

1 Transformation of Quotient Values for their use as
2 Continuous Cladistic Characters

3

4 Steven Uros Vidovic

5 *Palaeobiology Research Group, School of Earth and Environmental Sciences, University of*

6 *Portsmouth, Burnaby Building, Burnaby Road, PO1 3QL, United Kingdom. E-mail*

7 steven.vidovic@port.ac.uk

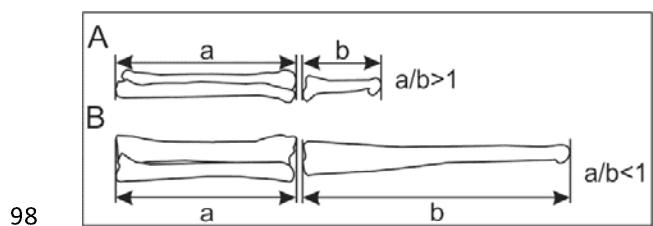
8 Recent advances in cladistic technology have produced novel methods for introducing
9 morphological data into cladistic analyses, such as the landmark and continuous character
10 functions in the software TNT and RevBayes. While these new methods begin to address the
11 problem of representing morphology, there has been little consideration of how to transform
12 and code the operational taxonomic units' (OTUs) dimensions into the datamatrix. Indeed,
13 angles, serial counts, percentages and quotient values can be used as continuous characters,
14 but little has been said about how coding these data affect the trees discovered. Logically,
15 counts of elements and angles measured off specimens may be coded directly into continuous
16 character matrices but percentages and quotient values are more problematic, being
17 transformed data. Quotient values and percentages are the simplest way of representing
18 proportional differences between two dimensions and reducing the effect of inter-taxonomic
19 magnitude differences. However, both are demonstrated to be problematic transformations
20 that produce continuous characters with weighted states that are non-representative of
21 morphological variation. Thus, two OTUs may be represented as less/more similar
22 morphologically than other OTUs that display the same degree of morphological variation.
23 Furthermore, the researcher's choice of which dimension is the divisor and dividend will
24 have a similar affect. To address this problem, a trigonometric solution and a logarithmic
25 solution have been proposed. Another solution called linear transposition scaling (LTS) was
26 recently presented, with the intention of best representing and coding observable
27 morphological variation. All three methods are reviewed to establish the best way to
28 represent and code morphology in a cladistic analysis using continuous characters.

29 *Keywords:* Quotient, continuous character, code, represent, morphology, cladistics

30 What is the best way to represent and code morphology for cladistic analysis? “The
31 holy grail” (Thiele 1993) of morphological cladistics is the inclusion of continuous characters
32 for the representation of morphometric data. Consequently, many methods of continuous
33 (quantitative) data inclusion have been proposed, including gap coding (Mickevich and
34 Johnson 1976); gap weighting (Thiele 1993); finite mixture coding (Strait et al. 1996); and
35 overlap coding (Swiderski et al. 1998). Recent advances in representing morphological data
36 for cladistic analysis have been the inclusion of landmark (Goloboff and Catalano 2016) and
37 continuous character functions in the software TNT (Goloboff et al. 2008b). Despite
38 concerted efforts to represent morphology in cladistic analyses using continuous data, there
39 has been little discussion about coding, *a priori* data transformation, or the possible
40 weighting effects of including this type of data (Wiens 2001).

41 However, these data cannot be ignored. Ignoring morphological data in phylogenetic
42 studies means ignoring the fossil record (Hillis 1987). Fossil data can both resolve
43 phylogenetic relationships for clades represented only by extinct taxa, and inform and
44 complement molecular studies, helping to resolve internal node relationships for crown
45 groups. Additionally, the accurate phylogenetic placement of fossil taxa is the best way to
46 time-calibrate trees for chronological (clock and rate) studies.

47 The size and shape of organisms is fundamental to the analysis of biological variation
48 (Jolicoeur and Mosimann 1960). Methods for expressing similarity of shape and relative
49 dimensions quantitatively have been extensively reviewed over the last half a century
50 (Jolicoeur and Mosimann 1960; Mosimann 1970; Kendall 1981; Bookstein 1982; Kendall
51 1984; Bookstein 1989; Small 1996; Rohlf 1998, 2003; Adams et al. 2004; Baur and
52 Leuenberger 2011). “Many, if not most, morphological characters describe variation in
53 quantitative traits (e.g. differences in size, shape, or counts of serially homologous
54 structures), regardless of whether systematists choose to code them quantitatively or

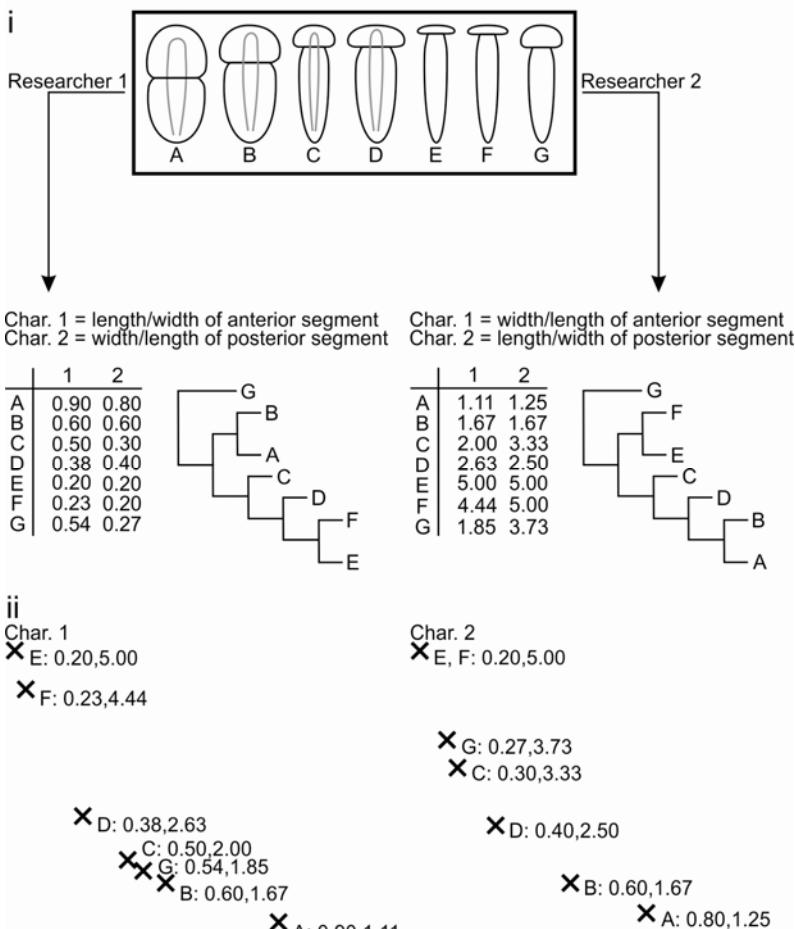

55 qualitatively (Stevens 1991; Thiele 1993)" (Wiens 2001). Certainly, ratios, quotient values,
56 percentages, serial counts, angles and other dimensions are commonly used in taxonomic
57 diagnoses and cladistic analyses, often providing the only significant separation of cryptic
58 taxa (e.g. Vidovic and Martill 2014) that mostly lack distinct qualitative characters (Baur and
59 Leuenberger 2011). As such, measurements of dimensions *a* and *b* expressed as ratios (a:b)
60 or quotient values (a/b) are entrenched in systematic literature. This study is primarily
61 concerned with these simply transformed quotient values as an expression of two-
62 dimensional morphological variation, and their use as continuous cladistic characters.

