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Abstract 

Single‐cell RNA‐sequencing (scRNA‐seq) has become a powerful tool for the systematic investigation of 

cellular diversity. As a number of computational tools have been developed to identify and visualize cell 

populations  within  a  single  scRNA‐seq  dataset,  there  is  a  need  for  methods  to  quantitatively  and 

statistically  define  proportional  shifts  in  cell  population  structures  across  datasets,  such  expansion  or 

shrinkage, or emergence or disappearance of cell populations. Here we present sc‐UniFrac, a framework 

to  statistically  quantify  compositional  diversity  in  cell  populations  between  single‐cell  transcriptome 

landscapes. sc‐UniFrac enables sensitive and robust quantification in simulated and experimental datasets 

in  terms of both population  identity  and quantity. We have demonstrated  the utility of  sc‐UniFrac  in 

multiple applications, including assessment of biological and technical replicates, classification of tissue 

phenotypes, identification and definition of altered cell populations, and benchmarking batch correction 

tools. sc‐UniFrac provides a framework for quantifying diversity or alterations in cell populations across 

conditions, and has broad utility for gaining insight on how cell populations respond to perturbations.   

Introduction 

Single‐cell  sequencing  technologies enables profiling of hundreds  to  thousands  individual  cells  from a 

tissue comprising of a diversity of cell types [1–8]. The rapid advances of single‐cell technologies have led 

to a proliferation of novel computational tools. Current analyses mainly focus on the identification of cell 

populations and transitional trajectories from data obtained from a single sample (reviewed in [9–12]). 

While these tools can shed light on complex biological processes within a given sample [13], it is emerging 

that the power of single‐cell technologies lies in multi‐sample experimental designs where responses of 

single‐cells, in terms of identity and quantity, under multiple conditions can be assessed. This poses a new 

statistical challenge: given that each sample is comprised of transcriptomes from hundreds to thousands 

of  individual  cells,  how  does  one  compare  across  different  samples  to  statistically  assess  population 

diversity and  to detect population changes  in an unbiased way? As  increasing numbers of  studies are 
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generating  scRNA‐seq over multiple  samples,  there  is  an unmet need  for  a  statistical  framework  that 

enables  quantitative  comparisons  across  single‐cell  landscapes.  The  framework  would  have  wide 

application,  from quantitatively  uncovering  cell  population  changes,  assessing  batch  effect  correction 

methods, to classifying disease subtypes based upon single‐cell landscapes. 

There currently exists a paucity of approaches aiming to determine cellular composition similarities and 

differences between samples. CITRUS is a supervised approach for identifying cell populations that are 

significantly different between specified outcomes, whose goal is distinct from unsupervised comparison 

of  samples based on  similarities  [14].  Another  approach uses  the Wasserstein metric  known as  Earth 

mover’s Distance (EMD), which is a measure of the distance between two probability distributions over a 

certain data space [15]. Briefly, EMD partitions the entire data space into bins and measures the cost of 

transfer of data points from one distribution over these bins to resemble the other distribution. Orlova et 

al.  applied  EMD  across  datasets  to  quantify  the  similarity  of  two  cell  populations  by  measuring  the 

distance between expression distributions in 2‐dimensional marker space [16]. However, partition of data 

spaces into bins has an exponential computational cost as the number of dimensions increases, limiting 

EMD use to 1‐ or 2‐dimensional data spaces. Although there are multiple dimension‐reduction approaches 

for high dimensional data [11,17,18], analysis in a customizable, unrestricted number of dimensions would 

be preferred, especially for scRNA‐seq datasets with thousands of native dimensions. We have developed 

the p‐Creode score, which determines the similarities between p‐Creode trajectories derived from a multi‐

dimensional single‐cell landscape [19]. However, this approach is limited to datasets where trajectories 

can be derived from continuous single‐cell data and is not generalizable to all data distributions. Currently, 

the  most  common  strategy  for  assessing  similarities  between  single‐cell  landscapes  remains  a  visual 

evaluation of the degree of “mixing” of data points when two or more samples are analyzed together on 

a t‐SNE plot [2]. Two methods have recently been developed to use k‐nearest neighbors to characterize 

this degree of intermixing [20,21]. Both methods use the simple assumption that k‐nearest neighbors of 
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each cell should have the same distribution of sample labels as the full dataset if the datasets are well‐

mixed.  

We were originally inspired by some of the early single‐cell work where similarities between replicates 

can be qualitatively evaluated by the degree of mixing of hierarchical clusters formed between replicates 

[7].  Thus,  by  deriving  a  quantitative  measure  to  compare  between  hierarchical  trees  generated  by 

clustering,  we  can  obtain  a  corresponding  quantitative,  statistically  testable  metric  to  compare  cell 

population diversity between single‐cell landscapes. Multiple metrics to measure similarity between trees 

have been proposed such as, Baker’s gamma index [22], which we have used previously to determine the 

similarity  between  signaling  modules  [23].  UniFrac  is  a  distance  metric  originally  devised  to  utilize 

phylogenetic tree comparisons to determine similarity in microbial communities between two ecologies 

[24]. UniFrac  determines  the  similarity  between  trees  by  statistically  evaluating  shared  branches  that 

propagate through the entire structure of the data.     UniFrac enables a statistically robust framework, 

where  the  weight  of  branches  can  be  directly  related  to  the  number  of  organisms  belonging  to 

phylogenetic groups. We modified UniFrac to what we called sc‐UniFrac  (single‐cell UniFrac) such that 

single‐cell  landscape  comparisons  can  directly  leverage  the  entire  statistical  framework  built  around 

UniFrac.   sc‐UniFrac compares diversity based on transcriptome similarities of single cells, and is more 

powerful than  intermixing methods due to  its account of entire data structures of the  landscape.   We 

demonstrated the utility of sc‐UniFrac on quantifying similarities between simulated and real sc‐RNAseq 

datasets, where the ground truth of similarities between samples is known. We also successfully applied 

sc‐UniFrac  on  assessing  the  performance  of  single‐cell  batch‐correcting methods.     We  envision  that 

quantitative metrics such as sc‐UniFrac will find increasing utility as larger volumes of sc‐RNAseq data over 

many samples are generated. sc‐UniFrac will greatly facilitate single‐cell studies, include those aimed at 

deciphering how cell populations respond to perturbations or tracking the evolution of cell populations 

during disease progression.  
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Results 

Overview of sc‐UniFrac 

For quantifying cell diversity differences in single‐cell landscapes, we borrowed the UniFrac concept from 

the field of microbiome research. UniFrac is a distance metric for quantifying differences in phylogenetic 

diversity  between  ecological  landscapes.  Instead  of  operating  on  trees  constructed  on  phylogenetic 

dissimilarities  between  two  samples,  sc‐UniFrac  analogously  builds  hierarchical  trees  from  clustering 

transcriptional  profiles  of  singles  cells  combined  from  two  samples.  Note  that  the  purpose  of  the 

clustering  is  not  to  define  cell  populations  within  the  samples  but  to  partition  the  data  points  in  a 

reproducible way.  sc‐UniFrac reconstructs a hierarchical tree from k cluster centroids independent of the 

clustering method used. The clustering tree, encompassing the structural features of cell subpopulations, 

is used for calculating the weighted UniFrac distance by assign values to each branch based on the relative 

abundance of cells (Figure 1A). Statistical significance of the distance between two samples is determined 

within the standard UniFrac framework, by permuting the sample labels of each cell on the tree without 

changing the tree structure. In this way, a distribution of distance is obtained with a p‐value that reflects 

the probability that the permuted distances are greater than or equal to the observed distance by chance 

(Methods). sc‐UniFrac further identifies significantly altered cell populations that drive the compositional 

difference between single‐cell transcriptome landscapes and detects gene signatures to mark these cell 

populations.  Finally,  sc‐UniFrac  predicts  the  potential  identities  of  these  populations  by  matching 

individual  cell  signatures  to  cell  types  from reference atlases. The general workflow of  the  sc‐UniFrac 

pipeline is shown in Figure 1B. 

