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Weber’s law states that the discriminability between two stimulus intensities depends
only on their ratio. Despite its status as the cornerstone of psychophysics, the mecha-
nisms underlying Weber’s law are still debated, as no principled way exists to choose
between its many proposed alternative explanations. We studied this problem train-
ing rats to discriminate the lateralization of sounds of different overall level. We
found that the rats’ discrimination accuracy in this task is level-invariant, consis-
tent with Weber’s law. Surprisingly, the shape of the reaction time distributions is
also level-invariant, implying that the only behavioral effect of changes in the overall
level of the sounds is a uniform scaling of time. Furthermore, we demonstrate that
Weber’s law breaks down if the stimulus duration is capped at values shorter than
the typical reaction time. Together, these facts suggest that Weber’s law is associated
to a process of bounded evidence accumulation. Consistent with this hypothesis, we
show that, among a broad class of sequential sampling models, the only robust mech-
anism consistent with reaction time scale-invariance is based on perfect accumulation
of evidence up to a constant bound, Poisson-like statistics, and a power-law encoding
of stimulus intensity. Fits of a minimal diffusion model with these characteristics
describe the rats performance and reaction time distributions with virtually no error.
Various manipulations of motivation were unable to alter the rats’ psychometric func-
tion, demonstrating the stability of the just-noticeable-difference and suggesting that,
at least under some conditions, the bound for evidence accumulation can set a hard
limit on discrimination accuracy. Our results establish the mechanistic foundation of
the process of intensity discrimination and clarify the factors that limit the precision
of sensory systems.
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Stimulus intensity is one of the fundamental dimensions of the sensory experience. Under-1

standing the relationship between the physical intensity of a stimulus and the subjective intensity2

of its associated percept was the main driving force behind the development of the field of psy-3

chophysics (1–6). This effort was propelled by the finding that the discriminability between two4

nearby stimuli along a sensory continuum depends only on the ratio between their intensities, not5

on their absolute magnitudes. This observation was first made by Weber in 1834 (1) and was soon6

after further characterized by Fechner, who gave it the name of Weber’s law (WL) (2). Hundreds7

of studies describing sensory discriminations in audition, vision, taste, olfaction, somatosensation8

and temperature have replicated WL (4–6). WL embodies a non-trivial computation, since sensory9

receptors and sensory neurons in the periphery encode absolute magnitude explictly in the form10

of monotonic increases in firing-rate. The way in which the absolute magnitude of the stimulus is11

factored out during discrimination is not fully understood, although many mechanisms to explain12

it have been proposed (2, 4, 5, 7–9), (see (5) for a summary of early work).13

The modern study of perception has also been motivated by understanding the limits of discrim-14

ination accuracy (10–12). However, whereas early work focused on discrimination and estimation15

of unstructured stimuli varying along simple sensory continua (e.g., luminance, weight) and used16

mainly Signal Detection Theory (SDT (13)), modern approaches have focused on the concept of17

bounded accumulation of evidence using temporally structured input. The resulting paradigm,18

which rests formally on the sequential sampling (SS) framework (14–19), has been extremely suc-19

cessful in guiding the development of hypothesis about perception and decision-making (20–26).20

The use of complex stimuli, however, makes it difficult to understand what exactly is the nature of21

the evidence used to guide discriminative choices, complicates teasing apart external and internal22

sources of noise (but see (25)), and has led to an emphasis on the differential component of dis-23

crimination at the expense of a better understanding of the role of overall stimulus magnitude. As24

a consequence, classic problems such as WL have not received large attention in the community25

studying perceptual decision making. An important exception is the work of Link, whose ‘wave26

theory’ showed that WL arises naturally from bounded accumulation of evidence when the intensity27

of the stimulus is represented by the rate of a Poisson process (4). More recently, some studies have28

realized the importance of reaction time (RT) as a diagnostic tool for comparing different models29

of WL (8), and it has been observed that Link’s model makes the prediction that overall stimulus30

level should rescale the RT distribution (RTD) (9). However, despite these efforts, the empirical data31

available does not unambiguously establish whether and how WL should be understood within32

a SS framework. Indeed, the most in-depth treatments still explain WL within SDT (5). Here we33

present empirical data and theoretical work showing conclusively that WL is an unavoidable con-34

sequence of exact temporal bounded accumulation of sensory evidence encoded in the brain using35

Poisson statistics. We studied WL by training rats to report the lateralization of binaural sounds36

of different overall levels. Rodents use inter-aural level differences (ILDs) caused by the acoustic37

shadow of the head (27) to localize sound on the horizontal plane (28, 29). ILD discrimination thus38

embodies a comparison of sound intensities that can be used to study WL (30). Consistent with39
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WL, a multiplicative change in the intensity of the two sounds being discriminated did not mod-40

ify discrimination accuracy. In fact, we demonstrate that the sole effect of this manipulation is to41

change the effective unit of time of the discrimination process. We also show that this constraint42

specifies the computational mechanism underlying WL in a way that permits a virtually complete43

quantitative description of the behavior of the rats.44

Behavioral correlates of level-invariant discrimination45

Since WL is well known to robustly hold for white noise discriminations (5, 30, 31), we trained rats46

to discriminate the lateralization of broadband noise bursts (5-20 KHz) in a standard three-port47

behavioral box (Fig. 1A), . We varied ILDs while keeping the average binaural level (ABL) constant48

(Fig. 1C). Sounds were played through headphones to minimize uncontrolled stimulus variations49
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Figure 1: Task structure and stimulus set. (A) Schematic depiction of different task events. Rats were rewarded with water
for making the correct choice and were punished with a time delay for making an error. (B) Time-line of relevant task events. FT,
fixation time. RT, reaction time. MT, movement time. (C) Stimulus set. All sounds were cosine-ramped broadband (5-20 KHz)
noise bursts. The ABL (ILD) of a particular stimulus is given by the average (difference – by convention right minus left) of the
intensity of the sound in dB SPL (sound level SL) across both speakers. P0 = 20 µPa is the reference pressure of the SPL scale.

(Methods; Fig. S1A). Discriminations were performed in a RT configuration (Fig. 1AB; Methods),50

with ILDs varying pseudo-randomly across trials and ABLs varying pseudo-randomly in blocks of51

80 trials (Fig. 1C). Rats were trained to perform at their psychophysical discrimination threshold52

(Fig. S2B).53
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The accuracy of ILD discriminations did not depend on ABL (Fig. 2A-B). Differences in the d’54

index for ILD discriminations at ABLs of 40 and 60 dB SPL did not reach statistical significance for55

any rat (p > 0.05, Fisher’s exact test, Bonferroni corrected; see Table S1). For two of the five rats, d’56

for ABL = 20 dB SPL was significantly different than that for 40 and 60 dB SPL (in one case larger57

and in the other smaller; p < 0.05, Fisher’s exact test, Bonferroni corrected). At the group level,58

differences in d’ were again not statistically significant for any of the three ABLs (p > 0.05, Fisher’s59

exact test, Bonferroni corrected). Thus, as shown before for other species (32–34), rats also display60

level-invariant ILD discrimination accuracy, at least for broadband noise. Because the ILD of the61

stimulus is a function (logarithm) of the ratio of the root-mean-square (RMS) pressure across the62

two ears (ILD = 20 log(PR/PL); Fig. 1C) , this result is equivalent to WL.63
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Figure 2: Behavioral correlates of level-invariant ILD discrimination (A) Choose-right probabilities as a function of ILD
for each ABL separately (mean ± SD across rats). (B) Sensitivity (d’, left) and criterion (c, right) for each animal (n = 5; black:
mean ± SD across rats). (C) Reaction time (mean ± SEM across rats; full reaction time distributions (RTDs) for individual rats
are shown in Fig. S9) as a function of difficulty for each ABL separately. (D) RTDs for the three ABLs are shown separately for
each difficulty, and combined across difficulties (right). For all RTDs, the dashed line indicates the time at which RTs become
condition-dependent (90 ms, scale bar in all plots – see Methods; Fig. S3). Each RTD contains all data for that condition from
all rats. (E) For each difficulty, we have rescaled time uniformly (see Methods; Fig. S4) to maximize the overlap of each RTD
with that of the loudest sound (ABL = 60 dB SPL). (Inset) Accuracy of the shape-invariance of the RTDs. Each bar is the R2 of a
linear fit of the percentiles of each RTD against those of the RTD for ABL = 60 dB SPL (see Methods; Fig. S4).

We observed that more difficult discriminations have longer RTs (Fig. 2C), a signature of the64

standard speed-accuracy trade-off associated to bounded evidence accumulation (14, 19, 35). How-65

ever, we additionally observed that discriminations involving overall quieter sounds (lower ABLs)66
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also took longer on average (Fig. 2C; see also (8, 9, 33)). Both ILD and ABL had a significant impact67

on mean RT on each individual rat (Table S1) as well as at the group level (significant effect of ILD,68

two-way RM-ANOVA, F(3, 12) = 17.54, p=0.0001; significant effect of ABL, two-way RM-ANOVA,69

F(2, 8) = 77.12, p <0.0001). To further characterize the effect of stimulus intensity on RT, we exam-70

ined the dependence of the full RTDs on ABL, excluding very short RTs which reflect anticipation71

and are condition-independent (see Methods; Fig. S3). RTDs are right-skewed, as is characteristic72

of integration to bound models (19, 36), and are also more narrow for louder sounds (Fig. 2D), as73

expected from the mean RT data (Fig. 2C). However, the shape of the distributions does not depend74

on ABL. To reveal this, we scaled the distributions for ABL = 20 and 40 dB SPL so as to maximize75

their overlap with the one for ABL = 60 dB SPL (see Fig. S4). Remarkably, the rescaled distributions76

are almost identical for each difficulty and for all difficulties combined (Fig. 2E). In each case, more77

than 99% of the variance in the shape of the RTD for one ABL could be explained by the shape78

of the RTD for a different ABL (Fig. 2E, inset; mean R2=0.996; see Methods). This result, together79

with the level-invariance of discrimination accuracy (Fig. 2A-B), demonstrates that the sole effect of80

changes in ABL is to change the effective units of time of the sensory discrimination process (for an81

in-depth analysis of the effect of difficulty on the RTD see Figs. S4, S6), with a shorter effective unit82

of time for louder sounds. This implies that, at least for the purposes of discrimination, the effective83

duration of a sound increases with its intensity.84

Weber’s law breaks down for controlled short sound durations85

The speed-accuracy trade off (Fig. 2C) and the right-skew of the RTDs (Fig. 2D,E) suggest that86

rats are solving the task by a process of bounded accumulation of sensory evidence (18, 36). If this87

was the case, the results in Fig. 2 make the prediction that, for fixed sound durations (shorter than88

the time it typically takes for the rats to decide), performance should be worse for lower ABLs,89

since the effective duration of the integration period for lower ABLs would be shorter. Thus, WL90

should breakdown in an ABL-dependent manner. We tested this prediction in a series of sessions91

where the rats were still free to choose when to exit the central port, but if they had not exited by92

a maximum sound duration SDmax, the sound stopped (see Methods). We used various values for93

SDmax within a session and considered only ABL = 20 and 40 dB SPL for this experiment, since they94

are the slowest conditions and would presumably be more affected by the capped sound duration.95

Qualitatively, performance degrades and becomes ABL-dependent for short SDmax (Fig. 3A). To96

quantify this effect, we fit a sigmoid with two parameters (asymptote and threshold; see Methods)97

to the difference in discriminability between the RT sessions and each SDmax condition, separately98

for each ABL (Fig. 3B). As SDmax decreases, performance degrades but, critically, it degrades more99

for the lower ABL (asympotote for 20 (40) dB SPL = 0.99 (0.59); p <0.0005, permutation test for a100

comparison of the asymptote; see Methods) for every fixed duration. Furthermore, the inflection101

point of the sigmoid also occurs at longer durations for ABL = 20 dB SPL (threshold for 20 (40)102

dB SPL = 260 (195) ms; p=0.003, permutation test for a comparison of the threshold). These results103
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(Figs. 2-3) suggest that WL occurs because multiplicative changes in stimulus intensity only modify104

the effective unit of time of a bounded evidence accumulation process.105
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Figure 3: Breakdown of Weber’s law for short controlled sound durations (A) Psychometric functions for three conditions
where the maximum sound duration SDmax was 75, 150, 250 ms and for the RT sessions where the sound always stopped only
when the choice was made. Empty dots are individual rats (n=4) and filled dots are mean ± SD across rats. Fits are from a two
parameter logistic function (slope and asymptote; see Methods). (B) Difference between the discriminability index (d’) for the RT
sessions and for each SDmax, separately for each of the two ABLs as a function 1/SDmax (filled circles; mean ± SD across rats).
We used 1/SDmax to avoid having to arbitrarily specify a SDmax for the RT sessions. Lines are fits to a sigmoidal function (see
Methods). Arrows show the four SDmax for which psychometric functions are shown in (A).

The mechanism underlying Weber’s law106

How narrowly can the mechanism that underlies discrimination be specified solely from the scale-107

invariance of the RTDs with respect to ABL? Since our data (Figs. 2-3) suggests a mechanism based108

on bounded accumulation of evidence, our starting point was the broad class of models in which109

choices are triggered when the decision variable (DV) hits for the first time either of two (possibly110

time-dependent) bounds, and where the DV evolves in time as a continuous Markov process (CMP)111

(37). Most proposed models for perceptual decision-making are, or can be construed as, CMPs112

(4, 35, 36, 38–41). Qualitatively, the only assumptions in a CMP are that successive increments in the113

DV are statistically independent and of a magnitude which vanishes as the time increment goes114

to zero (hence, the word ‘continuous’), which we expect to be appropriate since our stimuli have115

constant intensity. We therefore asked: if we consider a discrimination involving a sound with RMS116

pressure at the two ears (PR, PL) and another discrimination involving (kPR, kPL), which members117

of this model class have the property that the second discrimination proceeding under a given118

temporal variable t is identical to the first discrimination proceeding under a rescaled temporal119

variable t′ = αt? Our analysis (Supplementary Information) reveals that this condition is very res-120
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These two functions are plotted on the right (with λ = 0.3)
as surfaces in the (ILD,ABL) plane. The evidence is the dif-
ference between the activity of the left and right channels.
Since the firing statistics are Poisson, the mean (variance) of the evidence e(t) is proportional to the difference (sum) betwe-
                                                                                                          en these two surfaces. Close to psychophysical threshold
                                                                                                          (ILD close to zero; plots on the left), the mean is linear in
                                                                                                          ILD. The slope of this linear relationship is a gain factor
                                                                                                          g(ABL,λ) that increases with ABL (see Supplementary In-
                                                                                                          formation). The linear terms for the left and right channels
                                                                                                          have opposite sign an thus cancel when added, so the va-
                                                                                                          riance is approximately independent of ILD, but increases
                                                                                                          with ABL through the same gain factor. Thus
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trictive, allowing only two types of solutions. One type requires a precise relationship between121

the shape of the time-varying bound, the leak of the DV and the statistics of the evidence. This122
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solution is not robust (it requires careful parameter tuning) and requires unplausible relationships123

between disparate processes (e.g., spiking statistics and decision bounds), so we don’t consider it124

further. The only alternative solution just requires the following conditions: a constant decision125

bound, no leak (i.e., perfect accumulation of evidence), a power-law relationship between physical126

stimulus intensity and sensory evidence, and a linear relationship between the variance of the127

evidence and its mean. Qualitatively, the essence of this solution can be traced to the fact that128

the spike count statistics of a Poisson process are invariant if the rate and the count window are129

modified by multiplicative factors k and 1/k respectively. This property extends to any process130

with a linear variance-to-mean relationship (i.e., constant Fano Factor) and is relevant because the131

DV in the model effectively ‘counts’, i.e., temporally integrates, sensory spikes. Finally, the power-132

law transformation is necessary so that multiplicative factors in stimulus intensity translate into133

multiplicative factors in firing rate, which can then be compensated by a rescaling of time.134

We constructed a minimal implementation of this solution (see Box, Supplementary Information)135

in which the evidence is the difference between the instantaneous activity of two sensory channels,136

corresponding to the two ears. The firing rate of the N neurons in each channel is a power-law of137

the RMS pressure level at the ear, and neurons fire with Poisson statistics. The DV integrates the138

evidence in time and a choice is triggered when a constant bound at DV = ±θ is hit for the first139

time (decision-time). Choice and decision-time in the model depend only on three parameters (see140

Box): the power-law exponent (λ) and net gain (Nr0) of the pressure to rate transformation of each141

channel, and the decision bound in units of the single-spike quantum of evidence (θe). This is the142

absolute minimum number of parameters possible in a bounded accumulation model with non-143

linear stimulus encoding. In the Supplementary Information we show that, close to psychophysical144

threshold, choice dynamics in this model are captured by a single-parameter drift-diffusion model145

(DDM)146

dz
dτ

= Γ ILD + η(τ) θz = ±1 ; z(τ = 0) = 0 (1)

where z is the DV, and the single parameter Γ = λθe/[40/ log(10)] measures how the stimulus’ ILD147

sets the overall strength of the evidence of the discrimination. The stimulus’ ABL does not appear148

in this equation, implying that all the non-trivial properties of the discrimination (choice accuracy149

and the shape of the RTD together with its dependence on difficulty) depend exclusively on ILD,150

are fully specified by the parameter Γ, and are invariant with respect to changes in overall stimulus151

intensity. The temporal variable τ in Eq. 1 is dimensionless. The time t in seconds in the actual152

discrimination process is related to τ as t = tθ(ABL) τ, where the effective unit of time is given by153

tθ(ABL) =
θ2

e
2Nr0

10−λ ABL/20 (2)

