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Abstract

The minimum covariance determinant (MCD) approach is one of the most

common techniques to detect anomalous or outlying observations. The MCD

approach depends on two features of multivariate statistics: the determinant

of a matrix and Mahalanobis distances (MD). While the MCD algorithm is
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commonly used, and has many extensions, the MCD is limited to analyses of

quantitative—generally metric, or presumed continuous—data. The MCD does

not extend to other data types such as categorical or ordinal data because MD is

not strictly defined for data types other than continuous data. Here we present

a generalization of the MCD: first on categorical data, and then we show how

our generalized MCD (GMCD) extends beyond categorical data to other data

types (e.g., ordinal), and even mixed data types (e.g., categorical, ordinal, and

continuous). To do so, the GMCD relies on a multivariate technique called

correspondence analysis (CA). Through CA we can define MD by way of the

singular vectors and we can compute the determinant from CA’s eigenvalues.

We illustrate the GMCD on data from two large scale projects: the Ontario

Neurodegenerative Disease Research Initiative (ONDRI) and the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) with data such as genetics (categorical),

clinical instruments and surveys (categorical or ordinal), and neuroimaging

(continuous) data. We also make available R code and toy data in order to

illustrate our generalized MCD (https://github.com/derekbeaton/ours).

Keywords: Correspondence analysis, categorical data, outliers, robust,

neuroinformatics, neurodegenerative disorders

Introduction

The minimum covariance determinant (MCD; Hubert & Debruyne, 2010) ap-

proach is a robust estimator for multivariate location (mean) and scatter (covari-

ance). Given a matrix of observations (rows) and variables (columns), various

MCD algorithms and derivatives generally find a subset of individuals that have5

minimum scatter, where scatter is defined as the determinant of the covariance

matrix. Robust estimates of mean and covariance are computed from the subset

of individuals with minimum scatter. MCD techniques work based on two key

features in order to detect the likely-smallest cloud of observations: (1) the

determinant of a given covariance matrix and (2) the Mahalanobis distances10
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(MDs) of all observations with respect to that covariance matrix. Because MCD

searches for the smallest and most homogeneous cloud of observations, it is also

a common technique used for detection of multivariate outliers (Hadi, Imon, &

Werner, 2009; Magnotti & Billor, 2014; Verity et al., 2017), including in the

psychological sciences (Leys, Klein, Dominicy, & Ley, 2018). Since the intro-15

duction of the Fast-MCD approach (Rousseeuw & Van Driessen, 1999), there

have been many improvements and variations on the technique, such as robust

PCA (Hubert, Rousseeuw, & Branden, 2005) and deterministic MCD (Hubert,

Rousseeuw, & Verdonck, 2012). See also Hubert, Debruyne, and Rousseeuw

(2017) for an overview. Recently the MCD approach has been extended to address20

high-dimensional data through regularization (Boudt, Rousseeuw, Vanduffel, &

Verdonck, 2017).

Though the MCD and its variants are standard techniques to identify both

robust structures and outliers, there is one substantial gap: MCD approaches

generally work only for data assumed to be continuous. The lack of a non-25

quantitative MCD is problematic because many multivariate data sets are

inherently non-quantitative (e.g., categorical or ordinal) such as clinical ratings

scales, questionnaires, and genetics. So how can we apply MCD approaches to

non-quantitative data? The major barrier to apply the MCD on non-quantitative

data is the lack of a standard Mahalanobis distance (MD) estimate for non-30

quantitative data.

Goodall (1966) noted that there are generally two issues with the application

of standard computations and rules of MDs to non-quantitative data: (1) “If

[. . . ] quantitative and binary attributes are included in the same index, these

procedures will generally give the latter excessive weight.” (p. 883), and (2)35

“indices appropriate to quantitative [data have] been applied to ordered, non-

quantitative attributes [. . . ] by arbitrarily assigning metric values to their

different ordered states.” (p. 883). Clearly, we do not want categorical data to

provide undue influence on MD estimates, nor should we apply arbitrary metric

values to categorical or ordinal data (Bürkner & Vuorre, 2018). While there40
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are many Mahalanobis-like distances and alternative measures of similarity for

non-quantitative data (Bar-hen & Daudin, 1995; Bedrick, Lapidus, & Powell,

2000; Boriah, Chandola, & Kumar, 2008; Leon & Carrière, 2005; McCane &

Albert, 2008) many still have the drawbacks noted by Goodall (1966).

Therefore, if we want to develop a MCD algorithm for non-quantitative data,45

we must first define a MD that neither imposes undue influence nor arbitrarily

assigns values. In our work here we first show that the MCD can be generalized

to categorical data by defining MD under the assumptions of χ2 (i.e., indepen-

dence) metrics through Correspondence Analysis (CA), which is a singular value

decomposition (SVD)-based technique. We then show how our MCD approach50

generalizes to almost any data type including mixed types of variables (e.g.,

categorical, ordinal, and/or continuous).