Sensitive and robust quantification of proportional shifts population diversity in single‐cell landscapes 

To evaluate the performance of sc‐UniFrac on quantifying the compositional difference between single‐

cell landscapes, we first applied the method on experimental datasets where population structure can be 

precisely controlled. Two 1000‐cell populations were generated by sampling from the CD8 and CD4 T cell 
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populations, respectively, from the T‐cell development dataset of the mouse thymus [25]. This process 

was  repeated  50  times  to  evaluate  the  robustness  of  sc‐UniFrac.  Comparing  the  CD8  versus  CD4 

populations  (1000‐cell  sample  from each population) using sc‐UniFrac  revealed, as expected,  they are 

completely different in their population structures with a large distance (Figure 2A – red arrow, S1A). In 

contrast,  comparing  two  identical  1000‐cell  populations  resampled  from CD8  cells  revealed  that  they 

possess the same population structures with a median distance of 0 (Figure 2A – green arrow, S1B). We 

then evaluated the performance of sc‐UniFrac in a simulation experiment where we constructed a series 

of paired samples with a gradation of proportional shift  in cell populations. For each pair, one sample 

included only CD8 cells (N1), while the other was comprised of proportional mixtures of CD4 and CD8 cells 

(N2), starting from 0% of CD4 cells (no shift) to 100% of CD4 cells (complete shift). The distance of sc‐

UniFrac progressively increased as proportional shifts became larger (Figure 2A, S1C‐D). Among the 50 

resampled  runs,  less  than  0.2%  of  the  sc‐UniFrac  distances  generated  were  significantly  different 

(identified as false positives) when two samples were identical (0% proportional shift), while over 95% of 

the distances were significantly different even when there was as little as 2% of CD4 cells mixed in with 

the CD8 cells (Figure 2B). These results signify that sc‐UniFrac is sensitive and specific for detecting minute 

shifts in population structure. 

Next, using this controlled sampling scheme, we evaluated the impact of changing various parameters on 

the  performance  of  sc‐UniFrac.  First,  we  altered  the  k  parameter  for  dividing  the  data  into  k  sub‐

populations for analysis, which tunes the resolution by which sc‐UniFrac analyzes the datasets. sc‐UniFrac, 

regarding its quantitative ability and its sensitivity, was robust as long as k was not exceedingly low (k>3) 

(Figure 2C, D). At k<=3, single‐cell datasets are represented only by three major groups or less, reducing 

the resolution of sc‐UniFrac for detecting differences in single‐cell level diversity. Second, we assessed the 

effect of imbalanced dataset sizes. Keeping the size of sample 1 (N1) constant at 1000 cells, we altered 

the size of sample 2  (N2) during resampling while maintaining  the same population structure. The sc‐
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UniFrac method was observed to be robust with respect to  imbalanced dataset sizes, with only minor 

losses  in sensitivity at  larger  imbalances (detection limit of 5% instead of 2%) (Figure 2E, F, S2). These 

results  demonstrate  the  robustness  of  sc‐UniFrac,  whose  performance  is  independent  of  chosen 

parameters. 

Assessment of reproducibility of scRNA‐seq data and dissimilarities between different tissue samples 

To demonstrate the utility of sc‐UniFrac on scRNA‐seq data, we generated a series of scRNA‐seq datasets 

with known similarities/differences using inDrop sequencing [1]. These datasets included tissue samples 

from  the mouse  colonic  epithelium,  consisting  of  both  technical  and  biological  replicates,  as  well  as 

biological replicate samples of the mouse embryonic pancreatic islet collected at E14.5. Three technical 

replicates (colon1_1, colon1_2, colon1_3) consisted of multiple single‐cell fractions collected from one 

mouse, whose  libraries were constructed and sequenced on separate days. Three biological  replicates 

(colon1, colon2, colon3) consisted of samples collected from different mice on different days, but were 

processed and sequenced together. One sample (colon1) has both technical and biological replicates. 

Two  traditional  strategies  to  assess  the  reproducibility of  scRNA‐seq datasets,  for both biological  and 

technical replicates, were performed. One strategy is to compare the median levels of all expressed genes 

between every sample pair using Spearman correlation analysis. The correlation analysis demonstrated 

that the technical replicates were more similar amongst each other (mean R= 0.89 +/‐ SD 0.04), compared 

with  samples  amongst  biological  replicates  (mean  R=  0.80  +/‐  SD  0.07)  (Figure  S3).  As  expected,  the 

embryonic islets displayed a median gene expression that was the most different when compared to the 

adult  colon  (mean R= 0.504 +/‐ SD 0.07). These  results are consistent with expected similarity among 

different conditions, with technical replicate > biological replicate > outgroup organ. While correlation 

analysis can quantify the degree of similarity in terms of average transcriptional profile, it provides a very 

rough estimate and tends to be easily biased towards the dominant population in single‐cell landscapes. 

The other strategy is to do a visual evaluation on how cells from multiple samples are intermixed on a t‐

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333393doi: bioRxiv preprint 

https://doi.org/10.1101/333393
http://creativecommons.org/licenses/by-nd/4.0/


SNE plot. Structural differences amongst different samples will be reflected in segregation of data points 

into separate clusters by sample, while data points from similar samples will appeared together as mixed 

clusters. Visualization on  t‐SNE plot  showed  the  same  result as median correlation analysis.  Technical 

replicates appeared more intermixed within t‐SNE clusters compared with biological replicates (Figure 3A, 

B, S4A, B). In contrast, pancreatic biological replicates segregate away from samples generated from the 

colon  as  both  technical  and  biological  replicates  (Figure  3C,  D).  While  t‐SNE  analysis  describes  the 

subpopulation structure of  the samples,  it  is not quantitative  in  that  similarities and differences were 

assessed subjectively by visualization.  

Compared with these two traditional strategies, sc‐UniFrac provides an objective, precise, and unbiased 

metric  to  quantify  compositional  dissimilarities  across  single‐cell  RNA‐seq  datasets  while  taking 

population  structures  into  account.  The  calculated  sc‐UniFrac  distance  between  the  colonic  and 

pancreatic datasets was 1, the maximal obtainable distance demonstrating the samples did not share any 

cell  populations  (Figure 4A). Much  smaller, but  significant, distances were observed among biological 

replicates  of  colonic  datasets  (Figure  4A,  B,  distance=0.24‐0.37),  suggesting  that  they  share  cell 

populations  but  proportional  compositional  difference  can  still  be  detected.    Technical  replicates 

appeared the most similar with sc‐UniFrac being marginally small without statistical significance (Figure 

4A,  B,  distance=0.05~0.09),  suggesting  that  they  are  comprised  of  almost  identical  data  points. 

