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Abstract

The minimum covariance determinant (MCD) approach is one of the most
common techniques to detect anomalous or outlying observations. The MCD
approach depends on two features of multivariate statistics: the determinant

of a matrix and Mahalanobis distances (MD). While the MCD algorithm is
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commonly used, and has many extensions, the MCD is limited to analyses of
quantitative—generally metric, or presumed continuous—data. The MCD does
not extend to other data types such as categorical or ordinal data because MD is
not strictly defined for data types other than continuous data. Here we present
a generalization of the MCD: first on categorical data, and then we show how
our generalized MCD (GMCD) extends beyond categorical data to other data
types (e.g., ordinal), and even mixed data types (e.g., categorical, ordinal, and
continuous). To do so, the GMCD relies on a multivariate technique called
correspondence analysis (CA). Through CA we can define MD by way of the
singular vectors and we can compute the determinant from CA’s eigenvalues.
We illustrate the GMCD on data from two large scale projects: the Ontario
Neurodegenerative Disease Research Initiative (ONDRI) and the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) with data such as genetics (categorical),
clinical instruments and surveys (categorical or ordinal), and neuroimaging
(continuous) data. We also make available R code and toy data in order to
illustrate our generalized MCD (https://github.com/derekbeaton/ours).
Keywords: Correspondence analysis, categorical data, outliers, robust,

neuroinformatics, neurodegenerative disorders

Introduction

The minimum covariance determinant (MCD; Hubert & Debruyne, 2010) ap-
proach is a robust estimator for multivariate location (mean) and scatter (covari-
ance). Given a matrix of observations (rows) and variables (columns), various
s MCD algorithms and derivatives generally find a subset of individuals that have
minimum scatter, where scatter is defined as the determinant of the covariance
matrix. Robust estimates of mean and covariance are computed from the subset
of individuals with minimum scatter. MCD techniques work based on two key
features in order to detect the likely-smallest cloud of observations: (1) the

1 determinant of a given covariance matrix and (2) the Mahalanobis distances
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(MDs) of all observations with respect to that covariance matrix. Because MCD
searches for the smallest and most homogeneous cloud of observations, it is also
a common technique used for detection of multivariate outliers (Hadi, Imon, &
Werner, 2009; Magnotti & Billor, 2014; Verity et al., 2017), including in the
15 psychological sciences (Leys, Klein, Dominicy, & Ley, 2018). Since the intro-
duction of the Fast-MCD approach (Rousseeuw & Van Driessen, 1999), there
have been many improvements and variations on the technique, such as robust
PCA (Hubert, Rousseeuw, & Branden, 2005) and deterministic MCD (Hubert,
Rousseeuw, & Verdonck, 2012). See also Hubert, Debruyne, and Rousseeuw
20 (2017) for an overview. Recently the MCD approach has been extended to address
high-dimensional data through regularization (Boudt, Rousseeuw, Vanduffel, &

Verdonck, 2017).

Though the MCD and its variants are standard techniques to identify both
robust structures and outliers, there is one substantial gap: MCD approaches
»s  generally work only for data assumed to be continuous. The lack of a non-
quantitative MCD is problematic because many multivariate data sets are
inherently non-quantitative (e.g., categorical or ordinal) such as clinical ratings
scales, questionnaires, and genetics. So how can we apply MCD approaches to
non-quantitative data? The major barrier to apply the MCD on non-quantitative
» data is the lack of a standard Mahalanobis distance (MD) estimate for non-

quantitative data.

Goodall (1966) noted that there are generally two issues with the application
of standard computations and rules of MDs to non-quantitative data: (1) “If
[...] quantitative and binary attributes are included in the same index, these
55 procedures will generally give the latter excessive weight.” (p. 883), and (2)
“indices appropriate to quantitative [data have] been applied to ordered, non-
quantitative attributes [...] by arbitrarily assigning metric values to their
different ordered states.” (p. 883). Clearly, we do not want categorical data to
provide undue influence on MD estimates, nor should we apply arbitrary metric

« values to categorical or ordinal data (Biirkner & Vuorre, 2018). While there
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are many Mahalanobis-like distances and alternative measures of similarity for
non-quantitative data (Bar-hen & Daudin, 1995; Bedrick, Lapidus, & Powell,
2000; Boriah, Chandola, & Kumar, 2008; Leon & Carriere, 2005; McCane &
Albert, 2008) many still have the drawbacks noted by Goodall (1966).

s Therefore, if we want to develop a MCD algorithm for non-quantitative data,
we must first define a MD that neither imposes undue influence nor arbitrarily
assigns values. In our work here we first show that the MCD can be generalized
to categorical data by defining MD under the assumptions of x? (i.e., indepen-
dence) metrics through Correspondence Analysis (CA), which is a singular value

5o decomposition (SVD)-based technique. We then show how our MCD approach
generalizes to almost any data type including mixed types of variables (e.g.,

categorical, ordinal, and/or continuous).

Our paper is outlined as follows. In Notation and software we provide the notation
set used in this paper and the software used for this paper. In Determinant and
ss  Mahalanobis distances via the SVD we first show how the SVD provides the two
key requirements for the MCD algorithm: the determinant of a covariance matrix
and MDs. Then, we show how these properties of the SVD generalize in order to
compute MDs for categorical data through CA. In MCD algorithm for categorical
data we then show how we only require PCA to perform the standard MCD
o0 technique but that a categorical version of the MCD requires a specific form of CA
(via generalized CA, specifically “subset” CA) in order to achieve the MCD for
categorical data. Next in Applications and Extensions we use a toy (simulated)
genetics data from the supplemental material of Beaton, Dunlop, and Abdi
(2016) in order to formalize a categorical version of the MCD. Following that,
e we illustrate our newly defined MCD to identify robust structures and outliers
on several real data sets from the Ontario Neurodegenerative Disease Research
Initiative (ONDRI) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
including particular recoding schemes that allow for the use of other data types
such as ordinal or continuous via our categorical MCD, and thus our approach

70 is a generalized MCD (GMCD) to any data type or even mixed data types (i.e.,
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a matrix of categorical, ordinal, and continuous variables). Finally we discuss
the technique with respect to the results, as well as provide concluding remarks

and future directions for a generalized MCD in Discussion.

Software and notation

75 We used R (Version 3.5.1; R Core Team, 2016) and the R-packages ExPosition
(Version 2.8.23; Beaton, Fatt, & Abdi, 2014), MASS (Version 7.3.50; Venables
& Ripley, 2002), and papaja (Version 0.1.0.9842; Aust & Barth, 2018) for all
our analyses and to write the manuscript itself (in RMarkdown with papaja).
We make our software, code, and some examples of the GMCD available via
s the Outliers and Robust Structures (OuRS) package at https://github.com/

derekbeaton /ours.

Bold uppercase letters denote matrices (e.g., X), bold lowercase letters denote
vectors (e.g., x), and italic lowercase letters denote specific elements (e.g., z).
Upper case italic letters denote cardinality, size, or length (e.g., I) where a
s lower case italic denotes a specific index (e.g., 7). A generic element of X would
be denoted as x; ;. Common letters of varying type faces for example X, x,
x;; come from the same data struture. Vectors are assumed to be column
vectors unless otherwise specified. Two matrices side-by-side denotes standard
matrix multiplication (e.g., XY), where ® denotes element-wise (Hadamard)
o multiplication. The matrix I denotes the identity matrix. Superscript 7 denotes
the transpose operation, superscript ~! denotes standard matrix inversion, and
superscript * denotes the Moore-Penrose pseudo-inverse. Note that for the
generalized inverse: XXX = X, (X*)* = X, and (XT)* = (X*)T. The
diagonal operation, diag{}, when given a vector will transform it into a diagonal
s matrix, or when given a matrix, will extract the diagonal elements as a vector.
We denote |.| as the floor function. Finally, we reserve some letters to have very
specific meanings: (1) F denotes component (sometimes called factor) scores

where, for example, F; denotes the component scores associated with the I
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items, (2) O and E mean “observed” and “expected”, respectively, as used in
wo  standard Pearson’s X? analyses, where for example Ox denotes the “observed
matrix derived from X”, and (3) blackboard bold letters mean some a priori or
known values, for example Ex would reflect some previously known expected
values associated with X but not necessarily derived from X. Furthermore, when
we use a previously defined element as a subscript, for example Zx, it denotes
105 that the Z of Zx was derived from the element in its subscript, for example Zx

is a centered and/or normalized version of X.