Our paper is outlined as follows. In Notation and software we provide the notation

set used in this paper and the software used for this paper. In Determinant and

Mahalanobis distances via the SVD we first show how the SVD provides the two55

key requirements for the MCD algorithm: the determinant of a covariance matrix

and MDs. Then, we show how these properties of the SVD generalize in order to

compute MDs for categorical data through CA. In MCD algorithm for categorical

data we then show how we only require PCA to perform the standard MCD

technique but that a categorical version of the MCD requires a specific form of CA60

(via generalized CA, specifically “subset” CA) in order to achieve the MCD for

categorical data. Next in Applications and Extensions we use a toy (simulated)

genetics data from the supplemental material of Beaton, Dunlop, and Abdi

(2016) in order to formalize a categorical version of the MCD. Following that,

we illustrate our newly defined MCD to identify robust structures and outliers65

on several real data sets from the Ontario Neurodegenerative Disease Research

Initiative (ONDRI) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI),

including particular recoding schemes that allow for the use of other data types

such as ordinal or continuous via our categorical MCD, and thus our approach

is a generalized MCD (GMCD) to any data type or even mixed data types (i.e.,70
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a matrix of categorical, ordinal, and continuous variables). Finally we discuss

the technique with respect to the results, as well as provide concluding remarks

and future directions for a generalized MCD in Discussion.

Software and notation

We used R (Version 3.5.1; R Core Team, 2016) and the R-packages ExPosition75

(Version 2.8.23; Beaton, Fatt, & Abdi, 2014), MASS (Version 7.3.50; Venables

& Ripley, 2002), and papaja (Version 0.1.0.9842; Aust & Barth, 2018) for all

our analyses and to write the manuscript itself (in RMarkdown with papaja).

We make our software, code, and some examples of the GMCD available via

the Outliers and Robust Structures (OuRS) package at https://github.com/80

derekbeaton/ours.

Bold uppercase letters denote matrices (e.g., X), bold lowercase letters denote

vectors (e.g., x), and italic lowercase letters denote specific elements (e.g., x).

Upper case italic letters denote cardinality, size, or length (e.g., I) where a

lower case italic denotes a specific index (e.g., i). A generic element of X would85

be denoted as xi,j . Common letters of varying type faces for example X, x,

xi,j come from the same data struture. Vectors are assumed to be column

vectors unless otherwise specified. Two matrices side-by-side denotes standard

matrix multiplication (e.g., XY), where d denotes element-wise (Hadamard)

multiplication. The matrix I denotes the identity matrix. Superscript T denotes90

the transpose operation, superscript �1 denotes standard matrix inversion, and

superscript � denotes the Moore-Penrose pseudo-inverse. Note that for the

generalized inverse: XX�X � X, pX�q� � X, and pXT q� � pX�qT . The

diagonal operation, diagtu, when given a vector will transform it into a diagonal

matrix, or when given a matrix, will extract the diagonal elements as a vector.95

We denote t.u as the floor function. Finally, we reserve some letters to have very

specific meanings: (1) F denotes component (sometimes called factor) scores

where, for example, FI denotes the component scores associated with the I
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items, (2) O and E mean “observed” and “expected”, respectively, as used in

standard Pearson’s X2 analyses, where for example OX denotes the “observed100

matrix derived from X”, and (3) blackboard bold letters mean some a priori or

known values, for example EX would reflect some previously known expected

values associated with X but not necessarily derived from X. Furthermore, when

we use a previously defined element as a subscript, for example ZX, it denotes

that the Z of ZX was derived from the element in its subscript, for example ZX105

is a centered and/or normalized version of X.

Determinant and Mahalanobis distances via the SVD

Overview of MCD algorithm

Say we have a matrix X with I rows and J columns where J   I and we assume

that X is full rank on the columns. The MCD requires an initialization of subset110

of size H which is a random subsample from X where tpI � J � 1q{2u ¤ H ¤ I.

In general, the MCD algorithm can be described as:

1. From XH compute the column-wise row vector mean as µH and compute

the covariance as SH � pXT
HXHq�pH �1q�1 where XH has been centered

(i.e., subtract the column-wise mean).115

2. Compute the determinant of SH .

3. Compute the squared MD for each observation in X as mi � pxi �
µHqS�1

H pxi � µHqT .
4. Set XH as the subset of H observations with the smallest MDs computed

from Step 3.120

The size of H is controlled by α to determine the subsample size; α belongs

to the interval between .5 and 1. These steps are repeated until we find a

minimum determinant either through optimal search or limited to a given

number of iterations. We denote the H subset with the minimum determinant
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as Ω. For the Ω subset, we can obtain robust mean vector µΩ, robust covariance125

SΩ � pXT
ΩXΩq�pΩ�1q�1, and a set of robust square MDs for each i observation

from X as mi � pxi �µΩqS�1
Ω pxi �µΩqT . The two most important features for

MCD algorithms are: (1) the determinant of the subsample covariance matrix,

which helps identify the smallest scatter of data and (2) the squared MDs for

all observations derived from the subsample covariance matrix, which helps us130

identify outliers and aids in the search for the minimum determinant.