Importantly, the ordering by similarity across samples was robust to the k parameter (Figure 4B, C). A 

metric  was  defined  to  evaluate  the  power  of  sc‐UniFrac  for  discriminating  biological  replicates  from 

technical  replicates  (discriminative  ability)  by  subtracting  the  smallest  distance  between  biological 

replicates by the largest distance between technical replicates. A positive discriminative ability suggests 

that sc‐UniFrac can discriminate technical from biological replicates. Notably, the k parameter again did 

not  affect  the  discriminative  ability  except  when  k  is  very  small  (k<=2)  (Figure  4B,  C).  These  results 

demonstrate the ability of sc‐UniFrac to objectively and quantitatively determine dissimilarities between 
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single‐cell datasets, as seen by the ordering of samples by their expected similarities (technical replicate 

> biological replicate > outgroup organ). 

To enable an orthogonal quantitative comparison method to bolster sc‐UniFrac results, we used p‐Creode 

trajectory analysis to compare single‐cell landscape structures. p‐Creode is an algorithm by which a single‐

cell landscape composed of continuous cell‐state data is represented as acyclic graphs to model transition 

trajectories [19] . The p‐Creode score, developed to determine the topological similarity between graphs 

with differing nodes and edges, can be used to quantify dissimilarities of the trajectory graph outputs 

generated  from  different  datasets.  We  revised  the  p‐Creode  scoring  method  to  accommodate 

comparisons of graphs of difference sizes by interpolating between edges connecting nodes, instead of 

directly matching node positions, between the two test datasets (Figure S5A‐C, and Methods).   p‐Creode 

was applied to each dataset for 100 times to generate consensus trajectories using data resampling. The 

modified p‐Creode score was used as a distance metric for clustering cell‐transitional trajectories created 

from  the  resampled  datasets.  Consistent  with  sc‐UniFrac,  p‐Creode  trajectories  amongst  technical 

replicates clustered together using the p‐Creode score as a dissimilarity metric, while data from biological 

replicates were more  disparate  (Figure  4D,  E).    As  expected,  organ  specificity  drove  clustering when 

pancreatic data were added to the analysis, with all trajectories generated from colonic data clustering 

together away from pancreatic trajectories (Figure S5D, S6).  

p‐Creode was designed for data that are distributed as a continuum, and not as distinct clusters. In this 

regard, comparison can only be made for tissue systems that are transitioning, which is the case for both 

the adult colonic epithelium and embryonic pancreatic islets compared here. sc‐UniFrac does not have 

this limitation as it can compare between datasets of any distribution, including continuous data as well 

as discrete populations that are comprised of cells from different lineages. Thus, sc‐UniFrac has greater 

general utility for determining dissimilarities of single‐cell datasets in an unsupervised way without prior 

knowledge of the distribution of the data. 
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Identification of cell populations that drive differences between single‐cell  landscapes within the sc‐

UniFrac framework 

While sc‐UniFrac can statistically measure the population diversity between two single‐cell landscapes, it 

also provides an easy and intuitive way to identify the cells that drive the difference. The distance‐driving 

cells  are  either  expanding  or  contracting  populations  or  even  newly  emerging  populations  across 

conditions.  Because  sc‐UniFrac  operates  on  the  statistical  basis  of  shared  and  unshared  weighted 

branches, one only needs to identify branches that are marked as unshared, characterized by significant 

proportional  shifts  of  assigned  cells  between  two  samples. Unlike  the weighted UniFrac  algorithm  to 

determine the dissimilarity of microbial  landscapes, which  identifies the non‐zero branches, sc‐Unifrac 

uses  a  random permutation  test  to  detect  those  branches whose  proportion  shift  in  cell  populations 

cannot  happen  by  chance  alone  (Methods).  Illustrating  this  concept,  sc‐UniFrac  was  performed  to 

demonstrate pairwise comparison of scRNA‐seq datasets of colonic and pancreatic tissue with k = 10. As 

expected, technical replicates of the colon with the smallest sc‐UniFrac value have mostly shared branches 

between them, with only one branch with subtle proportional shifts (Figure 5A). In contrast, comparison 

of the pancreatic and colonic datasets revealed no shared branches, with every unshared branch being 

highly  significant  (Figure  5B).  Evaluation of  unshared branches  can  easily  pinpoint  cell  groupings  that 

contribute to sc‐UniFrac.  Here, we focus on group 10, which was entirely contributed by the pancreatic 

sample. Supervised analysis of differential gene expression revealed the unique gene signatures of these 

cells compared to colonic populations, which can be identified by canonical marker genes (e.g., group 1 

represents deep crypt secretory cells; 2 and 3 are colonocytes; 4 and 5 are goblet cells; 6 are intraepithelial 

lymphocytes)  (Figure  S7).  Projection  of  cells  from  group  10  onto  reference  cell  type  gene  expression 

signatures from the Mouse Cell Atlas [3] revealed that individual cells mapped on pancreatic 1) acinar, 

duct cells, 2) endocrine cells, and 3) immune cells (Figure 5C). These results demonstrate the utility of the 

branching feature of sc‐UniFrac to statistically determine cell populations that drive difference between 
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single‐cell landscapes. Notably, none of the methods that we used above for comparison with sc‐UniFrac 

can perform this task.   

Quantitative evaluation of batch‐correction methods by sc‐UniFrac 

The presence of batch effects is a major and common problem in scRNA‐seq experiments, which introduce 

systematic error and mask underlying biological signals. Removal of batch effects  is generally required 

prior to downstream analysis. Many methods and tools have been developed for batch correction [26–

29].  Some methods  have  been  successfully  used  in  bulk  RNA‐seq  [30,31], while  other methods were 

recently developed and specially designed for scRNA‐seq [27,32].  While the suitability of batch correction 

methods may depend on distribution of data that varies from dataset to dataset, the universality of such 

methods  is  undefined  given  that  there  is  no  quantitative,  objective  metric  to  evaluate  batch  effect 

correction in scRNA‐seq data. sc‐UniFrac, a quantitative measure of cell population diversity in single‐cell 

landscapes,  provides  a  sensitive  and  objective  way  to  assess  the  performance  of  batch  correction 

methods.   

We compared  three batch  removal methods,  limma, ComBat and MNN on  three  scRNA‐seq datasets. 

Limma and ComBat have been widely used for batch correction in bulk experiments, which fit a  linear 

model to determine and then correct the batch effect for each gene. MNN first identifies mutual nearest 

neighbor pairs between batches and then use these pairs to estimate the batch effect in scRNA‐seq data 

[33]. MNN  is expected  to perform well when population  composition  is  different across batches.  The 

evaluation of these methods was performed for the following three datasets: 1) HEK293 cells prepared 

fresh  and  cryopreserved  from  two  batches  [34],  2)  our  three  technical  replicates  of  mouse  colonic 

epithelium, and 3) two separate studies of mouse gastrulation [35,36].  

For HEK293  cell  line  data,  a  small  sc‐UniFrac  indicating  high  similarity was  observed  between  freshly 

isolated  and  cryopreserved  samples  within  the  same  batch  (Figure  S8),  indicating  minimal  technical 

variation during the cryopreservation process consistent with original findings [34]. In contrast, a large sc‐

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333393doi: bioRxiv preprint 

https://doi.org/10.1101/333393
http://creativecommons.org/licenses/by-nd/4.0/


UniFrac  was  observed  between  two  batches,  indicating  strong  batch  effects  (Figure  S8).    All  three 

methods,  limma,  ComBat  and  MNN,  decreased  the  sc‐UniFrac  distance,  indicative  of  batch  effect  

correction  (Figure  6A,  S9A‐C).  Among  them,  limma  and  ComBat  decreased  the  distances  to  those 

approaching to zero, suggesting that batch effects have been completely removed.  