63 The effects of representing morphological variation as quotient values is by no means
64 limited to maximum parsimony analysis. Preliminary experimentation demonstrates the
65 effects of the transformations discussed here on out to result in the recovery of incongruent
66 tree topologies from Bayesian inference in RevBayes too. Because RevBayes and TNT
67 search for trees using the data matrices in vastly different ways, the focus of this study is on
68 maximum parsimony and specifically analyses conducted in TNT.

69 The continuous character function in the maximum parsimony software, TNT, works
70 by applying a weight between 0.000 and 65.000 to values within that range. Thus, it is
71 possible to have sixty-five thousand individual states and the more similar two taxa are, the
72 fewer steps implied on a tree. Whereas the less similar two OTUs are, the greater number of
73 steps implied. Several problems result from this continuous method: 1) the sum of parts
74 (Pereyra and Mound 2009) can cause a single continuous character to have a far greater
75 influence over a tree search than any discrete equal weights characters; for quotient values
76 specifically: 2) 'converse data' (i.e. where one dimension is greater than another in one OTU,
77 but the opposite is true in another OTU) (Fig. 1) will cause a bias towards lumping OTUs that
78 have a smaller dividend than the divisor and splitting of OTUs demonstrating the converse

79 (Vidovic and Martill 2014); 3) depending on which dimension a researcher chooses to be their
80 dividend or divisor, they will get different results (Mongiardino Koch et al. 2015).

81 It is possible to transform data *a priori*, to counteract these problematic features of
82 continuous characters. (1) Pereyra and Mound (2009) suggested normalising data to a range
83 that would imply more suitable weights for the states. A (2) trigonometric transformation
84 (Vidovic and Martill 2014) and a (3) logarithmic transformation (Mongiardino Koch et al.
85 2015) of quotient values prior to their inclusion in cladistic analyses have also been
86 suggested. Vidovic and Martill (2014) used a trigonometric solution to transform data that
87 demonstrated a converse relationship among OTUs in a cladistic analysis. In practice, this
88 meant that where magnitude of element *a* exceeded element *b* in one OTU, and element *b*
89 exceeded element *a* in another OTU, the equation $i=\tan^{-1}(a/b)$ was applied to the data. An
90 example of morphological attributes affected by converse data is the length of the pterosaur
91 wing metacarpal (MCIV) relative to the ulna (Fig. 1), where MCIV can be shorter than the
92 ulna in species most like *Eudimorphodon* (Fig. 1A), or longer in species most like
93 *Pteranodon* (Fig. 1B). These converse relationships can be seen throughout vertebrate and
94 invertebrate anatomical variation in homologous structures. Other examples include, the
95 length/depth of bird bills, the length/width of spider abdomens, and in the length/width of
96 elements in the appendicular skeletons of secondarily marine reptiles and fossorial
97 vertebrates. These occurrences are by no means rare in nature.


99 Figure 1. Two reconstructions of pterosaur radii, ulnae (a) and wing metacarpi (b),
100 demonstrating a converse relationship between the dividend and divisor of taxa closest to
101 *Eudimorphodon* (A) and taxa closest *Pteranodon* (B).

102 Mongiardino Koch et al. (2015) noted a different, but similar scenario to Vidovic and
103 Martill (2014) that affected the results of cladistic analyses and proposed a logarithmic
104 transformation of quotient values. According to Mongiardino Koch et al. (2015), depending
105 on which value is chosen by the researcher to be the dividend or divisor the outcome of the
106 cladistic analysis will be different. The reason for the same data producing different results is
107 that calculating a quotient value greater than unity does not transform the input data in the
108 same way as calculating a quotient value less than unity (Fig. 2A & B; Fig. 3). The effect
109 identified by Mongiardino Koch et al. (2015) is the same as the one demonstrated by Vidovic
110 and Martill (2014: Figure 5), but researcher generated.

111 Logarithmic and trigonometric transformations result in weights being applied to
112 OTUs that determine the same weight difference between two OTUs if they demonstrate one
113 morphological variation or the directly inverse relationship. However, the two methods do
114 not produce the same states (weights) with the same source material and if the data is
115 normalised to the same range. Thus, the tree topology recovered by a cladistic analysis will
116 be affected by the transformation that is chosen. Furthermore, another method termed linear
117 transposition scaling (LTS) was presented by Vidovic (2016) and Vidovic and Martill (2017).
118 LTS also produces different results to logarithmic and trigonometric transformations, and
119 presently it is not clear which transformation best represents and codes continuous data. Here,
120 the effect of using different quotient value transformations (logarithmic, trigonometric and
121 LTS) on the data distribution and therefore cladistic continuous character weights is
122 discussed with examples. The example of Mongiardino Koch et al. (2015) using Anna and
123 John is discussed further to support the concept of LTS. Additionally, graphical and cladistic

124 experimentation is used to compare the methods in question and test the validity of using
125 quotient values to represent a simple morphometric condition by comparing the LTS method
126 to geometric morphometric principal component analyses.

127 EXAMPLE

129 Figure 2. i) Adapted from Mongiardino-Koch et al. (2015) – expanded upon. Hypothetical
130 organisms A–G are studied by two researchers, Researcher 1 and Researcher 2. Both
131 researchers study the same dimensions, but calculating their quotient values as the inverse of
132 the other's. Researcher 1 finds a different most parsimonious tree to Researcher 2, despite
133 seemingly treating the data the same. ii) Character 1 states used by Researcher 1 (x-axis) are
134 plotted against those used by Researcher 2 (y-axis) and character 2 is plotted in the same

135 way. These plots demonstrate that by dividing a smaller number by a larger number, the
136 states analysed by Researcher 1 are on an exponential scale.