Both the determinant of a matrix and the squared MDs for observations can

be computed from the eigen- or singular value decompositions (SVD): (1) the

determinant is the product of the eigenvalues; but because eigenvalues could

be very large or small (in CA all eigenvalues are ¤ 1), it is safer to compute135

the determinant as the geometric mean of the eigenvalues (Boudt et al., 2017;

SenGupta, 1987) and (2) squared MD can be computed as the sum of the squared

row elements of the singular vectors (Barkmeijer, Bouttier, & Van Gijzen, 1998;

Brereton, 2015; Stephenson, 1997), which we discuss in more detail in subsequent

sections.140

Mahalanobis distance for continuous data

Let X be a centered data matrix with I rows and J columns. Assume that

X is full rank on the columns where rank is J . First we define the sample

covariance matrix of X as S � pXT Xq � pI � 1q�1. Squared MD is defined

as m � pXS�1 d Xq1 where 1 is a conformable J � 1 vector of 1s and m is145

a I � 1 column vector (where mT is a row vector) of squared MDs. We can

reformulate squared MD in two ways. The first reformulation is M � XS�1XT

where m � diagtMu. If we relax the definition of squared MD to exclude the

degrees of freedom scaling factor I � 1, the second reformulation is:

M1 � XpXT Xq�1XT , (1)
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where m1 � m� pI � 1q�1. Henceforth when we refer to squared MD it is the150

definition we provide in Eq. (1), specifically, m1 � diagtXpXT Xq�1XT u.

Principal components analysis

Principal components analysis (PCA) is performed on a matrix X with I rows

and J columns. Say that X is column-wise centered (“covariance PCA”) or

column-wise scaled (e.g., z-scores or sums of squares equal to 1; “correlation155

PCA”). For the following formulation we assume only a column-wise centered X.

Again assume that X is full rank. We can perform the PCA of X through the

SVD as:

X � U∆VT where: (2)

1. U and V are orthonormal left and right singular vectors of sizes I � J and

J � J , respectively with UT U � I � VT V and UT � U� and VT � V�.160

2. ∆ is the J � J diagonal matrix of singular values and Λ � ∆2 which is a

diagonal matrix of eigenvalues (squared singular values).

In PCA there exist two sets of component scores, one set for the rows and one

set for the columns defined as FI � U∆ and FJ � V∆, respectively. We can

define row and column scores through projection (or rotation) as:165

FI � U∆ � U∆VT V � XV

FJ � V∆ � V∆UT U � XT U.
(3)

In the regression and PCA literatures there exists an influence measure called

“leverage” which is bounded between 0 and 1 (Wold, Esbensen, & Geladi,

1987). Leverage is extracted from an I � I matrix called a “hat matrix” in

the regression literature and is more generally called an “orthogonal projection

matrix” in the multivariate literature (Yanai, Takeuchi, & Takane, 2011). The170
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hat or projection matrix is defined generally as XpXT Xq�1XT where leverage

is defined as diagtXpXT Xq�1XT u. This definition of leverage is equivalent to

our definition of a squared MD in Eq. (1).

With respect to PCA there are two types of leverage: one for the columns (typi-

cally variables) and one for the rows (typically observations) of a matrix. Here175

we only discuss leverage for the rows (observations). Both Wold et al. (1987) and

Mejia, Nebel, Eloyan, Caffo, and Lindquist (2017) described leverage for the ob-

servations (rows) as based on the component scores FI as GI � FIpFT
I FIq�1FT

I

where each row item’s leverage is an element in gI � diagtGIu. If we ex-

pand and substitute U∆ for FI , we see that GI � U∆p∆UT U∆q�1∆UT �180

U∆Λ�1∆UT � UUT , thus gI � diagtUUT u. The connection between lever-

age and squared MD can also be shown through the SVD (cf. Eq. (2)):

M1 � XpXT Xq�1XT �
U∆VT pV∆UT U∆VT q�1V∆UT �

U∆VT pVΛVT q�1V∆UT �
U∆VT VΛ�1VT V∆UT �

U∆Λ�1∆UT �
UUT � GI ,

(4)

where VT � V�1 then pVΛVT q�1 � VΛ�1VT and thus m1 �
diagtXpXT Xq�1XT u � diagtUUT u � gI . The relationship established

in Eq. (4) is critical to our formulation of MD for categorical data and thus a185

generalized MCD.

Representation of categorical data

Say we have an I � D matrix called D, as in Table 1a, where the rows are

observations and the columns are categorical variables typically assumed to be

unordered, thus each cell contains the nominal level of each variable. These190
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data can be represented in complete disjunctive coding—as in Table 1b—where

each variable is represented by a vector of length Nd, where Nd is the number of

levels or nominal values for the dth variable. The disjunctive form of D is an

I � J matrix X. The multivariate analysis akin to a PCA of categorical data,

via its complete disjunctive form, is usually performed with a technique called195

multiple correspondence analysis.

Multiple correspondence analysis

Multiple correspondence analysis (MCA) generalizes both: (1) PCA to categorical

data (with observations on the rows) and (2) standard correspondence analysis

(CA) from two-way contingency tables to multiple variables, that is: N-way200

contingency tables (Abdi & Valentin, 2007; Greenacre, 1984; Greenacre & Blasius,

2006; Lebart, Morineau, & Warwick, 1984; Saporta, 2006). MCA is a SVD-based

technique with specific preprocessing and requires constraints (weights) for the

rows and columns in order to decompose a matrix under the assumption of

independence (i.e., χ2). The general premise of Pearson’s X2 is to estimate how205

far observed values deviate from expected values. To perform MCA, we first

compute the row and column weights:

r � p1T X1q�1 �X1 and c � p1T X1q�1 �XT 1, (5)

where r and c are the row and column marginal sums, respectively, divided by

the total sum. In the case of purely disjunctive data, each value in r is identical

as each row contains the same number of 1s (see Table 1b): Each element in r210

is simply the total number of columns in D divided by the sum of all elements

of X. Similarly, c contains the column sums of X divided by the total sum.