Quantitative model fits154

By construction, this model obeys WL and produces scale-invariant RTDs. It is possible, however,155

that the model is still unable to fit the data quantitatively (e.g., if the model produces RTDs different156

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333559doi: bioRxiv preprint 

https://doi.org/10.1101/333559
http://creativecommons.org/licenses/by-nc-nd/4.0/


from the measured ones or if it fails to capture how exactly they change with ILD and ABL),157

specially considering that all observed quantities (except for the effective unit of time of the RTDs)158

depend on the single parameter Γ, and that there are twelve experimental conditions (four difficul-159
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Figure 4: Model fits. (A) Psychometric function. Black circles show choose-right probabilities (mean ± SD across rats). For
each rat, the responses to the three ABLs where averaged. Line shows the best fit to this data from the single-parameter (Γ)
model in Eq. 1. (B) Circles show the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles (mean ± SEM across rats; Model fits for individual
rats are shown in Fig. S9) of the RT distribution. Each plot is one ABL (same color code as in Fig. 2). These are the statistics
that were used for fitting the remaining four model parameters (see text and Methods). Black lines represent model fits (C) RT
histograms for each ABL and difficulty (color) and for the best fit model (black).

ties and three ABLs) whose full RTD we are aiming to account for. Since the measured RTs contain160

stimulus-independent delays (non-decision time – tNDT; Fig. S3) in addition to the decision-time161

specified by the model, we added two parameters describing the mean (tND) and variance (sND)162

across trials of tNDT. We used a ‘constrained’ model fitting approach (see Methods, Fig. S7) designed163

to challenge the model’s predictive power. Briefly, we extracted all the ILD dependence of the164

problem from fits to accuracy only (without using RTs), so that the shape of the RTDs and their ILD165

dependence are all model predictions. We then used RTs to infer the effective units of time for each166

ABL, but we only used data from the ABL = 20 and 60 dB SPL conditions, so that everything about167

the RTDs at ABL = 40 dB SPL is also a prediction.168

The model’s fit at the group level are shown in Fig. 4 (see Fig. S9 for fits to the data from169

each rat individually). The single-parameter fit to accuracy is excellent, accounting for more than170

99.8% of the variance in the rats psychometric data (Fig. 4A). Using the fitted value of Γ, the just-171

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333559doi: bioRxiv preprint 

https://doi.org/10.1101/333559
http://creativecommons.org/licenses/by-nc-nd/4.0/


noticeable-difference (JND) of our rats is ∼ 2.3 dB (see Table S2), which is similar to that measured172

in other species (42–44). The quality of the fits to the RTDs for all twelve conditions (Fig. 4B-C) is173

even more impressive. Once the single number tθ(ABL) (Eq. 2) for a given row in Fig. 4C is fixed174

by the fit, both the shape of the model RTDs as well as their dependence on difficulty is completely175

determined by Γ, which only depends on the psychometric function. Nevertheless they match the176

experimentally observed RTDs with remarkable accuracy. No RT-data was used from our ABL =177

40 dB SPL condition, and still the model accurately predicts the RTDs for this intensity. Eq. 2 also178

makes a quantitative prediction about the exact functional dependence between ABL and RTs, which179

we verified is also consistent with our measurements (Fig. S8). The best-fit parameters are shown180

in Table S2, which also shows results for alternative fitting methods, all giving essentially identical181

results. The power-law exponent λ = 0.099± 0.003, indicates a large degree of compression, which182

results in a relatively mild-dependence of RTs with ABL. The value of θe = 42.2± 1.5 implies that183

each sensory spike contributes a few percent of the evidence necessary to reach threshold.184

To validate our interpretation of the parameters, we performed further controls and analyses185

to prove that the rats’ behavior is fully consistent with our implicit modeling assumptions (Fig.186

S10). In particular we show that rats can generalize ILD discrimination to new sounds (Fig. S11B),187

suggesting that they fully understand the task contingencies (Fig. S11A), that performance-limiting188

noise has an internal origin (Figs. S11C), and that only the nature of the sound on a given trial is189

predictive of the rat’s behavior on that trial, i.e., that the rats display virtually no history-effects or190

sequential dependencies (Fig. S12) that could contaminate our estimate of the JND.191

How is the JND established?192

The JND in our model depends on the power-law exponent λ and on the decision threshold θe (Eq.193

1, Supplementary Information). The exponent λ presumably reflects signal-transduction biophysics194

and is thus not obviously plastic. The threshold θe on the other hand, similarly to the criterion of195

SDT, is usually assumed to be under the subject’s control and to depend on the value of outcomes196

(4, 13, 35, 40, 41), which, if true, would put the JND under the control of the subjects. The JND,197

however, is usually assumed to be a property of the sensory system and, in fact, we see very little198

variation in the value of the JND of our rats (essentially no variation in four out of five; Table S2).199

Why are the JNDs so similar and, more generally, why do they take their observed values?200

One possibility is that the evidence threshold may be in some sense optimal and thus specified201

by the task contingencies. To explore this hypothesis, we computed the value of the threshold that202

would maximize reward-rate (see Methods). The optimal threshold is around twice our estimate for203

θe (Fig. 5A), casting doubts on the optimality of the measured decision bound. Our estimate of the204

optimal threshold could, however, be unreliable, because the reward-rate may depend on costs that205

are difficult to identify, e.g., an explicit cost of time (41) (although we note that, because RTs vary206

with ABL, no single threshold can maximize reward-rate for all stimulus intensities; Fig. 5A). To207

address this difficulty, we decided to test whether the threshold could, at least, be locally adapted208
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to the task contingencies (a necessary condition for optimality).209
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Figure 5: Optimal decision thresholds and role of motivation. (A) Curves show reward rate as a function of decision
threshold for each ABL separately (see Methods). Filled colored circles are the optimal decision thresholds. Dashed line shows
the actual fitted decision threshold. (B) Choose-right probability (mean ± SD across rats) for hard versus control blocks. (C)
Choose-right probabilities (mean ± SD across rats) for standard blocks and for ’uneven reward’ blocks where rewards for correct
choices in the two hardest (easiest) conditions are 20% larger (smaller). See Methods for details on task manipulations.

We attempted to drive increases in accuracy which could be taken as evidence of raised decision210

thresholds by increasing the motivation of the rats. First, we presented blocks with only the two211

most difficult conditions, but we did not observe changes in accuracy (Fig. 5B, comparison of d’212

between only hard and control conditions: p = 0.5, Fisher’s exact test; see (45) for different results213

on a similar manipulation). We also varied the reward magnitude as a function of difficulty on214

a series of sessions, making rewards larger (smaller) for the two hardest (easiest) conditions, but215

this also failed to produce any changes in performance (Fig. 5C, comparison of d’ between uneven216

reward and control conditions: p = 0.9, Fisher’s exact test). Subsequent longer-lasting bi-directional217

manipulations of motivation (inducing changes in reward rate of more than 100%) produced the218

same results (Fig. S13; see Table S3 for statistics for all behavioral manipulations). We conclude that219

the evidence bound is set to a fixed value for a yet-unknown purpose, and that this value of the220

bound in turn sets a hard-limit on discrimination accuracy.221

Discussion222

Although the importance of Weber’s law derives from its generality across sensory modalities and223

species (5, 6) we believe that it is particular features of our task and model system that allowed224

us to establish such an accurate specification of the mechanism driving the behavior. In an ILD225

discrimination with respect to the midline, subjects report whether a sound is lateralized to the left226

or right. It is only from our knowledge of the auditory system that we can interpret this report227

as one about the relative intensity of the sound at the two ears (28, 46). We are thus recruiting228

a circuit designed by evolution for the purpose of comparing stimulus intensity (46), rather than229

trying to create or co-opt a general purpose comparison mechanisms with no particular significance230

for the rat. Furthermore, in an ILD discrimination with respect to the midline the categorization231

threshold is hard wired (46,47). We believe that it is because of this fact that rats appear to genuinely232
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understand the contingencies of the task (Fig. S11), display negligible lapse rates (Figs. S11B-C,233

S13A), and be purely driven by the sensory stimulus (Figs. S10, S12). The lack of alternative sources234

of control over the behavior, such as trial-history effects (Fig. S12), is unusual, even in humans (48).235

Rats are able to sustain motivation and behave reliably and consistently for the many thousands236

of trials that are necessary to precisely quantify the small but systematic differences in RT that are237

key to our findings. Our results demonstrate that rats are an excellent model organism for RT238

psychophysics.239

Although many models to explain Weber’s law have been proposed, most previous models and240

experiments (with exceptions (4, 8, 9); see below) are cast within SDT (as opposed to SS) and thus241

do not consider RT. Within SDT, subject behavior follows the properties of the evidence at a certain242

imposed time (the stimulus duration), whereas within SS, behavior derives from imposing that the243

evidence reaches a certain value (at an internally derived time which sets the RT). This distinction244

becomes relevant in comparing our results with those of Brody and colleagues, which in a series245

of elegant studies have been dissecting how rats discriminate the rate of lateralized discrete pulses246

of sensory evidence in a fixed (but variable) duration task (25, 49). Although we find, like them,247

that a key computation in sensory discrimination is ‘perfect’ (i.e., without time decay) accumulation248

of evidence, there are also important differences. In the latest instantiation of their model (50),249

they show that their data is well described by a SDT model with ’scalar’ evidence statistics (SD250

proportional to mean; see also (8)), whereas in our model it is the variance of the evidence that251

is proportional to the mean – indicative of statistical independence of the evidence across time.252

Both (9, 51) and our results show that, within SS, scalar (in fact, perfectly sale invariant) behavior253

is compatible with temporally uncorrelated evidence samples. In contrast, using a SDT model254

forces the evidence to have the same statistics as the behavior. Furthermore, it is not clear how to255

mechanistically implement scalar statistics at the level of the evidence. Although Scott et al. (50) do256

not explicitly address WL, they show that, consistent with WL, behavior is not invariant with respect257

to additive changes in the evidence. It would be interesting to test whether discrimination accuracy258

depends only on the ratio of the number (or rate) of pulses, as WL would predict. It is possible259

that the brain uses fundamentally different mechanism to accumulate trains of evidence pulses (a260

stimulus with stochastic temporal variability) and evidence about the intensity of ‘constant’ stimuli.261

However, the differences between the behavioral report in the two tasks (choice at different fixed262

durations vs choice and RT) makes it difficult to quantitatively compare the results of Brody and263

colleagues with ours. Finally, more unspecific but important properties of the two tasks also appear264

different, as our rats in the RT task neither lapse (see Figs. S11B-C, S13A) nor display sequential265

dependencies (Fig. S12).266

Although SS approaches to perception have a long history (16, 17), it was Link (4) who empha-267

sized a connection between SS and Weber’s law, highlighting the importance of Poisson variability268

(see (8) for a thorough analysis of the connection between RT and WL within SS but with non-269

Poisson evidence statistics). In an important recent study, Simen and colleagues predicted that WL270

should be associated to scale-invariance of the RTD (9), highlighting how this unifies discrimination271
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and temporal estimation, where scale-invariance of response times is well established (52). The ev-272

idence presented in support of the claim, however, is inconclusive, even at the level of establishing273

WL (perhaps because pure tone discriminations were analyzed, which are known to be one of the274

few exceptions to WL (53)). Moreover, Simen and colleagues did not attempt a quantitative match275

between their model and data.276

Our work extends the contributions of Link and Simen et al. (4, 9) in important ways. First and277

foremost, we establish unambiguously and for the first time that, at least in our task, WL arises278

because changes in stimulus intensity have the exclusive effect of a uniform rescaling of the RTD.279

Together with the breakdown of WL for short durations, this strongly suggests that WL is a feature280

of a process of bounded accumulation of evidence. In addition, we show that the scale-invariance281

of the RTD provides a strong constraint that allows the identification of the computational mecha-282

nism at work qualitatively, without resorting to model fitting. Finally, we prove that the effectively283

simplest implementation of the identified mechanism displays a level of accuracy at describing the284

behavior of the subjects that is highly unusual. The accuracy of the model is even more remarkable285

given that all RT-related properties of the model (except for the effective unit of time for each ABL)286

are pure predictions based only on a single-parameter fit to the rats discrimination accuracy. Glob-287

ally, all of these facts constitute, in our opinion, very strong evidence that the mechanism initially288

proposed by Link (4) and refined by us, is in fact the correct explanation for Weber’s law.289

Whereas scale-invariance of the RTD for stimuli of different overall intensities is a new finding,290

previous work has pointed out the constancy of the coefficient of variation of the RTD with respect291

to changes in stimulus difficulty (54–56), another form of scale-invariance. In the model, however,292

the former type of invariance is exact, whereas the latter type is approximate (Supplementary In-293

formation; Fig. S6). Remarkably, the RT data allows us to also confirm this model prediction: The294

accuracy of the scale-invariance as a function of difficulty (but not ABL) degrades with the differ-295

ence between the raw, unscaled RTDs (Fig. S4). We believe that this trend is generic: any mechanism296

producing approximate scale-invariance will tend to work less well as the unscaled RTDs become297

more different. This lends further support to the mechanism considered here, which generates exact298

ABL-driven scale-invariance. Interestingly, it is well known that more intense sensory stimuli are299

perceived as lasting longer (57), in line with the intensity-driven change in the units of time that we300

report. This suggests that estimation of the duration of sensory stimuli may rely on the same neural301

signals that are used to make discriminative choices about those stimuli (58).302

Since the activity of the sensory channels grows with stimulus intensity (RMS pressure in our303

case), stronger stimulus intensities lead to faster drift rates. This takes the form of a multiplicative304

gain increase on the discriminative variable (ILD) by sound intensity (Box; Supplementary Infor-305

mation). Intensity-driven changes in gain are common in sensory processing (59–61), and explicit306

gain-normalization schemes have been proposed to remove the unspecific effect of intensity or con-307

trast (62–64), also in the context of ILD discrimination (42). Gain normalization has also been linked308

to the contextual effect of stimulus conjunctions in value-based decision making (65) and atten-309

tion (66). In our model, the multiplicative effect of intensity on the strength of evidence does not310
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have any consequences in terms of discrimination accuracy without the need of any explicit nor-311

malization mechanism. Although drift rates increase with ABL, so does the noise in the trajectories,312

in a way that leads to exactly the same probabilities of hitting either bound. The higher drifts and313

noise, however, lead to earlier threshold crossings, which substantiates the ABL dependence of RTs.314

Typically, a single drift-rate parameter is used to measure strength of evidence (in effect measuring315

strength of evidence relative to a constant noise level) (35, 41, 55). However, discrimination tasks316

involve a comparison, which is conceptualized as as a difference in activity between two channels317

with opposite stimulus tuning, making the problem intrinsically two-dimensional. In our case, we318

use ILD and ABL as these two dimensions, which is equivalent to a change of coordinates from the319

activity of the two channels to their sum and difference. Our results clarify what is the contribu-320

tion of each of these two dimensions to the subject’s behavior in a discrimination task, and when a321

one-dimensional approximation is appropriate (Supplementary Information; Fig. S5). In practice,322

including stimuli with different intensities in the experiment removes the freedom to choose an323

arbitrary value for the noise of the evidence (typically taken as σ = 1 or σ = 0.1) when using a324

DDM to fit the data.325

Power-law transformations of stimulus intensity can be related to our results in two different326

ways. First, a variety of sensory receptors have been shown to encode stimulus magnitude as a327

power-law for a partial but significant portion of their dynamic range (67), although with exponents328

typically larger than our finding of λ ∼ 0.1 (Table S2) (e.g., an exponent of ∼ 0.3 has been iden-329

tified in the cochlea (68, 69)). Evidently, our model is phenomenological, but our results suggest330

that several cascaded compressive stages underly the representation of intensity. Second, Stevens’331

‘Psychophysical Law’, derived through variety of stimulus estimation approaches, states that the332

subjective intensity of a stimulus is a power-law of its physical intensity (3) (but see (70)). Although333

it is tempting to relate the activity of the sensory channels in our model, which is also a power-law334

of stimulus intensity, to the posited subjective intensity of the stimuli, an accurate interpretation of335

the results of estimation experiments requires a good model of the behavior, and the computational336

underpinnings of estimation and discrimination are expected to be different.337

Studies on the neural basis of level-invariant ILD discrimination or sound localization have fo-338

cused on the existence of explicitly level-invariant neural codes (e.g., the same ILD tuning regardless339

of ABL). Recordings from the lateral superior olive (LSO – the first station in the auditory pathway340

where ILDs are represented) and the inferior colliculus (IC) under anesthesia have revealed an addi-341

tive, rather than multiplicative, effect of overall intensity on ILD tuning (with shifts more prevalent342

in the LSO (71, 72)). In the cortex, intracellular recordings reveal a lack of explicit level invari-343

ance (73). Neurons in the auditory cortex are broadly tuned to ILD and azimuth with a tendency344

towards preferences for sounds louder on the contra-lateral side (74, 75). Opponent-process models345