137 Mongiardino Koch et al. (2015) proposed a hypothetical situation where two
138 researchers, Anna and John, made different decisions when writing characters for
139 morphometric data available from their studied taxa. Both Anna and John were testing
140 ingroup relationships for the genus A+B+C+D, with the outgroup E. Here, in an adapted
141 example, Researcher 1 and Researcher 2 take the OTUs studied by Anna and John (A, B, C,
142 D, and E) and include additional OTUs F and G. Researchers 1 and 2 both proposed
143 continuous morphometric characters that would study the dimensions of the anterior and
144 posterior segments of their taxa. The results of their decision-making processes are,
145 Researcher 1 had quotient values less than one, whereas Researcher 2 had quotient values
146 greater than one (see the tables in Fig. 2ii). One may expect both analyses to recover the same
147 tree, given that they are analysing the same morphometric data and treating it seemingly in
148 the same way. However, Researcher 2's result proposes a different phylogenetic hypothesis
149 to that of Researcher 1. The reason for the alternative phylogenetic hypotheses is that it costs
150 less for each tree respectively, due to the data transformations distributing the states
151 differently and implying different weights. Note, states for characters 1 and 2 plotted as
152 Researcher 1 vs Researcher 2 (Fig. 3ii) do not have a directly linear relationship.

153 Mongiardino Koch et al. (2015) assumed that neither Anna nor John were right or
154 wrong to treat the data the way they did. However, either Anna or John are proposing
155 phylogenetic hypotheses contradicting the exact phylogeny more than the other.

156 On closer inspection of the characters used by Researcher 1 and Researcher 2 it is
157 clear that Researcher 1's morphological ranges become exponentially larger as their quotient
158 values approach one (Fig. 2ii). Mongiardino Koch et al. (2015) tested several data

159 transformations, including range scaling and z-scoring, attempting to eliminate the effect of
160 researcher decision. However, they did not reason whether or not Anna or John had provided
161 the correct result. In effect, they wanted any dividend/divisor relationship to produce the
162 same result, assuming that would be the correct result. To resolve scale inequality
163 Mongiardino Koch et al. (2015) proposed that the data should be log transformed. Similarly,
164 Vidovic and Martill (2014) proposed a trigonometric transformation method. Although both
165 methods solve scale inequality, they too are on exponential scales and have an undesirable
166 impact on the entire dataset.

167 In conclusion, Researcher 2 is representing and coding the data with greater fidelity
168 than Researcher 1, due to Researcher 2 unwittingly making the research decision that best
169 represented the source data as weighted states (Fig. 2ii). Therefore, when calculating quotient
170 values, it is advisable to have the larger number as the dividend and the smaller number as
171 the divisor. Keeping that in mind the LTS method has been developed and is described and
172 tested below.

173 MATERIALS AND METHODS

174 *Rationale*

175 Two qualities are required of the states resulting from the transformation of
176 morphometric data for them to be effective continuous character states. These criteria are
177 defined as follows:

178 1. Multiplying the morphological variation by N must increase the weight implied (i.e.
179 the state) by the same multiplier (N). Likewise, adding a unit to a dimension N times
180 must increase the weight implied the same amount N times.

181 2. Values need to be interchangeable for the dividend and divisor, producing the same
182 distribution of states either way.

183 These criteria are simply tested by observing univariate plots of quotients and
184 transformed quotients where ten of the calculations a is a value between one and ten (serially
185 increasing by a single unit), and b is one. The remaining nine calculations are inverted i.e. a
186 is one and b is a value of two to ten. The values 2, 4 and 8 are chosen to observe if the first
187 tenet of criteria 1 is true of each transformation/treatment of the data. The general distribution
188 of the plots is used to infer the validity of the second tenet of criteria 1, although the tenets
189 are co-dependent. On the plots, unity is marked with a dash to help interpretation of criteria 2.

190 *Real Data Examples*

191 To test the reliability of continuous data transformed using a logarithmic
192 transformation, trigonometric transformation and LTS, two experiments were conducted. The
193 Pterodactyloidea was used to test the morphometric cladistic techniques because it is a
194 morphologically well-defined and constrained group; the group is represented in the fossil
195 record from their appearance to extinction; only morphological characters are available for
196 this group; they demonstrate inverse proportions between taxa (Fig. 1). The analysis of
197 Vidovic & Martill (2014) was chosen because compound characters – which have been
198 demonstrated to be detrimental to optimal tree recovery (Brazeau 2011) – have been reduced;
199 it is the most comprehensive pterodactyloid cladistic analysis currently in the literature;
200 currently it is the only pterodactyloid cladistic analysis to utilize continuous characters.

Method one.– Data from one continuous cladistic character (Vidovic and Martill 2014: Ch. 1) – demonstrating a converse relationship between the dividend and divisor in the range of taxa being studied – is plotted on a graph (Fig. 4). The distribution of untransformed (Fig. 4A) and transformed (Fig. 4B-D) quotient values were compared graphically (univariate

205 plot) for a/b; b/a; and a/b inverted so that direct comparisons of the data distribution could be
206 made visually. All results, including previously untransformed data, were normalised
207 between naught and one for comparison with each other and to avoid the character net weight
208 issue identified by Pereyra and Mound (2009). In this case the character being analysed is the
209 rostral index, using the data of Vidovic and Martill (2014: Ch. 1). Therefore, the distributions
210 of rostrum depth/length and rostrum length/depth for pterodactyloid pterosaurs were
211 compared for datasets using no data transformation (Fig. 5A), and LTS (Fig. 4B),
212 trigonometric (Fig. 4C) and log ratio (Fig. 4D) transformations.