Next, just as in Pearson’s X2 analyses, we compute observed (OX) and expected

(EX) matrices of X as OX � p1T X1q�1 �X and EX � rcT , respectively, and

deviations computed as ZX � OX�EX. MCA is performed with the generalized215
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Table 1: Example categorical and disjunctive data. Hypothetical example of

categorical data. (a) shows two variables Variable 1 and Variable 2 with 3 and 2

levels respectively. (b) shows the disjunctive code for these data. Note that one

observation has missing data (NA). Missing data can be imputed as barycentric

(which is the mean of the levels) or any set of values that sum to one.

(a) Categorical representation of two

variables.

Var 1 Var 2

Subj.1 B YES

Subj.2 A YES

. . . . . . . . .

Subj.I -1 NA NO

Subj.I C YES

(b) Disjunctive representation of two variables.

Var. 1 Var. 2

A B C YES NO

Subj.1 0 1 0 1 0

Subj.2 1 0 0 1 0

. . . . . . . . . . . . . . . . . .

Subj.I -1 .25 .5 .25 0 1

Subj.I 0 0 1 1 0
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SVD (GSVD) of ZX:

ZX � P∆QT ,where

PT WIP � I � QT WJQ,
(6)

and where WI � diagtru�1 and WJ � diagtcu�1. We obtain the results of the

GSVD of ZX through the SVD of rZX � W
1
2
I ZXW

1
2
J � U∆VT as in Eq. (2)

thus UT U � I � VT V, UT � U�, and VT � V�. We can see the relationship

between ZX and rZX via substitution:220

ZX � W� 1
2

I
rZXW� 1

2
J �

W� 1
2

I U∆VT W� 1
2

J �
pW� 1

2
I Uq∆pVT W� 1

2
J q �

pW� 1
2

I Uq∆pW� 1
2

J VqT �
P∆QT .

(7)

The generalized singular vectors are computed as P � W� 1
2

I U and Q � W� 1
2

J V.

For simplicity, we will henceforth refer to the GSVD where needed in triplet

notation as GSVDpWI ,ZX,WJq with row constraints (e.g., WI), data (e.g.,

ZX), and column constraints (e.g., WJ). To note, we have taken liberty with

the standard GSVD triplet notation (see Holmes, 2008) and present the triplet225

more akin to its multiplication steps.

We compute MCA component scores as FI � WIP∆ and FJ � WJQ∆ or also

compute MCA component scores through projections (or rotations; cf. Eq. (3)).

To compute MCA component scores through projections, it is easier to work

with what are called “profile” matrices where ΦI � WIOX are the row profiles230

and ΦJ � WJOT
X are the column profiles. For profile matrices, each element in

X divided by its respective row or column sum (for the row and column profile
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matrices, respectively). MCA row component scores via projection are:

FI � ΦIFJ∆�1 �
ΦIWJQ∆∆�1 �

ΦIWJQI �
ΦIWJQ �

ΦIWJW� 1
2

J V �
ΦIW

1
2
J V �

WIOXW
1
2
J V,

(8)

where the column component scores are computed as FJ � ΦJW
1
2
I U �

WJOT
XW

1
2
I U.235

Mahalanobis distance for categorical data

In Principal Components Analysis we showed for continuous data the equivalence

between leverage and squared MD (via the hat matrix). Both leverage and

squared MD are obtained as the diagonal of the crossproduct of left singular

vectors (i.e., diagtUUT u). Because leverage via the singular vectors is squared240

MD for continuous data, we use the same premise to define a squared MD for

categorical data. In the case of continuous data we can define squared MD for

continuous data via PCA and similarly we define squared MD for categorical

data via MCA.

As noted in Eqs. (6) and (7) MCA is performed as GSVDpWI ,ZX,WJq wherein245

we apply the SVD as rZX � U∆VT . Recall the relationship between rZX and

ZX: rZX � W
1
2
I ZXW

1
2
J ðñ ZX � W� 1

2
I
rZXW� 1

2
J where ZX � P∆QT (see Eq.

(7)). In the case of MCA, rZX would be the analog of X in PCA (see Eq. (2)).

Thus in MCA UUT � rZXprZT
X
rZXq�rZT

X. Note that here we replace the standard

inversion with the pseudo-inverse because prZT
X
rZXq is a “group” matrix, where all250
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columns that represent a single variable are collinear. We have shown previously

for continuous data via PCA that leverage is squared MD (cf. Eq. 4), and

applying the same principles to categorical data via MCA, we see that

M1
ZX � ZXpZT

XZXq�ZT
X �

P∆QT tQ∆PT P∆QT u�Q∆PT �
P∆QT tQ∆pUW� 1

2
I qT pW� 1

2
I Uq∆QT u�Q∆PT �

P∆QT tQ∆W� 1
2

I UT UW� 1
2

I ∆QT u�Q∆PT �
P∆QT tQ∆W� 1

2
I W� 1

2
I ∆QT u�Q∆PT �

P∆QT pQ�qT ∆�W
1
2
I W

1
2
I ∆�Q�Q∆PT �

P∆∆�W
1
2
I W

1
2
I ∆�∆PT �

PW
1
2
I W

1
2
I PT �

pW� 1
2

I UqW 1
2
I W

1
2
I pW

� 1
2

I UqT �
W� 1

2
I UW

1
2
I W

1
2
I UT W� 1

2
I �

UUT .