Determinant and Mahalanobis distances via the SVD

Overview of MCD algorithm

Say we have a matrix X with I rows and J columns where J < I and we assume
uno that X is full rank on the columns. The MCD requires an initialization of subset
of size H which is a random subsample from X where |(I +J +1)/2| < H < 1.

In general, the MCD algorithm can be described as:

1. From Xy compute the column-wise row vector mean as p;; and compute
the covariance as Sy = (X5 X ) x (H—1)"! where Xy has been centered
15 (i.e., subtract the column-wise mean).
2. Compute the determinant of Sg.
3. Compute the squared MD for each observation in X as m; = (x; —
HH)SI_{l(Xi — )"
4. Set Xy as the subset of H observations with the smallest MDs computed

120 from Step 3.

The size of H is controlled by « to determine the subsample size; o belongs
to the interval between .5 and 1. These steps are repeated until we find a
minimum determinant either through optimal search or limited to a given

number of iterations. We denote the H subset with the minimum determinant
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s as §). For the ) subset, we can obtain robust mean vector pg, robust covariance
Sq = (X Xq) x (2—1)71, and a set of robust square MDs for each i observation
from X as m; = (x; — pg)Sq" (Xi — po)”. The two most important features for
MCD algorithms are: (1) the determinant of the subsample covariance matrix,
which helps identify the smallest scatter of data and (2) the squared MDs for

1o all observations derived from the subsample covariance matrix, which helps us

identify outliers and aids in the search for the minimum determinant.

Both the determinant of a matrix and the squared MDs for observations can
be computed from the eigen- or singular value decompositions (SVD): (1) the
determinant is the product of the eigenvalues; but because eigenvalues could
135 be very large or small (in CA all eigenvalues are < 1), it is safer to compute
the determinant as the geometric mean of the eigenvalues (Boudt et al., 2017;
SenGupta, 1987) and (2) squared MD can be computed as the sum of the squared
row elements of the singular vectors (Barkmeijer, Bouttier, & Van Gijzen, 1998;
Brereton, 2015; Stephenson, 1997), which we discuss in more detail in subsequent

uo Sections.

Mahalanobis distance for continuous data

Let X be a centered data matrix with I rows and J columns. Assume that
X is full rank on the columns where rank is J. First we define the sample
covariance matrix of X as S = (XTX) x (I —1)7!. Squared MD is defined
ws as m = (XS7! ®X)1 where 1 is a conformable J x 1 vector of 1s and m is

a I x 1 column vector (where m”

is a row vector) of squared MDs. We can
reformulate squared MD in two ways. The first reformulation is M = XS—1X7T
where m = diag{M}. If we relax the definition of squared MD to exclude the

degrees of freedom scaling factor I — 1, the second reformulation is:

M’ = X(XTX) X7, (1)
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150 where m’ = m x (I — 1)1, Henceforth when we refer to squared MD it is the

definition we provide in Eq. (), specifically, m’ = diag{X(X*X)~!XT}.

Principal components analysis

Principal components analysis (PCA) is performed on a matrix X with I rows
and J columns. Say that X is column-wise centered (“covariance PCA”) or

155 column-wise scaled (e.g., z-scores or sums of squares equal to 1; “correlation
PCA”). For the following formulation we assume only a column-wise centered X.
Again assume that X is full rank. We can perform the PCA of X through the
SVD as:

X = UAVT where: (2)

1. U and V are orthonormal left and right singular vectors of sizes I x J and
160 J x J, respectively with UTU =1 =V?V and UT = Ut and VI = V+.
2. A is the J x J diagonal matrix of singular values and A = A? which is a

diagonal matrix of eigenvalues (squared singular values).

In PCA there exist two sets of component scores, one set for the rows and one
set for the columns defined as F; = UA and F; = VA respectively. We can

s define row and column scores through projection (or rotation) as:

F; = UA = UAVTV =XV -
3
F,=VA=VAUTU =X"U.

In the regression and PCA literatures there exists an influence measure called
“leverage” which is bounded between 0 and 1 (Wold, Esbensen, & Geladi,
1987). Leverage is extracted from an I x I matrix called a “hat matrix” in

the regression literature and is more generally called an “orthogonal projection

wo  matrix” in the multivariate literature (Yanai, Takeuchi, & Takane, 2011). The
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hat or projection matrix is defined generally as X(X7X)~?X” where leverage
is defined as diag{X(XTX)~*X”}. This definition of leverage is equivalent to
our definition of a squared MD in Eq. .

With respect to PCA there are two types of leverage: one for the columns (typi-

s cally variables) and one for the rows (typically observations) of a matrix. Here
we only discuss leverage for the rows (observations). Both Wold et al. (1987) and
Mejia, Nebel, Eloyan, Caffo, and Lindquist (2017) described leverage for the ob-
servations (rows) as based on the component scores Fr as G; = F;(FIF;) 'FT
where each row item’s leverage is an element in g; = diag{G,}. If we ex-

w pand and substitute UA for F;, we see that G; = UA(AUTUA)TAUT =
UAATAUT = UU7, thus g; = diag{UU”}. The connection between lever-
age and squared MD can also be shown through the SVD (¢f. Eq. ):

M = X(XTX)"'XT =
vaviivavivavh)-lvau? =
vavi(vavh)-lvau? =
UAVI'VAIVTvAUT =

UAA AU =

uu? = Gy,

where VI' = V~! then (VAV?)"! = VA-'VT and thus m’ =
diag{X(XTX)" X"} = diag{UUT} = g;. The relationship established

185 in Eq. is critical to our formulation of MD for categorical data and thus a
generalized MCD.

Representation of categorical data

Say we have an I x D matrix called D, as in Table [Th, where the rows are
observations and the columns are categorical variables typically assumed to be

1o unordered, thus each cell contains the nominal level of each variable. These
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data can be represented in complete disjunctive coding—as in Table [[b—where
each variable is represented by a vector of length N4, where Ny is the number of
levels or nominal values for the d'" variable. The disjunctive form of D is an
I x J matrix X. The multivariate analysis akin to a PCA of categorical data,
15 via its complete disjunctive form, is usually performed with a technique called

multiple correspondence analysis.