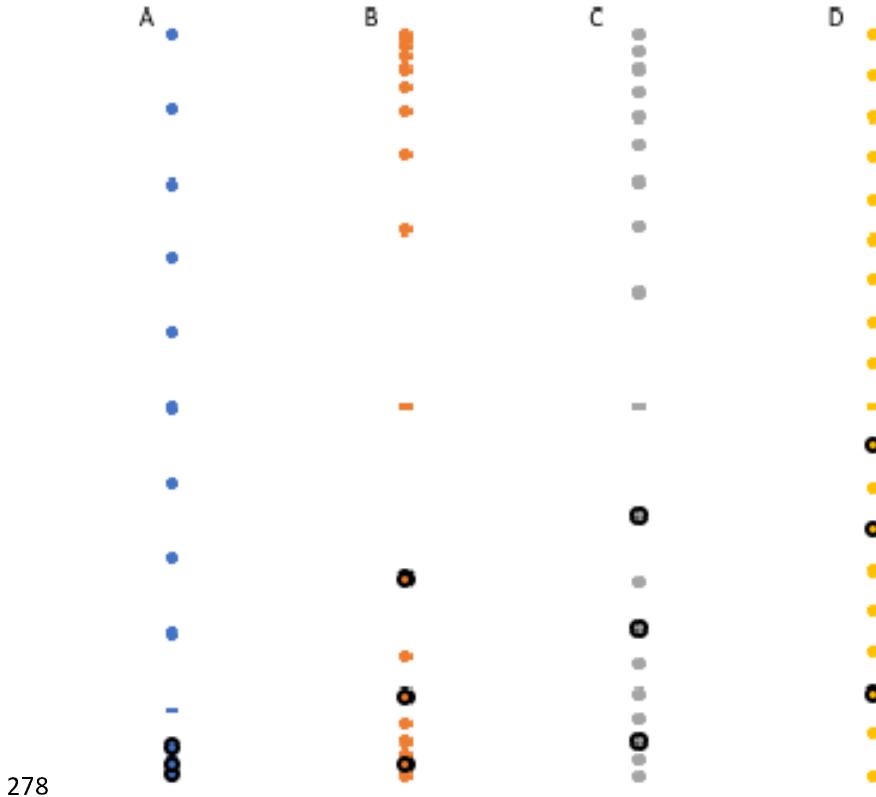
213 *Method two.*— In the second experiment, cladistic analyses were run using no
214 weighting procedures (i.e. equal weights), but with morphometric characters transformed
215 using LTS, trigonometric and log ratio transformations. Each analysis, using each method
216 was resampled twelve times with different combinations of dividends and divisors being
217 used. One of the resampled replicates (matrix 1) represents the original dividend/divisor
218 relationships of Vidovic and Martill (2014), another replicate uses the inverse (matrix 12),
219 and the ten additional replicates are randomly resampled (see Supplementary Material). All
220 12 trees from each method were tested for their similarity using a consensus based metric, the
221 clade retention index (CRI) (Vidovic and Martill 2017). The CRI is similar to the consensus
222 fork index (CFI) (Colless 1980), but it accounts for the polytomous taxa, and therefore how
223 much information is retained by a consensus tree calculated from two fundamental trees. Like
224 many tree similarity metrics (Colless 1980; Robinson and Foulds 1981; Estabrook et al.
225 1985; Nixon and Carpenter 1996; Wheeler 1999; Goloboff 2008) the CRI examines a
226 different aspect of tree similarity to others in the literature, and used alongside another
227 method its results can be better interpreted. Here, it is used alongside tanglegrams, SPR
228 distances (Goloboff 2008), and the R-F symmetric sampling method (Robinson and Foulds
229 1981) (Table 1).

230 *Log ratio transformation.*— Mongiardino Koch et al. (2015) were not explicit
231 regarding their methodology, but it is assumed they did not use the natural log to scale their
232 quotient values. Therefore, here $i=\log(a/b)$, where log to the base ten is used to scale the data,
233 i is the index number analysed, a is the dividend and b is the divisor. During resampling a
234 and b of the primary matrix may be inverted to give $i=\log(b/a)$. The index number i is
235 normalised so that all positive and negative indices lie in the range (positive) naught to one,
236 using the range scaling equation $I/(R_{max}-R_{min})x(i-R_{min})$, where R is the range.

237 *Trigonometric transformation.*— Full details of the trigonometric scaling method can
238 be found in Vidovic and Martill (2014). Unlike the original analysis $i=\tan^{-1}(a/b)$ is applied to
239 every continuous character with a quotient value, to demonstrate that it can eliminate
240 researcher decision as well as the effect of converse datasets. Like log ratio scaled data, here
241 the trigonometric ratio scaled data is normalised between naught and one.

242 *Linear transposition scaling (LTS).*— This new method implements the equation
243 $i=(a/b)-1$ if $a/b>1$, or $i=-(b/a)+1$ if $a/b<1$. In the equations, one is subtracted or added
244 respectively, to realign the data so that it is ‘centred’ on naught. As with the former
245 transformation methods, the LTS dataset is range scaled between naught and one using the
246 equation given in the log ratio section of this methodology. By range rescaling the data, the
247 weights implied by the continuous data will have a similar effect on the tree search as
248 discrete characters (Pereyra and Mound 2009).

249 *Method three.*— The intention of the third method is to demonstrate that quotient
250 values maintain morphometric information when properly transformed. The results of
251 geometric morphometric principal components analyses were compared to the results of LTS,
252 using a bivariate plot, Pearson’s correlation coefficient and R^2 values. The most significant
253 principal components were chosen from a scree-plot to compare to the LTS. A geometric


254 morphometric generalized Procrustes analysis was conducted using the Geomorph package in
255 R (Adams et al. 2015) on real data. Bitmap images of three nodes that represent the proximal
256 and distal ends of pterosaur ulnae and wing metacarpi (Fig. 1) were digitized in TPSdig2
257 (Rohlf 2010). The Bitmaps were drawn based on the exact same measurements that were
258 used to calculate the LTS values for character 5 (see supplementary data), taken from
259 Vidovic and Martill (2014). The ulnae and wing-metacarpi needed to be redrawn in a straight
260 line, so that no inferences of shape can be made by their position of preservation. This
261 practice makes the data collinear, meaning that it cannot be rotated (Small 1996). To test
262 examples that can be rotated and rescaled in a geometric morphometric analysis, triangles
263 (i.e. three landmarks per specimen) drawn using the dimensions of the pterosaur rostral index
264 (Vidovic and Martill 2014: Ch.1) were analysed using the same generalized procrustes
265 geometric morphometric method. Like with the one-dimensional material the significant PCs
266 were identified using a scree plot and were then plotted against the LTS values in bivariate
267 plots and in a three-dimensional scatter plot.

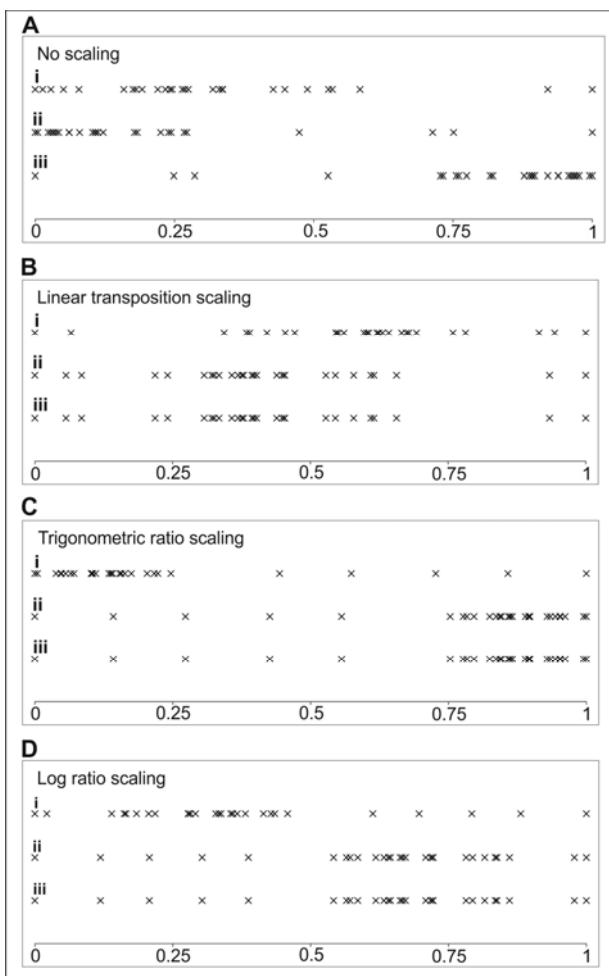
268 RESULTS

269 *Rationale/Proof of Concept*

270 The untransformed quotient values (Fig. 3A) demonstrate both tenets of criteria 1 in
271 continuous states calculated where the dividend is greater than the divisor, but this is not the
272 case for continuous states calculated where the divisor is greater than the dividend. Therefore,
273 not transforming quotient values violates criteria 2.