(9)

Note that pW� 1
2

I q� � W
1
2
I and that W� 1

2
I W

1
2
I � I. Thus we define squared

MD for categorical data as M1 � rZXprZT
X
rZXq�rZT

X � ZXpZT
XZXq�ZT

X � UUT
255

à la Eqs. (1) and (4). Finally and most importantly, because of this definition

there is no ambiguity nor arbitrary decisions in the definition of squared MD for

categorical data (à la, Goodall, 1966); squared MD is defined by the singular

vectors for the observations (i.e., U).

MCD algorithm for categorical data260

Recall that the MCD algorithm requires two essential parts: the determinant

(via the eigenvalues) and squared MD. However, one key feature of the MCD

algorithm is that it requires that we estimate squared MDs on sub- or out-of
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sample observations. The squared MDs for excluded samples are computed

with respect to the mean and covariance of a sub-sample. We show how to do265

so via the SVD: first with continuous data in PCA to establish squared MD

for excluded samples, and next how to do so with categorical data via MCA.

However, categorical data pose a unique problem: nominal levels of variables (i.e.,

categories) are not guaranteed to exist in particular sub-samples, so we require a

particular solution to obtain accurate distances—especially for squared MD and270

robust squared MD—of excluded or “supplementary” observations. In the CA

and PCA literatures “supplementary” data are excluded or new observations

we want to project onto existing components, where components were derived

from an “active” set of data. For the MCD, we will consider “active” data those

observations used to compute the mean and covariance matrix. The out of275

sample data will be referred to as supplementary.

Active and supplementary Mahalanobis for continuous data

In order to establish squared MD for sub- and out-of sample data, we must

revisit squared MD through projections à la Eq. (3). We show how to retrieve

the singular vectors through the projection of data onto the space spanned by280

the components because only U is necessary to compute the squared MD for

quantitative data via PCA: XV∆�1 � U∆VT V∆�1 � U∆∆�1 � U. Let

us refer to a K � J matrix Y as a supplementary set of observations with the

same variables (columns) as X. For Y, we would obtain the squared MDs as

M1
Y � YpXT Xq�1YT where the columns of Y are preprocessed with the same285

center and scaling as the columns in X. In PCA we can project supplementary

data onto previously defined components. We can use the same formula as in

Eq. (3) to compute supplementary component scores for Y:

FK � YFJ∆�1 � YV∆∆�1 � YVI � YV. (10)

We can compute the squared MDs for Y with only V and ∆ from the SVD
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of X (cf. Eq. (2))and through projections (cf. Eq. (1)) instead of M1
Y �290

YpXT Xq�1YT where m1
Y � diagtM1u, where the squared MDs of Y are

m1
Y � diagtFKΛ�1FT

Ku because

M1
Y � YpXT Xq�1YT �

YpV∆UT U∆VT q�1YT �
YpV∆I∆VT q�1YT �

YpVΛVT q�1YT �
YpVΛ�1VT qYT �

YVΛ�1VT YT �
FKΛ�1FT

K .

(11)

Mahalanobis distances via the SVD for sub-samples.

Let us consider that the K � J matrix Y �
�
�X

Z

�
�, where X is the same I � J

data set as before and Z is a new data set of size pI �K q � J ; that is Y295

is comprised of both active and supplementary data where Y is (1) centered

by the column mean of X and (2) scaled by the same scaling factor of X.

The hat (or projection) matrix of YX � X is identical to that of X where

YXpXT Xq�1YT
X � XpXT Xq�1XT � UUT , and the hat (or projection) matrix

of YZ � Z is computed as YZpXT Xq�1YT
Z � ZpXT Xq�1ZT and thus we can300

compute the squared MDs for active and supplementary sub-samples through

the SVD and projections as m1
Y � diag

$&
%
�
�UUT 0

0 ZVΛ�1VT ZT

�
�
,.
-.

Active and supplementary Mahalanobis distances for categorical data

We can compute Mahalanobis distances for active data through projections for

categorical data. We can obtain the component scores for the active sub-sample305

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2019. ; https://doi.org/10.1101/333005doi: bioRxiv preprint 

https://doi.org/10.1101/333005
http://creativecommons.org/licenses/by-nc-nd/4.0/


in MCA through Eq. (8) where FI � ΦIW
1
2
J V � WIOXW

1
2
J V � WIP∆ �

WIW� 1
2

I U∆ � W
1
2
I U∆. To obtain the squared MD through projections:

U � W� 1
2

I W
1
2
I U∆∆�1 � IUI and

U � W� 1
2

I WIOXW
1
2
J V∆�1 � W

1
2
I OXW

1
2
J V∆�1.