Multiple correspondence analysis

Multiple correspondence analysis (MCA) generalizes both: (1) PCA to categorical
data (with observations on the rows) and (2) standard correspondence analysis
20 (CA) from two-way contingency tables to multiple variables, that is: N-way
contingency tables (Abdi & Valentin, 2007; Greenacre, 1984; Greenacre & Blasius,
2006; Lebart, Morineau, & Warwick, 1984; Saporta, 2006). MCA is a SVD-based
technique with specific preprocessing and requires constraints (weights) for the
rows and columns in order to decompose a matrix under the assumption of
x5 independence (i.e., x?). The general premise of Pearson’s X? is to estimate how
far observed values deviate from ezpected values. To perform MCA, we first

compute the row and column weights:

r=(17X1)"! x X1 and c = (17X1)" ! x X”1, (5)

where r and ¢ are the row and column marginal sums, respectively, divided by
the total sum. In the case of purely disjunctive data, each value in r is identical
20 as each row contains the same number of 1s (see Table [Ip): Each element in r
is simply the total number of columns in D divided by the sum of all elements
of X. Similarly, ¢ contains the column sums of X divided by the total sum.
Next, just as in Pearson’s X2 analyses, we compute observed (Ox) and expected
(Ex) matrices of X as Ox = (17X1)~! x X and Ex = rc7, respectively, and

25 deviations computed as Zx = Ox —Ex. MCA is performed with the generalized

10
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Table 1: Example categorical and disjunctive data. Hypothetical example of
categorical data. (a) shows two variables Variable 1 and Variable 2 with 3 and 2
levels respectively. (b) shows the disjunctive code for these data. Note that one
observation has missing data (NA). Missing data can be imputed as barycentric

(which is the mean of the levels) or any set of values that sum to one.

(a) Categorical representation of two

variables.
Var 1 Var 2
Subj.1 B YES
Subj.2 A YES
Subj.l-1  NA NO
Subj.1 C YES

(b) Disjunctive representation of two variables.

Var. 1 Var. 2

A B C YES NO

Subj.1 0 1 0 10
Subj.2 1 0 0 1 0
Subjil-l 25 5 .25 0 1
Subil 0 O 1 1 0

11
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SVD (GSVD) of Zx:

Zx = PAQ", where -
6
P"W,P=1=Q"W,Q,

and where W; = diag{r} ' and W = diag{c} '. We obtain the results of the
~ 1 1

GSVD of Zx through the SVD of Zx = W?ZxW3 = UAV” as in Eq.

thus UTU =1 =VTV, U = U+, and VT = V*. We can see the relationship

20 between Zx and Zx via substitution:

_1l~ _1
Zx = W[ 3 ZxW?

W, TUAVI W2

|
—~

J
—

(WP U)A(VIW;?) =
(W, ?U)A(W,; V)T =

PAQT.

The generalized singular vectors are computed as P = WI_%U and Q = W;%V.
For simplicity, we will henceforth refer to the GSVD where needed in triplet
notation as GSVD(Wy,Zx, W) with row constraints (e.g., Wy), data (e.g.,
Zx), and column constraints (e.g., W ). To note, we have taken liberty with
»s  the standard GSVD triplet notation (see Holmes, 2008) and present the triplet

more akin to its multiplication steps.

We compute MCA component scores as F; = W;PA and F; = W ;QA or also
compute MCA component scores through projections (or rotations; cf. Eq. )
To compute MCA component scores through projections, it is easier to work
20 with what are called “profile” matrices where ®; = W;Ox are the row profiles
and ®; = W ;0% are the column profiles. For profile matrices, each element in

X divided by its respective row or column sum (for the row and column profile

12
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matrices, respectively). MCA row component scores via projection are:

F; = Q’IFJA71

&, W,;QAA!

&,W,QI =

*,W,Q = (8)
W, WPV =

W2V =

1
W, OxW:V,

1
where the column component scores are computed as F; = ®;W;U

w W,0LW?U.

Mahalanobis distance for categorical data

In Principal Components Analysis we showed for continuous data the equivalence
between leverage and squared MD (via the hat matrix). Both leverage and
squared MD are obtained as the diagonal of the crossproduct of left singular
20 vectors (i.e., diag{UU”}). Because leverage via the singular vectors is squared
MD for continuous data, we use the same premise to define a squared MD for
categorical data. In the case of continuous data we can define squared MD for
continuous data via PCA and similarly we define squared MD for categorical

data via MCA.

us  Asnoted in Eqs. (6) and (7)) MCA is performed as GSVD(W, Zx, W ;) wherein
we apply the SVD as ZX = UAVT. Recall the relationship between ZX and
Zx: Zx = Wi ZxW? <= Zx = W, ?Zx W, ? where Zx = PAQT (see Eq.
(7). In the case of MCA, Zx would be the analog of X in PCA (see Eq. @).
Thus in MCA UUT = Zx (Z%Zx)*Z%. Note that here we replace the standard

»0  inversion with the pseudo-inverse because (Z% Zx) is a “group” matrix, where all

13
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columns that represent a single variable are collinear. We have shown previously
for continuous data via PCA that leverage is squared MD (cf. Eq. , and

applying the same principles to categorical data via MCA, we see that

M'z, = Zx(Z%Zx)"Z% =

PAQT{QAPTPAQT}TQAPT =

PAQT{QA(UW, ) (W, *U)AQ"} ' QAP =

PAQT{QAW, *UTUW, *AQ”}*QAPT =

PAQT{QAW, ‘W, *AQ"}*QAP” =
PAQT(QT) A*W:W?A+Q*QAPT = 9)

PAA*W;W;A*APT =

PWIWIpPT =

(W, O W Wi (W, )T -

_1 1 1 T _1
W, UW:W:UTW,

uu’.
Note that (WI_%)Jr = WI% and that WI_%WI% = I. Thus we define squared
2 MD for categorical data as M/ = Zx (Z%Zx) v Z% = Zx (ZLZx)*Z% = UUT
a la Egs. and . Finally and most importantly, because of this definition
there is no ambiguity nor arbitrary decisions in the definition of squared MD for
categorical data (a la, Goodall, 1966); squared MD is defined by the singular

vectors for the observations (i.e., U).

%0 MOCD algorithm for categorical data
Recall that the MCD algorithm requires two essential parts: the determinant

(via the eigenvalues) and squared MD. However, one key feature of the MCD

algorithm is that it requires that we estimate squared MDs on sub- or out-of
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sample observations. The squared MDs for excluded samples are computed
s with respect to the mean and covariance of a sub-sample. We show how to do
so via the SVD: first with continuous data in PCA to establish squared MD
for excluded samples, and next how to do so with categorical data via MCA.
However, categorical data pose a unique problem: nominal levels of variables (i.e.,
categories) are not guaranteed to exist in particular sub-samples, so we require a
a0 particular solution to obtain accurate distances—especially for squared MD and
robust squared MD—of excluded or “supplementary” observations. In the CA
and PCA literatures “supplementary” data are excluded or new observations
we want to project onto existing components, where components were derived
from an “active” set of data. For the MCD, we will consider “active” data those
;s observations used to compute the mean and covariance matrix. The out of

sample data will be referred to as supplementary.

Active and supplementary Mahalanobis for continuous data

In order to establish squared MD for sub- and out-of sample data, we must
revisit squared MD through projections a la Eq. . We show how to retrieve
0 the singular vectors through the projection of data onto the space spanned by
the components because only U is necessary to compute the squared MD for
quantitative data via PCA: XVA ! = UAVIVA ! = UAA-! = U. Let
us refer to a K x J matrix Y as a supplementary set of observations with the
same variables (columns) as X. For Y, we would obtain the squared MDs as
w M’y = Y(XTX)71YT where the columns of Y are preprocessed with the same
center and scaling as the columns in X. In PCA we can project supplementary
data onto previously defined components. We can use the same formula as in

Eq. to compute supplementary component scores for Y:

Fr=YF;A"'=YVAA !=YVI=YV. (10)
We can compute the squared MDs for Y with only V and A from the SVD
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20 of X (¢f. Eq. (2))and through projections (c¢f. Eq. (1)) instead of M’y =
Y (XTX)"'YT where m’'y = diag{M’}, where the squared MDs of Y are
m’y = diag{Fx A 'FL} because

My = Y(XTX)" YT =

Y(vauluav?)-lyT =

Y(VAIAVT)=1yT =
Y(VAVT) YT = (11)

Y (VA VYT =

YVA~IVIYT =

FxA'FL.
Mahalanobis distances via the SVD for sub-samples.