274 Both trigonometric (Fig. 3B) and logarithmic (Fig. 3C) transformations of quotient
275 values satisfy criteria 2, but violate both tenets of criteria 1. The LTS method (Fig. 3D) of
276 transforming quotient values satisfies both criteria 1 and 2. Thus, LTS has the most desirable
277 effects on the transformed data.

278


279 Figure 3. A) Graphical representation of contiguous integers 1–10 and their inverse forms
280 (i.e. 1 divided by 2–10) and those values transformed using the: B) trigonometric method; C)
281 logarithmic method; and D) the LTS method. The dashes represent unity, which is the centre
282 of the total range of disparity, and the ringed points are the functions of 2, 4 and 8. Note that
283 the proximity of these points on the graph represent the relative weight difference and
284 therefore similarity/dissimilarity as perceived by a cladistic analysis.

285 *Method One*

286 The graphical comparison of the rostral index (Vidovic & Martill 2014: Ch. 1) shows
287 that when no data transformation is used and the dividend and divisor are inverted, the
288 quotient values fail to exhibit the same morphological variation (Fig. 4A). The inequality of
289 morphological variation observed between a character and its inverted form is because when
290 the dividend is larger than the divisor there is a linear relationship between the source data

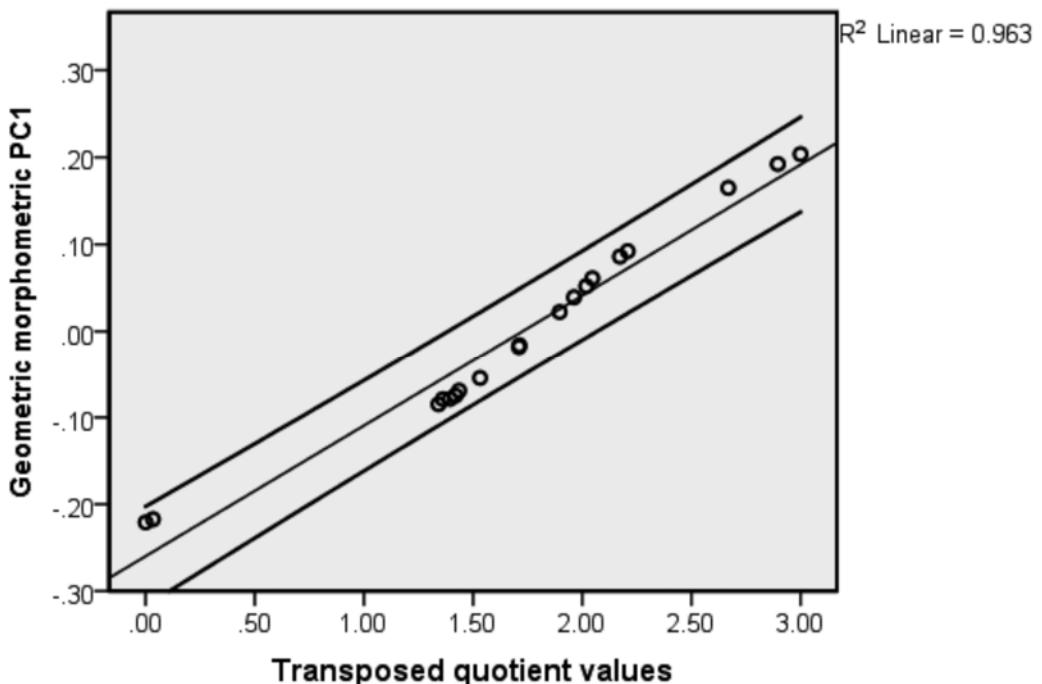
291 and output, but when the divisor is larger than the dividend the relationship becomes
292 exponential (Fig. 4A). Thus, the same variation observed between one and infinity can be
293 demonstrated between naught and one. However, when all three transformation methods are
294 applied, quotient values exhibit the same morphological variation for one equation (i.e.
295 rostral depth/length) and its inverse form (i.e. rostral length/depth) (Fig. 4B-D). This
296 practically demonstrates quotient values that are not transformed violate criteria 2.

297 The univariate plots demonstrate the compression and rarefaction in the logarithmic
298 and trigonometric transformed data that is more spread or more tightly associated
299 respectively in the untransformed data. This indicates that those transformations would not
300 accurately represent (weight) the morphological information in a cladistic analysis.

302 **Figure 4.** Univariate plots of character states taken from Vidovic and Martill (2014) character
303 1 and transformed using different methods: A) no transformation; B) LTS; C) trigonometric
304 transformation; and D) logarithmic transformation. For each method, the character states for
305 i) rostrum depth/length, ii) rostrum length/depth, and iii) depth/length in reversed order are
306 plotted for comparison.

307

308 *Method Two*


309 Eleven of the resampled cladistic analyses for each data transformation method
310 produced trees with SPR distances of 1.000 with respect to their reference tree (MPT from
311 matrix 1). When comparing trees from each scaling method to trees from another, they had
312 congruent leaves, but internal nodes shifted depending on the method used. The tree
313 produced by the trigonometric transformation method is a strict consensus of two MPTs and
314 is the least similar to the other two trees (Table 1). The SPR distance is limited in comparison
315 to CRI, because it considers both logarithmic transformation comparisons to the other two
316 methods to be equally similar, even though the other two comparison methods contradict it.