(12)

The projection described in Eq. (12) works because of the relationship between

GSVDpWI ,ZX,WJq and GSVDpI, pW 1
2
I OXW

1
2
J q, Iq. The standard GSVD for

MCA, GSVDpWI ,ZX,WJq, is equivalent to GSVDpI, pW 1
2
I OXW

1
2
J q, Iq with one310

slight exception: the first GSVD expression is already centered whereas the second

GSVD expression is not, so the first singular value in GSVDpI, pW 1
2
I OXW

1
2
J q, Iq

is 1 and the first right and left singular vectors are trivial (equal to the marginal

probabilities via r and c). Because V is computed with the centered data, the

projection of W
1
2
I OXW

1
2
J onto V will remove the mean. For more information on315

the relationship between GSVDpWI ,ZX,WJq and GSVDpI, pW 1
2
I OXW

1
2
J q, Iq

see Lebart et al. (1984) and Greenacre (1984).

While Eq. (8) and Eq. (12) suggest ways to compute squared MD for sup-

plementary (a.k.a. sub- or out-of sample) categorical data, there is a major

barrier that prevents the computation of correct squared MD for supplementary320

categorical data: if complete disjunctive coding were applied to each subsample,

then subsamples will not necessarily have the same columns (e.g., rare nominal

levels may not exist in some subsamples). Because these columns are not in

the active data, but will appear in the supplementary data, we cannot compute

out-of-sample squared MDs with what we have established so far. To do so, we325

require a specific form of MCA called subset MCA (Greenacre, 2017; Greenacre

& Pardo, 2006), which is a specific case of GCA (Escofier, 1983, 1984).

Escofier’s Generalized Correspondence Analysis and Subset MCA for the MCD.

Hiding in the broader CA literature is “generalized correspondence analysis”

(Escofier, 1983, 1984)—as referred to by Grassi and Visentin (1994). Escofier330
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established the idea of GCA as: “(DATA - MODEL) / MARGINS”. GCA has

many uses well beyond the standard applications in CA and MCA, including

those for missing data and assumptions that deviate from the typical assumptions

of CA (e.g., quasi-CA with “quasi-independence” and “quasi-margins”; Leeuw &

Heijden, 1988; Van der Heijden, De Falguerolles, & Leeuw, 1989).335

With a disjunctive data set X, the generalized MCA of X would be defined as

follows. As noted in Grassi and Visentin (1994) we can characterize each cell of

the matrix rZX as derived from the generalized model of CA with the generic

element

rzXij �
poXij

� eijq?
wIiiwJjj

.

The model (E) and the margins (WI and WJ), could be defined in almost any

way and it is not required to compute the expected values or margins from the

data. We can represent the generalized CA approach in a simpler form with the

GSVD where ZX � OX � E and GSVDpWI ,ZX,WJq (see Eqs. (6) and (7)). In

this generalized MCA, the expected values and weights can be derived from any340

prespecified models or data that conform to the rows and columns of the given

data.

GCA provides a way to maintain the row and column structure of the data

and to analyze only subsamples separately in order to make accurate squared

MD estimates. To do so, we need only a simple change applied to the generic345

element rzXij
for GCA. Let us refer to the active subsample with the subscript

H and the supplementary, or excluded, subsample as
�H . First we compute all

matrices required for MCA exactly as initially defined in Eqs. (6) and (7): OX,

EX, r and c. Let us frame OX, EX, r as constructed by the H and sH subsets

as: OX �
�
�OXH

OX
�H

�
�, EX �

�
�EXH

EX
�H

�
�, and r �

�
�rH

r
�H

�
�. To maintain the structure350

of the data and to be able to perform the necessary steps for MCD we require

the generalized expected matrix of E �
�
�EXH

OX
�H

�
�. That is, we replace part of the

expected matrix with part of our observed matrix. Thus our assumption is that
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the expected values are the observed and the deviation is 0. The GSVD notation

for this is: GSVDpWI ,ZX,WJq where ZX �
�
�ZXH

0

�
� �

�
�OXH

OX
�H

�
��

�
�EXH

OX
�H

�
�.355

Any subsample ofH and sH guarantee that we maintain the same shape (rows and

columns) as X when we use E �
�
�EXH

OX
�H

�
�. Let us expand GSVDpWI ,ZX,WJq

where ZX � OX � E. Like in Eqs. (6) and (7) we have

�
�ZXH

0

�
� � ZX �

P∆QT �
�
�PH

0

�
�∆QT , where PT WIP � I � QT WJQ and PT WIP �

�
�PH

0

�
�

T

WI

�
�PH

0

�
� � I. Furthermore, recall that rZX � W

1
2
I ZXW

1
2
J and thus360

W
1
2
I ZXW

1
2
J � W

1
2
I

�
�ZXH

0

�
�W

1
2
J �

�
�rZXH

0

�
� � rZX. Just as in Eq. (7) we would

apply the SVD as:

rZX � U∆VT �
�
�UH

0

�
�∆VT , (13)

where UT U � I � VT V and UT U �
�
�UH

0

�
�

T �
�UH

0

�
� � UT

HUH � I. We can

simplify this approach through a specific application of GCA called “subset

MCA” (Greenacre, 2017; Greenacre & Pardo, 2006).365

As seen in Eq. (13), the expected values of the excluded subset sH are 0 so that

we only analyze the active subset H. This case of GCA reduces to subset MCA.

