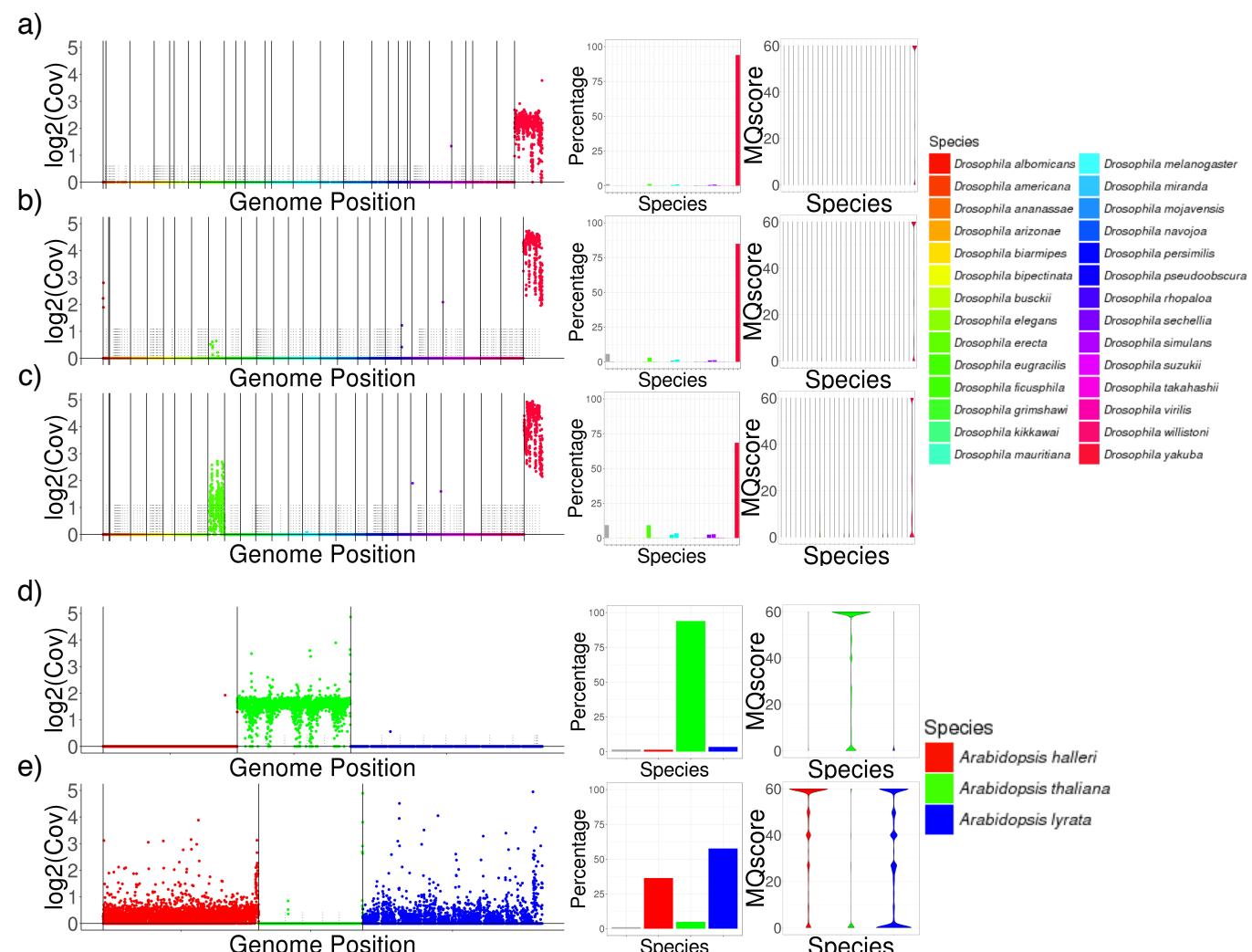








Fig. 5