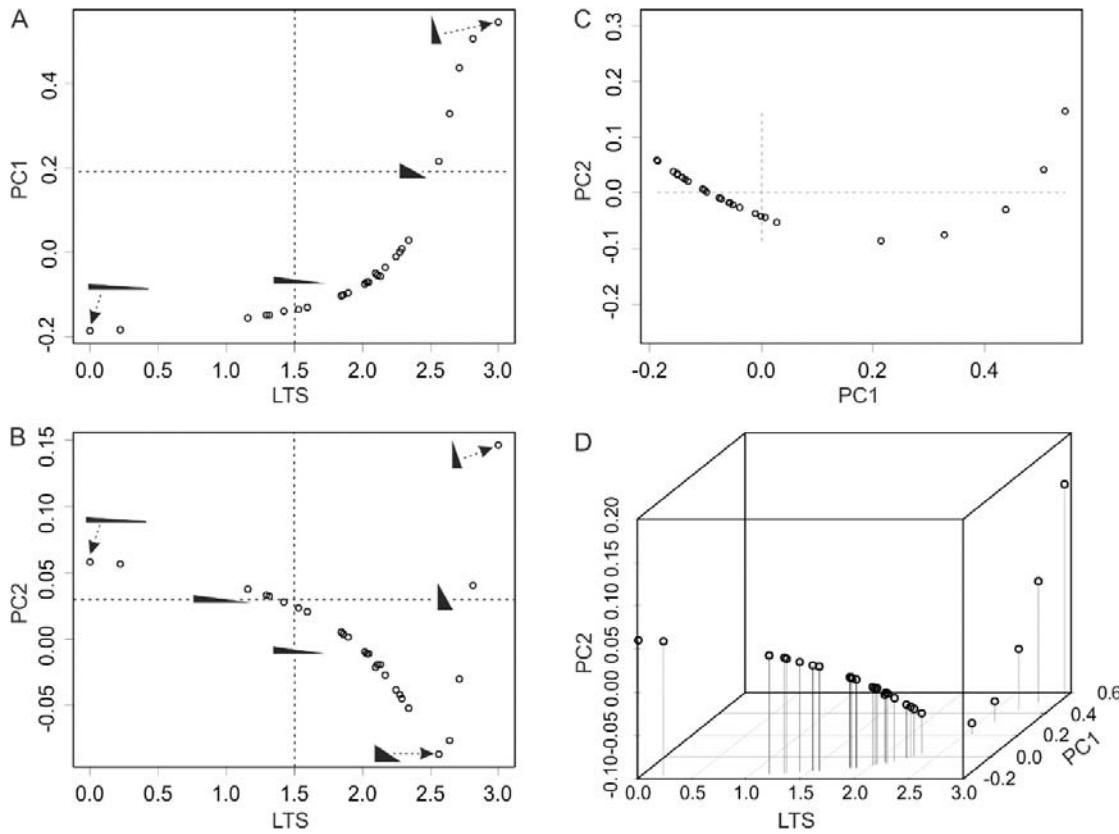
Tree comparison	Polytomous taxa	Nodes	CRI	SPR distances	R-F number
Trigonometric vs. LTS	9	24	0.734	0.900	17
Log vs. LTS	2	30	0.938	0.933	4
Trigonometric vs. Log	7	25	0.781	0.933	13

317

318 *Method Three*

319 Because the three digitized landmarks representing the terminal ends of ulnae and
320 wing metacarpi are linear it is not possible to rotate the samples in morphospace (Small 1996:
321 pp. 14–16). Therefore, the only principal component (PC) that was informative was PC1,
322 which is demonstrated on the scree-plot in the supplementary data. Only having one
323 informative PC after a generalized Procrustes analysis is not ideal for a geometric
324 morphometric study, but in this case the data is easier to interpret and compare to the LTS
325 method. PC1 was compared to LTS values calculated from the same specimens were used in
326 the geometric morphometric PC analysis. The resulting bivariate plot (Fig. 5) demonstrates
327 that the data fits a linear regression line well, with a Pearson's correlation coefficient of 0.98
328 and R^2 value of 0.96. Therefore, each method produces results that are a good approximation
329 of one another. The reason for the output data of the two methods not being directly linear is
330 that the geometric morphometric method projects the data into tangential morphospace,
331 causing the curvilinear data distribution seen in the bivariate plot (Fig. 5). Note, the curve is
332 centred on 0.00 of PC1.

333


334 **Figure 5.** A bivariate plot of PC1 and LTS values taken from collinear data of pterosaur ulnae
335 and wing-metacarpi. The data has a strong curvilinear correlation, but it is close to linear with
336 a Pearson's correlation coefficient of 0.98 and a R^2 value of 0.96.

337 The principal component analysis resulting from the generalized procrustes analysis
338 of the pterosaur rostrum demonstrated that pterosaur rostra occupied a large continuum of
339 morphospace (Fig. 6). PC 1 was the most significant PC, while PC 2 still demonstrated some
340 information about morphospace. Both PC 1 and PC 2 demonstrate a well correlated
341 curvilinear relationship with the LTS values. This means that each method can predict the
342 other, but they share a complicated mathematical relationship as a result of projecting the
343 shape data into morphospace during the geometric morphometric analysis.

344 Each variable on the three-dimensional plot figured is informative, especially in
345 combination, but continuous cladistic characters can only interpret data on a univariate scale
346 by applying weights to the states. This is also true of historic methods such as gap weighting
347 and finite mixture coding.

348 In PC 1 there is a curve very similar to that seen in logarithmically transformed data
349 (Fig. 6A). The lowest long triangle and tallest short triangle are found at the extremes of the
350 PC1 range, while a triangle of near equal dimensions is in the middle. In PC 2 there is
351 quadratic relationship, meaning that pterosaurs with tall short rostra will be considered
352 related to pterosaurs with low long rostra, whilst a pterosaur rostrum exhibiting close to equal
353 proportions is at the other extreme of the axis. Because PC2 has a quadratic relationship there
354 are two triangles on the centre line (Fig. 6B). The LTS values separate tall, short forms and
355 low, long forms, while placing a triangle with a reasonably low and long form in the middle
356 of the continuum. Considering that one extreme is significantly lower and longer than the
357 other is tall and short, the skew towards low and long is expected. Using the LTS method also

358 means that a similar degree of variation is weighted similarly at any point in the data
359 continuum.

360

361 Figure 6. PC1 and PC2 compared to the LTS for two-dimensional shape, taken from the
362 rostral index of Vidovic and Martill (2014). Bivariate plots of A) PC1 against LTS; B) PC2
363 against LTS, the triangles with arrows represent the rostrum shapes at the extremes of each
364 range, and triangles on the dashed lines are the centre of the ranges. C) The principal
365 component plot of PC1 and PC2; D) a comparison of LTS to both principal components in a
366 three-dimensional plot.

367 DISCUSSION

368 The comparison of quotient values for systematics assumes a constant allometry (at
369 least for sub-mature to mature individuals), a relatively tight fit of the residuals to that

370 allometry, and the intersection of the regression line is at naught. However, the vast majority
371 of species diagnoses, qualitative cladistic characters and the other methods of entering
372 continuous data also make the same assumptions. If the population variation is negligible
373 relative to the variation observed between species, genera or higher taxonomic grades, there
374 should be little or no overlap and the character will be phylogenetically informative. Because
375 the underlying assumptions are not testable for most taxa in the fossil record, it is
376 recommended that this method is used alongside implied weighting (Goloboff 1993;
377 Goloboff et al. 2008a; Goloboff 2014).

378 Thiele (1993) proposed that logarithms should be exploited, because 10 mm variation
379 between plant taxa with mean leaf lengths of 5 mm and 10 mm is significant, whereas it is
380 not for leaves with a mean length of *c.* 100 mm. While Thiele's (1993) observation stands for
381 untransformed size data, it is only applicable to quotients where the divisor and dividend
382 exhibit an obvious heteroskedastic distribution in a bivariate plot of its component
383 measurements. Thus, prior to transformation for inclusion as a continuous character, the
384 measurements that comprise the divisor and dividend should be log transformed so that a
385 log/log quotient value is calculated. The results of calculating log/log quotient values are not
386 the same as those generated by log ratio transformations on the same measurements.