For subset MCA, when we compute the SVD of rZ we only require all of the

observations that are not 0. To compute subset MCA for use in the MCD we

use the matrices defined in Eqs. (6) and (7). Specifically rZX � W
1
2
I ZXW

1
2
J ðñ370

ZX � W� 1
2

I
rZXW� 1

2
J . In subset MCA we require rZXH

which is the H subsample
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of rZX and perform the SVD as

rZXH
� UH∆HVT

H , (14)

which leaves us with the complement sH where rZX
�H
� U

�H∆
�HVT

�H
. In the CA

literature the sum of the eigenvalues (i.e., diagtΛu) is called “inertia” and is

denoted as I. In effect, subset MCA partitions the full MCA space into two375

additive subspaces: I � IH � I
�H .

We can compute the determinant for H subsamples via the geometric mean of

the eigenvalues (ΛH � ∆2
H) and we can compute robust squared MDs in subset

MCA through the row profiles. Recall that we can compute component scores

and squared MDs from the full MCA via projection as seen in Eqs. (8) and (12).380

We can also compute component scores for the full I set from the subset MCA

as

�
�FH

pF
�H

�
� � ΦIFJH

∆�1
H (15)

which allows us to compute U � W� 1
2

I ΦIFJΛ�1 because

W� 1
2

I ΦIFJΛ�1 �
W� 1

2
I ΦIWJQ∆Λ�1 �

W� 1
2

I ΦIWJW� 1
2

J V∆Λ�1 �
W� 1

2
I ΦIWJW� 1

2
J V∆�1 �

W� 1
2

I WIOXWJW� 1
2

J V∆�1 �
W

1
2
I OXW

1
2
J V∆�1.

We can compute supplementary squared MDs for the full set of observations
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conditional to the subset MCA results as:

�
�UH

pU
�H

�
� � W� 1

2
I ΦIFJH

Λ�1
H (16)

where the UH in Eq. (16) is exactly the UH in Eqs. (13) and (14). Alternatively385

we can compute Eq. (16) from (15) as

�
�UH

pU
�H

�
� � W� 1

2
I

�
�FH

pF
�H

�
�∆�1. Finally, the

robust squared MDs are computed as diagt
�
�UH

pU
�H

�
�
�
�UH

pU
�H

�
�

T

u.

MCD algorithm for categorical data

Here we outline the core steps required for a MCD via subset MCA. First the

MCD requires an initial random subsample of size H where tpI � J � 1q{2u ¤390

H ¤ I. The H subset of rZX is denoted as rZXH
.

1. Apply the SVD: rZXH
� UH∆HVT

H

2. Compute the determinant of rZXH
as the geometric mean of ΛH

3. Compute the squared MDs for the full I sample from

�
�UH

pU
�H

�
� �

W� 1
2

I ΦIFJH
Λ�1

H395

4. Set rZXH
as the subset of H observations with the smallest squared MDs

computed from Step 3.

These steps are repeated until a we find a minimum determinant (Step 2) either

through optimal search or limited to a given number of iterations. Our approach

employs steps like the Fast-MCD algorithm (Rousseeuw & Van Driessen, 1999);400

See also Hubert and Debruyne (2010) for overview. Step 3 helps find a minimum

determinant faster because the subset of H observations with the smallest

squared MDs are likely to produce a smaller or equal determinant in subsequent

iterations.
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A note on χ2-distances405

It is important to note that a more commonly used distance exists in the CA and

MCA literature: the χ2-distance (Guttman, 1941). Arguably the χ2-distance

is the most well understood and defined metric for non-quantitative data and

typically used for contingency and categorical data by way of CA and MCA

(Greenacre, 2017; Greenacre & Hastie, 1987). Greenacre (2017) and Greenacre410

and Hastie (1987) say that the χ2-distance is a type of Mahalanobis distance.

While the χ2-distance and Mahalanobis distance are both specific types of

generalized Euclidean distances, we believe it is important to distinguish the

two: we compute the χ2-distances from the component scores and we compute

the MD from the singular vectors; these two distances are not equivalent in CA.415

The χ2-distances for each observation from CA come from the component

scores: diagtFIFT
I u (cf. Eq. (15); see also Benzécri, 1973 and Escofier,

1965). The χ2-distances remain unchanged between subset and full MCA:

diag

$'&
'%
�
�FH

pF
�H

�
�

T �
�FH

pF
�H

�
�
,/.
/- � diagtFT

I FIu. Because the χ2-distances do not

change they cannot be used in the MCD algorithm to identify optimal subsets.420

Therefore—as with the typical MCD algorithm—the GMCD relies on the MDs

defined from the singular vectors for the observations: diagtUT Uu.

Applications and Extensions

Now that we have established a MCD algorithm for categorical data we show

examples of its use including how our approach generalizes the MCD to allow425

for virtually any data type. Because our approach is based on CA, we can

capitalize on particular properties of CA and X2 to allow for the analyses of

non-categorical data such as ordinal, continuous, or mixed-data. We show how

this is possible through a data recoding technique called data “doubling” (a.k.a.

fuzzy coding, bipolar coding, or “Escofier transform”).430
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In this section we illustrate our generalized MCD with three data sets: (1) a small

toy data set, (2) one from the Ontario Neurodegernative Disease Research Initia-

tive (ONDRI), and (3) one from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). First we apply our approach to the toy genetic data—single nucleotide

polymorphisms (SNPs)—which were simulated based on real genetic data from435

the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For a description of the

data see supplemental section from Beaton et al. (2016). Next we use ONDRI

data, specifically the brief survey of autobiographical memory (BSAM; adapted

from Palombo, Williams, Abdi, & Levine, 2013). The BSAM data are comprised

of five ordinal responses to all questions, where some responses are relatively440

rare, and so we apply our approach to three versions of the BSAM: (1) where

each question is treated as a categorical variable, (2) categorical but recoded

to combine rare responses with their next comparable response (e.g., combine

rare 5s with 4s), and (3) an approach that preserves the ordinality of the data.