In  the  technical  replicates  of  the  mouse  colonic  epithelium,  only  very  moderate  batch  effects  were 

observed  as  indicated  by  our  previous  analyses.  Due  to  the  initial  small  differences  in  batch,  limma, 

ComBat and MNN only moderately removed batch effects further, as seen in the decrease in sc‐UniFrac 

between replicates 1 and 2, and between replicates 1 and 3 (Figure 6B, S9D‐F). Batch effects were initially 

minimal  between  replicates 2  and 3.  In  this  case,  limma and ComBat  successfully  removed  the batch 

effects (reduced sc‐UniFrac to zero), while MNN failed to do but instead introduced additional systematic 

bias (sc‐UniFrac increased) (Figure 6B).   

scRNA‐seq data of mouse cells during gastrulation were obtained from two studies [37,38], which used 

plate‐based  Smart‐seq2  and  G&T‐seq  (genome  and  transcriptome  sequencing),  respectively.  The  first 

study generated scRNA‐seq data from mouse embryos at E5.5, E6.5 and E6.75, and the second focused 

on mouse embryos at E6.5 and E7.0. sc‐UniFrac generated on the uncorrected data indicated that the two 

datasets  clustered  by  studies  and  not  by  developmental  stages,  revealing  strong  technical  variation 

between the two studies (Figure 6C, S10A). After applying limma, ComBat and MNN, sc‐UniFrac generated 

on the corrected data demonstrated the removal of the technical variation, with cells no longer clustering 

by  studies  but  by  developmental  stages.  Among  the  three  methods,  ComBat  achieved  the  best 

performance by arranging cells chronologically from the earliest development stage (E5.5) to the latest 

(E7.5), and achieving the lowest sc‐UniFrac between cells from the same stages between the two studies 

(Figure 6C). This conclusion is supported by t‐SNE analysis where E6.5_1 and E.6.5_2 clustered together 

after limma and Combat, but remained separated after MNN (Figure S10B‐D). 
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From these results,  limma and ComBat both outperformed MNN, probably due to identical population 

composition across batches in all datasets. One of MNN assumptions is that batch effects should be much 

smaller than biological variation, which may not hold true in these datasets. Additionally, the performance 

of MNN is dependent on the number of nearest neighbors to consider when identifying mutual nearest 

neighbor  pairs.  Choosing  the  correct  parameter would probably  improve MNN performance,  but  this 

would require prior knowledge of what the correct parameter is. While all methods were able to reduce 

technical  variation,  sc‐UniFrac  was  able  to  quantitatively  evaluate  the  initial  batch  effects  and  the 

performance of batch correction methods.  

Discussion 

We developed a new tool,  sc‐UniFrac,  for quantitatively assessing  the dissimilarities  in cell population 

structures between two single‐cell landscapes. Compared with existing methods, sc‐UniFrac has distinct 

advantages,  including:  1)  its  ability  to  non‐subjectively  and  quantitatively  assess  population  diversity 

differences, 2) its precision by taking population structure into account, 3) its statistical rigor based on the 

available  UniFrac  framework,  4)  its  intuitive  and  statistical  robust  method  to  identify  disparate  cell 

populations between samples, 5)  its flexibility to analyze multiple samples and to add new samples to 

current analyses, and 6) its ability to  handle any dataset with unlimited dimensional representation and 

any  distribution  [16]. We  have  demonstrated  the  validity  of  sc‐UniFrac  using  gold‐standard  datasets 

where the similarities between datasets are known.  

Single‐cell technologies provide unprecedented resolution to study heterogeneity in disease, especially in 

cancer. Intratumor heterogeneity is a key determinant of tumor diagnosis, prognosis, and drug response 

[39,40].  Although a large amount of effort has been devoted to the genomic [41], transcriptomic [42–44], 

and  proteomic  [45]  subtyping  of  cancers  in  hope  for  better  precision  application  and/or  to  better 

understand  the  disease,  current  bulk  analyses  obscure  signals  coming  from  distinct  cell  populations. 

Unbiased  characterizing  cellular  diversity  in  tumor  tissues  and  then  using  this  information  to  define 
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subtypes provides a unique opportunity to understand cancer. Subtypes based on tumor heterogeneity 

refine the subtypes defined by the bulk ‐omics approaches, and may provide additional prognostic and 

diagnostic value  for predicting patient  survival and drug  response. For  current  single‐cell applications, 

comparing heterogeneity between multiple samples has been performed manually using t‐SNE analysis 

in conjunction with distinguishing markers to match cell populations across samples qualitatively, which 

is done in a low throughput fashion with few samples [46]. sc‐UniFrac enables quantitative evaluation of 

cellular diversity among potentially large numbers of samples, which can then be rapidly clustered into 

different subtypes. Thus,  sc‐UniFrac can facilitate studies on  intratumor and  intertumor heterogeneity 

that reveal the importance of diverse cell populations in tumor progression and drug treatment.  

Cell populations will expand, shrink, or emerge as a function of disease subtype, disease progression, or 

after  extrinsic  drug  perturbations.  As  a  feature  of  the  UniFrac  framework,  which  utilizes  a  shared 

branching approach, altered cell populations or states driving compositional difference can be intuitively 

identified  as  unbalanced  branches  in  sc‐UniFrac.  Moreover,  difference‐driving  cells  can  be  further 

analyzed to identify gene expression signatures, and their identities and behaviors can be inferred based 

on transcriptomes of previously referenced cell types. Introduction of new cells into the landscape as a 

result of perturbation, for instance, the infiltration of CD8 cytotoxic T cells into a tumor, can be deciphered 

by matching (or blasting) [47] difference‐driving cells against the transcriptomes of reference cell types  

[3], as sc‐UniFrac has demonstrated here. 

There is currently a proliferation of single‐cell data analysis tools, where many of them utilize different 

approaches for achieving the same goal. In response, it is necessary for the single‐cell biology community 

to benchmark the performance of these tools with reference datasets. Batch effect correction is a very 

important procedure for removing technical variation.  The sources of variation can arise from runs on 

different  sequencing  lanes,  different  single‐cell  encapsulations,  ischemic  times,  or  different  tissue 

preparations, even if procedures are performed by the same person. Several tools designed to remove 
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batch effects have been developed specifically for scRNA‐seq [20,33,48,49]. A quantitative measure of 

performance  is  required  for effective benchmarking, and sc‐UniFrac now provides a metric where the 

similarity between single‐cell landscapes of a tissue generated from different batches, before and after 

batch correction, can be evaluated. While evaluation of a tool on any specific datasets can be performed, 

it should be noted that the performance of any particular tool depends on the assumption of the algorithm 

and  the  distribution  of  the  dataset.  Thus,  different  tools may  perform better  on  some  datasets  than 

others. sc‐UniFrac is a new approach for evaluating single‐cell landscape similarity across multiple samples 

in  a  quantitative  and  statistically  robust manner. We  have  demonstrated  various  applications  of  this 

approach and we envision its broad usage as increasing number of scRNA‐seq are generated. 
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Methods 

The sc‐UniFrac framework 

sc‐Unifrac  is  freely  available  as  an  R  package  at  https://github.com/liuqivandy/scUnifrac.  sc‐Unifrac 

includes four main steps: 1) data processing: scRNA‐seq data were first normalized by library size per cell 

(total number of UMIs) and log‐transformed; 2) tree construction: highly variable genes were selected 

(user defined: default 500). Dimension reduction was performed using PCA (user defined: default 4 PCs). 