(similar in spirit to our proposal) employing subtraction of activity from neurons displaying op-346

posite tuning to ILD/azimuth, allow more accurate and more level-tolerant decoding of ILD than347

models using the activity of similarly tuned neurons (72,74,76). Our results show that explicit level348

invariance in neural representations is not necessary for level-invariant accuracy at the behavioral349
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level, and can instead be a property of the discrimination mechanism itself, with neither neurons350

encoding the evidence, nor neurons integrating it, displaying ABL-independent activity. Regarding351

non-sensory components of the model, the parietal cortex (77–79), and the striatum (80), are candi-352

dates for evidence accumulation, and the superior colliculus (SC) has been suggested as a possible353

site where a threshold-like mechanism might be implemented (81, 82). Future studies should ad-354

dress the involvement of these areas in tasks probing the effect of stimulus intensity on sensory355

discrimination.356

Our failure to drive increases in performance through strong manipulations of motivation (Figs.357

5, S13) suggests that rats in our task appear to have reached the limits of discrimination accuracy358

imposed by their sensory organs. However, their behavior is almost perfectly explained by a model359

which contains no such hard limits. Indeed, getting the model to perform better is trivially accom-360

plished by raising the evidence threshold, something our rats appear incapable of doing even if361

strongly motivated to do so. It remains to be elucidated how the fixed evidence threshold is set and362

under which conditions motivation ceases to have control over its value. Although our experiments363

argue against an optimal value of the threshold in the context of imposed task contingencies, its364

value may still be adaptive in the face of longer-lasting developmental or evolutionary constraints.365

Do our results shed any light on a normative explanation for Weber’s law? In ILD discrim-366

ination, intensity ratios specify angles in the horizontal plane (azimuth), since the attenuation of367

sound intensity by the head for a given azimuth is itself a ratio (i.e., it’s specified in dB). Thus, ratio-368

metric intensity comparisons would seem adaptive as cues for the localization of sound. May this369

extend to other modalities? In vision, information about the environment is based on the relative370

reflectance of different surfaces. If the intensity of a light source changes, the relative luminance of371

different patches of an image stay constant, even if their absolute difference changes. In olfaction,372

molar ratios in a chemical mixture remain constant when the absolute concentration of the mixture373

is altered, and discrimination accuracy of mixtures depends on ratios (83). Thus, we hypothesize374

that the ratio-sensitivity of behavior which Weber’s law embodies is an adaptive strategy to extract375

information from the environment in a way that is invariant of the intensity of the sources.376

Materials and Methods377

Experimental animals378

All procedures were carried out in accordance with European Union Directive 86/609/EEC and379

approved by Direcao-Geral de Veterinaria. Experiments were performed on 15 adult female Long-380

Evans hooded rats. Animals were 12-13 weeks old, weighted between 250 and 300 g at the beginning381

of the experiments, and were kept above 85% of the initial weight. All animals were naive to any382

behavioral tests. Rats had free access to food but water was restricted to the behavioral sessions,383

which were conducted during five consecutive days per week; animals had access to water during384

the sixth day and were water deprived for 24 hours before each round of five sessions. All results in385

the main text except for Fig. 3 came from the same batch of rats (Batch A; see Table S3). A second386
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batch of animals (Batch B) was used for the behavioral manipulations shown Figs. 3, S11C, S13.387

The five rats in Batch A were tested in the reaction time sound lateralization task. Four of them388

performed blocks including only the hardest conditions, and three of them performed blocks with389

uneven RW and blocks with pure tones. The six rats in Batch B were tested in the bidirectional390

motivation manipulations and in the frozen noise manipulations. Four of them were tested in the391

capped sound duration sessions.392

Auditory Stimuli393

A percept of lateralization was created by presenting broadband (5 to 20 kHz) noise with different394

intensities to each ear (interaural level difference, ILD). The noise was cosine-ramped and indepen-395

dently generated for each ear and for each presentation using a Tucker-Davies Technologies RP2396

module at a sample rate of 50 kHz. The effect of loudness on sound localization was assessed by397

using different average binaural levels (ABLs). After training the animals with gradually smaller398

ILDs (see below) at an ABL of 50 dB, they were tested with a set of stimuli comprising eight ILDs,399

ranging from -6 to 6 dB linearly spaced in 1.5 dB steps, and three ABLs: 20, 40 and 60 dB SPL (for400

the main task; see below for task variants). Negative ILD values indicate higher sound intensity at401

the left ear; for example, an ILD of -6 dB for an ABL of 40 dB consisted in presenting the noise at402

43 dB to the left ear and 37 dB to the right.403

The headphones were calibrated weekly, using a Brüel & Kjaer Free-field 1
4 in microphone,404

placed in front of the speaker, 5 mm apart. For the training phase, the arena speakers were calibrated405

with the same microphone, placed in front of the central port, facing the speaker to be calibrated.406

Behavioral apparatus and headphone design407

Rats were trained and tested on the sound lateralization task (Fig. 1A-B) using a standard Coul-408

bourn Instruments modular box (30x25x30 cm). All components of the behavioral setup were con-409

nected to a RP2 module and accessed by a computer running Matlab 2012b (www.mathworks.com)410

using TDevAcc controls. The behavioral setup was placed inside a soundproof box, illuminated by411

infrared lights and equipped with an infrared camera to observe the animals during the sessions.412

The behavioral box had three ports (nose-pokes), made of stainless steel and equipped with infrared413

sensors, in one of the walls. The central port was used to initiate the trial and to keep the sound414

playing. The two lateral ports, equipped with a water spout, were used for the animal to commu-415

nicate its choice (left and right ports to indicate the sound was louder on the left and on the right,416

respectively) and to deliver a drop of water (28 µl; reward) after correct choices. The nose-pokes417

were conical (2.5 cm wide in the outer extreme, and 1.5 cm deep) and the distance between the418

central and the lateral ports was 8 cm (center to center). Two speakers (arena speakers) were placed419

above the lateral ports and were only used during the initial training (see below). From then on,420

stimuli were played trough custom made, detachable headphones.421

Both the base to be implanted in the skull and the structure of the headphones were designed422
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using Sketchup (www.sketchup.com) and 3D printed in VisiJet(R) EX200 Plastic. The structure423

consisted of different components that could be adjusted for each individual rat and an enclosure424

that fitted the size and shape of the speakers. The speakers were aligned with the ears and placed425

at 5 mm from the entrance of the ear canal. Once adjusted, all pieces were glued together and426

remained fixed throughout the experiment (Fig. S1A). The headphones were attached to the base at427

the beginning of each behavioral session and detached before taking the animal back to the holding428

cage. Our speakers were Knowles receivers (model number 2403 260 00029), which were small429

enough to fit in our headphone design.430

Behavioral Tasks431

Sound lateralization task: Temporal and outcome contingencies432

Rats started a trial by poking in the central port within a 6 s time window (start trial waiting time)433

triggered by the end of the inter-trial interval (ITI, 3s), which was signaled by a light in the box434

turning off. After a short, variable fixation time (FT, 300-350 ms) the sound was played binaurally,435

through custom-made headphones, until the rat left the central port or until the maximum pre-436

sentation time (6 s) was reached. Rats had to communicate, within a 2 s time window (response437

waiting time), whether the sound was louder at the left or right ear by poking with the snout in438

either the left or right ports, respectively. Correct choices were rewarded with a drop of water (28439

µl) and incorrect responses penalized with a 10 s timeout during which the rat was not able to start440

a new trial. Trials in which the rat failed to start a new trial within the start trial waiting time, broke441

fixation during the FT, or failed to poke in either lateral port withing the response waiting time,442

were considered aborts. Aborts were repeated after a 1 s time penalty.443

Each session was divided in blocks of 80 trials. Within each block, the ABL was kept constant,444

while the ILD changed pseudo-randomly from trial to trial. Typically, sessions lasted for two hours445

and rats performed between 800 and 1200 trials.446

Sound lateralization task: Training447

Animals were initially trained in a simplified version of the task, in which fully lateralized sounds448

(50 dB SPL broadband noise) were presented from either of the arena speakers. Rats understand449

the basic contingency of the task quickly, within a few hundred trials (Fig. S2A). The sound was450

played until the animal entered one of the lateral ports, and errors were repeated immediately. Short451

fixation times and long waiting times were used to increase the chances for the rat to complete the452

trial while exploring the box. Every time the rat completed a trial, the fixation time was increased453

by 1 ms and, once the rat completed three consecutive blocks (120 trials per block) with less than454

30% abort rate, waiting times were set to their final durations and ILDs were introduced. Initially,455

the ABL was set to 50 dB and the ILD step was set to 4 dB; depending on the animals performance,456

the step was decreased gradually until the final 1.5 dB (Fig. S2B).457
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Once performance with 50 dB ABL and 1.5 dB ILD step was stable, the magnetic base for458

the headphones was implanted and the animals were allowed to recover for at least one week,459

during which they had free access to food and water. After this period, animals were tested, with460

headphones instead of the arena speakers, in the final stimuli set (24 conditions; 3 ABLs x 8 ILDs).461

All transitions between training steps were smooth; all rats generalized across stimuli sets and462

switching from arena speakers to headphones had little impact on performance even for the first463

block of trials with headphones.464

Block types used for the different tasks465

In order to test various hypotheses about the nature of the behavior, we modified the basic task466

above in several ways. Rats from Batch A were tested in 5 types of blocks: (A1) ”standard” blocks,467

in which 4 ILDs (of each sign) linearly spaced from 1.5 dB to 6 dB steps were presented. All data468

in the main text except for Figs. 3 and 5 came from A1 blocks. (A2) ”hard”, in which only the four469

ILDs closer to the mid-line (±1.5 and ±3 dB) were presented (Fig. 5B). We did not present only the470

hardest condition because when we attempted this rats ”gave up” and became biased. (A3) ”uneven471

RW”, in which we increased (decreased) the amount of water delivered after correct discriminations472

for the two hardest (easiest) ILD conditions by 20% (Fig. 5C). (A4) ”log noise”, in which 5 ILDs (of473

each sign), logarithmically spaced between 1 and 8 dB, were used (Fig. S11B). (A5) ”log pure tones”,474

identical to the previous one but using 10 kHz tones instead of broadband noise (Fig. S11B). In all475

types of blocks except for A5, three ABLs = 20, 40 and 60 dB SPL were used. For blocks of type A5,476

only ABL = 60 dB SPL was used. Rats from Batch B were tested in 6 types of blocks always with ABL477

= 50 dB SPL: (B1) ”standard”, in which 4 ILDs (of each sign) logarithmically spaced between 1 dB478

and 8 dB were used (Fig. S11C, S13). (B2) ”hard”, in which only the two most difficult conditions479

(1 and 2 dB) were used (Fig. S13). (B3) ”easy”, in which the two easiest conditions (ILD = ± 4,480

8 dB) were used (Fig. S13B-D) (B4) ”frozen noise (FN) coherent”, in which the exact broadband481

sound (out of four different examples) was presented in the two headphones appropriately scaled482

to produce a given ILD (ILDs were the same as in the standard blocks). (B5) ”FN non coherent”, in483

which a different one of the four examples was played in each headphone (same ILDs). B4 and B5484

where used in Fig. S11C. (B6) ”easy sessions”, in which only ILDs = ± 4.5, 6, 9, 15 dB were used485

(Fig. S13A). After these manipulations, four remaining rats from this batch were initially trained486

in a variant of the standard RT task with a different set of conditions (ILD = 0, 0.5, 1.25, 2.25, 4487

and 8 dB and ABL = 10, 25, 40, 55, 70 dB SPL) designed to sample effect of difficulty and intensity488

more densely, and without blocks. After a few sessions we decided to perform the capped sound489

duration experiment and we then switched conditions to ILD = 1, 2, 4, 8 dB (of each sign) and ABL490

= 20 and 40 dB SPL. The range of maximum sound durations (SDmax) tested was 50, 75, 100, 140,491

150, 180, 220, 250 and 260 ms. These sessions are used in Fig. 3.492
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Task variants: Discrimination of the ILD of pure tones493

As a control to rule out stimulus-response associations as determinants of performance, and to test494

generalization, three of the rats were tested with blocks of type A4 and A5 mixed pseudo-randomly.495

Task variants: Manipulations of motivation496

We performed several types of task manipulations to study whether and how changes in motivation497

would affect performance in the task. For rats in Batch A, blocks of type A2 where randomly498

included among standard blocks within a set of sessions, in such a way that every time ’hard’499

conditions were tested, at least three consecutive blocks (one for each ABL) were used. Results from500

this manipulation are in Fig. 5B. These same rats also performed a series of sessions where all blocks501

were of type A3 (Fig. 5C). Longer-lasting and bi-directional manipulations of motivation were tested502

with rats of Batch B. These rats were tested in a series of sessions where an initial standard block503

was followed by blocks of type B2 until the end of the session, and on sessions where only blocks504

of type B6 (easy and very easy trials) were used (Fig. S13A). They were also tested in a series of505

sessions where motivation was manipulated bidirectionally within a single session: after a standard506

block, two blocks of type B2 (or B3) were used, then another standard block was used, then two507

blocks of type B3 (or B2) we used, and so forth, until the end of the session (Fig. S13B-D).508

Task variants: External vs Internal noise509

To test the contribution of external noise to the width of the psychometric function, we selected510

four broad band noise samples and either used the same or different samples at the two ears. Rats511

of Batch B were tested in a series of sessions with blocks of type B4 and B5 alternating pseudo-512

randomly within the same session (Fig. S11C). It should be noted though that because our head-513

phones are not inserted in the ear canal, we can’t fully control that the waveforms at the two ears514

are completely coherent, but at least we can restrict a possible contribution of external variability to515

the changes in the same exact waveform arising from differential interaction with the pinnae.516

Task variants: Maximum sound duration517

We investigated whether rats could extract the same information from stimuli of the same duration518

at different intensities by capping the maximum stimulus duration (Fig. 3). The task was still in519

reaction time configuration (rats choose when to leave the central port freely) but, for a given SDmax,520

the sound was stopped at that SDmax if the rat had not left the central port at that time. For choices521

with RT < SDmax, the sound offset was triggered by the central port exit. Rats performed the task522

in mini-blocks of 16 trials. Each mini-block contained two permutations of all the ILDs at fixed ABL523

and SDmax, and ABL and SDmax were chosen randomly from their possible values each mini-block.524
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Data analysis525

Isolating stimulus-dependent reaction times526

In order to exclude those trials in which behavior was not driven by the stimulus, we looked for527

the minimum RT for which there was evidence of condition-dependence. To this end, we used528

two-sample Kolmogorov-Smirnoff test to compare the distribution of RTs corresponding to the two529

conditions with shortest (ILD = 6 dB, ABL = 60 dB SPL) and longest (ILD = 1.5 dB, ABL = 20 dB530

SPL) mean RT. Starting at 50 ms, we systematically included longer and longer RTs. As evident531

in Fig. S3B, if the maximum RT is sufficiently short, the two distributions are not significantly532

different but for RTs > RTmin = 90 ms, they become different. For all analyses, we excluded trials533

with RT < RTmin. In addition, since the shape of the RT distributions is very well behaved and534

understood in our study, we also excluded trials witch exceedingly large RTs, which presumably535

reflect disengagement. For all analyses except model fitting, we chose a conservative value of RTmax536

= 1000 ms (the fraction of trials with RT > 1000 ms was always very small: 0.39 ± 0.39 % – mean ±537

SD across rats). For model fitting, trials with RTs above the 97% percentile in the RT distribution of538

each rat were excluded. Empirical estimates of the RT distribution (Figs. 2, 4, S9) were made using539

kernel density estimation (84) as implemented with custom matlab code.540

Accuracy541

Accuracy was assessed using the SDT statistics for sensitivity (d’) and criterion (c) (13). Completed542

trials within the valid range of RTs were divided into four categories: hits (correct responses to543

the left); false alarms (incorrect responses to the left); correct rejections (correct responses to the544

right); and misses (incorrect responses to the right). Sensitivity and criterion were then estimated545

by applying the standard z-transform formulas (13).546

We used sensitivity and criterion to have a robust measure of accuracy within each 80 trial block.547

Level-dependence was tested by comparing d’ and c as a function of ABL (three comparisons: 20548

vs 40 dB; 20 vs 60 dB; and 40 vs 60 dB) using Fischer exact test (i.e., testing the different in the549

means between two arrays (with elements given by the corresponding statistic d′ or c in each block)550

corresponding to a pair of conditions, with respect to a null distribution of no-difference obtained551

by randomly shuffling the conditions labels 20000 times). Alpha level was set to 0.05 and adjusted552

using Bonferroni correction for multiple comparisons.553

Because ”easy” blocks barely contain any errors, for comparisons between ”easy” and ”stan-554

dard” blocks (Fig. S13) the statistic was % Correct instead of d’, and significance was evaluated555

again using Fisher’s exact test.556

In Fig. 3A we fit a two-parameter logistic function of the mean across rats of the percent cor-557

rect of as a function of abs(ILD) (difficulty). In addition to the slope parameter, we included an558

asymptote because we observed that rats in the SDmax sessions sometimes display not-negligible559

lapse rates (unlike in the RT task).560

For the calculation of d′ in Fig. 3 we did not use 80-trial blocks for the statistics since the task561
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only involved mini-blocks of 16 trials (too short to estimate d′). A single d′ was calculated from all562

trials in each condition (SDmax, ABL) for each rat. Since the SDmax sessions and the just-preceding563