387 The result of using log ratio and trigonometric data transformations is an equivalent
388 distribution of morphological data, regardless of converse data or researcher decisions.
389 However, exponential data does not represent or code the true variation exhibited by the
390 morphology (Fig. 4A & C–D). The effect of these exponential scales is to cause rarefaction
391 of data about the centre of the maximum possible data range, and compression of data at the
392 extremes of the range (Fig. 3A–C). Consequently, the more 'extreme' in the data range two
393 taxa become, the more extreme their variation must be to consider them unrelated. Whereas,
394 if two very similar taxa being studied have close to equal dividends and divisors (i.e. they are

395 approaching unity) they will be more readily distinguished if logarithmic or trigonometric
396 data transformations are used. If data transformed using these methods is entered into a
397 continuous cladistic character, the weights given to the states will be equivalent to this data
398 distribution, providing a bias for splitting and lumping of taxa in different parts of the data
399 continuum.

400 The LTS method effectively reduces the information from two straight line distances
401 to a single index number, ready for its input into a cladistic analysis using continuous
402 characters. The LTS transformation of quotient data has the least negative impact on the
403 distribution of weights/states implied compared to the other data transformations tested,
404 according to the logic applied here. The LTS method does this by reducing the magnitude of
405 one dimension at a function of the other (smaller) dimension's magnitude. When entered into
406 a cladistic analysis using continuous characters, the LTS data will treat all morphological
407 variation similarly by implying a weight difference between two OTUs equivalent to the
408 difference in dimensions between those OTUs. For the study of inter-taxonomic
409 relationships, where size has been eliminated and shape is the sole consideration, equal
410 weighting for equal variation is important.

411 TNT's continuous character function is able to manage data without excessive
412 subjectivity – assuming there is no scale inequality, as discussed in this paper –, therefore
413 introducing potentially confounding data as a result of logarithmic transformation,
414 trigonometric transformation, or dividing a number by a greater number (including
415 percentages) is undesirable. Furthermore, the use of PC data taken from geometric
416 morphometric analyses as continuous cladistic character states would have a similar effect to
417 using improperly transformed quotient data and could even cause completely unrelated
418 morphologies to appear more related to each other than they are to their intermediate,
419 transitional morphologies (Fig. 6B) if the PC demonstrates a quadratic distribution.

420 CONCLUSIONS

421 Despite many cladistic analyses using the same specimens, the same software and
422 broadly similar characters, there are numerous examples of different authors consistently
423 recovering contradictory tree topologies (like Researcher 1 and Researcher 2 in the example).
424 Notable examples in vertebrate palaeontology are the variable position of Anurognathidae
425 and *Germanodactylus* spp. (e.g. Lü et al. 2009; Wang et al. 2009; Andres et al. 2014; Vidovic
426 and Martill 2014) in Pterosauria, and the position and composition of Tethysuchia and/or
427 Thalattosuchia in crocodylomorph phylogeny (Jouve 2009; Sweetman et al. 2015). Some
428 researchers opt to test new taxa or theories against multiple phylogenies (e.g. Pol and
429 Gasparini 2009; Holliday and Gardner 2012), not necessarily favouring one model over
430 another, but this is arguably a pointless exercise. In these cases, one or both phylogenetic
431 hypotheses must be highly incongruent with the exact phylogeny, so the sources of error
432 should be identified and eliminated before proposing a more robust hypothesis.
433 Unfortunately, it is impossible to know the exact phylogeny, so ensuring that the methods
434 used are robust and stable is the only way to be confident in a result. If the data used in an
435 analysis is very similar, the source of the incongruence may be the result of researcher
436 decision and the inadvertent application of errors to different parts of the matrix. For
437 example, it can be demonstrated that atomizing compound characters reduces character
438 incongruence (Brazeau 2011) and reorganizes some internal nodes (pers. obs.). Likewise, the
439 improper treatment of continuously variable characters will have a similar effect on tree
440 topology. By using tested and rationalized character construction methods, data
441 transformation, coding and matrix analysis, it may be possible to limit researcher
442 decision/error and find greater consensus in our phylogenetic models.

443 It is evident that not scaling continuous data that demonstrates converse relationships
444 has a negative effect on the results of a cladistic analysis (Fig. 3A & Fig. 4A), making it

445 possible to recover entirely different trees when using the same data in different ways.
446 However, when one measured unit consistently exceeds another throughout a dataset no data
447 transformation is necessary, contrary to Mongiardino Koch et al. (2015), but the dividend
448 should always be the largest number. When transformation is required it is advisable to use
449 LTS, to avoid confounding the tree search algorithms in TNT by unevenly weighting
450 morphological variation. However, despite the obvious problems, the logarithmic
451 transformation does not appear to have as much of an impact on the results of a cladistic
452 analysis as trigonometric transformation (Fig. 6). Therefore, in certain circumstances
453 logarithmic transformations may prove useful. Likewise, the trigonometric transformation
454 was initially developed to handle data that represents a triangle (i.e. pterosaur rostral index)
455 and it may still prove useful to study the tangent angle in cladistic analyses when studying
456 triangular morphologies. However, applying the trigonometric transformation to all converse
457 data (Vidovic and Martill 2014) and the logarithmic transformation to all quotient values
458 (Mongiardino Koch et al. 2015) studied in a cladistic analysis is improper, and in this sense
459 the methods should generally be abandoned.

460

461 ACKNOWLEDGEMENTS

462 I would like to thank the Willi Hennig Society for making the cladistic software TNT
463 freely available. I would also like to thank Nic Minter (Portsmouth) and David Martill
464 (Portsmouth) and David Unwin (Leicester) for discussions relating to this research.

465

466 Adams D., Collyer M., Sherratt E. 2015. Geomorph: geometric morphometric analyses of
467 2D/3D landmark data (version 3.0.3.) [software]. Available from
468 <https://libraries.io/cran/geomorph>.

469 Adams D.C., Rohlf F.J., Slice D.E. 2004. Geometric morphometrics: Ten years of progress
470 following the ‘revolution.’ Ital. J. Zool. 71:5–16.

471 Andres B., Clark J., Xu X. 2014. The earliest pterodactyloid and the origin of the group.
472 Curr. Biol. 24:1011–1016.

473 Baur H., Leuenberger C. 2011. Analysis of ratios in multivariate morphometry. Syst. Biol.
474 60:813–825.

475 Bookstein F.L. 1982. Foundations of morphometrics. Annu. Rev. Ecol. Syst. 13:451–470.

476 Bookstein F.L. 1989. Principal warps: thin-plate splines and the decomposition of
477 deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11:567–585.