A hierarchical tree representing cell population structure was built by clustering via average linkage, and 

the upper portion of the tree was defined by cutting off the connections at k clusters (user defined: default 

k=10); 3) quantification of cell population diversity: the sc‐UniFrac distance was calculated by weighted 

branch sharing, and statistical significance was assessed by permutation testing; 4) identifying populations 

that  drive  sc‐UniFrac  by  querying  the  shared  branching  structure:  gene  expression  signatures  were 

derived for matching against reference cell type signatures.  sc‐Unifrac generates a report to summarize 

the  results,  including  the  sc‐UniFrac  distance  on  population  diversity,  statistical  significance,  cell 

population  structures,  gene  expression  signatures  in  each  altered  population,  and  their  match  to 

reference cell types (Supplementary File).  

sc‐UniFrac distance calculation 

sc‐UniFrac (D) is calculated as: 
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Here, n is the total number of branches in the tree. 𝑏௜ is the length of branch i. 𝐴௜ and 𝐵௜ are the number 

of cells  than descend  from branch  i  in  the  two samples A and B,  respectively. 𝐴் and 𝐵் are  the total 
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number of cells in two samples A and B, respectively. ∑ 𝑑௝ ∗ |
஺ೕ

஺೅
൅

஻ೕ

஻೅
|௡

௝  is the average distance of each 

cell from the root, used to normalized the distance from 0 to 1.  𝐷∗ is the distance based on permuted 

data, while D is the observed distance. N is the total number of permutations. 

Unshared branches are occupied by populations with statistically significant shifts between samples. The 

proportion shift of a cell population i is defined as 𝑝𝑠௜ ൌ |
஺೔

஺೅
െ

஻೔

஻೅
|, with statistical significance achieved 

if 𝑝𝑠௜ ൐ 𝑝𝑠∗, where 𝑝𝑠∗ is the proportion shift in permuted datasets.  

Signature matching to reference cell types 

The signature composed of under‐ or overexpressed genes associated with a cell population was defined 

by limma comparisons with other populations. For predicting cell types, each cell of a given cluster was 

matched  to  the 894  cell  type  references  from  the Mouse Cell Atlas  [3].   Matching was performed by 

deriving  a  Pearson  correlation  of  all  genes  between  the  query  cell  and  the  reference  cell  type 

transcriptome.  

Modified scoring of p‐Creode trajectories 

The p‐Creode  score was originally designed  to  compare p‐Creode  trajectories as a means  to evaluate 

robustness of the calculated trajectories and also to arrive at a representative trajectory over multiple 

bootstrapped  runs on  the  same single‐cell data  set.  Thus,  it was developed  to assess  the dissimilarity 

between  trajectories  of  largely  the  same  sizes.  Here,  we  use  p‐Creode  scoring  to  compare  different 

datasets, which can generate trajectories of different sizes. To make the p‐Creode score size‐invariant, we 

modified how nodes are transformed from one graph to another, while maintaining the scoring approach 

outlined in [19]. Previously, when a node was not contained in both graphs, a node transformation was 

performed by translating the node in the second graph to the closest node in the first graph with a penalty 

(Figure S5A). To eliminate excess penalty when a dense graph is transformed into a sparse graph and vice 

versa (Figure S5C), the scoring routine was updated to allow for transformations into the edges as well as 

nodes in the reference first graph. More formally, the transformation penalty is the minimum distance to 
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the  closest  edge  projection  between  two  nodes  in  opposing  graphs  plus  the  remaining  graph  edge 

distance to the closest node along the path of the pairwise comparison (Figure S5B).  

Batch‐Correction methods 

We  compared  three  batch‐correction  methods,  limma,  ComBat  and  MNN.    For  limma,  we  used 

removeBatchEffect function in the limma package, which fits a linear model to the data and then removes 

the  component  due  to  the  batch  effects  [31].  For  ComBat,  we  used  the  ComBat  function  in  the  sva 

package, which uses Empirical Bayes methods to adjust for both the mean and variance differences across 

the  batches  [30].  MNN  identifies  the  mutual  nearest  neighbors  between  batches  and  uses  them  to 

estimate and remove the batch effect [33]. We performed the mnnCorrect function in the scran package. 

We set the number of nearest neighbors to consider to be 20. 

Single cell RNA‐seq data sources 

We used four single‐cell datasets in this study. 1) Wishbone dataset [25]. This is a mass cytometry dataset 

characterizing the mouse thymus during T cell development, where lymphoid progenitors differentiate to 

either CD8+ or CD4+ cells. Data on about 250,000 cells on 37 surface markers and transcription factors 

were generated. We  removed  the DN cell  population and  included only CD8+ or CD4+ cells  labeled by 

Wishbone. We then simulated population mixtures by randomly sampling CD8+ and CD4+ cells. 2) Fresh 

and frozen HEK293 scRNA‐seq datasets [34]. Single cell  transcriptomes of the fresh and cryopreserved 

HEK293  cells were  generated  by MARS‐seq, which  included  about  50  cells  in  each  sample.  The UMI‐

filtered  read  counts were  downloaded  from GEO with  accession  number GSE85534.  3)  Technical  and 

Biological replicates from mouse colon and pancreas tissues. scRNA‐seq of colonic and pancreatic tissues 

were generated by inDrop platform, with datasets sizes ranging from 463‐1652 cells in colonic and 534‐

1099 cells in pancreatic tissues (Methods described below).  The UMI‐filtered read counts and raw data 

are available from GEO with accession numbers GSE102698, GSE114044. 4) Mouse gastrulation [37,38]. 

scRNA‐seq data of mouse cells during gastrulation were obtained from two studies. Mohammed et al. 
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isolated single cells from mouse embryos at different stages and generated scRNa‐seq data using G&T‐

seq. We selected data from the E5.5 (267 cells), E6.5 (168 cells) and E6.75 stages (82 cells). Count tables 

were  downloaded  from GEO with  accession  number GSE100597.  Scialdone  et  al.  used  Smart‐seq2  to 

profile 1,205 cells of gastrulating mouse embryos. We selected data from the E6.5 (502 cells) and E7.0 

stages  (138  cells).  Gene  counts  were  downloaded  from 

http://gastrulation.stemcells.cam.ac.uk/scialdone2016. Ensembl gene IDs were mapped to mouse gene 

symbols using the biomaRt package.  

Mouse Experiments  

Animal experiments were performed under protocols approved by the Vanderbilt University Animal Care 

and Use Committee and in accordance with NIH guidelines. Wild type mice (C57BL/6) were euthanized in 

an approved fashion prior to dissection and tissue harvesting. 

Single‐cell RNA sequencing of colonic and pancreatic tissues 

Single cell suspensions of colonic epithelium were prepared by chelating (3mM EDTA, 1mM DTT) distal 

colon segments at 4°C for 45 minutes followed by shaking off crypts [19,50]. Isolated crypts were then 

dissociated into single cells using a DNAse1/collagenase enzymatic cocktail (2.5mg/ml DNAse1, 2mg/ml 

collagenase) at 37°C for 20 minutes. Crypt fragments were further dissociated into single cells using a 27½ 

gauge needle. Cell suspensions were washed 2x with cold PBS to remove debris and enriched for live cells 

using a Miltenyi MACS dead cell removal kit. Live cell concentration was counted based on Trypan Blue 

positive cells and a  solution of 150,000 cells/ml was prepared  for encapsulation.  To maintain  live  cell 

viability, 18ul of Optiprep was added per 100ul of cell solution prior to encapsulation. 