RT sessions used different values of ILD (see above), we fit a four-parameter logistic function (two564

asymptotes, slope and bias) to the behavior of each rat on the RT sesions. We then estimated the565

performance of each rat at the same values of ILD used in the SDmax sessions and created datasets566

with the same number of trials as the actual RT sessions but with ratios of correct and incorrect trials567

consistent with the interpolated performances. These new datasets were then used for calculating568

the d′ of the RT sessions. Finally, to estimate the uncertainty of the green and red leftmost points569

in Fig. 3B (RT sessions), we compared within these sessions, for each rat, the performance in trials570

with ABL = 20 (40) dB SPL with that in trials with ABL = 40 (20) and 60 dB SPL merged.571

To quantify the effect of sound duration on difficulty, we fit a sigmoid to the average across rats of572

the difference of the sensitivities d′(RT)− d′(SDmax) = a([1/SDmax]3)/(b + [1/SDmax]3), separately573

for the two ABLs. We used the inverse of the sound duration in the abscissa to avoid having to574

arbitrarily assign a SDmax to the RT sessions. The parameters a and b represent the asymptote and575

the threshold of the sigmoid. In the legend of Fig. 3 we report the threshold in ms, which is equal to576

b−1/3. The exponent was chosen by inspection because it provided reasonable fits. The fit was made577

to the average difference in d′ across rats (filled circles in Fig. 3B). To assess whether the parameters578

of the fit where different for the two ABLs, we used the difference in the value of each parameter579

for the fits corresponding to each ABL as a test statistic. We then generated surrogate datasets by580

permuting the ABL label of each trial separately for each rat and for each SDmax. Each permutation581

generated, for each rat, a surrogate 20 and a surrogate 40 dB SPL dataset (which were composed of582

trials belonging to the real 20 and 40 dB SPL conditions picked randomly). We then performed fits583

of each surrogate exactly in the same way as for the real data and computed the value of the test584

statistic. Repeating this process across 2000 permutations gave us an estimate of the distribution585

of the test statistic under the null hypothesis of no difference between the two ABLs. The p-values586

reported are two-tailed against this null distribution.587

Reaction Time588

Two-way ANOVAs (3x4) were used to describe the effects of ABL and ILD on RTs in Fig. 2C reported589

in Table S1. Group level comparisons were made using Two-way repeated measures ANOVAs.590

Accuracy of temporal rescaling591

We assessed how accurately the RTDs for different experimental conditions resembled a uniform592

scaling of time (Fig. 2D-F, Fig. S4) using the fact that when two distributions are related by a uni-593

form scaling, their quantiles are proportional (Supplementary Information). For fixed ILD (ABL),594

we regressed the percentiles of each condition on those of the fastest, i.e., 60 dB SPL (6 dB). Since595

the RTDs are significantly right-skewed, higher percentiles have more uncertainty. Thus, we used596

weighted least-squares to perform the linear fit. To compute the uncertainty in the percentiles,597
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we generated 1000 bootstrap re-samples from the RTD of each rat for each condition. For each598

re-sample, we computed the percentiles and averaged them across rats, obtaining a sampling dis-599

tribution of 1000 percentiles. These distributions are very well approximated by Gaussians. To600

avoid the complication of having uncertainty in both the dependent and independent variables, we601

followed the following heuristic approach: We assumed that the independent variable (percentiles602

of the fastest condition) had no uncertainty, and assigned an uncertainty σeff
D =

√
σ2

I + σ2
D to the603

dependent variable, where σ2
I,D are the variances of the sampling distribution of the percentiles604

of the independent and dependent variables respectively. We then applied the standard weighted605

least-squares algorithm to find the value of the slope and its associated R2, which we report in Fig.606

2E-inset, Fig. S4. The shaded areas in Fig. S4 correspond to 3σeff
D .607

History effects608

We used logistic regression (85) to investigate the effect of trial history on the performance of the609

rats in single trials from the standard A1 blocks. We used the model to predict the performance610

of completed trials within the valid range of RTs. We used 12 predictors from the current trial,611

corresponding to the four conditions of difficulty (absolute value of ILD) at each ABL (each coded612

as a [-1, 0, 1] identifier). Four aspects of trial history were evaluated: history of the stimulus613

lateralization (the sign of ILD regardless of ABL), history of response side, and two response-614

outcome predictors: history of response side after correct choices, and after errors. For a given615

trial i, the stimulus history predictor for trial i − j was coded as a [-1, 1] indicator, where 1 (-1)616

indicates that the stimulus at trial i− j had positive (negative) ILD (by convention, we predict the617

choose-right probability ‘R’, i.e., the probability of making a response to the side that is correct618

when ILD is positive). The response history predictor was coded as a [1, 0, -1] indicator, where 1619

(-1) indicates that the rat made a response to R (-R) in trial i − j regardless of the stimulus and 0620

means the rat made an abort. The response after correct (incorrect) choices predictor was identical621

to the response predictor except that the indicator was set to zero when the trial was either an abort622

or an incorrect (correct) trial.623

For each of these four aspects, we fit a kernel extending 15 trials into the past (0 < j < 16624

in the previous paragraph), in such a way that the effect of each aspect on the current trial is625

the convolution of the kernel with the corresponding predictor across trials into the past. We626

represented all history kernels as linear combinations of five unit-norm decaying exponentials with627

time constants of [0.5, 1, 2, 4, 8] trials (Fig. S12G inset). In practice, we used an orthonormal basis628

in the space spanned by these five exponentials. Thus, all in all, our model fits 32 coefficients plus629

the bias: 12 from predictors associated to the current trial and 5 coefficients for each of the 4 history630

kernels. All coefficients and kernels for all animals are shown in Fig. S12.631

Model fits were performed using the matlab version of the free software package glmnet (86)632

(https://web.stanford.edu/∼hastie/glmnet matlab/). Regularization was implemented using the633

elastic net method with parameter α = 0.5. All predictors were subject to regularization. All634

fits used cross-validation as implemented by the funtion cvglmnet and we used the lambda min635
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option to select the hyper-parameter that minimizes prediction error. In addition, for assessing the636

predictive power of the fits, we manually implemented nested cross-validation with five outer folds.637

Briefly, model coefficients and hyper-parameters were sequentially fit using four fifths of the data638

and prediction was evaluated on the remaining fifth until all the data had been used both for fitting639

and prediction. Predictive quality was assessed using the ROC Area Under the Curve (AUC – Fig.640

S12B).641

To estimate the relative predictive power of different types of predictors we used the relative642

variance of the linear component of the model for a particular set of predictors. After linear combi-643

nation or convolution for both current-trial coefficients and the four different history kernels (best644

fits) we obtain five time series across trials. For obtaining a final predictive probability these would645

be added. Instead, we compute the variance across trials associated to each of the five time series646

and report its value relative to the summed variance across the five. The fraction of variance for647

each of the five type of predictors for each rat are shown in Fig. S12A.648

We used bootstrap to estimate uncertainty on the model parameters (87). Briefly, we obtained649

2000 surrogate datasets from the actual dataset by resampling with replacement. For each surrogate650

dataset we evaluated predictive accuracy and model coefficients, and from these, we computed 95651

% confidence intervals (shown as error bars in Fig. S12).652

To assess whether trial history made a significant contribution to the predictive power of the653

model, we compared the AUC of the actual data to that of shuffled surrogate datasets (Fig. S12B).654

In each shuffled surrogate dataset, history predictors were randomly permuted across the whole655

set of trials, with the constraint that the four history predictors associated to a particular trial were656

in the same position of the permuted sequence for the surrogate dataset. For each surrogate, we657

estimated the uncertainty in the coefficients again using bootstrap. Trial history was deemed to658

make a significant contribution if there was no overlap between the 95% CI of the real data and659

shuffled surrogates.660

Model fitting661

Our model is specified by five parameters: θe, λ, T0 (the inverse of the effective gain of the pressure-662

to-rate transformation Nr0 – see Box), tND and sND. This embodies the assumptions that the decision663

process is symmetric and that every choice is driven by the stimulus. Since rats don’t display664

significant lapse-rates or biases we did not need to consider lapse-rate parameters nor parameters665

specifying non-zero initial conditions or asymmetric decision thresholds. The first four parameters666

are the absolute minimum number that is required to fit a sequential sampling model (with non-667

linear encoding of physical stimulus intensity) to data. Including trial-to-trial variability in non-668

decision time (specified by sND) led to a small but clear improvement the accuracy of the fits. We669

used several strategies for evaluating the accuracy of our model.670

1. Constrained model fitting approach. In order to test the whether (a) the speed accuracy trade671

-off as a function of ILD, and (b) the dependency of RTs on ABL, which are structural features of the672

model, were also present in the data, we used an unorthodox ’constrained’ model fitting approach.673
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Here, we first used choice data to fit the single parameter Γ from the logistic function674

Choose− right probability ≡ p+ =
1

1 + exp(−2Γ ILD)
(3)

associated to Eq. 1.675

Next, we fit the RTDs. We fit the RTDs of correct trials only. Although we attempted to fit676

incorrect trials as well, the RTDs for incorrect trials, specially for low ABLs, are severely distorted677

due to the rats anticipation of the sound onset discussed in the text and on Fig. S3. We could678

not find a principled way of finding and excluding anticipatory error RTs that would lead to well679

behaved RTDs for errors.680

In the constrained fitting approach, we considered Γ was fixed (to its estimated value from fits681

to accuracy) for fits of the RTDs (implying that all dependence of the RT distributions on ILD was682

not available for the model fitting process to modify). To further test the ABL-to-RT relationship683

predicted by the model, we excluded data from the ABL = 40 dB SPL condition for these fits.684

RTDs were fit using the χ2 method for its robustness and efficiency (88). In this method, one uses685

the χ2 statistic for a dataset composed of measurements of Np proportions. We used ten proportions686

(split by the 0.1, 0.2, . . . 0.9 quantiles of the RT distribution) per condition (although in Figs. 4B and687

Figs. S7B1-5 we only show the 0.1, 0.3, . . . 0.9 quantiles to avoid visual clutter), and considered eight688

conditions (the four difficulties for ABL = 20 and 60 dB SPL). Thus, in the constrained approach689

we adjust the value of four free parameters (λ, T0, tND and sND) to fit the results for Np = 80690

proportions/data-points. As discussed above, only RTs > RTmin and RTs < RTmax were considered.691

The cost function for the fit was692

χ2 =
Np

∑
1

(O− E)2

E
(4)

where O are the observed proportions and E are the expected proportions given the model. To693

estimate E, we used the two series approximations of the RTD of a drift-diffusion process ρDT(t)694

for short and long decision-times (89, 90), truncated both series at five terms, and selected between695

the two according to a threshold in dimensionless time of 0.25, which guarantees a smooth overlap696

and ensures that the relative error of the approximation is always below 10−3 for all decision-times.697

The distributions were fit in dimensionless time. For a given non-decision time tNDT and measured698

reaction time RT, the dimensionless decision-time is τDT = (RT− tNDT)/tθ , where tθ is defined in699

Eq. 2. The expected proportions E were calculated by numerically integrating ρDT(t) over the value700

of tNDT, which was assumed to have a uniform distribution of mean tND and half-width sND (see701

Box).702

The χ2 cost function was minimized numerically in MATLAB with the function fminsearch,703

which uses an implementation of the Nelder-Mead simplex algorithm (91). The initial conditions704

for each parameter were selected randomly within a reasonable interval each time the function was705

executed, always converging to the same global minimum.706

2. Unconstrained model fitting approach. We also fit the data in a standard unconstrained fashion.707

In this approach, we also used the χ2 method, but in order to fit accuracy and RT simultaneously,708
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we scaled the RTDs so that the area under each distribution would be equal to the probability of the709

corresponding choice given the model. Accordingly, for each condition, we used 11 proportions,710

ten for the RTs of correct trials, and a single one for the incorrect trials (in this way, incorrect trials711

are only used for the estimation of accuracy, see above). Thus, in this approach, we adjust the value712

of all five free parameters to fit the results for Np = 132 proportions (eleven per condition for twelve713

conditions). All other aspects of the χ2 fit were the same as for the constrained approach.714

To obtain error bars for our estimates and an estimate of the joint distribution of the parameters715

from the fit (Figs. 4B, S7, S8, S9), we used used bootstrap (85), performing subsequent fits for Nr =716

1000 resamples (with replacement) from our dataset.717

Maximum Likelihood fits. To ensure that our results were robust to the model fitting method, both718

constrained and unconstrained approaches were used using the Quantile Maximum Likelihood719

method (92). This method maximizes the likelihood of the data under the model, but also grouping720

RTs into quantiles to minimize problems due to outliers. The results of the fits using this method721

(reported in Table S2) are effectively identical to those obtained using the χ2 method.722

Optimal thresholds723

We computed the reward rate as a function of the decision threshold θe (Fig. 5A), assuming other724

model parameters take on their best-fit values. We define the reward rate RR as the expected reward725

in a trial divided by the expected duration of a trial726

RR(θe, ABL) =
〈Rw(θe)〉

〈Tdur(θe, ABL)〉 (5)

The average reward is727

〈Rw(θe)〉 = ∑
ILDi

p+(θe, ILDi)/4 (6)

where p+(θe, ILDi) is given in Eq. 3 and ILDi = 1.5, 3, 4.5, 6. The average trial duration is728

〈Tdur(θe, ABL)〉 = TITI + Terr(1− 〈Rw(θe)〉) + 〈TMT〉+ 〈Tfix〉+ 〈RT(θe, ABL)〉 (7)

where TITI = 3 s is the inter-trial interval, Terr = 10 s is the time penalty for an error, 〈TMT〉 = 450729

ms is the average movement time of the animals (which we measured empirically),〈Tfix〉 = 325 ms730

is the mean fixation time, and 〈RT(θe, ABL)〉 is the mean RT, given by731

〈RT(θe, ABL)〉 = tND + tθ(θe, ABL)〈DT(θe)〉 (8)

where tθ(θe, ABL) is the temporal rescaling factor in Eq. 2 and 〈DT(θe)〉 is the mean decision time,732

given by (17, 40)733

〈DT(θe)〉 = ∑
ILDi

tanh(Γ(θe) ILDi)/(4Γ(θe) ILDi) (9)
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1 Stimulus delivery and Training1

1.1 The acoustic shadow of the head2

We delivered sounds through custom-made headphones (Fig. S1A) which could be easily attached3

and detached every behavioral session to a magnetic base chronically implanted to the skull (Fig.4

S1A; see Methods). Throughout this study we’ve assumed that the intensity of the sound at5

each ear was equal to the calibrated intensity of its corresponding speaker. However, because6

we decided not to insert the headphones on the ear canal for reproducibility of the stimulus and7

comfort of the rats, the signal from each speaker will, in principle also contribute to the intensity of8

the sound at the contra-lateral ear. To investigate if this is a concern, we measured the attenuation9

(acoustic shadow) produced by the head on an anesthetized rat using the same 5-20 KHz band-10

pass noise discriminated by the rats, placing our microphone at the entrance of one ear canal11

and the speaker at its standard position in the contra-lateral side. For these measurements we12

used high intensities to stay above the noise floor of the microphone. The attenuation due to the13

head and near-field placement of the speaker is A = 22 dB (Fig. S1B-C). Using this value it is14

straightforward to calculate what is the actual level difference ILDa experienced by the rats as a15

function of the intended level difference ILDi.16
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Figure S1. Headphones and acoustic shadow. (A) Headphones used for stimulus delivery, and base
(bottom). The base is chronically implanted to the skull of the animals and contains a strong miniature magnet
which both holds the speakers in place during task performance but also allows easy attachment/detachment.
The actual positioning of the speakers was adjusted under anesthesia to match the position of the pinna for
each rat individually relative to the base. The red material in the picture is a moldable glue (Sugru) used for
strengthening the headphone structure. (B) Measurements of the acoustic shadow generated by the head.
Broadband noise stimuli were played at 65, 70 and 75 dB SPL and sound level mas measured placing the
microphone by the ear canal of the ‘far’ ear. (C) The head plus near field positioning of the speakers causes
an attenuation of 22 dB. (D) Actual minus intended ILD and ABL as a function of intended ILD.

Assuming additivity of the squared pressure RMS from each of the two sources, simple algebra17

leads to the following expressions18

ILDa = ILDi + 10 log10


[
1 + 10−(A + ILDi)/10

][
1 + 10−(A − ILDi)/10

] 
ABLa = ABLi −

A
2

+ 5 log10

(
10A/10 + 10−A/10 + 10ILDi/10 + 10−ILDi/10) (1)

The difference between the actual and intended ILDs and ABLs is shown in Fig. S1D. Since it is19
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always less than 0.1 dB (which is less than an order of magnitude smaller than the just noticeable20

difference (JND) for ILD of our animals) we have, for simplicity, ignored the difference between21

actual and intended levels throughout this study.22

1.2 Training23

As described in the methods, we trained our animals first with speakers on the sides of the24

behavioral box before implanting headphones. Withing a few hundred trials of their first exposure25

with the task, the rats understand the contingencies of the task (Fig. S2A). After this period, we26

introduced ILDs by playing the stimuli from both lateral speakers. ILD steps were initially large (427

dB) and were made progressively smaller (conditional on performance) until reaching their final28

value of 1.5 dB. The fact that no significant changes in performance are observed when changing29

the ILD (Fig. S2B) step further suggests that animals interpreted the stimuli as lying along a30

continuum (as intended) and did not develop specific behavioral strategies for each stimulus31

independently.32
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Figure S2. Training. (A) Accuracy as a function time in the first sessions where sounds (50 dB SPL broadband
noise) come from either of two speakers on the side of the box. (B) Taking the animals to psychophysical
threshold. Each panel is one rat. Red line is the ILD step used in the block. The smaller it is, the more difficult
the task. Black points indicate performance.