X
Let us consider that the K x J matrix Y = , where X is the same I x J
Z

25 data set as before and Z is a new data set of size (I — K) x J; that is Y
is comprised of both active and supplementary data where Y is (1) centered
by the column mean of X and (2) scaled by the same scaling factor of X.
The hat (or projection) matrix of Yx = X is identical to that of X where
Yx(XTX)~'YE = X(XTX)~!XT = UU7, and the hat (or projection) matrix

s of Yz = Z is computed as Yz(XTX)"1YL = Z(XTX)1ZT and thus we can
compute the squared MDs for active and supplementary sub-samples through
the SVD and projections as m’y = diag vt 0

0 ZVA'VTZT

Active and supplementary Mahalanobis distances for categorical data

We can compute Mahalanobis distances for active data through projections for

w5 categorical data. We can obtain the component scores for the active sub-sample

16


https://doi.org/10.1101/333005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/333005; this version posted February 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

in MCA through Eq. (§) where F; = ®; W2V = W;0xW2V = W,PA =
WIW;%UA = WI% UA. To obtain the squared MD through projections:

U=W,*W:UAA ! = IUI and )
U=W,>W;0xW2VA~l = WOxW3iVA~L.
The projection described in Eq. works because of the relationship between
GSVD(W, Zx, W) and GSVD(L, (W3 OxW2),1). The standard GSVD for
a0 MCA, GSVD(W;, Zx, W), is equivalent to GSVD(I, (W? Ox W 2 ), I) with one
slight exception: the first GSVD expression is already centered whereas the second
GSVD expression is not, so the first singular value in GSVD(I, (WI% OXW§), I)
is 1 and the first right and left singular vectors are trivial (equal to the marginal
probabilities via r and c). Because V is computed with the centered data, the
a1is  projection of WI% OXW§ onto V will remove the mean. For more information on
the relationship between GSVD(W, Zx, W) and GSVD(L, (W2 OxW?2),1)

see Lebart et al. (1984) and Greenacre (1984).

While Eq. and Eq. suggest ways to compute squared MD for sup-
plementary (a.k.a. sub- or out-of sample) categorical data, there is a major

;20 barrier that prevents the computation of correct squared MD for supplementary
categorical data: if complete disjunctive coding were applied to each subsample,
then subsamples will not necessarily have the same columns (e.g., rare nominal
levels may not exist in some subsamples). Because these columns are not in
the active data, but will appear in the supplementary data, we cannot compute

35 out-of-sample squared MDs with what we have established so far. To do so, we
require a specific form of MCA called subset MCA (Greenacre, 2017; Greenacre
& Pardo, 2006), which is a specific case of GCA (Escofier, 1983, 1984).

Escofier’s Generalized Correspondence Analysis and Subset MCA for the MCD.

Hiding in the broader CA literature is “generalized correspondence analysis”

a0 (Escofier, 1983, 1984)—as referred to by Grassi and Visentin (1994). Escofier

17
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established the idea of GCA as: “(DATA - MODEL) / MARGINS”. GCA has
many uses well beyond the standard applications in CA and MCA, including
those for missing data and assumptions that deviate from the typical assumptions
of CA (e.g., quasi-CA with “quasi-independence” and “quasi-margins”; Leeuw &

15 Heijden, 1988; Van der Heijden, De Falguerolles, & Leeuw, 1989).

With a disjunctive data set X, the generalized MCA of X would be defined as
follows. As noted in Grassi and Visentin (1994) we can characterize each cell of
the matrix Zx as derived from the generalized model of CA with the generic
element

N (ox,; — eij)

NI
The model (E) and the margins (W; and W), could be defined in almost any
way and it is not required to compute the expected values or margins from the
data. We can represent the generalized CA approach in a simpler form with the
GSVD where Zx = Ox — E and GSVD(W;,Zx, W) (see Egs. @ and @) In
a0 this generalized MCA, the expected values and weights can be derived from any
prespecified models or data that conform to the rows and columns of the given

data.

GCA provides a way to maintain the row and column structure of the data
and to analyze only subsamples separately in order to make accurate squared
s MD estimates. To do so, we need only a simple change applied to the generic
element 2x,; for GCA. Let us refer to the active subsample with the subscript
g and the supplementary, or excluded, subsample as z. First we compute all
matrices required for MCA exactly as initially defined in Egs. @ and @: Ox,

Ex, r and c. Let us frame Ox, Ex, r as constructed by the H and H subsets

Ox Ex ry

w0 as: Ox = 1, Ex = 1, and r = . To maintain the structure
Oxﬁ EXH rg

of the data and to be able to perform the necessary steps for MCD we require

X
Ox,,
expected matrix with part of our observed matrix. Thus our assumption is that

the generalized expected matrix of E = . That is, we replace part of the

18
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the expected values are the observed and the deviation is 0. The GSVD notation

Z o) E
s for this is: GSVD(Wy,Zx, W) where Zx = | " | =| % | —| ¥
0 Ox,, Ox,

Any subsample of H and H guarantee that we maintain the same shape (rows and

E
columns) as X when we use E = X Let us expand GSVD(W[,Zx, W)
Ox,
. . ZXH
where Zx = Ox — E. Like in Eqgs. @ and ([7]) we have =7x =
0
T Pr T T T T
PAQ" = AQ", where PPW,;P =1 = Q'W;Q and P"W;P =
T
PH PH ~ 1 1
360 Wi = I. Furthermore, recall that Zx = W;ZxW3 and thus
0 0
1 1 1| Zx,, 1 ~XH =
W;ZxW3 =W; W; = = 7Zx. Just as in Eq. we would
0 0
apply the SVD as:
~ U
7x =UAVT = | 7| AVT, (13)
0
T
U U
where UTU =1=VTVand UTU = | "1 =UTUy =1 We can
0 0

simplify this approach through a specific application of GCA called “subset
s MCA” (Greenacre, 2017; Greenacre & Pardo, 2006).

As seen in Eq. , the expected values of the excluded subset H are 0 so that
we only analyze the active subset H. This case of GCA reduces to subset MCA.
For subset MCA, when we compute the SVD of Z we only require all of the
observations that are not 0. To compute subset MCA for use in the MCD we
s use the matrices defined in Egs. @ and . Specifically Zx = WI% ZXW§ —
Zx = WI_%ZXW;%. In subset MCA we require ZXH which is the H subsample
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of Zx and perform the SVD as

ZXH = UHAHVE7 (14)

which leaves us with the complement H where Zxﬁ = UgAgVEL. In the CA
literature the sum of the eigenvalues (i.e., diag{A}) is called “inertia” and is
ss  denoted as Z. In effect, subset MCA partitions the full MCA space into two

additive subspaces: 7T = Zg + 17.

We can compute the determinant for H subsamples via the geometric mean of
the eigenvalues (Ay = A%) and we can compute robust squared MDs in subset
MCA through the row profiles. Recall that we can compute component scores
;0 and squared MDs from the full MCA via projection as seen in Eqs. and .
We can also compute component scores for the full I set from the subset MCA

as

Fg

| =@ F A (15)
Fg

which allows us to compute U = WI_§'1>IFJA’1 because

W, 2@, F A1 =

W, 2®,W,QAA !

W, 20, W, W,?VAA~! =
W20, W, W,° VA~ =
W, W, 0xW, W, VA~ =
W?O0xW2VA~L.