Dissociation of pancreatic buds from E14.5 control embryos was performed using previously published 

protocols [51]. Briefly, pancreatic buds were dissected from control embryos and trypsinized followed by 

MACS sorting. Single cell suspensions from multiple embryonic buds were prepared and a cell solution of 

20,000 cells was prepared for encapsulation. 
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Single cell encapsulation was performed using the inDrop platform (1CellBio) with an in vitro transcription 

library preparation protocol,  as  previously described  (cite Klein  et  al  2015).  inDrop utilizes CEL‐Seq  in 

preparation for sequencing and is summarized as follows: 1) Reverse transcription (RT), 2) ExoI nuclease 

digestion, 3) SPRI purification (SPRIP), 4) Single strand synthesis, 5) SPRIP, 6) T7 in vitro transcription linear 

amplification,  7)  SPRIP,  8)  RNA  fragmentation,  9)  SPRIP,  10)  primer  ligation,  11)  RT,  and  12)  library 

enrichment PCR. Number of cells encapsulated was calculated by approximating the density of single cell 

suspension multiplied by bead loading efficiency during the duration of encapsulation. Each sample was 

estimated to contain approximately 2500 encapsulated cells.  

Following  library  preparation,  as  described  above,  the  samples  were  sequenced  using  Nextseq  500 

(Illumina) using a 150bp paired‐end sequencing kit in a customized sequencing run [19]. After sequencing, 

reads were filtered, sorted by their designated barcode, and aligned to the reference transcriptome using 

InDrops pipeline. Mapped reads were quantified  into UMI‐filtered counts per gene and barcodes  that 

correspond to cells were retrieved based on previously established methods [1]. From approximately 2500 

cells encapsulated, ~1800 cells were retrieved per sample. 

Experimental Design 

Technical replicates were different single‐cell encapsulations collected from the same mouse colon, but 

prepared and sequenced on different days. Biological replicates were tissues collected from different mice 

on different days but sequenced in the same run.  

Figure Legends 

Figure 1: Overview of the sc‐UniFrac method.  (A) Distances  in data space between single cells from 2 

samples were used to build a common hierarchical tree.  Each cell was then assigned to branches where 

proportional weighing of shared branches is used to calculate a UniFrac distance. In the second step, the 

labels between samples were randomized to generate a distribution of permuted distances, where a p‐
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value for the sc‐UniFrac distance can be calculated. (B) Workflow overview of the sc‐UniFrac package for 

characterizing dissimilarities between samples. 

Figure 2: Simulation data reveal sc‐UniFrac to be sensitive and robust. (A) Two groups (N1 and N2) of 

1000 cells were selected from CD8 and CD4 cells identified in the Wishbone dataset [25]. N1 is always 

composed of 100% CD8 cells, while N2 is composed of CD8 cells and different proportions of CD4 cells 

(indicated  on  X  axis).  Green  and  red  arrows  represent  CD8/CD8  (completely  similar)  and  CD8/CD4 

(completely dissimilar) comparisons, respectively. Y‐axis is the sc‐UniFrac distance calculated over n=50 

runs with k=10. Boxes represent the first and third quartiles and bars represent maximum and minimum 

values.  (B) Sensitivity of sc‐UniFrac evaluated by the fraction of incidences that a statistically significant 

sc‐UniFrac distance was returned over n=50 runs, as a function of increasing dissimilarity between N1 and 

N2 using the same simulation scheme as A.  (C) Mean sc‐UniFrac plotted as in A with varying k parameter. 

(D) Fraction significant sc‐UniFrac detected plotted as in B with varying k parameter. (E) Mean sc‐UniFrac 

plotted as in A with N1=1000 but a varying N2 size to determine the effect of dataset size imbalance on 

sc‐UniFrac. (F) Fraction significant sc‐UniFrac detected plotted as in B with N1=1000 and varying N2 size.  

Figure 3: Data landscapes generated from controlled scRNA‐seq experiments on technical and biological 

replicates of different tissues. t‐SNE plots of (A) technical and (B) biological replicates of scRNA‐seq data 

generated  from  the  adult murine  colonic mucosa.  Replicates  were  combined  for  t‐SNE  analyses  and 

labeled with different colors. Outlined populations were identified with canonical markers. t‐SNE plots 

depicting E14.5 pancreatic islet and adult colonic mucosa scRNA‐seq data in (C) technical and (D) biological 

replicates, showing segregation by organ type.  

Figure 4: sc‐UniFrac can statistically determine dissimilarities between single‐cell data landscapes. (A) 

Hierarchical clustering by sc‐UniFrac of scRNA‐seq landscapes generated from E14.5 pancreatic islet and 

adult  colonic mucosa  (indicated  by  tissue  label), with  technical  and biological  replicates  (indicated by 

mouse label). Heat represents sc‐UniFrac distance between two samples. (B) Hierarchical clustering by sc‐
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UniFrac of single‐cell landscapes of technical and biological replicates of the colonic mucosa while varying 

parameter k. (C) Discriminate analysis of sc‐UniFrac on biological and technical replicates. Discriminative 

ability,  as  defined  by  the  smallest  distance  between  biological  replicates  minus  the  largest  distance 

between technical  replicates, plotted against k.  (D) Representative p‐Creode trajectories depicting the 

colonic epithelial differentiation continuum of 2 technical and 2 biological replicates. Outlined lineages 

were identified with canonical markers. Muc2 expression overlay. (E) Hierarchical clustering by p‐Creode 

scoring  of  trajectories  generated  from  scRNA‐seq  data  of  technical  (green)  and  biological  (red,  cyan) 

replicates. N=100 resampled p‐Creode runs for each dataset were performed and then analyzed together 

in a single clustering analysis. Heat represents the p‐Creode score between two trajectories. 

Figure 5: Cells that drive sc‐UniFrac can be intuitively identified. (A, B) Branching structure of two single‐

cell landscapes being scored by sc‐UniFrac (k=10), with black representing statistically shared branches, 

and blue and red representing statistically unshared branches from each of the colored samples. Thickness 

of  branch  is  proportional  to  effect  size.  Comparing  between  (A)  technical  replicates  and  (B)  different 

tissues. (C) Individual cells (columns) from group 10 of B being matched to cell types (rows) referenced 

from the Mouse Cell Atlas. Heat represents the correlation of gene expression between the cell and the 

reference using all genes.  

Figure 6: sc‐UniFrac can benchmark batch effect removal approaches. (A) sc‐UniFrac distance calculated 

comparing uncorrected and batch‐corrected scRNA‐seq datasets of HEK293 cells fresh (Fre), frozen at ‐80 

(Fro), or liquid nitrogen flash freezing (Nitr) performed in two different batches [34]. ComBat, limma, and 

MNN were used for batch correction. (B) sc‐UniFrac distance calculated similar to A for technical replicates 

of the mouse colonic epithelium scRNA‐seq data. (C) Hierarchical clustering by sc‐UniFrac of uncorrected 

or batch‐corrected scRNA‐seq data depicting murine gastrulation from two different studies [37,38].  A 

gradation of similarity, and hence, clustering, was expected over developmental times from the earliest 

development stage (E5.5) to the latest stage (E7.5).  
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Supplementary Figure Legends 

Supplementary Figure S1: t‐SNE plot of two 1000‐cell populations simulated by resampling from CD4 

and CD8 cells [25]. One cell population (N1) included only CD8 cells, while the other cell population N2 

was comprised of proportional mixtures of CD4 and CD8 cells. (A) N2 = 100% CD4 cells. (B) N2=100% CD8 

cells. (C) N2=95% CD8 cells; 5% CD4 cells. (D) N2=50% CD8 cells; 50% CD4 cells. 