2 Empirical reaction time analyses33

2.1 Short reaction times and intensity-dependent processing delays34

The fact that animals could somewhat anticipate the timing of the sound stimulus onset (the35

pre-stimulus fixation period was uniformly distributed between [300 350] ms) and that we did36
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not impose a minimum reaction time (RT) had the consequence that a fraction of valid completed37

trials are based on decisions made, and responses initiated, before stimulus onset, but in which38
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Figure S3. Short RTs and processing delays. (A) Each plot shows the cumulative distribution of RTs for a
given difficulty (absolute value of ILD) for the three ABLs. The shape of the distribution for the shorter RTs
are the same across all conditions. (B) p-Value of a two tailed Kolmogorov-Smirnoff test comparing the RTs
for the fastest and slowest conditions (|ILD| = 6 dB and ABL = 60 dB SPL versus |ILD| = 1.5 dB and ABL =
20 dB SPL) as a function of the maximum RT included in the comparison. We defined RTmin as the value at
which this comparison becomes significant (90 ms). This value is shown as a dashed vertical line in (A) and
(C). (C) Same as (A) but grouping the cumulative distributions by ABL. The distributions start to diverge
later for fainter sounds.

sound onset still took place before the rat exited the central port (counting as valid trials). These39

trials contaminate our results. Fortunately, they have a clear signature at the level of the RT40

distribution. The cumulative RT distributions are shown in Fig. S3A separately for each difficulty.41

It is obvious from the plots that the first portion of the distribution comprising the shortest RTs is42

the same for all conditions and thus stimulus-independent. We estimated the minimum reaction43

time RTmin in which the distributions become stimulus dependent, and focused our analysis only44

on trials with RT > RTmin. Although it is likely that in this way we are excluding a small fraction45

of very fast but still stimulus-driven trials, we decided to use this criterion as it is simple and46

unambiguous. The very high accuracy of the model fits suggests that the distortion introduced47

by eliminating these very short RTs is probably quite small.48

We estimated RTmin as the first RT for which the RT distribution corresponding to the shortest49

and fastest conditions become significantly different (Fig. S3B). This value is shown as the vertical50

dotted lines in Fig. S3A,C.51

We have argued in the main text that changes in RT as a function of stimulus intensity (ABL)52

result from a temporal rescaling of the evidence accumulation process. However, an alternative53

explanation is that this finding simply reflects intensity dependent delays in the auditory pathway.54

Indeed, neural response latency is typically correlated with stimulus intensity across sensory55

modalities. Such delays would be expected to extend the period of condition-independent RTs in56

an intensity dependent manner. Plotting the cumulative distributions grouped by ABL (Fig. S3C)57
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shows that indeed there appears to be an ABL-dependent component to the period of stimulus58

independence (dashed vertical line is again RTmin). However, it is also apparent that the rescaling59

of the RT distributions (in this case as a function of |ILD|, see also Fig. S4B-C) still takes place60

for RTs > RTmin across all ABLs, even for the faintest sounds. Processing delays per se, thus,61

appear not to be sufficient to explain our findings (a result supported by the results in Fig. 3).62

The intensity-dependence of RTmin suggests using a different value for this parameter for each63

ABL. Accordingly, we estimated an RTmin separately for each ABL in the same way as above, and64

re-did our model fits with ABL-dependent non-decision times, but the quality of the fit improved65

only marginally at the expense of six new parameters (RTmin, tND and sND for each ABL instead66

of a single value of these parameters across ABLs). Thus, we have kept a single RTmin across all67

conditions.68

2.2 Empirical assessment of RT scale-invariance69

When two distributions in time are related to each other through a stretching of the time axis (a70

rescaling of time), their percentiles are proportional. More explicitly, assume that distribution ρ′(t)71
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Figure S4. Empirical assessment of RT scale invariance. (A) Each plot shows, for each difficulty, PCABL(Q)−
PC60dB(Q) as a function of PC60dB(Q), where PCABL(Q) is the 100Qth percentile of the RT distribution for the
corresponding ABL of that difficulty (see text). Only RTs > RTmin are considered in this analysis. Dashed
line is the outcome of the linear fit. Shaded regions represent three standard deviations of the sampling
distribution of the percentiles (see Methods). Note that higher percentiles have more error. Because of this,
we used weighted least squares to do the linear fit. (B) Same as (A), but testing the scale invariance of the
reaction time distribution (RTD) induced by changes in difficulty for each ABL separately. (C) R2 of the
weighted least squares fit vs slope of the fit for the effect of changes on ABL (gray) or ILD (black) on the RTD.
Lines show linear fits.

obtained from ρ(t) by stretching of the time axis by a factor α, so that ρ(t) = αρ′(αt). It follows that∫ τ

0
dtρ(t) = α

∫ τ

0
dtρ′(αt) =

∫ ατ

0
dt′ρ′(t′) (2)
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for all τ. If the value of the previous integrals is Q/100, then τ is the Qth percentile PCρ(Q) of72

ρ(t) and ατ is the Qth percentile PCρ′ (Q) of ρ′(t), i.e., their percentiles are proportional. This fact73

allows us to use the slope of a linear fit of the percentiles of the two distributions to identify the74

(putative) temporal rescaling factor α corresponding to a given change in ABL, and the R2 of75

the fit to quantify its precision (Fig. S4A,C). Since difficulty has been suggested to also lead to76

an approximate rescaling of the reaction time distribution (RTD) (1–3), we performed the same77

analysis for pairs of distributions corresponding to different difficulties (for each ABL separately;78

Fig. S4B,C). We assessed the uncertainty in the estimation of of each percentile using bootstrap79

(see Methods). Since the uncertainty clearly grows with the percentile (4) (Fig. S4A-B), we used80

weighted least squares to perform the linear fit. Although the fits regress the percentiles of the two81

RTDs in question, in the Figure we actually plot PCABL(Q) − PC60dB(Q) as a function of PC60dB(Q)82

(in panel A, and PCabs(ILD)(Q) − PC6dB(Q) as a function of PC6dB(Q) in panel B), which illustrates83

the linear dependency more clearly.84

Both changes in ABL and changes in ILD are very well approximated by a uniform scaling of85

the RT distribution (Fig. S4). However, there is an important difference. First, the values of the86

slopes of the fit are closer to unity for ILD- than for ABL-induced scaling (Fig. S4C, x-coordinate of87

the dots), because changes in difficulty have an overall smaller effect on RT than changes in sound88

level. Obviously, the RTDs will look similar to each other if the variable of interest does not have89

a strong impact on RT. In order to understand the contribution of this effect to the quality of the90

linear fit, we plotted the R2 of each fit versus its slope. The results show clearly that difficulty and91

sound level have a different effect on the RTD. For changes in difficulty, the RTDs become more92

different in shape the larger the ILD-induced change in RT, as evident by statistically significant93

negative slope of a linear fit of R2 versus slope (p = 0.003, Permutation test), showing that R2s in94

this case are only large because the speed accuracy trade-off in the task is weak. In contrast, for95

ABL-induced changes, slopes reach higher values, but nevertheless are unrelated to the quality96

of the fit (slope of the fit in Fig. S4C not significantly different from zero; p = 0.7, Permutation97

test). This is in agreement with the predictions of (5) and our model, in which ABL-induced scale98

invariance is exact, whereas difficulty-induced scale invariance is approximate and degrades with99

the difference in difficulty between the two RTDs. For a thorough treatment of the nature and100

form of the changes in the RTD induced by difficulty, see below (Fig S6).101

3 Mathematical Analyses102

3.1 Mechanistic implications of temporal rescaling by stimulus intensity103

In this section we explore what can be inferred about the mechanisms underlying the discrimi-104

nation process from the fact that the overall stimulus intensity exclusively changes the units of105

time of the discrimination problem. Without loss of generality we assume that the task is to106

discriminate between the intensity of two simultaneously presented stationary physical signals s1107

and s2. For the moment, we assume that s1 and s2 are scalars even if the stimulus can be stochastic108

(e.g., in our case s1,2 represent the RMS pressure of the sound at the right and left ears). Below, we109

consider the implications of the stochastic nature of the stimulus.110
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Motivated by our findings pointing towards bounded evidence accumulation (Figs. 2-3), we111

consider the class of models in which the decision variable (DV) can be represented as a Continuous112

Markov Process (CMPs) (6), and choices are triggered when the DV hits either of two bounds for113

the first time (this is the decision-time). In a CMP, increments in the DV across consecutive114

infinitesimal time intervals are statistically independent and ‘small’ (vanishingly small as the time115

interval goes to zero). This model class is very flexible, allowing the temporal evolution of both116

the mean and the variance of the DV to depend on the instantaneous value of the DV itself and117

of the evidence, and also explicitly on time. We also allow for time-dependent decision bounds,118

which appear in normative accounts of perceptual decision making (7). Most models of decision119

making can be construed as a CMP (7–13).120

In a CMP, the differential increment in the DV is Gaussian and thus the process can be com-
pletely specified by its mean and variance, called the drift and diffusion coefficients (6). The
temporal evolution of the DV x(t) is given by the stochastic differential equation

dx
dt

= A(x, t; s1, s2) +
√

D(x, t; s1, s2)η(t) (3)

where η(t) is a white noise process (i.e., 〈η(t)η(t′)〉 = δ(t− t′)), and A(x, t; s1, s2)dt and D(x, t; s1, s2)dt121

are the mean and variance of the Gaussian increment of x between t + dt and t. We make the122

reasonable assumption that the joint dependence of A and D on the evidence on the one hand,123

and on (x, t) on the other, arise from two separate statistically independent signals (each with124

white-noise variability). This just entails the assumption that the evidence e(t) and the DV x(t)125

exist and are well defined on their own, and that the DV can only be a function of the evidence126

in the past. In order to remain within the CMP framework, these two white noise processes are127

added, implying that the drift and diffusion coefficients are given by128

A(x, t; s1, s2) = Â(x, t) + µ(s1, s2)

D(x, t; s1, s2) = D̂(x, t) + σ2(s1, s2) (4)

The quantities µ(s1, s2) and σ2(s1, s2) are the mean and variance of the evidence e(t)

〈e(t)〉 = µ(s1, s2) 〈δe(t)δe(t′)〉 = σ2(s1, s2)δ(t − t′) (5)

Â(x, t) describes a (possibly non-linear and time-dependent) feedback (positive or negative) term129

of the DV on itself, and D̂(x, t) describes a possible contribution of the instantaneous state of the130

process and of time to the overall noise integrated by the DV.131

We posit that the subject commits to one of the two available choices when the DV x(t) hits132

either of two bounds (or thresholds) θ1(t) and θ2(t) for the first time. Since our rats do not133

display significant biases, we consider unbiased discriminations in which the initial condition of134

the process is x(t = 0) = 0 and where the two thresholds are symmetric, i.e., θ2(t) = −θ1(t) ≡ −θ(t).135

The analysis simplifies if one maps this problem onto one with a constant threshold, which can136

be done by changing variables so that the new DV x̂(t) measures the fractional distance between137

x(t) and the instantaneous threshold, i.e., x̂(t) = x(t)/θ(t). Using Ito’s formula (14) to perform the138

change of variables, the diffusion equation for the new DV reads139

dx̂
dt

=
1
θ(t)

[
−x̂θ′(t) + Â(x̂θ(t), t) + µ(s1, s2) +

√
D̂(x̂θ(t), t) + σ2(s1, s2) η(t)

]
(6)
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with a constant threshold of one, i.e., θx̂ = 1.140

3.1.1 Problem Formulation141

• WL can be formally stated as saying that the accuracy of the discrimination between s1 and142

s2 and that between s′1 = ks1 and s′2 = ks2 should be the same. Thus, since our hypothesis is143

that this is the case because the only effect of the change in stimulus intensity is to change144

the units of time of the discrimination process, we would like to find the most general145

conditions under which a discrimination between ks1 and ks2 proceeding under standard146

time t is identical to a discrimination between s1 and s2 proceeding under a uniform rescaling147

of time t′ = αt. We therefore seek functions θ(t), Â, D̂, µ and σ2 such that the probability148

distribution of the differential increment of the DV in these two discriminations is identical.149

Since the increment is Gaussian in a CMP, this amounts to equality between their means and150

variances151

dt
θ(t)

[
−x̂θ′(t) + Â(x̂θ(t), t) + µ(ks1, ks2)

]
=

αdt
θ(αt)

[
−x̂θ′(αt) + Â(x̂θ(αt), αt) + µ(s1, s2)

]
dt
θ(t)2

[
D̂(x̂θ(t), t) + σ2(ks1, ks2)

]
=

αdt
θ(αt)2

[
D̂(x̂θ(αt), αt) + σ2(s1, s2)

]
(7)

3.1.2 Problem Solution152

• The second equation only has a solution if D̂ = 0, because the temporal rescaling cannot153

both compensate the change in the stimulus-dependent diffusion term σ2 and at the same154

time leave untouched the stimulus-independent term D̂.155

• The first equation admits a solution where

Â(x̂θ(t), t) = x̂θ′(t) i.e., where Â(x, t) = x θ′(t)/θ(t) (8)

In this case, Eqs. 7 reduce to156

1
θ(t)

µ(ks1, ks2) =
α

θ(αt)
µ(s1, s2)

1
θ(t)2 σ

2(ks1, ks2) =
α

θ(αt)2 σ
2(s1, s2) (9)

In order for these equations to be satisfied, µ and σ2 need to depend on the stimuli through
a power-law, and θ(t) also needs to be a power-law function of time. This is because a
power-law is the only function for which

f (cx) = f (c) f (x) (10)

In addition, µ and σ2 can be any polynomial of these power-laws as long as it only contains157

terms of the same order. Let’s denote the order of the polynomial by np, and let’s denote as158

λ, λσ, and λt the exponent of the power-laws for µ and σ2 and θ(t) respectively. Then, the159

previous equations simplify to160

knpλ = α1−λt

knpλσ = α1−2λt (11)
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In order for both of these equations to be satisfied simultaneously, it needs to be the case that

knpλ/(1−λt) = α = knpλσ/(1−2λt) (12)

which implies that

λ
1 − λt

=
λσ

1 − 2λt
or equivalently

λσ
λ

=
1 − 2λt

1 − λt
(13)

The solutions of this equation with λt equal or different from zero are qualitatively different.161

• If λt is different from zero, then it has to be negative, otherwise θ(t = 0) = 0. This solution
thus implies a decaying decision bound. From Eq. 8, the drift coefficient needs to be

Â(x, t) = −|λt|
x
t

(14)

which can be interpreted as a temporally decaying standard linear leak term. The term λσ/λ162

increases with the magnitude of λt and is bounded between 1 (for λt = 0; in this case the163

variance and the mean scale in the same way with the stimulus) and 2 (for λt = −∞; in this164

case the standard deviation and the mean scale in the same way with the stimulus).165

• If λt = 0, the solution is much simpler. In this case the decision bound is constant, Â(x, t) = 0166

and λσ = λ. This solution corresponds to a particular form of the drift-diffusion model167

(DDM) which we consider below.168

• Finally, symmetry considerations can further specify some properties of the mean and vari-169

ance of the evidence. For unbiased decisions, swapping the two stimuli should simply170

reverse the agent’s choices leaving everything else the same. Since the two choices are171

associated to different signs of the DV, this means that the mean and the variance should be172

such that173

µ(s1, s2) = −µ(s2, s1)

σ2(s1, s2) = σ2(s2, s1) (15)

3.1.3 Implementation174

Here we consider whether there are simple, biologically plausible mechanisms, relying on as few175

hypothesis as possible, that might generate a CMP with the properties outlined in the previous176

section. Since our model is phenomenological, not biophysical, our goal is not mathematically177

prove the necessity of a particular implementation, but rather to consider the plausibility of the178

different solutions.179

Solutions with non constant bounds, e.g., θ(t) = t−|λt | require both a specific form of the leak180

A(x, t) = −|λt| x/t and a power-law relationship between variance and mean with an exponent181

λσ/λ = (1−2λt)/(1−λt), which is a function of the power-law exponent of the decision bound. It is182

not clear how such disparate physiological processes could be related, and even if this was possible,183

it would require their relationship to be finely tuned. Thus, although interesting mathematically,184

we consider this solution implausible and non-robust, and do not consider it further. From here185
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on, we focus on the solution with a constant bound, i.e., λt = 0, where as we’ve shown above there186

is no leak term and λσ = λ.187

The first step is to identify the power-law dependence of µ and σ2 on the stimulus as a non-188

linear transformation mapping stimulus intensity to firing rates. The idea is that the evidence is189

a function of the stochastic activity of two populations of neurons. Thus190

µ(s1, s2) = µ(r1 = sλ1 , r2 = sλ2 )

σ2(s1, s2) = σ2(r1 = sλ1 , r2 = sλ2 ) (16)

How should the activity from the two populations be combined? As mentioned above, in principle191

any polynomial of r1 and r2 is allowed as long as it only contains terms of the same order.192

Higher-order terms, however, don’t have a straight forward implementation and imply potentially193

complex transformations between the statistics of the activity of each population of neurons194

separately and the statistics of their combination. The simplest and most plausible solution is195

therefore a linear combination, and the anti-symmetry condition (Eq. 15) implies that µ has to196

be proportional to the difference between the mean activities of the two populations. In the197

resulting model, the evidence is proportional to difference between the instantaneous activity198

of two populations of neurons whose mean firing rate is a power law of the stimulus intensity.199