We can compute supplementary squared MDs for the full set of observations
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conditional to the subset MCA results as:

—W,2®,F,, A7} (16)

;s where the Uy in Eq. is exactly the Uy in Egs. and . Alternatively

U 1 | F
we can compute Eq. from as | . = W, ? AH A~!. Finally, the
Ur Fr
T T
Ug | |Un
robust squared MDs are computed as diag{ [ . R }.
Uz | |Um

MCD algorithm for categorical data

Here we outline the core steps required for a MCD via subset MCA. First the
s MCD requires an initial random subsample of size H where [(I +J +1)/2] <
H < I. The H subset of ZX is denoted as 2XH-

1. Apply the SVD: ZXH =UyApVE
2. Compute the determinant of ZXH as the geometric mean of Ay

U
3. Compute the squared MDs for the full I sample from L

~

Ug
W2, F,, A
4. Set ZXH as the subset of H observations with the smallest squared MDs
computed from Step 3.

These steps are repeated until a we find a minimum determinant (Step 2) either
through optimal search or limited to a given number of iterations. Our approach
w0 employs steps like the Fast-MCD algorithm (Rousseeuw & Van Driessen, 1999);
See also Hubert and Debruyne (2010) for overview. Step 3 helps find a minimum
determinant faster because the subset of H observations with the smallest
squared MDs are likely to produce a smaller or equal determinant in subsequent

iterations.
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ws A note on x2-distances

It is important to note that a more commonly used distance exists in the CA and
MCA literature: the y2-distance (Guttman, 1941). Arguably the y?-distance
is the most well understood and defined metric for non-quantitative data and
typically used for contingency and categorical data by way of CA and MCA
a0 (Greenacre, 2017; Greenacre & Hastie, 1987). Greenacre (2017) and Greenacre
and Hastie (1987) say that the y2-distance is a type of Mahalanobis distance.
While the y2-distance and Mahalanobis distance are both specific types of
generalized Euclidean distances, we believe it is important to distinguish the
two: we compute the y2-distances from the component scores and we compute

a5 the MD from the singular vectors; these two distances are not equivalent in CA.

The y2-distances for each observation from CA come from the component
scores: diag{F;FT} (¢f. Eq. ; see also Benzécri, 1973 and Escofier,

1965). The y2-distances remain unchanged between subset and full MCA:
T
F Fy
diag { | . = diag{FTF;}. Because the y2-distances do not

Fg Fy
w20 change they cannot be used in the MCD algorithm to identify optimal subsets.
Therefore—as with the typical MCD algorithm—the GMCD relies on the MDs

T

defined from the singular vectors for the observations: diag{UZU}.

Applications and Extensions

Now that we have established a MCD algorithm for categorical data we show
s examples of its use including how our approach generalizes the MCD to allow
for virtually any data type. Because our approach is based on CA, we can
capitalize on particular properties of CA and X2 to allow for the analyses of
non-categorical data such as ordinal, continuous, or mixed-data. We show how
this is possible through a data recoding technique called data “doubling” (a.k.a.

w0 fuzzy coding, bipolar coding, or “Escofier transform”).
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In this section we illustrate our generalized MCD with three data sets: (1) a small
toy data set, (2) one from the Ontario Neurodegernative Disease Research Initia-
tive (ONDRI), and (3) one from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). First we apply our approach to the toy genetic data—single nucleotide
135 polymorphisms (SNPs)—which were simulated based on real genetic data from
the Alzheimer’s Disease Neuroimaging Initiative (ADNT). For a description of the
data see supplemental section from Beaton et al. (2016). Next we use ONDRI
data, specifically the brief survey of autobiographical memory (BSAM; adapted
from Palombo, Williams, Abdi, & Levine, 2013). The BSAM data are comprised
a0 of five ordinal responses to all questions, where some responses are relatively
rare, and so we apply our approach to three versions of the BSAM: (1) where
each question is treated as a categorical variable, (2) categorical but recoded
to combine rare responses with their next comparable response (e.g., combine
rare 5s with 4s), and (3) an approach that preserves the ordinality of the data.
ws  We compare and contrast the results from all three applications to the BSAM
specifically to highlight how GMCD results change. Finally, we use a mixture
of data types from ADNI data to demonstrate how our technique applies to
data sets with mixed variables across multiple data modalities. The ADNI data
include categorical data (SNPs), ordinal data (clinical dementia rating), and
w0 continuous data (volumetric estimates from brain regions). We explain each

data set and applications in their own sections.

Toy data

The toy data are comprised of SNPs, which are categorical variables (toy data
available as part of the software https://github.com/derekbeaton/ours). Each
5 SNP contains three possible genotypic categories: “AA”, “Aa”, and “aa” which
are, respectively, the major homozygote, the heterozygote, and the minor ho-
mozygote. Both “A” and “a” represent alleles where “A” is the major (more
frequent) allele and “a” is the minor allele. Each genotype is a level (category)

within a SNP variable.
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wo  The toy data are of size I = 60 x C' = 9 (observations by variables). These data
were transformed into a disjunctive coding (as in Table [I]) that are of size I =
60 x J = 25 (observations by columns); note that some SNPs have 3 genotypes
present where as others only have 2 genotypes present. Figure [I] shows GMCD
applied to the toy data set over the course of 1,000 iterations. Figure [lp shows
w5 the search for a minimum determinant where the intial determinant is quite high
by comparison to later determinants and the GMCD stops (at 1,000 iterations)
on a much smaller determinant. Figure shows the observed squared MD
(horizontal) and y2-distances (vertical). The observed distances alone (Fig, )
suggest the presence of possible outliers. We have denoted two individuals with
a0 “X” circumscribed by a circle. These two individuals are the only two with “aa”
for one particular SNP. In Figure [l we show the observed distances again but
now individuals in red are those within the H subsample and individuals in
blue are those excluded from the “best” subsample (i.e., the subsample with the
smallest determinant at convergence). Finally, we show the robust squared MD,
a5 which helps reveal “masking” effects: Figure [Ild shows the observed vs. robust
squared MD. Figure [T is the same as Figure [Id except without the two most
extreme individuals to provide a better view of the observed vs. robust squared

MDs.

ONDRI Data

w0 The Ontario Neurodegenerative Disease Research Initiative (ONDRI; http://
ondri.ca/) is a longitudinal, multi-site, “deep-phenotyping” study across multiple
neurodegenerative disease cohorts (Farhan et al., 2017): Alzheimer’s disease (AD)
and amnestic mild cognitive impairment (MCI), amyotrophic lateral sclerosis
(ALS), frontotemporal lobar degeneration (FTD), Parkinson’s disease (PD), and
a5 vascular cognitive impairment (VCI). Currently, the ONDRI study is still in the
data collection, curation, and quality control stages. Thus these are preliminary
data used strictly for illustrative purposes. As part of the quality control

process, various subsets of data are subjected to outlier analyses. However,
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Figure 1: Application of generalized MCD to categorical data. We illustrate the
generalized MCD here first on a small data set of single nucleotide polymorphisms
(SNPs). (a) shows the search for the determinant. (b) shows the observed
distances (via standard multiple correspondence analysis). (c¢) shows the observed
distances but now with the H subset colored in red. (d) shows the observed vs.
robust squared Mahalanobis distances (MDs). (e) shows the same as (d) but
excludes the two extreme individuals (which were the only two to have ’aa’ for

one particular SNP. 25
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one of the major challenges is that many of the variables and instruments
w0 are not quantitative and we therefore could not use existing techniques such
as the MCD, robust PCA (Candes, Li, Ma, & Wright, 2011) or principal
orthogonal complement threshold (Fan, Liao, & Mincheva, 2013). We illustrate
our generalized MCD on the BSAM. We show that the GMCD of the BSAM on
N = 300 particpants from two cohorts (VCI n = 161 and PD n = 139). This

a5 illustration compares and contrasts three ways of coding the data.