478 Brazeau M.D. 2011. Problematic character coding methods in morphology and their effects.
479 Biol. J. Linn. Soc. 104:489–498.

480 Colless D.H. 1980. Congruence between morphometric and allozyme data for *Menidia*
481 species: A reappraisal. Syst. Zool. 29:288–299.

482 Estabrook G.F., McMorris F.R., Meacham C.A. 1985. Comparison of undirected
483 phylogenetic trees based on subtrees of four evolutionary units. Syst. Biol. 34:193–
484 200.

485 Goloboff P.A. 1993. Estimating character weights during tree search. Cladistics. 9:83–91.

486 Goloboff P.A. 2008. Calculating SPR distances between trees. Cladistics. 24:591–597.

487 Goloboff P.A. 2014. Extended implied weighting. *Cladistics*. 30:260–272.

488 Goloboff P.A., Carpenter J.M., Arias J.S., Esquivel D.R.M. 2008a. Weighting against
489 homoplasy improves phylogenetic analysis of morphological data sets. *Cladistics*.
490 24:758–773.

491 Goloboff P.A., Catalano S.A. 2016. TNT version 1.5, including a full implementation of
492 phylogenetic morphometrics. *Cladistics*. 32:221–238.

493 Goloboff P.A., Farris J.S., Nixon K.C. 2008b. TNT, a free program for phylogenetic analysis.
494 *Cladistics*. 24:774–786.

495 Hillis D.M. 1987. Molecular versus morphological approaches to systematics. *Annu. Rev.*
496 *Ecol. Syst.* 18:23–42.

497 Holliday C.M., Gardner N.M. 2012. A new eusuchian crocodyliform with novel cranial
498 integument and its significance for the origin and evolution of Crocodylia. *PLoS*
499 *ONE*. 7:e30471.

500 Jolicoeur P., Mosimann J.E. 1960. Size and shape variation in the painted turtle. A principal
501 component analysis. *Growth*. 24:339–354.

502 Jouve S. 2009. The skull of *Teleosaurus cadomensis* (Crocodylomorpha; Thalattosuchia), and
503 phylogenetic analysis of Thalattosuchia. *J. Vertebr. Paleontol.* 29:88–102.

504 Kendall D.G. 1981. The statistics of shape. Interpreting multivariate data. Chichester: Wiley.
505 p. 75–80.

506 Kendall D.G. 1984. Shape manifolds, procrustean metrics, and complex projective spaces.
507 *Bull. Lond. Math. Soc.* 16:81–121.

508 Lü J., Unwin D.M., Jin X., Liu Y., Ji Q. 2009. Evidence for modular evolution in a long-
509 tailed pterosaur with a pterodactyloid skull. *Proc. R. Soc. Lond. B Biol.*
510 Sci.:rspb20091603.

511 Mickevich M.F., Johnson M.S. 1976. Congruence between morphological and allozyme data
512 in evolutionary inference and character evolution. *Syst. Biol.* 25:260–270.

513 Mongiardino Koch N., Soto I.M., Ramírez M.J. 2015. Overcoming problems with the use of
514 ratios as continuous characters for phylogenetic analyses. *Zool. Scr.* 44:463–474.

515 Mosimann J.E. 1970. Size allometry: size and shape variables with characterizations of the
516 lognormal and generalized gamma distributions. *J. Am. Stat. Assoc.* 65:930–945.

517 Nixon K.C., Carpenter J.M. 1996. On consensus, collapsibility, and clade concordance.
518 *Cladistics.* 12:305–321.

519 Pereyra V., Mound L.A. 2009. Phylogenetic relationships within the genus *Cranothrips*
520 (Thysanoptera, Melanthripidae) with consideration of host associations and disjunct
521 distributions within the family. *Syst. Entomol.* 34:151–161.

522 Pol D., Gasparini Z. 2009. Skull anatomy of *Dakosaurus andiniensis* (Thalattosuchia:
523 Crocodylomorpha) and the phylogenetic position of Thalattosuchia. *J. Syst.*
524 *Palaeontol.* 7:163–197.

525 Robinson D.F., Foulds L.R. 1981. Comparison of phylogenetic trees. *Math. Biosci.* 53:131–
526 147.

527 Rohlf F.J. 1998. On applications of geometric morphometrics to studies of ontogeny and
528 phylogeny. *Syst. Biol.* 47:147–158.

529 Rohlf F.J. 2003. Geometric morphometrics and phylogeny. Morphology, shape and
530 phylogeny. CRC Press. p. 175–193.

531 Rohlf F.J. 2010. TpsDig, digitize landmarks and outlines (version 2.16.). Available from
532 <http://life.bio.sunysb.edu/ee/rohlf/software.html>.

533 Small C.G. 1996. The statistical theory of shape. New York: Springer.

534 Stevens P.F. 1991. Character states, morphological variation, and phylogenetic analysis: A
535 Review. *Syst. Bot.* 16:553–583.

536 Strait D.S., Moniz M.A., Strait P.T. 1996. Finite mixture coding: a new approach to coding
537 continuous characters. *Syst. Biol.* 45:67–78.

538 Sweetman S., Pedreira-Segade U., Vidovic S. 2015. A new bernissartiid crocodyliform from
539 the Lower Cretaceous Wessex Formation (Wealden Group, Barremian) of the Isle of
540 Wight, southern England. *Acta Palaeontol. Pol.* 60:257–268.

541 Swiderski D.L., Zelditch M.L., Fink W.L. 1998. Why morphometrics is not special: coding
542 quantitative data for phylogenetic analysis. *Syst. Biol.* 47:508–519.

543 Thiele K. 1993. The holy grail of the perfect character: the cladistic treatment of
544 morphometric data. *Cladistics.* 9:275–304.

545 Vidovic S.U. 2016. A discourse on pterosaur phylogeny [Thesis]. University of Portsmouth.

546 Vidovic S.U., Martill D.M. 2014. *Pterodactylus scolopaciceps* Meyer, 1860 (Pterosauria,
547 Pterodactyloidea) from the Upper Jurassic of Bavaria, Germany: the problem of
548 cryptic pterosaur taxa in early ontogeny. *PLoS ONE.* 9:e110646.

549 Vidovic S.U., Martill D.M. 2017. The taxonomy and phylogeny of *Diopecephalus kochi*
550 (Wagner, 1837) and ‘*Germanodactylus rhamphastinus*’ (Wagner, 1851). New
551 Perspectives on Pterosaur Palaeobiology. Geological Society, London.

552 Wang X., Kellner A.W.A., Jiang S., Meng X. 2009. An unusual long-tailed pterosaur with
553 elongated neck from western Liaoning of China. An. Acad. Bras. Ciênc. 81:793–812.

554 Wheeler W. 1999. Measuring topological congruence by extending character techniques.
555 Cladistics. 15:131–135.

556 Wiens J.J. 2001. Character analysis in morphological phylogenetics: problems and solutions.
557 Syst. Biol. 50:689–699.

558