Critically, the variance-to-mean relationship of the neurons needs to be linear, i.e., the Fano Factor200

(FF) needs to be constant.201

Using Eq. 9, one obtains that, in these conditions, a multiplicative factor k on the stimulus
intensity is identical to a rescaling of time by a factor

α = kλ (17)

Qualitatively, any change in the evidence that modifies its mean and its variance by the same mutiplicative202

factor can be absorbed by a change in the units of time, as we show more explicitly below when203

describing the bottom-up construction of this model.204

This implementation of the general solution to the problem is a generalization of the one205

proposed by Link (8) and recently also studied by Simen et al. (5), who both assumed a linear206

stimulus to firing rate transformation, i.e., λ = 1. A power-law transformation between stimulus207

intensity and firing rate has been often used in Signal Detection Theory models (see e.g., (15)).208

In (16), a power-law transformation in a sequential-sampling model was considered, but the209

authors focused on spiking statistics with non-constant FF.210

3.2 Temporal fluctuations in the amplitude of the stimulus211

We have considered discriminations of stationary sensory stimuli. However, stationary stimuli212

may display temporal fluctuations in their instantaneous value. In fact, in our experiments we use213

broad-band noise with constant RMS, in which the instantaneous pressure level changes in time.214

Intuitively, temporal fluctuations in the stimulus would seem to be problematic for the evidence215

to meet the conditions outlined in the previous section. To see this, consider a physical signal s(t)216

scaled by a factor k, i.e., s′(t) = ks(t). This will scale by k the standard deviation (across time) of s′,217

not its variance, as required. Let us thus consider this situation in more detail.218
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For simplicity we consider the problem as discrete, so the signal is generated by sequentially219

drawing independent samples from a distribution on every time step. The sensory neurons have220

a short but finite integration time constant, which we model as a local averaging of the stimulus221

waveform over n steps. For instance, if the integration time-constant is ∼ 2 ms, for our stimulus,222

which has power up to 20 KHz, n ∼ 40. As required, sensory neurons have a constant FF, which223

we take for simplicity equal to 1. We thus model them as inhomogeneous Poisson processes224

whose rate changes every n steps. The time-varying firing rate is the local average of the stimulus225

raised to some power λ.226

In these conditions, the variance in the spike counts of these neurons has two sources: one227

is the Poisson variability itself (which would be present even if the stimulus was completely228

constant in time), and another one caused by the temporal fluctuations in the stimulus, which229

lead to temporal fluctuations in the rate of the neurons. We are interested in knowing under which230

conditions this compound spike count variance is proportional to the mean, as required to obtain231

the shape invariance of the RTD (strictly speaking, we should refer to this as de decision-time232

distribution, but we will still use the acronym RTD for this quantity. In general it should be clear233

by the context whether we are referring to a decision-time (when talking about a mathematical234

model of the discrimination process) or to RT (when talking about experiments)).235

Since we expect n to be large, the local average sn(t) of the stimulus will generally have a
Gaussian distribution. We write it as sn(t) ∼ N(A,A2/n) since, as outlined above, one expects that
the stimulus intensity A will in general scale both the mean and the standard deviation of s(t). For
zero-mean sensory stimuli (such as sound pressure), A would represent the stimulus RMS and
the sensory system would perform rectification. However, the central limit theorem guarantees
that the distribution of the local average will still be Gaussian regardless of the specific form of
the instantaneous distribution of s(t). For large n, the Gaussian distribution of sn(t) can be very
well approximated by a Gamma distribution

N(A,A2/n) ∼ Γ(k = n, θ = A/n) (18)

where k and θ are the shape and scale parameters of the Gamma distribution. We perform
this approximation because the Gamma distribution is a special case of the generalized Gamma
distribution, which is closed under a power transformation. It is straightforward to check that the
distribution of sλn(t) is a generalized Gamma (GG) of the form

sλn(t) ∼ GG(p = 1/λ, d = n/λ, a = (A/n)λ) (19)

and has therefore mean and variance given by236

Mean[sλn(t)] = Aλc1(n, λ)

Var[sλn(t)] = A2λc2(n, λ) (20)

where237

c1(n, λ) = n−λ
Γ(n + λ)

Γ(n)

c2(n, λ) = n−2λ

Γ(n + 2λ)
Γ(n)

−

(
Γ(n + λ)

Γ(n)

)2 (21)
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where Γ(x) is the Gamma function. This is the mean and variance of the time-varying firing rate238

of the sensory neurons.239

Let us denote as 〈x〉r and 〈x〉c|r the mean over the distribution of the time varying firing rates240

and over the Poisson stochasticity of a neuron for a given fixed firing rate, and let us denote as241

〈(δx)2
〉r and 〈(δx)2

〉c|r their respective variances. If c is the spike count (per unit time) of a neuron,242

then its overall mean and variance are given by243

Mean(c) = 〈〈c〉c|r〉r = Aλc1(n, λ)

Var(c) = 〈〈(δc)2
〉c|r〉r + 〈(δ〈c〉c|r)2

〉r = A2λc2(n, λ) + Aλc1(n, λ) (22)

Thus

Var(c) = Mean(c)
[
1 + Aλ c2(n, λ)

c1(n, λ)

]
(23)

This equation clarifies the issue. Although the compound variance in fact contains a term pro-
portional to the mean and another one proportional to the mean squared, because the coefficient
c2(n, λ) tends to zero whereas c1(n, λ) tends to one as n becomes large (as can be verified using
Stirling’s approximation), it will in general be the case that

Var(c) = Mean(c) = Aλ

Qualitatively, as long as the temporal fluctuations in the stimulus are such that the stimulus244

signal-to-noise is high when it is low pass filtered by the time-constant of the sensory neurons,245

Poisson variability dominates and a constant FF ensues. Since these conditions are expected to246

hold in our experiments, it is appropriate to assume, as we have done, that the firing rate of the247

neurons is a power-law of the constant pressure RMS.248

3.3 Bottom-up construction of the model249

Here we describe explicitly the implementation of the model we used to fit the experimental data.250

3.3.1 The evidence251

The instantaneous value of the evidence e(t) is given by the difference between the instantaneous
activity of two channels, corresponding to the two ears,

e(t) = Nqe[aR(t) − aL(t)] (24)

where N is the number of neurons in each channel, qe is the quantum of evidence per spike per
neuron, and aR,L(t) are the instantaneous activities (i.e., short-term spike counts) associated to
firing rates rR,L. The firing rates are power-law functions of the RMS pressure level at each ear

rR,L = r0

(
PR,L

P0

)λ
(25)

where P0 = 20µ Pa is the reference pressure level of the SPL scale. The firing rate r0 measures the252

overall gain of the pressure-to-rate transformation. If the power-law exponent λ is less than one,253

the non-linearity is compressive.254
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We can express the statistics of the evidence in terms of properties of our stimuli by recalling
that the sound level (SL) at each channel is given by SL = 20 log10(PRMS/P0) and it can be expressed
as SLR,L = ABL ± ILD/2, so that

rR,L = r0 10λABL/20 10±λILD/40 (26)

The spiking statistics of the neurons encoding the stimulus are Poisson (in principle, any process255

with a constant FF is appropriate. However, it is easy to show that if we assume FF , 1, we cannot256

fit the value of FF separately from the value of other parameters. Thus, for simplicity, we assume257

FF = 1, i.e., Poisson statistics). We also assume that the neurons are uncorrelated. Instantaneous258

spiking correlations do not destroy the shape invariance of the RTD, but the model fits are already259

excellent without correlations, so we did not attempt to include them in our description.260

Under these assumptions, the mean and auto-correlation function of the evidence across the261

Poisson stochasticity of the neurons can be written as262

〈e(t)〉 ≡ µ = Nr0 qe 10λABL/20
[
10λILD/40

− 10−λILD/40
]

(27)

=
2qe

T0
10λABL/20 sinh(λILD/χ)

〈δe(t)δe(t′)〉 ≡ σ2δ(t − t′) = Nr0 q2
e 10λABL/20

[
10λILD/40 + 10−λILD/40

]
δ(t − t′)

=
2q2

e

T0
10λABL/20 cosh(λILD/χ) δ(t − t′)

where δe(t) ≡ e(t) − 〈e(t)〉 and where we have defined T0 = (Nr0)−1 and χ = 40/ log(10) = 17.37.263

3.3.2 Choice264

Choices are triggered at the moment the DV hits for the first time a constant decision bound ± θ
(decision-time). Thus, the dynamics of the DV, whose instantaneous value we denote by x(t), are
given by

dx
dt

= e(t) (28)

Using the diffusion approximation (17, 18) of the previous equation (which is expected to be
accurate if the number of neurons in each channel is not too small and the quantum of evidence
is not too big), we obtain a CMP, and re-write Eq. 28 as

dx
dt

= µ + ση(t) (29)

where η(t) is a white-noise process and µ and σ are given by Eqs. 27. We always assume that the265

decision variable starts at zero at t = 0.266

In order to understand the separate contributions of ABL and ILD to the discrimination process,
it is revealing to perform a change of variables. To this end, we measure the decision variable in
units of the threshold, and time in units of the quantity tθ ≡ (θ/σ)2 which, physically, is the mean
decision-time of the process when ILD=0, and which is equal to

tθ ≡ 〈RT〉µ=0 =
(
θ
σ

)2

= T0θ
2
e 10−λABL/20 1

2 cosh(λILD/χ)
(30)
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where θe ≡ θ/qe is the threshold measured in units of the quantum of evidence. Thus, in the new
dimensionless variables

z = x/θ τ = t/tθ (31)

Eq. (29) reads
dz
dτ

= θe tanh(λILD/χ) + η(τ) θz = ±1 (32)

This formulation makes it clear that: (i) The dimensionless process does not depend on ABL.267

Changes in ABL affect exclusively the units of time of the problem and thus result only in a rigid268

stretching of the RTD. In general, any quantity which changes the mean and the variance of the269

evidence by the same multiplicative factor can always be compensated by a change in the effective270

unit of time of the problem. (ii) Changes in ILD affect both the strength of evidence and the effective271

units of time (see Eq. 30). Changes in the strength of evidence lead to changes in accuracy and272

in the shape of the RTD (see below for a quantification of the RTD depends on changes in the273

strength of evidence).274

For a generic DDM with evidence e(t) = µ + ση(t), bounds at ± 1 and initial condition at zero,
the probability p+ of hitting the upper bound first is a logistic function of argument 2µ/σ2 (13,19).
Thus, the choice log-odds for this model is given by

log
(

p+

1 − p+

)
= 2θe tanh(λILD/χ) (33)

3.3.3 Model behavior at psychophysical threshold275

We now consider the case of decisions made close to psychophysical threshold, i.e., for ILDs small
enough such that

λILD/χ� 1 (34)

This is a very good approximation given the stimuli that we use since, considering the value of λ276

that we obtain from our fits, λILD/χ < 0.05 for the ILDs that we use in our task . Developing the277

hyperbolic functions in Eqs. 27 to first order in ILD we obtain278

µ =
2qe

χT0
10λABL/20 λ ILD (35)

σ2 =
2q2

e

T0
10λABL/20

which are to the two equations in the Box of the main paper with g(ABL, λ) = (2qe/T0)10λABL/20.
Performing the same change of variables described in the previous section, the DDM is now

dz
dτ

= Γ ILD + η(τ) θz = ±1 (36)

where Γ = λθe/χ, and the effective unit of time of the problem now reads

tθ =
T0

2
θ2

e 10−λABL/20 (37)

Thus, close to psychophysical threshold, it is possible to fully decouple the effect of changes
in overall intensity (ABL, which only rigidly stretches the RTD) and the effect of changes in
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the strength of evidence (ILD, which changes accuracy and the shape of the RTD). Remarkably,
the discrimination process depends only on the single parameter Γ which specifies how much
evidence is associated to a given increment in ILD. A full specification of choice and decision-time
depends on three parameters: θe, λ and T0 = 1/(Nr0), as outlined in the main text and in the Box.
Eqs. 36-37 correspond to Eqs. 1 and 2 of the main text. To be able to model RTs, we consider a
stimulus-independent non-decision time tNDT which captures sensory and motor delays unrelated
to the discrimination process. We assume

RT = tNDT + τDT tθ (38)

where τDT is the stochastic decision time associated to Eq. 36. We postulate that the non-decision279

time in each trial is drawn from a uniform distribution between tND − sND and tND + sND (Box).280

The two parameters tND and sND complete the specification of the model which we fit to the data.281

Close to psychophysical threshold, the choice log-odds ratio of the model is

log
(

p+

1 − p+

)
= (2/χ) θeλ ILD (39)

This equation makes precise the notion of a discrimination task being “sensory limited”: the choice282

log-odds is linear in the three critical quantities that determine accuracy: the effective decision283

threshold (θe), the exponent of the compressive non-linearity (λ), which specifies how physical284

intensity is mapped to the magnitude of the internal representation of the stimulus, and the log-285

ratio of the physical stimulus intensities (ILD; see next section for a clarification of the relevance of286

the log-ratio in this expression). Our assumption that the rats operate at psychophysical threshold287

is validated by the accuracy of our model fits and, more directly, by the linear growth of the288

stimulus coefficients with ILD in our logistic regression analysis of the task (see Fig. S12B below).289

3.4 Relationship to the standard DDM and relevance of the log-ratio290

In the standard use of the DDM, only the drift coefficient µ depends on the stimuli (through an291

anti-symmetric function such as µ ∼ s1 − s2 or µ ∼ sλ1 − sλ2 ), whereas the variance σ2 does not.292

However, we have shown that, in general, the model should be conceived as two-dimensional,293

with both the drift as well as the diffusion coefficients µ and σ2 being a function of the sensory294

stimuli s1 and s2. If the evidence is a function of the activity of neurons with constant FF, under295

which conditions is it appropriate to think of the model as one-dimensional? Or put slightly296

differently, we have been referring somewhat loosely to the ‘overall stimulus intensity’. What297

exactly is the overall intensity and under what conditions does it stay constant when the stimulus298

changes?299

From the arguments we have presented, one can assume that the dependency of the mean and300

the variance of the evidence on the stimuli will in general be of the form301

µ ∝ sλ1 − sλ2
σ2
∝ sλ1 + sλ2 (40)

Consider the DDM in the space (s1, s2) of the two sensory stimuli to be discriminated, and a change302

in the stimuli from (s1, s2) to (ŝ1, ŝ2), to which one can associate a change in the statistics of the303
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Figure S5. One versus two-dimensional DDM (A) Two discrimination problems (filled circles) are shown
in stimulus space (s1, s2). The difference between any two problems can be decomposed into a difference
in the difficulty of the problem (gray curved lines, constant variance) and a difference in the effective time
units of the problem (straight black lines, constant ratio). The dotted square corresponds to a maximum
difference of ± 8 dB in stimulus intensity, as we sometimes use in our experiments. (B) Zoomed version
of the dashed square region in (A), representing discrimination problems close to psychophysical threshold
(i.e., s1 ∼ s2). Gray line is as in (A), and blue line is the line representing constant ABL which we use in our
experiments. (C) Choice log-odds ratio (LOR) as one varies one stimulus (s1) while moving along the gray
(gray line) and blue (blue and red) lines in (B). Black is the exact LOR. Blue is the linear approximation in
log(s1/s2), equivalent to Eq. 39. Red is a linear approximation in (s2 − s1)/s2. For all panels in this figure, we
used λ = 0.1.

evidence from (µ, σ2) to (µ̂, σ̂2). These two discrimination problems are represented in Fig. S5A. If304

we consider the line in stimulus space that goes from the origin to (ŝ1, ŝ2), we know that moving305

along this line keeps the ratio of the stimulus intensities constant, which correspond to a uniform306

stretching of the RTD; neither choice accuracy nor the shape of the RTD changes along this line. We307

can also consider a curve in stimulus space that keeps the variance of the evidence constant and308

equal to its initial value σ2. Moving along this line we change the ratio of the stimulus intensities,309

and thus both choice accuracy and the shape of the RTD vary. We can go from any two points310

in stimulus space moving along these two lines, e.g., first from (s1, s2) along the constant-σ2 line311

until we cross the constant-ratio line (thick black line in Fig. S5A), and then along this straight312

line towards (ŝ1, ŝ2) (thick gray line in Fig. S5A). Note that the RTD changes along both lines, but313

its shape only changes along one of them.314

The standard use of the DDM where changes in the stimulus only affect the drift coefficient315

are equivalent to moving along the constant-σ2 line. From the point of view of the behavior of316

the DDM, this is a pure change in ‘difficulty’ at fixed ’overall intensity’. Note that this notion of317

intensity is related to the total number of spikes fired by the two channels on average, and this318

may not correspond to the subjective notion of intensity of the subject. However, from the point319

of view of the behavior of the model, changes in the stimulus at constant-σ2 are the only stimulus320

manipulation for which no other manipulation exists which has (i) the same performance and (ii)321

a different effective unit of time.322

In general, keeping the variance of the evidence constant while the stimuli change requires a323

good understanding of how the evidence relates to the stimulus. In our simple model, it requires324

knowing the value of λ. However, close to psychophysical threshold, keeping the variance325

constant is easier, since the constant-σ2 line becomes perpendicular to the identity s1 = s2. Thus,326

any changes which keep constant any symmetric function of the stimulus are expected to also327
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keep the variance approximately constant. In Fig. S5B we show that keeping ABL constant328

is a very good approximation to keeping the variance constant within the range difficulties in329

our experiment. Keeping s1 + s2 constant would be a worse approximation, but which would330

nevertheless be appropriate if s1 and s2 are sufficiently similar.331

Finally, we considered whether there is anything special about the logarithmic transform. In332

a signal detection theory model with additive noise and a logarithmic encoding of the stimulus333

intensity (Fechner’s model (20)), the d′ of a discrimination is proportional to the log of the ratio of334

the stimulus intensities. We also obtain that the choice-LOR close to psychophysical threshold is335

proportional to ILD (Eq. 39), i.e., the log of the ratio of the RMS pressure level of the two stimuli336