The BSAM is a short version of the survey of autobiographical memory (SAM)
comprised of 10 questions where each question has five possible responses: two
responses indicate disagreement with a question (“strongly disagree”, “disagree
somewhat”), two responses indicate agreement with a question (“agree some-
so  what”, “strongly agree”) and one neutral respone (“neither”). We analyze the
BSAM in three ways so that we can compare and contrast the results of each.
In our first example, we treat the data as categorical and apply our technique
as previously derived and illustrated (see Figure . As noted in Figure [1] very
rare responses can greatly exaggerate the squared MD, robust squared MD, and
s even x2-distances. Furthermore, in many practical applications rare responses
would likely be recoded so that they are combined with similar responses. For
example if a response of “strongly agree” occurred in less than approximately 5%
of responses for a particular question, it would be recoded with “agree somewhat”
to make a single “agreement” response. Therefore for our second example we
sio recode rare ($ 5%) responses where we combine a rare response (e.g., “strongly
agree”) with its most similar response (e.g., “agree”). We continue to treat
the data as categorical and apply our technique again. Finally, because the
responses could be treated as ordinal data we use a specific recoding scheme
that has many names such as “bipolar coding” (Greenacre, 1984), fuzzy coding,
sis or “doubling” (Greenacre, 2014; Lebart et al., 1984). We refer to this coding
henceforth as “fuzzy coding” (described below). We compare and contrast the
results of each analyses with respect to which observations were identified as

the robust subsample across each technique and several « levels (i.e., a = .5,
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a = .75, a =.9). Finally, we also illustrate how to use the bootstrap to define

s20 empirical thresholds for outliers given the robust squared MDs.

With fuzzy coding each original variable was represented by two columns where
the “—” column is the observed value minus the minimum of the variable for that
question, and the “+” column is the maximum of the variable for that question
minus the observed value. For example, the BSAM has 5 possible levels (1, 2,
s 3, 4, 5) so each “—” column will use 1 as the minimum and each “+” column
will use 5 as the maximum, even if there are no observed values of 1 or 5 in the
data themselves. The data are then normed so that each pair of columns (i.e., +
and —) sum to 1. Because the data behave like disjunctive data, we can apply
MCA and thus our GMCD approach also works to find a robust subset and help
s identify outliers. The two columns are then normalized so that the row sums
equal the total number of original variables. Fuzzy coding is illustrated in Table
Fuzzy coding transforms variables into “pseudo-disjunctive” in that, from the
perspective of CA and MCA, the data tables behave like disjuntive tables (see
Table : the sums of the rows equal to the number of (original) variables, the
s sum of variables (each pair of columns) equal the number of rows, and the sum

of the table is equal to the number of rows x the number of (original) variables.

We refer to the original BSAM data as “as is”, the recoded for rare responses
version “recode”, and the ordinal version as “ordinal”. We applied the GMCD
to each with three alpha levels: a = .5, a = .75, a = .9 for a total of nine
ss0  applications. As in the Fast-MCD algorithm, a controls the proportion of
samples to identify as the H subset. The size of H is computed as H =
[(2x Hr) — I+ (2x (I —Hy) x )] where Hr = mod ((I +J + 1),2) (which
is the same subsample size computation as the rrcov (Todorov & Filzmoser,
2009) and robustbase (Maechler et al., 2018) packages in R via the h.alpha.n
s function). Because each data set has a different number of columns (J) the same
a will produce a different size H. Each application of the analysis was run for

1,000 iterations for the GMCD algorithm.
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Table 2: Example of fuzzy coding. Example of data "doubling" via fuzzy for
ordinal data with the brief survey of autobiographical memory (BSAM).

(a) CDR ordinal example

Q1: Specific events Q2: Recall objects

ONDO1_TWH__1100 2 4
ONDO1_SBH__1200 4 4
ONDO1_HDH_ 5100 5 4
ONDO1_HDH 5201 4 )

(b) Doubling for ordinal data with normalization so each variable sums to 1

Ql1— Q1+ Q2— Q2+
2—1 1 5—2 3 4—1 3 5—4 1
ONDOI_TWH_1100 =3~ = 3 =1 T =1 T =1
4—1 3 —4 1 4—1 3 —4 1
ONDOI_SBH_ 1200 %51 =3  54_1  41_3  54_1

5-1 _ 4 5-5 _ 0 4-1 _ 3 5-4 _ 1
ONDO1_HDH 5100 T =1 =1 =1 s =
4-1 _ 3 5-4 _ 1 5-1 _ 4 5-5 _ 0
ONDO1 HDH 5201 1 3 1 < 7 2 T 2
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Figure [2| shows all nine applications of the generalized MCD applied to the
BSAM. To note in Figure [2| we show the MDs and robust MDs (not squared).
sso  Part of the reason we show these is because as with the toy data in the previous
section some observations excluded from the H subsample (denoted in blue)
have very high robust squared MDs by comparison to the H subsample (denoted
in red). Though these are the same data, we see interesting behaviors when we
treat the data differently. First, when « is low, we see a greater exaggeration of
ss5  outlying individuals with respect to the “inliers” and the H subset. However
this behavior essentially disappears as « increases. Finally we also see that the
“ordinal” version of the data appears to behave quite differently from the other
versions as « increases. In general, the MD and robust MD estimation are highly
similar, with only a small gap between the H subsample and the observations
soo  excluded from H. The robust MD estimates across techniques tends to vary
as a consequence of both data representation (as is, recoded, ordinal) and «.

However the H subsamples across each of these are highly similar.

The overlap of the H subsample between all applications of the BSAM analyses
is shown in Table When « is small there is more variability between the
ses different versions. As « increases the H subset becomes much more similar
across all versions. However it is important to note that of all of these analyses,
the “as is” and the “ordinal” generally find the same observations as part of the
H subset, even though the data are represented in two completely different ways.
The mostly common subsamples between “as is” and ordinal analyses show that

s both retain essentially the same information.

Besides the identification of robust subsamples (and covariance structures), MCD
algorithms reveal “masking” effects and identify outliers. In some of our BSAM
examples in Figure [2]it is fairly easy to identify “inliers” and the extreme outliers
that were previously subject to the “masking” effects. For example, in the “as
ss 18”7 data regardless of the «, it is clear that an outlier subset of individuals have

unique response patterns that differ greatly from the rest of the sample.
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Figure 2: Generalized MCD applied to the brief survey of autobiographical
memory (BSAM) data from ONDRI. Left to right is the alpha level and top to
bottom is how the data were coded. All plots show observed vs. robust Maha-
laniobis distances (MD). Observations in red are the H subsample, observations
in blue are not in the H subsample. Axes are scaled to the same values within

each recoding to highlight the changes in robust MD.
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Table 3: Generalized MCD subsample sizes. A = As is, R = Recode, O = Ordinal. Only the lower
triangle and diagonal are shown. The diagonal here indicates the size of the H subset (out of N = 300).
The value in each cell is the number of overlapping subjects identified as the robust subsample for each
version of the brief survey on autobiographical memory (BSAM). Generally as the « increases, overlap

becomes more likely. As is and ordinal tend to overlap across all versions.

A5 A5 A9 R.5 R.75 R.9 0.5 0.75 0.9

AsIs .5 58.33%
AsIs .75 54.33%  79.00%
AsIs .9 58.00% 78.00% 91.67%

Recode .5 44.67% 49.00% 54.00% 57.00%

Recode .75  52.33% 63.33% 73.33% 56.00% 78.33%

Recode .9 57.33% 72.00% 84.00% 56.67% 78.00% 91.33%

Ordinal .5 40.00% 47.33% 52.00% 42.67% 46.00% 50.67% 53.33%

Ordinal .75 54.33% 69.00% 74.67% 51.00% 63.00% 70.00% 52.33% 76.67%

Ordinal .9  56.67% 76.33% 87.00% 55.33% 72.67% 82.67% 53.33% 76.67% 90.67%

31


https://doi.org/10.1101/333005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/333005; this version posted February 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

As previously described MCD algorithms aim to find the most robust H subsam-
ple wherein the scatter (covariance) is minimized. Sometimes, observations in
the H subsample have higher robust squared MDs than those outside of the H
ss0  subsample, like in the “as is” BSAM at a = .5. However other times, as in the
ordinal BSAM at a = .9, there is no clear division between the H subsample and
the rest of the observations. Therefore to help identify inliers and outliers we
recommend using the bootstrap (Efron, 1982, 1992) to generate a distribution of
robust squared MDs. We refer to outliers here as those above some threshold,

sss  and “inliers” as those individuals that are not identified as outliers.