Supplementary Figure S2: Distribution of data when dataset size is imbalanced. t‐SNE plots of similar 

simulations as Figure S1 with N2 being 100% CD8 cells, 50/50 CD8/CD4 cells, and 100% CD4 cells, going 

from left to right. Altering the size of N2 to be (A) 500 and (B) 100. N1 remains at 1000 cells. 

Supplementary Figure S3: Bulk analysis to demonstrate the ordering of similarity between scRNA‐seq 

data from technical and biological replicates of the colon versus the pancreatic islet. Gene correlation 

analysis where scRNA‐seq data were averaged to generate bulk values. Each data point  (on the  lower 

triangle plots) represents a gene whose log expression level was plotted between the two samples being 

compared. Upper triangle plots are calculated correlation coefficients. 

Supplementary Figure S4: t‐SNE analysis of scRNA‐seq data from technical and biological replicates of 

the colon, and the pancreatic islet. Krt20 depicting the absorptive lineage, Muc2 depicting the secretory 

lineage, and Cd8a depicting immune cells overlaid on t‐SNE plots of scRNA‐seq data generated from the 

adult murine colonic mucosa with (A) technical and (B) biological replicates.  

Supplementary Figure S5: p‐Creode scoring can quantify differences between trajectories constructed 

from  continuous  single‐cell  data.  (A)  Scheme  of  old  node‐to‐node  projection  strategy  used  for  the 

previous  p‐Creode  scoring  approach  [19].  Dotted  line  represents  Euclidean  distance  penalty  of  each 

transformation. Green and red nodes are from different trajectories. (B) Scheme of new node‐to‐edge 

projection  strategy  used  for  the  current  p‐Creode  scoring  approach.  (C)  Demonstration  of  excess 

penalization  using  the  previous  p‐Creode  scoring  strategy when  there  is  an  imbalance  in  dataset  size 

resulting in different numbers of nodes in the trajectory (top) versus more realistic penalization with the 
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current approach (bottom). (D) Hierarchical clustering by p‐Creode scoring of trajectories generated from 

scRNA‐seq data of E14.5 pancreatic islet (green – biological replicates) and adult colonic mucosa (red – 

technical and biological replicates). N=100 resampled p‐Creode runs for each dataset were performed and 

then analyzed together in a single clustering analysis. Heat represents the p‐Creode score between two 

trajectories.  

Supplementary Figure S6: p‐Creode trajectory analysis of scRNA‐seq data from technical and biological 

replicates of the colon, and the pancreatic islet. (A) Krt20 depicting colonocytes, Reg4 depicting deep 

crypt secretory cells, and Myc depicting stem and progenitor cells overlaid on a representative p‐Creode 

trajectory of scRNA‐seq data generated from the murine colonic epithelium. (B) Representative p‐Creode 

trajectories depicting colonic and pancreatic islet differentiation. Outlined lineages were identified with 

canonical markers. Overlay of Muc2 transcript level, which was not expressed in the pancreatic islet. 

Supplementary Figure S7: Gene signature extraction from different cell groups.  Differential expressed 

gene identified by limma for each of the 10 groups in Figure 5. 

Supplementary Figure S8: Comparing scRNA‐seq data  from frozen or  freshly prepared samples  from 

different batches  [34]. Hierarchical clustering by sc‐UniFrac of scRNA‐seq data  from cell  lines that are 

prepared differently. Heat depicts the sc‐UniFrac distance between 2 samples. The results are consistent 

with the original study, which shows that the freezing process did not alter transcriptional profiles.   In 

contrast, batch effects have a larger impact on the transcription profiles than the freezing process.  

Supplementary Figure S9: The effects of batch correction. t‐SNE analysis of scRNA‐seq data from cell lines 

prepared  from  two  batches  (Frozen  1  and  2)  [34]  (A)  uncorrected,  (B)  corrected  by  ComBat,  and  (C) 

corrected  by  MNN.  t‐SNE  analysis  of  scRNA‐seq  data  from  the  colonic  mucosa  from  two  technical 

replicates (Replicates 1 and 2). sc‐UniFrac distance between the samples and p‐value noted. 

Supplementary Figure S10: Batch correction applied on data  from different studies  to align samples 

according to developmental time. t‐SNE analysis of scRNA‐seq data depicting mouse gastrulation, with 
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colors representing developmental time and shapes of data points representing the two studies [37,38]. 

For  instance,  all  red  data  points  should  cluster  together.  Analysis  performed  on  (A)  uncorrected,  (B) 

ComBat corrected, (C) limma corrected, and (D) MNN corrected data. 
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1 Overview

scUnifrac is to quantify cell subpopulation diversity between two single-cell transcriptome
profiles, which calculates the distance, estimates the statistical significance of the distance, identifies the
subpopulations that are significant different between two profiles, finds genes that mark subpopulations, and
predicts cell types of subpopulations. If two single-cell RNA-seq profiles have identical cell subpopulation
structures (the same subpopulations with the same proportion), the distance is zero, whereas, the distance is
one if completely different subpopulations.

• Results Summary - The distance, the statistical significance (p-value), the subpopulations that are
different in two profiles, and phylogenetic tree plot and tSNE plot to show the subpopulation structures.

• Subpopulation view - heatmap of gene expression that mark the statistical significant subpopulations,
and predicted cell types of these subpopulations based on Mouse Cell Atlas [Han et al., 2018, Cell,
1091-1107] if scRNA-seq are derived from mouse samples.

2 Results Summary

Subpopulation structure:

Table 1: The number of cells in each subpopulation in two scRNA-seq profiles

Subpopulation 1 2 3 4 5 6 7 8 9 10
Colon 411 113 272 213 64 46 28 7 8 0
Pan 0 0 0 0 0 0 0 0 0 534
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Table 2: Significantly different subpopulations and their proportion difference between two scRNA-seq profiles

Subpopulation 10 1 3 4 2 5 6 7
Proportion difference 1.00 0.35 0.23 0.18 0.10 0.06 0.04 0.02

1
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Pan

Distance= 1 , pval= 0

Figure 1: Phylogenetic tree plot of subpopulation structures. Cell subpopulations that are enriched in the
first scRNA-seq profile labeled as red, while subpopulations enriched in the second profile are labeled as
blue. The line width is proportion to the enrichment. Thicker lines suggest more enriched in one profile. Cell
subpopulations that are similar in both samples are labeled as black.
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Figure 2: tSNE plot of subpopulation structures. Each subpopulation that are different between two profiles
are denoted as different colors, and subpopulations that are similar between two profiles are denotes as gray.
Cells from the first profile are denoted by circle, while cell from the second profile are denoted by star.