(Fig. 1C). However, we have not explicitly invoked a logarithmic transformation. Logarithms337

only appear in our description because sound level is typically measured in dB. In deriving Eq.338

39, which is valid near threshold, we took the exact expression for the choice-LOR (Eq. 33) and339

developed it to first order in ILD. However, one can also develop this expression to first order in340

the small quantity 1− s1/s2. Fig. S5C shows that these two approximations are similarly accurate,341

at least for the range of difficulties that we have used. Thus, although the the mathematical342

description of our model is compact when measuring sound intensity in dB, there is nothing343

unique about the logarithmic transformation.344

3.5 RT scale invariance as a function strength of evidence345

Several authors have pointed out that changes in the strength of evidence of a DDM lead to346

changes in mean RT while preserving the coefficient of variation (CV) or the overall shape of the347

RTD (1–3). Importantly, scale invariance with respect to the strength of evidence (ILD for us) is348

a quantitative result (holds approximately), whereas scale invariant with respect to ABL in our349

model is qualitative (i.e., exact), as shown in the main text (see also Fig. S4). Here we quantify350

the accuracy of this approximation and provide an intuition for why it happens and when it fails.351

Across this section, we study changes in the shape of the RTD holding the variance of the evidence352

fixed (i.e., moving along the hyperbolic contours in Fig. S5A).353

As long as accuracy is not nearly perfect (up to 90-95 % correct), the RTDs are approximately354

scale invariant with respect to changes in the strength of evidence (Fig. S6A-B). In Fig. S6B we355

used the scaling of time that minimizes the Kolmogorov-Smirnoff (KS) distance between the each356

RTD and the fastest one, as in the main text (similar results hold if one uses the method in Fig.357

S4 to calculate the temporal rescaling factor). As one increases the strength of evidence, accuracy358

grows (Fig. S6A-inset). If the variance of the evidence is fixed, there is a one-to-one mapping359

between strength of evidence and accuracy. We will use accuracy, instead of strength of evidence,360

to label the different RTDs since it is bounded and since it is a more natural quantity to reveal361

the different regimes of the RTD. The KS distance between RTDs as a function of their respective362

accuracies is shown in Fig. S6C. After scaling, these distances are greatly reduced (Fig. S6D),363

showing that RTDs corresponding to different accuracies can be approximated by scale transforms364

of each other (1–3).365

Looking at the figure, it is evident that when the accuracy approaches one, the quality of the
approximation degrades. To understand why, it is instructive to look at the analytical expression
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of the RTD (21)

ρerr(t) =
πσ2

4
exp

[
−
µ

2σ2 (µt + 2)
]∑

k=1

(2k − 1)(−1)k−1 exp
(
−(2k − 1)2π

2σ2t
8

)
(41)

This is the probability density that the process dx/dt = µ + ση(t) starting from zero with bounds
at ± 1, hits the lower bound at time t while not having hit either bound before (the unnormalized
RTD for errors). We can normalize the distribution by the probability of making an error
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Figure S6. RT scale invariance with respect to changes in strength of evidence. (A) Four representative
RTDs from the DDM. Inset. Accuracy as a function of strength of evidence. (B) Same distributions but in
rescaled time. The time axis for the three slowest distributions was changed so as to maximize the overlap
(minimize the Kolmogorov Smirnoff (KS) distance, see text) with the fastest one. (C) KS distance as a function
of the accuracy associated to any pair of RT distributions. (D) Same after temporal rescaling. (E) Exponential
and refractory components of the RTDs shown in (A), with the same color code. The refractory term (gray) is
the same for all of them as it does not depend on the strength of evidence. The color lines show K(µ, σ2)E(t)
(see Eq. 43), so that the product of the two lines is the actual RTD. (F) Properties of the exponential decay
term E(t) as a function of accuracy. First two lines are the mean decision-time and the time constant of the
exponential decay term τExp. Third line is the strength of evidence. Fourth line is the ratio νDrift/νDiffusion (see
Eq. 45) Only for accuracies very close to unity does the strength of evidence come to dominate the shape
of E(t) and thus of the RTD. The different quantities in this plot are all dimensionless and have comparable
values; thus we’ve used a single y axis whose label should be inferred from the legend. For all plots in this
figure we’ve assumed without loss of generality that σ2 = 1.

1 − p+ = 2 exp(µ/σ2) cosh(µ/σ2) (42)

(recall that when the bounds are constant the RTD is the same for hitting either bound, i.e., correct
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versus error trials). Furthermore, extracting a factor exp(π2σ2t/8) from the infinite series, which
is common to all terms, the normalized RTD can be written as

ρ(t) = K(µ, σ2) E(t) R(t) (43)

where366

K(µ, σ2) =
πσ2

2
cosh(µ/σ2)

E(t) = exp
[
−

(
µ2

2σ2 +
π2σ2

8

)
t
]

R(t) =
∑
k=1

(2k − 1)(−1)k−1 exp
(
−

[
(2k − 1)2

− 1
] π2σ2t

8

)
(44)

The quantity K(µ, σ2) is a normalization constant. The term E(t) is a pure exponential decay,367

whereas the term R(t) has the form of a ‘refractory’ period, which sets the exponential probability368

to zero initially (to account for the fact that the process starts away from the bound and thus, for369

sufficiently small times, the bound crossing probability is arbitrarily small) and quickly converges370

to one, setting the tail of the distribution to a perfect exponential. The exponential and refractory371

terms of the RTDs in Fig. S6A are shown in Fig. S6E. Importantly, only E(t) depends on the372

strength of evidence, in such a way that the weaker the strength of evidence, the slower the373

exponential decay rate, and the longer the decision-time.374

The decay rate of the E(t) term has the form

ν =
µ2

2σ2 +
π2σ2

8
= νDrift + νDiffusion = 1/τExp (45)

This effectively sets the rate of threshold crossings and thus the mean decision-time. The inverse375

τExp of this rate, together with the mean decision-time, is shown in Fig. S6F as a function of376

accuracy. They depend almost identically on accuracy, although the mean decision-time is slightly377

longer because the small-decision-time portion of E(t) is removed by the refractory term R(t).378

The decay rate ν is the sum of two terms, one associated to the strength of evidence µ, which379

we call νDrift and another one νDiffusion associated to diffusion of the decision variable. When380

νDrift � νDiffusion, the time constant τExp and thus the mean decision-time is almost independent381

of the strength of evidence. To understand whether this regime takes place for any conditions of382

accuracy, we plotted νDrift/νDiffusion as a function of accuracy in Fig. S6F (recall that the strength383

of evidence can be written in terms of accuracy as µ = (σ2/2) log[accuracy/(1 − accuracy)] from384

the equation for the psychometric function). The figure shows that the two terms only become385

similar at values of accuracy larger than 0.95 and that their ratio is < 0.1 for values of accuracy less386

than the JND. In contrast, for very high values of accuracy νDrift grows much faster than νDiffusion387

(in fact diverges).388

Thus, the scale invariance of the RTD shown in Fig. S6D can be understood as deriving from389

the very small change in the shape of the RTD as a function of accuracy for all accuracies except390

those very close to one. Although perhaps intuitively one would have expected that the JND,391

which separates the low signal and high signal regimes in terms of accuracy, would have also392

separated those regimes at the level of the RT distribution, this turns out not to be the case. Instead,393
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for almost the whole dynamic range in terms of accuracy, the RT distribution is in the low signal394

regime, with its associated right-skewed exponential tail characteristic of a Poisson distribution.395

Our empirical RTDs fully support this conclusion, as shown in Fig. S4C.396

4 Model fitting397

In this section we expand on several considerations related to the model fitting process and provide398

model fits for the individual rats.399

4.1 Constrained versus unconstrained model fitting400

In the main text we have provided results (Fig. 4) using a ‘constrained’ model fitting approach.401

For this approach, we first fit Γ ∼ λθe from the psychometric function of the rats. Then, assuming402
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Figure S7. Constrained versus Unconstrained model comparison. (A) Constrained model. This is the
same data shown in Fig. 4A-B. (B) Same format but for the unconstrained model. RT and accuracy were fit
simultaneously and all ABL conditions were used. (C) Log parameter estimates for the constrained (black
bars) and unconstrained (white bars) models for the pooled data and for individual rats. For rat 5, the best
fit gave sND = 0 (see Table S1), so we exclude it from the plot.

that Γ is now fixed, we fit the remaining four parameters λ, T0, tND and sND using only the two403

extreme values of ABL = 20 and 60 dB SPL. Alternatively, one can fit all five parameters simul-404

taneously from all the data (see Methods). Here we provide the results of the model fits for both405
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approaches and compare them. Fig. S7A-B shows the RT quantile fits and psychometric functions406

for both fitting approaches. They model fits are almost identical. The estimated parameter values407

from the two approaches are shown in Fig. S7C and in Table S2, and are again almost identi-408

cal for the constrained and unconstrained approaches, and also very similar across rats. Table409

S2 also shows the values of the estimated parameters using the Quantile Maximum Likelihood410

method (22), which are effectively identical to those obtained using the χ2 method.411

We have not attempted to provide a quantitative comparison between the goodness of fit of412

the two approaches since the constrained model uses data from individual trials in two different413

fits (one for accuracy first and then another one for RT). It is more appropriate to think of the414

constrained approach as a method for testing model predictions.415

The fact that an unconstrained fit produces the same result as the constrained fit means that416

both the coupling between speed and accuracy as a function of ILD, as well as the effect of ABL417

on RTs, have an identical form in the model and in the data.418

4.2 Uncertainty on parameter estimates419

The fitting of non-linear models is an inherently difficult problem, as there can be large regions420

of parameter space which make no difference to the quality of the fit (23, 24) leading to large421

parameter uncertainties. We obtained an estimate of the joint probability distribution of the422

parameters from (unconstrained) model fits of bootstrap re-samples of our dataset (Fig. S8A).423

The results show that, indeed, there are strong correlations between the three parameters that424

describe the decision process. In contrast, the mean tND of the non-decision time tNDT is very well425

determined and only very slightly anti-correlated with its spread sND. Where does the correlation426

between λ, θe and T0 come from? The negative correlation between λ and θe is easy to explain,427

since accuracy only constraints their product. Fig. S8A shows that this product (or, equivalently428

Γ, which sets the rat’s JND) is very well specified by the data.429

To gain an understanding of the relationship between T0 and λ we explored how they jointly
determine the dependency of RT on ABL. Recall that we have assumed that

RT = tNDT + τDT tθ (46)

and that this temporal rescaling relationship describes our data very accurately (Fig. 4). In order
to obtain a model-independent estimate of tθ, we used a procedure analogous to the one in Fig.
S4, and inferred this estimate t̂θ assuming Eq. 46 is true and linearly regressing the quantiles of
the actual RT distributions for each value of ABL on those for the ABL-independent distribution
of τDT specified by the dimensionless DDM in Eq. 36. We performed a single fit for all difficulties
with a given ABL. Thus, we have

t̂θ(ABL) =

(
χ2

2

)
T0Γ

2

λ2 10−λ ABL/20 (47)

which we view as a non-linear equation with ABL as the independent variable for which we have430

three data points per rat. Since Γ is very well specified by the data, we assume it is constant431

and equal to its best-fit value and consider T0 and λ as the parameters of interest. We then use432

non-linear least squares to study how well λ and T0 are specified by Eq. 47. The values of t̂θ(ABL)433
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Figure S8. Uncertainty in parameter estimation. (A) Log-parameter estimates from bootstrap re-samples of
the data using the unconstrained model fitting approach (see Methods). Gray: results from 200 resamples.
Black: mean ± standard deviation across 1000 re-samples. Red dot is the fit to the actual data. (B) Empirical
time-scale factor t̂θ(ABL) for each of the three ABL conditions (see text). Each color is for an individual rat.
Black dots are artificial data to show that only certain temporal scaling factors can be accommodated by the
model. Inset. Ratio of temporal scaling factors for our two (equal) ABL increments plotted against each
other for each rat. Model predicts they should be the same. Background color is the error in the fit (darker is
more error). (C) Estimates of log T0 versus log λ from Eq. 47. Colored points are estimates from bootstrap
re-samples. For each color, black full circle is the mean across re-samples. Black lines represent the directions
of the eigenvectors of the Fisher Information Matrix (FIM) evaluated at the best fit, with lengths proportional
to the covariance of the parameters (they are not orthogonal because the x- and y-axis are stretched. Inset.
The two eigenvalues of the FIM for each rat.

obtained in this way together with the fit from the model in Eq. 47, and the joint distribution of the434

estimates of logλ and log T0 from bootstrap re-samples are shown in Fig. S8B and S8C respectively.435

For this model, we computed the Fisher Information matrix (FIM) at the best fit. The directions of436

the eigenvectors of the FIM are shown as black lines in Fig. S8C (with lengths proportional to the437

covariance of the parameters), and the eigenvalues are shown in the inset. The eigenvectors span438

several orders of magnitude, a signature of that the there is a ‘sloppy’ direction in parameter space439

in the model (the one along which logλ and log T0 are positively correlated) (23, 24). Inspecting440

the functional form of tθ(ABL), we see that the curvature of the lines in Fig. S8B is determined441

by λ, and that λ and T0 jointly determine the overall range of t̂θ(ABL). Sloppiness arises because442

similar curves can be produced by small correlated changes in curvature and range. Are curvature443

and range actually correlated across rats? Fig. S8C suggests that the answer is yes (different rats444

lay along the same sloppy direction for each individual animal). Furthermore, the functional445

form of tθ(ABL) suggests that this correlation should exist, because the model can only produce446

linear functions of ABL with very small slope compared to the abscissa (because of the λ2 term in447

the denominator of tθ(ABL)). However, we don’t think the current data provides strong enough448

evidence of a correlation between curvature and range. On the one hand, because of the sloppy449

direction in parameter space, the correlation between λ and T0 is enhanced by the model fit. Also,450

the strong correlation depends heavily on data from a single rat (the one corresponding to the451

blue dots in Fig. S8C). To establish conclusively that this correlation exists we would need more452

rats and more values of ABL and thus this issue stands as a model prediction right now.453
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Finally, we not that, despite sloppiness, the model is still quite sensitive values of t̂θ(ABL). For
instance, from Eq. 47 it is straightforward to check that the following equality should hold

t̂θ(ABL = 40)/t̂θ(ABL = 60) = t̂θ(ABL = 20)/t̂θ(ABL = 40) (48)

Values of t̂θ(ABL) perfectly within the range of what we observed, but which strongly violate this454

equality (black circles in Fig. S8B), give poor model fits (Fig. S8B inset).455

4.3 Model fits for individual rats456

Here we show the results of the model fits for each of the five rats individually.457
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Fig. S9. Model fits for individual rats. Data for Rats 1-4. Continues in the next page.460
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Fig. S9. Model fits for individual rats. Same
format as in Fig. 6 of the main text. (A1-
5) Psychometric functions. Dots are choose-
right probabilities separately for each ABL
(same color code as Figs. 2-3 main text).
A single psychometric function has been fit
to pooled data across ABLs. (B1-5) The five
quantiles for the RTDs for the three ABLs and
their model fit. Error bars are standard devia-
tions across bootstrap resamples (Nr = 1000).
(C1-5) RTDs (kernel density estimates, see
Methods) for each rat and their correspond-
ing model fit across all twelve conditions. Re-
sults are more noisy than for the pooled data
but the model can still fit the behavior of each
single rat accurately. For all plots, we show
the range 0-800 ms.