The bootstrap derived distribution of robust squared MDs can be used to identify
observations in the sample that exist inside or outside of particular thresholds.
The bootstrap procedure we used is as follows. First we bootstrapped the data
(in disjunctive or fuzzy format) to create a new BSAM data set of the same
s size. Next we preprocessed the data just as in standard MCA and projected the
preprocessed data onto the robust singular vectors to compute robust squared
MDs. We repeat this process many (e.g., 100) times. Each bootstrapped version
of the data generates a set of robust squared MDs. All of the robust squared
MDs across all bootstrapped sets are then used to create a distribution of robust
sos  squared MDs. We use the distribution of bootstrapped robust squared MDs to
identify any of the originally observed robust squared MDs that are outside of a
given threshold. For this example we used two thresholds: (1) a fixed threshold at
95% of the bootstrapped robust squared MDs distribution, and (2) proportional
to H subsample size for each analysis (as determined by «). In Figure |3| we
so0 highlight individuals below both thresholds (red), between the thresholds (gold),
and above the 95% threshold (blue). For the bootstrap procedure we refer to
“inliers” as those individuals that are always under both thresholds. We show
two types of outliers in this example: the less extreme outliers between the two
thresholds and the extreme outliers beyond the 95% threshold. We use both
s outlier thresholds to highlight the behavior of the bootstrap procedure across
the different applications of the BSAM analyses.
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With the bootstrap procedure, especially in the a = .5 analyses, we can see
that the “inliers” constitute a more homogeneous set than those identified
as the H subsample (Fig. |3). This is in part because the MCD algorithm
s identifies a subset with the minimum determinant (scatter) but not necessarily
the most homogeneous H subsample. Furthermore the bootstrap procedure
helps better identify inliers and outliers when the robust MDs have a relatively
linear relationship the MDs like in the ordinal examples with o = .75 and
a = .9. Similar to the H subsample identification, when « is small there is
a5 more variability between the different versions. In the fixed analyses (1) as «
increases the inliers become much more similar across all versions, and (2) the
“as is” and the “ordinal” generally find the same observations as part of the
inliers, even though the data are represented in two completely different ways.
For the identification of inliers and outliers we strongly recommend using the
20 bootstrap procedure instead of just the H subsample (e.g., red individuals in
Fig. or, for example, quantiles of the robust squared MDs. The bootstrap
procedure provides a more stable assessment of individuals and their likelihood

of classification as “inlier” or “outlier”.

ADNI Data

e Data used in the preparation of this article come from Phase 1 of the ADNI
database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-private
funding partnership and includes public funding by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengineering, and
the Food and Drug Administration. The primary goal of ADNI has been to

s test a wide variety of measures to assess the progression of mild cognitive
impairment and early Alzheimer’s disease. The ADNI project is the result of
efforts of many coinvestigators from a broad range of academic institutions and
private corporations. Michael W. Weiner (VA Medical Center, and University of
California-San Francisco) is the ADNI Principal Investigator. Subjects have been

e recruited from over 50 sites across the United States and Canada (for up-to-date
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Figure 3: Bootstrapping procedure applied the generalized MCD of the brief
survey of autobiographical memory (BSAM). All plots show observed vs. robust
Mahalanobis distances (MD). Observations in red are the bootstrap ’inliers’,
observations in blue are outside the bootstrap threshold, and observations in
gold are in between. Axes are scaled to the values within each plot to better

highlight the cutoffs via the bootstrap distributions.
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information, see www.adni-info.org).

The ADNI sample for use here was N = 613 across three diagnostic groups:
Alzheimer’s disease (AD) = 264, Mild cognitive impairment (MCI) = 166, and a
control group (CON) = 183. We used several data sets of different data types
s0 from ADNI: single nucleotide polymorphisms (SNPs) as categorical data, the
clinical dementia rating (CDR) as ordinal data, and volumetric estimates from
five brain regions as continuous data. Just as with ordinal data, continuous data
can also be transformed in a way where it behaves like disjunctive data. These
data can be acquired in ADNI via the genome-wide data and the ADNIMERGE R

&5 package.

We used SNPs from the ADNI cohort that were associated with APOE and
TOMM40 which are strong genetic contributions to AD (Roses et al., 2010). SNP
data were preprocessed for participant and SNP missingness (5%, i.e., required
95% completeness), and minor allele frequency < 5%. Infrequent genotypes (e.g.,
0 < 5%) were recoded; in this particular case all “aa” levels that were < 5% were
combined with “Aa” — essentially dichotomizing the presence and absence of “a”
(i.e., “AA” vs. presence of “a”; a.k.a. the dominant inheritance model). We were
thus left with 13 SNPs that spanned 35 columns: 4 of our SNPs were recoded to

combine “Aa” and “aa” (i.e., “AA” vs. “Aa+aa”) and the remaining 9 SNPs

ess each had three levels (i.e., “AA”, “Aa”, and “aa”).

The CDR is a structured interview that has six domains: memory, orientation,
judgement, communication, home and hobbies, and self-care (Morris (1993);
see also |http://alzheimer.wustl.edu/cdr/cdr.htm). After the interview ratings
are applied to each category with the following possible responses: 0 (normal),
o0 0.5 (very mild), 1 (mild), 2 (moderate), and 3 (severe). The CDR has ordinal

responses so we recoded the CDR with fuzzy coding.

We also included five brain volumetric estimates known to be impacted by AD:
ventricles, hippocampus, enthorinal cortex, fusiform gyrus, and medial temporal

regions. The volumetric estimates here are treated as continuous data. Similar
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65 to ordinal data, we code the data as “doubled” continuous data so that they,
too, behave like disjunctive data. We refer to the transformation of continuous
to pseudo-disjunctive data specifically as the “Escofier transform” (Beaton et al.,
2016) because it was introduced by Escofier (1979). The transformation is similar
to “fuzzy coding” in that it too is “bipolar”. The “doubling” of continuous data

70 is simpler than with ordinal and only requires that we add or subtract 1 from the
centered and scaled data, and divide each value by 2. An example of “doubling”

for continuous data can be seen in Table @l With “doubled” continous data we

can apply GMCD to continuous data because it now behaves like disjunctive data.

Our mixed data was thus a matrix of I = 613 x.J = 57 (13 SNPs categorical

s that spanned 35 columns, 6 CDR domains that spanned 12 columns, and 5 brain

regions that spanned 10 columns).

Figure [4] shows our GMCD applied to the mixed data set. In Figure [fh we
see the observed MD and y?2-distances which suggests the presence of some
possible outliers as well as a possibly homogeneous group of individuals near
s that extend outward from 0. In Figures [@p and ¢, individuals in red are those
within the subsample and blue are those excluded; Figure [4p shows the observed
squared MD and y2-distances for individuals (in red) that comprise the “best”
determinant (the sample at convergence). Finally, as with the standard MCD
algorithm we can also compute robust MD which helps revealing “masking”
o5 effects by exaggerating the more extreme individuals. Figure [dc shows the
observed vs. robust MD; the robust MD was computed with respect to the
individuals identified as the minimum determinant set in Figure p. Figure d
shows outliers (in blue) as identified through our bootstrap procedure. As before
we used two cutoffs: the lower bound was proportional to the H subsample
oo and the upper was the 95%-ile of the bootstrap distribution. In the mixed data
case 335 observations were identified as H subsample and 432 were identified as
inliers of the total 613 observations. In this example, 335 of the H subsample

overlapped with the inliers.
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Table 4: Example of Escofier transform. Example of data "doubling" via the "Es-

cofier transform" for continous data with the volumetric estimates for (structural)

brain imaging as an example.