3 Subpopulation View
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3.1 The cell subpopulation 10
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Figure 3: Heatmap of gene expressions that mark the cell subpopulation 10
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Figure 4: Predicted cell types of the cell subpopulation 10
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3.2 The cell subpopulation 1
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Figure 5: Heatmap of gene expressions that mark the cell subpopulation 1
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Figure 6: Predicted cell types of the cell subpopulation 1
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3.3 The cell subpopulation 3
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Figure 7: Heatmap of gene expressions that mark the cell subpopulation 3
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Figure 8: Predicted cell types of the cell subpopulation 3
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3.4 The cell subpopulation 4
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Figure 9: Heatmap of gene expressions that mark the cell subpopulation 4
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Figure 10: Predicted cell types of the cell subpopulation 4
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3.5 The cell subpopulation 2
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Figure 11: Heatmap of gene expressions that mark the cell subpopulation 2
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Figure 12: Predicted cell types of the cell subpopulation 2
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3.6 The cell subpopulation 5
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Figure 13: Heatmap of gene expressions that mark the cell subpopulation 5
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Figure 14: Predicted cell types of the cell subpopulation 5
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3.7 The cell subpopulation 6
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Figure 15: Heatmap of gene expressions that mark the cell subpopulation 6
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Figure 16: Predicted cell types of the cell subpopulation 6
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3.8 The cell subpopulation 7
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Figure 17: Heatmap of gene expressions that mark the cell subpopulation 7
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Figure 18: Predicted cell types of the cell subpopulation 7

4 Session Info

devtools::session_info()

## setting value
## version R version 3.4.4 (2018-03-15)
## system x86_64, mingw32
## ui RStudio (1.1.442)
## language (EN)
## collate English_United States.1252

19

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333393doi: bioRxiv preprint 

https://doi.org/10.1101/333393
http://creativecommons.org/licenses/by-nd/4.0/


## tz America/Chicago
## date 2018-05-14
##
## package * version date source
## ape * 5.1 2018-04-04 CRAN (R 3.4.4)
## backports 1.1.2 2017-12-13 CRAN (R 3.4.3)
## base * 3.4.4 2018-03-15 local
## bookdown 0.7 2018-02-18 CRAN (R 3.4.4)
## cluster 2.0.6 2017-03-16 CRAN (R 3.4.4)
## colorspace 1.3-2 2016-12-14 CRAN (R 3.4.4)
## compiler 3.4.4 2018-03-15 local
## curl 3.1 2017-12-12 CRAN (R 3.4.3)
## datasets * 3.4.4 2018-03-15 local
## devtools * 1.13.5 2018-02-18 CRAN (R 3.4.3)
## digest 0.6.15 2018-01-28 CRAN (R 3.4.3)
## evaluate 0.10.1 2017-06-24 CRAN (R 3.4.4)
## git2r 0.21.0 2018-01-04 CRAN (R 3.4.4)
## graphics * 3.4.4 2018-03-15 local
## grDevices * 3.4.4 2018-03-15 local
## grid 3.4.4 2018-03-15 local
## GUniFrac * 1.1 2018-02-12 CRAN (R 3.4.4)
## highr 0.6 2016-05-09 CRAN (R 3.4.4)
## hms 0.4.2 2018-03-10 CRAN (R 3.4.4)
## htmltools 0.3.6 2017-04-28 CRAN (R 3.4.4)
## httpuv 1.3.6.2 2018-03-02 CRAN (R 3.4.4)
## httr 1.3.1 2017-08-20 CRAN (R 3.4.4)
## kableExtra * 0.8.0 2018-04-05 CRAN (R 3.4.4)
## knitr * 1.20 2018-02-20 CRAN (R 3.4.4)
## lattice * 0.20-35 2017-03-25 CRAN (R 3.4.4)
## limma * 3.34.9 2018-02-22 Bioconductor
## magrittr 1.5 2014-11-22 CRAN (R 3.4.4)
## MASS 7.3-49 2018-02-23 CRAN (R 3.4.4)
## Matrix 1.2-12 2017-11-16 CRAN (R 3.4.4)
## matrixStats * 0.53.1 2018-02-11 CRAN (R 3.4.4)
## memoise 1.1.0 2017-04-21 CRAN (R 3.4.4)
## methods * 3.4.4 2018-03-15 local
## mgcv 1.8-23 2018-01-15 CRAN (R 3.4.4)
## mime 0.5 2016-07-07 CRAN (R 3.4.1)
## miniUI 0.1.1 2016-01-15 CRAN (R 3.4.4)
## munsell 0.4.3 2016-02-13 CRAN (R 3.4.4)
## nlme 3.1-131.1 2018-02-16 CRAN (R 3.4.4)
## parallel 3.4.4 2018-03-15 local
## permute * 0.9-4 2016-09-09 CRAN (R 3.4.4)
## pillar 1.2.1 2018-02-27 CRAN (R 3.4.4)
## pkgconfig 2.0.1 2017-03-21 CRAN (R 3.4.4)
## plyr 1.8.4 2016-06-08 CRAN (R 3.4.4)
## questionr 0.6.2 2017-11-01 CRAN (R 3.4.4)
## R.methodsS3 * 1.7.1 2016-02-16 CRAN (R 3.4.1)
## R.oo * 1.21.0 2016-11-01 CRAN (R 3.4.1)
## R.utils * 2.6.0 2017-11-05 CRAN (R 3.4.4)
## R6 2.2.2 2017-06-17 CRAN (R 3.4.4)
## Rcpp 0.12.16 2018-03-13 CRAN (R 3.4.4)
## readr 1.1.1 2017-05-16 CRAN (R 3.4.4)
## rlang 0.2.0 2018-02-20 CRAN (R 3.4.4)
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## rmarkdown 1.9 2018-03-01 CRAN (R 3.4.4)
## rmdformats * 0.3.3 2017-05-18 CRAN (R 3.4.4)
## rprojroot 1.3-2 2018-01-03 CRAN (R 3.4.4)
## rstudioapi 0.7 2017-09-07 CRAN (R 3.4.4)
## Rtsne * 0.13 2017-04-14 CRAN (R 3.4.4)
## rvest 0.3.2 2016-06-17 CRAN (R 3.4.4)
## scales 0.5.0 2017-08-24 CRAN (R 3.4.4)
## scUnifrac * 0.9.3 2018-05-14 Github (liuqivandy/scUnifrac@fb6fd0d)
## shiny 1.0.5 2017-08-23 CRAN (R 3.4.4)
## splines 3.4.4 2018-03-15 local
## statmod 1.4.30 2017-06-18 CRAN (R 3.4.4)
## stats * 3.4.4 2018-03-15 local
## stringi 1.1.7 2018-03-12 CRAN (R 3.4.4)
## stringr 1.3.0 2018-02-19 CRAN (R 3.4.4)
## tibble 1.4.2 2018-01-22 CRAN (R 3.4.4)
## tools 3.4.4 2018-03-15 local
## utils * 3.4.4 2018-03-15 local
## vegan * 2.5-1 2018-04-14 CRAN (R 3.4.4)
## viridisLite 0.3.0 2018-02-01 CRAN (R 3.4.4)
## withr 2.1.2 2018-03-15 CRAN (R 3.4.4)
## xfun 0.1 2018-01-22 CRAN (R 3.4.4)
## xml2 1.2.0 2018-01-24 CRAN (R 3.4.4)
## xtable 1.8-2 2016-02-05 CRAN (R 3.4.4)
## yaml 2.1.18 2018-03-08 CRAN (R 3.4.4)
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