461

5 Task validation and behavioral manipulations462

5.1 Sources of uncertainty in a sensory psychophysics task463

In order to interpret correctly the width of the psychometric function, it is important to understand464

what are the sources of uncertainty that contribute to its value. For instance, we are using choices465
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Figure S10. Different sources of uncertainty contribute to the slope of the psychometric function. Left.
Schematic description of how task contingencies in addition to other behavioral strategies might all lead to
the same two actions studied in a binary choice experiment. Right. Each additional source of uncertainty or
stimulus-independent behavioral strategy broadens the psychometric function. Black, sensory uncertainty.
Blue, idem plus decision uncertainty. Dark-blue, idem plus stimulus-independent behavioral strategies.

from our rats to fit parameters that specify how evidence accumulation of noisy sensory input466

determines accuracy, which implicitly assumes that it is factors related to the specific sensory467

discrimination process that we model that set the accuracy of the rats’ choices. Fig. S10 shows468
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schematically factors that may contribute to the slope of the psychometric function in a signal469

detection theory setting. Here, the goal may be to measure ‘sensory’ uncertainty, i.e., the trial470

to trial variability in the decision variable. This would be associated to the black psychometric471

function in the figure. If the task is not fully understood by the subject or the decision boundary472

has to be retrieved from memory, this may lead to what we call ‘decision uncertainty’, i.e., “I473

know what’s out there but I don’t know what I should do to get reward”. If decision uncer-474

tainty is present, this will decrease the slope of the psychometric function (blue psychometric).475

Furthermore, the actions that the subject needs to perform in the task may be under the control476

of a variety of mechanisms, some of them independent of the stimulus in the current trial. For477

instance, subjects may tend to repeat an action if it led to reinforcement in the past regardless of478

the current stimulus. The extent to which these alternative mechanisms will take control of the479

current action will be modulated by a number of different factors. One series of factors may have480

to do with trial history. Additionally, some discriminations may be particularly effortful, which481

could bias control away from the task. Finally, general uncertainty about the right course of action482

may also recruit alternative strategies. All of these factors would further decrease the slope of the483

psychometric fuction (dark blue psychometric). In our task, we have systematically considered484

these factors (Figs. 5, S13) and found that they do not contribute to the discrimination accuracy485

of the rats.486

5.2 Stimulus generalization and role of external noise487

In order to test that rats understood the task contingencies and responded exclusively based on488

the ILD of the stimulus, we first compared performance across block transitions corresponding489

to changes in ABL (Fig. S11A). Sensitivity (d′) in the first and last 24 trials of each block was not490

statistically different (p > 0.5, Fisher’s exact test). Next, we tested whether rats trained with the491

standard broad band noise stimulus could discriminate the ILD of pure tones (ABL = 60 dB SPL).492
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Figure S11. Generalization and external noise. (A) Choose-right probabilities for the first and last 24 trials
of each block. (B) Same but for standard blocks versus blocks where the stimulus was a 10 KHz pure tone
at 60 dB SPL. (C) Same comparing the standard noise stimulus and frozen noise stimuli, which could be
coherent or non coherent across the two ears (see Methods).

In this case, again, sensitivity did not differ significantly across conditions (Fig. S11B; p > 0.5,493

Fisher’s exact test), demonstrating that the rats understand the task contingencies and are able494
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to generalize, extracting and reporting the relevant feature (ILD) of sounds of different spectral495

content.496

We also tested the implicit model assumption that discrimination accuracy is limited by vari-497

ability in the spiking of sensory neurons. Since the broad band noise stimulus is stochastic in498

nature, this stochasticity could in principle contribute to the measured value of the JND (25).499

We tested this hypothesis by applying the same ‘frozen noise’ stimulus (appropriately scaled in500

amplitude) to each ear. Sensitivity for frozen and non-frozen noise stimuli was not significantly501

different (Fig. S11C; p > 0.1, Fisher’s exact test), confirming that, at least in our experimental502

conditions, rats are indeed using the constant RMS pressure-level of the stimulus to perform the503

task, and that stochastic temporal fluctuations in the stimulus per se do not limit accuracy.504

5.3 Trial history effects505

In order to reveal the extent to which variables different from the sensory stimulus in the current506

trial had control over the rat’s responses (26,27), we quantified the predictive power of the history507

of stimuli, responses, responses after correct outcomes and responses after errors on choices in508

the current trial using logistic regression (see Methods). The fraction of variance of the linear509

component of the logistic regression model captured by the stimulus and each of the four types of510

history effects we considered, shows that, for four out of the five rats, trial history only marginally511

affected the responses of the animals in the current trial (Fig. S12A). To formally evaluate whether512

trial history carries predictive power, we compared prediction accuracy using the area under513

the curve (AUC; nested cross-validation; see Methods) between the actual data and surrogate514

data-sets where the trial history is randomly shuffled. Only for one rat (rat 1) there is a small515

but significant effect of trial history (Fig. S12B, no overlap between the 95% CI of the AUC). For516

this rat, the correct-response history predictor stands out and captures ∼ 8% of the variance (Fig.517

S12A, inset). Inspecting the four history kernels in Fig. S12D-G we can see that this effect has the518

form of a win-stay strategy (the correct history kernel for this animal is the outlier reaching ∼519

0.45 at trial one into the past). Anecdotally, this rat was ‘lazy’, i.e., it had a tendency to keep the520

back of her body close to the lateral port it had just consumed reward from and thus oriented its521

head towards the central port at an angle in the next trial (data not shown). It thus incurred in a522

higher physical cost changing responses than responding to the same side, and this is evident in523

the kernel.524

As expected from the level invariance of the accuracy, the magnitude of the linear coefficients525

associated to the stimulus in the current trial for the different ABLs are very similar (Fig. S12C).526

Interestingly they are also approximately linear as a function of ILD, in accordance with the527

predictions of the theory for discriminations that take place at psychophysical threshold.528

We conclude that alternative strategies have no control over the responses of the rats in the529

task, and that their choices reflect exclusively their perception of the ILD of the sounds in the530

current trial, as implicitly assumed by our model.531
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Figure S12. Trial history effects. (A) Fraction of variance of the linear component of the logistic regression
model captured by the stimulus and the four types of history effects we considered. Each dot is a single rat.
Inset. Zoom in on the fraction of variance associated to the history effect predictors. (B) Area under the
curve (AUC) for each rat for the actual data and for surrogate datasets where history predictors have been
shuffled (see Methods). (C) Current trial stimulus predictor coefficients separately for each ILD and ABL.
(C-F) Kernels for each of the four types of history predictors. Notice the difference in the scale of the y-axis
between this panel and panel (C). Dots connected by lines indicate the kernel for each single rat. Inset in
(G) shows the basis of decaying exponentials used to express all kernels. Across the figure, error bars are
bootstrap 95% CI (see Methods).

5.4 Further manipulations of motivation and effect of priors on difficulty532

We sought to further establish the surprising lack of effect of motivation on performance. The533

batch of animals used in the main text experienced sessions where some blocks had only the534

two hardest conditions (Fig. 5). For a new batch of animals, we tested longer manipulations of535

motivation and we also changed motivation bi-directionally. We assessed the effect of increased536

motivation in sessions in which only the first block was standard, and the rest of the session only537

used stimuli from the hardest conditions (which in this case were ILDs of 1 and 2 dB, below the538

JND). Although there was a trend towards an increase in sensitivity for the only-hard blocks, the539

increase did not reach significance (Fig. S13A; p = 0.064, Fishe’s exact test). We further tested whe-540

ther experiencing only easy stimuli would decrease performance. For this, rats experienced many541

sessions of only easy stimuli (ILDs of 4.5, 6, 9, 15 dB). Against our expectations, lapse rates did542

not increase and percent correct was not significantly different (Fig. S13A; comparing difficulties543

of 4.5 and 6 dB with our standard dataset, p > 0.1, Fisher’s exact test. Since there were few errors544

in these conditions, assessments of sensitivity were unreliable).545

In addition to testing the effect of motivation, changes in the overall difficulty of a block can be546

used to test the effect of priors on difficulty. Normative bayesian models of perceptual decision-547

making (7, 28) predict that the psychometric function should change depending on the subjects548
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Figure S13. Stronger bi-directional manipulations of motivation and effect of priors on difficulty. (A)
Choose-right probabilities for standard, only-hard or only-easy sessions (see Methods). Choose-right proba-
bilities around changes from: (B) standard -ST- to easy blocks -E- and from standard to hard blocks -H-; (C)
easy to standard blocks; and (D) hard to standard blocks. In all figure legends, First and Last are the first
and last 24 trials of each block, respectively.

prior on the difficulty of the stimulus. We reasoned that the best chance to see this effect would be549

at transitions between blocks with different overall difficulties. Thus, we trained rats in a series550

of sessions with transitions between standard, hard-only and easy only conditions. Consistent551

with our previous results, we saw no statistically significant differences in sensitivity (for standard552

versus only-hard) or percent correct (for standard versus only-easy) at block transitions (see Table553

S3 for statistical comparisons).554

Overall we conclude that the evidence threshold for discrimination is remarkably robust555

against changes in motivation or priors on difficulty.556
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6 Supplementary Tables557

6.1 Accuracy and RT comparisons558

ABL 20 ABL 40 ABL 60 ABL 20 - 40 20 - 60 40 - 60 ABL 20 ABL 40 ABL 60

Rat1 1.92 ± 0.45 1.96 ± 0.52 1.91 ± 0.52 0.542 0.950 0.528 74 83 75

Rat2 1.90 ± 0.52 2.07 ± 0.58 1.99 ± 0.47 0.069 0.309 0.312 72 74 79

Rat3 2.22 ± 0.47 1.97 ± 0.43 1.78 ± 0.45 <0.001 <0.001 0.010 73 76 74

Rat4 2.01 ± 0.44 2.03 ± 0.48 2.02 ± 0.42 0.906 0.962 0.939 12 13 13

Rat5 1.97 ± 0.41 2.58 ± 0.50 2.65 ± 0.51 <0.001 <0.001 0.409 91 98 96

Sample 2.00 ± 0.13 2.12 ± 0.26 2.07 ± 0.33 0.470 0.796 0.646

F d.f. p  value F d.f. p  value

Rat1 235.57 2 <0.001 41.06 3 <0.001

Rat2 399.99 2 <0.001 31.70 3 <0.001

Rat3 194.51 2 <0.001 22.34 3 <0.001

Rat4 68.71 2 <0.001 18.48 3 <0.001

Rat5 343.54 2 <0.001 142.24 3 <0.001

Sample 77.12 2 <0.001 17.54 3 <0.001

Sensitivity (d')

Mean ± SD

ABL ILD

ANOVA

Reaction times

Fischer's exact test

p value # Blocks

559

Table S1. Accuracy and reaction time results. Top. Accuracy. For each rat, we report sensitivity (d’) for each560

ABL (first 3 columns), p-Value of a sensitivity comparison for each pair of ABLs testing the null hypothesis561

that they are the same (Fisher’s exact permutation test, Bonferroni corrected), and number of blocks in each562

condition (each block is 80 trials). Rat 4 lost the implant early. Bottom. Results for two-way ANOVA testing563

differences in mean reaction time across ABL (left three columns) and ILD (right three columns).564
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6.2 Parameter estimates from model fits565

λ θ e T 0 (ms) t ND (ms) s ND (ms) JND (dB) χ 2 (*)

Rat 1 0.089 ± 0.008 43 ± 4.1 0.25 ± 0.05 86.2 ± 2.0 32.2 ± 3.1 2.50  ± 0.07 163 ± 51

Rat 2 0.117 ± 0.008 34 ± 2.5 0.43 ± 0.07 91.8 ± 2.4 39.7 ± 3.6 2.40  ± 0.08 147 ± 63

Rat 3 0.103 ± 0.008 38.4 ± 3.1 0.31 ± 0.06 101.7 ± 2.4 47.2 ± 2.8 2.42  ± 0.07 232 ± 74

Rat 4 0.152 ± 0.023 25.9 ± 4.5 0.83 ± 0.35 87.7 ± 4.6 18.6 ± 7.1 2.42  ± 0.15 131 ± 93

Rat 5 0.098 ± 0.016 51.4 ± 11.0 0.37 ± 0.12 72.1 ± 2.3 0.0 ± 0.0 1.90  ± 0.05 392 ± 83

All 0.099 ± 0.003 42.2 ± 1.5 0.34 ± 0.03 84.3 ± 1.0 31.0 ± 2.0 2.27  ± 0.04 401 ± 55

λ θ e T 0 (ms) t ND (ms) s ND (ms) JND (dB) χ 2

Rat 1 0.089 ± 0.008 41.3 ± 4.0 0.26 ± 0.06 85.4 ± 1.5 30.4 ± 2.4 2.59  ± 0.06 286 ± 75

Rat 2 0.117 ± 0.008 32.4 ± 2.4 0.45 ± 0.08 90.8 ± 2.0 39.4 ± 2.9 2.52  ± 0.06 296 ± 70

Rat 3 0.101 ± 0.008 36.9 ± 3.1 0.33 ± 0.07 98.7 ± 1.9 45.6 ± 2.4 2.57  ± 0.05 411 ± 81

Rat 4 0.157 ± 0.024 27.5 ± 4.6 0.73 ± 0.31 87.4 ± 4.2 25.3 ± 4.9 2.22  ± 0.15 223 ± 94

Rat 5 0.099 ± 0.020 45.8 ± 15.0 0.44 ± 0.17 74.6 ± 2.1 0.0 ± 0.1 2.09  ± 0.04 787 ± 149

All 0.100 ± 0.004 40.2 ± 1.5 0.37 ± 0.03 83.8 ± 0.8 29.8 ± 1.7 2.37  ± 0.03 625 ± 103

λ θ e T 0 (ms) t ND (ms) s ND (ms) JND (dB) NLL (*)

Rat 1 0.089 ± 0.007 42.7 ± 3.7 0.25 ± 0.05 86.7 ± 1.9 32.6 ± 2.9 2.5 ± 0.06 18881 ± 146

Rat 2 0.118 ± 0.008 33.6 ± 2.5 0.44 ± 0.07 92.6 ± 2.3 40.2 ± 3.5 2.39 ± 0.06 18590 ± 147

Rat 3 0.104 ± 0.008 37.8 ± 3.0 0.32 ± 0.06 102.4 ± 2.3 47.2 ± 2.7 2.42 ± 0.06 18537 ± 145

Rat 4 0.144 ± 0.019 27.6 ± 4.2 0.66 ± 0.24 90.1 ± 4.0 22.4 ± 6.6 2.4 ± 0.16 3157 ± 65

Rat 5 0.094 ± 0.015 54 ± 11 0.33 ± 0.11 71.6 ± 2.0 0 ± 0.05 1.9 ± 0.04 27070 ± 156

All 0.100 ± 0.003 42.1 ± 1.5 0.35 ± 0.03 84.7 ± 1.0 30.9 ± 2.0 2.26 ± 0.03 85790 ± 292

λ θ e T 0 (ms) t ND (ms) s ND (ms) JND (dB) NLL

Rat 1 0.089 ± 0.007 41.4 ± 3.5 0.26 ± 0.05 85.8 ± 1.4 30.6 ± 2.3 2.58  ± 0.05 36323 ± 107

Rat 2 0.118 ± 0.008 32.1 ± 2.2 0.46 ± 0.08 91.5 ± 1.9 39.7 ± 2.9 2.52  ± 0.06 34169 ± 99

Rat 3 0.102 ± 0.008 36.6 ± 2.9 0.34 ± 0.06 99.1 ± 1.9 45.4 ± 2.3 2.55  ± 0.05 34344 ± 110

Rat 4 0.144 ± 0.019 28.8 ± 4.1 0.58 ± 0.21 89.9 ± 3.1 26.9 ± 4.0 2.29  ± 0.13 5736 ± 51

Rat 5 0.089 ± 0.020 52.8 ± 15 0.32 ± 0.15 73 ± 2.1 0 ± 0.12 2.02  ± 0.05 49370 ± 124

All 0.099 ± 0.004 40.5 ± 1.6 0.36 ± 0.03 84 ± 0.8 29.7 ± 1.7 2.37  ± 0.02 159306 ± 206

Model

(*) Caution must be exercised in interpreting these NLL values (see Methods)

Unconstrained model

Model

Unconstrained model

(*) Caution must be exercised in interpreting these χ² values (see Methods)

566

Table S2. The top two tables list the model parameter estimates for the constrained and unconstrained567

models using the χ2 method for all rats individually and for the pooled data across rats. The log of these568

estimates are represented graphically in Fig. S7C. For the unconstrained model, the χ2 values are statistically569

meaningful. The bottom two tables show the same thing but using the quantile maximum likelihood method570

(see Methods), instead of the χ2 method. The results are essentially identical regardless of which method is571

used.572
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6.3 Behavioral manipulations573

ILD Sample Sensitivity (d')

Batch steps ABLs n Behavioral manipulation Mean ± SD p Value

Standard 2.04 ± 0.36 0.914

Uneven RW 2.09 ± 0.47

Standard (hard conds.) 1.59 ± 0.36 0.515

Hard 1.73 ± 0.25

Fist trials 2.00 ± 0.20 0.527

Last trials 1.94 ± 0.19

Noise 1.84 ± 0.04 1.000

Pure tones 1.85 ± 0.24

Standard 1.87 ± 0.13 0.175

Frozen noise (FN) 1.97 ± 0.10

FN Coherent 2.02 ± 0.12 0.108

FN Non coherent 1.91 ± 0.08

Standard (hard conds.) 1.02 ± 0.06 0.064

Hard 0.95 ± 0.02

Standard to hard (First trials) 0.92 ± 0.04 0.078

Standard to hard (Last trials) 1.14 ± 0.23

Hard to standard (First trials) 2.07 ± 0.24 0.488

Hard to standard (Last trials) 1.98 ± 0.17

Easy to standard (First trials) 2.00 ± 0.13 0.510

Easy to standard (Last trials) 1.87 ± 0.37

Standard (easy conds.) 0.98 ± 0.01 0.149

Easy 0.97 ± 0.01

Standard to easy (First trials) 0.98 ± 0.02 0.277

Standard to easy (Last trials) 0.97 ± 0.01

5

50

20, 40, 60

60

Linear

Log

6
Sensitivity 

(d')

Proportion 

correct

4

3

5

3

5

A

B

B

Log

Log

50

574

Table S3. Results for the statistical comparison of sensitivity (d’) across all behavioral manipulations. See575

Methods for precise definition of these manipulations and for a description of the procedure used to obtain576

p-Values.577
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