(a) Volumetric brain regions continuous (Z-scores) exam-

ple
Hippocampus Fusiform

001_S 4321 0.34 -0.46

006_S 1234 -0.39 1.80

007_S_0880 -1.02 0.92

004_S 8866 -0.10 0.26

(b) Escofier-style doubling for continuous data

Hippocampus— Hippocampus+ Fusiform— Fusiform+
001 S 4321  1=934 — .33 14034 — 0,67 20046 o753 A0 _ 97

1—-(—0.39 1+(—-0.39 —1. .
006 S 1234 =523 —0.70 039 — .30 =180 — .40 14180 — 1 40
007 5 0880 =G —q101 @ HELE g 12092 — 0,04 14092 — .96

1—(—0.1 1+(—-0.1 —0. .
004 S 8866 =5%U — .55 0l — .45 12026 _ (.37 14026 _ 63
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Figure 4: Application of generalized MCD to mixed data. Data are comprised
of SNPs (categorical), clinical dementia rating (ordinal) and volumetric brain
estimates (continuous) from ADNI. (a) shows the observed distances. (b) shows
the observed distances with the H subset colored in red. (c) shows the observed
vs. robust squared Mahalanobis distances (MDs). (d) shows the same as (c) but

colored according to outlier/inlier thresholds from our bootstrap procedure.

38


https://doi.org/10.1101/333005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/333005; this version posted February 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Discussion

ss  We presented the first MCD-based approach that generalizes to virtually any data
type (i.e., categorical, ordinal, continuous). Our approach relies on Mahalanobis
distances derived from CA via the SVD and avoids many of the issues of
Mahalanobis-like distances that Goodall (1966) noted (i.e., excessive weight or
arbitrary metrics). Furthermore, because our generalized MCD relies on CA we
70 can use some simple recoding approaches that allow data tables to behave like
disjunctive tables (see Tables[2fand . Our approach, like many MCD-based and
-inspired approaches (Boudt et al., 2017; Fritsch, Varoquaux, Thyreau, Poline,
& Thirion, 2012; Mejia et al., 2017; Rousseeuw & Van Driessen, 1999), identifies
a robust substructure. Also like many other approaches, our generalized MCD
s makes use of additional information to identify inliers vs. outliers, as opposed to
simply using the H subset. Here we have opted to use a bootstrap procedure;
this bootstrap procedure is easily adapted, can accomodate any threshold, and

provides frequency estimates of outlierness (or inlierness) per observation.

Our generalized MCD was designed around the necessity to identify robust
7m0 structures and outliers in complex non-quantitative data. Within the ONDRI
study we had realized that many if not all existing MCD-like and related
techniques could not accomodate our needs. We required a multivariate outlier
technique that could work on categorical, ordinal, or mixed data with ease. While
there are other possible algorithms (e.g., Candés et al., 2011; Fan et al., 2013)
ns  we chose to extend the MCD because it is a reliable and widely-used technique
(Rousseeuw & Van Driessen, 1999 has been cited 1,969 times at the time we wrote
this paper), and available in languages routinely used for multivariate analyses
(e.g., https://cran.r-project.org/web/packages/robustbase/index.html, [https:
/ /cran.r-project.org/web/packages/rrcov/index.html, and https://wis.kuleuven|
70 |be/stat/robust/LIBRA). We have also made the GMCD available in an R
package generally focused on outliers and robust structures (see https://github)

com/derekbeaton/ours).
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Generalized MCD beyond our examples

We established a generalized across data types MCD. In most practical and
s simple cases, data matrices typically consist of one type of data. However with
studies such as ONDRI and ADNI, the boundaries of what constitutes a “data
set” are blurry: researchers analyze multiple variables from a variety of sources.
Often these variables are of different types. Our example with the ADNI data
highlights a typical data set that stems from these types of studies. However in
70 the ADNI example we treated each variable as an independent measure which
was somewhat unrealistic: each individual variable was part of a larger related
set of variables in distinct data tables (e.g., SNPs, the CDR, and brain imaging).
A family of techniques have been designed specifically to handle such data sets:
Multiple Factor Analysis (MFA; Abdi, Williams, & Valentin, 2013; Escofier &
7 Pages, 1994). The MFA technique was designed for many variables that stem
from specific data partitions measured on the same observations. Furthermore,
the MFA technique has been extended based on the work by Escofier (1979) and
Escofier and Pages (1994) to accomodate mixed data types (Bécue-Bertaut &
Pages, 2008). Our GMCD approach does not only apply for single data tables
o but also for MFA-type problems.

Our approach also inherently allows for a priori defined covariance structures.
GCA, as defined by Escofier (1983) and Escofier (1984), allows for some known
sets of weights (e.g., Wy) or expected values (e.g., Ex). Because our generalized
MCD is based on GCA, we do not depend on the H sample set to Os in the
7 iterative process. Rather, if some known weights and/or some known structure
exists, then we can use those to identify the most robust set and outliers in the

observed values.

Finally, in MCA it is typical to discard many of the low-variance components
(Abdi & Valentin, 2007), though we do not do so for our GMCD. The removal
w0 of low-variance components stems from the fact that the dimensionality and

variance in MCA comes from the complete disjunctive data that spans J columns,
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as opposed to the C variables (where J > C). The “Benzécri correction” is the
most common approach to identify which low-variance components to discard

(Benzécri, 1979): components with eigenvalues smaller than 1/C.

s Limitations

While our approach opens many avenues to extend the MCD there are some
limitations. First, the “Benzécri correction” (Benzécri, 1979) discards low-
variance components and thus we can compute a Mahalanobis-like distance
from some arbitrary set of high-variance components. However, this does not
w0 work well in practice: in most cases outliers typically express high values on
low-variance components. If we were to discard low-variance components we
might not identify a proper robust structure nor identify appropriate outliers.
Furthermore, the dimensionality correction (Benzécri, 1979) of the space is only
established for strictly categorical—and thus completely disjunctive—data. How
765 to determine, and then use, the correct dimensionality of the space (especially
for mixed variables) is an open question. For now we have opted for the more

conservative approach: require full rank data I > J and retain all components.

Finally our algorithm does not include one particular feature of the standard
MCD algorithm: we are not able to compute a robust center. Rather, our robust
70 center exists entirely within the y2-space as defined by the factor scores because
subset MCA “maintains the geometry [...] and y?-distances of the complete
MCA [...]” (Greenacre & Pardo, 2006). For example if we were to apply our
technique with continuous data (recoded as in Table |4]) and compare against the

standard MCD we would obtain slightly different results.

s Conclusions

The MCD is a very reliable and widely-used approach to identify robust multi-
variate structures and likely outliers. However until now the MCD could only be

used for data that are (or were assumed to be) continuous. Our approach uses
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CA to define Mahalanobis distances (via the singular vectors) and allows us to
70 do so for virtually any data type. We believe that our generalized MCD via GCA
opens many new avenues to develop multivariate robust and outlier detection
approaches for the complex data sets we face today. Not only does GCA provide
the basis for a new family of MCD techniques but our technique also suggests
ways to approach other robust techniques (Candeés et al., 2011; Fan et al., 2013).
s With complex studies that contain many mixed-variables, techniques like our

generalized MCD will be essential to maintain data quality and integrity.
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