We compare and contrast the results from all three applications to the BSAM445

specifically to highlight how GMCD results change. Finally, we use a mixture

of data types from ADNI data to demonstrate how our technique applies to

data sets with mixed variables across multiple data modalities. The ADNI data

include categorical data (SNPs), ordinal data (clinical dementia rating), and

continuous data (volumetric estimates from brain regions). We explain each450

data set and applications in their own sections.

Toy data

The toy data are comprised of SNPs, which are categorical variables (toy data

available as part of the software https://github.com/derekbeaton/ours). Each

SNP contains three possible genotypic categories: “AA”, “Aa”, and “aa” which455

are, respectively, the major homozygote, the heterozygote, and the minor ho-

mozygote. Both “A” and “a” represent alleles where “A” is the major (more

frequent) allele and “a” is the minor allele. Each genotype is a level (category)

within a SNP variable.
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The toy data are of size I � 60 � C � 9 (observations by variables). These data460

were transformed into a disjunctive coding (as in Table 1) that are of size I �
60 � J � 25 (observations by columns); note that some SNPs have 3 genotypes

present where as others only have 2 genotypes present. Figure 1 shows GMCD

applied to the toy data set over the course of 1, 000 iterations. Figure 1a shows

the search for a minimum determinant where the intial determinant is quite high465

by comparison to later determinants and the GMCD stops (at 1, 000 iterations)

on a much smaller determinant. Figure 1b shows the observed squared MD

(horizontal) and χ2-distances (vertical). The observed distances alone (Fig, 1b)

suggest the presence of possible outliers. We have denoted two individuals with

“X” circumscribed by a circle. These two individuals are the only two with “aa”470

for one particular SNP. In Figure 1c we show the observed distances again but

now individuals in red are those within the H subsample and individuals in

blue are those excluded from the “best” subsample (i.e., the subsample with the

smallest determinant at convergence). Finally, we show the robust squared MD,

which helps reveal “masking” effects: Figure 1d shows the observed vs. robust475

squared MD. Figure 1e is the same as Figure 1d except without the two most

extreme individuals to provide a better view of the observed vs. robust squared

MDs.

ONDRI Data

The Ontario Neurodegenerative Disease Research Initiative (ONDRI; http://480

ondri.ca/) is a longitudinal, multi-site, “deep-phenotyping” study across multiple

neurodegenerative disease cohorts (Farhan et al., 2017): Alzheimer’s disease (AD)

and amnestic mild cognitive impairment (MCI), amyotrophic lateral sclerosis

(ALS), frontotemporal lobar degeneration (FTD), Parkinson’s disease (PD), and

vascular cognitive impairment (VCI). Currently, the ONDRI study is still in the485

data collection, curation, and quality control stages. Thus these are preliminary

data used strictly for illustrative purposes. As part of the quality control

process, various subsets of data are subjected to outlier analyses. However,
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Figure 1: Application of generalized MCD to categorical data. We illustrate the

generalized MCD here first on a small data set of single nucleotide polymorphisms

(SNPs). (a) shows the search for the determinant. (b) shows the observed

distances (via standard multiple correspondence analysis). (c) shows the observed

distances but now with the H subset colored in red. (d) shows the observed vs.

robust squared Mahalanobis distances (MDs). (e) shows the same as (d) but

excludes the two extreme individuals (which were the only two to have ’aa’ for

one particular SNP. 25
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one of the major challenges is that many of the variables and instruments

are not quantitative and we therefore could not use existing techniques such490

as the MCD, robust PCA (Candès, Li, Ma, & Wright, 2011) or principal

orthogonal complement threshold (Fan, Liao, & Mincheva, 2013). We illustrate

our generalized MCD on the BSAM. We show that the GMCD of the BSAM on

N � 300 particpants from two cohorts (VCI n � 161 and PD n � 139). This

illustration compares and contrasts three ways of coding the data.495

The BSAM is a short version of the survey of autobiographical memory (SAM)

comprised of 10 questions where each question has five possible responses: two

responses indicate disagreement with a question (“strongly disagree”, “disagree

somewhat”), two responses indicate agreement with a question (“agree some-

what”, “strongly agree”) and one neutral respone (“neither”). We analyze the500

BSAM in three ways so that we can compare and contrast the results of each.

In our first example, we treat the data as categorical and apply our technique

as previously derived and illustrated (see Figure 1). As noted in Figure 1 very

rare responses can greatly exaggerate the squared MD, robust squared MD, and

even χ2-distances. Furthermore, in many practical applications rare responses505

would likely be recoded so that they are combined with similar responses. For

example if a response of “strongly agree” occurred in less than approximately 5%

of responses for a particular question, it would be recoded with “agree somewhat”

to make a single “agreement” response. Therefore for our second example we

recode rare (Æ 5%) responses where we combine a rare response (e.g., “strongly510

agree”) with its most similar response (e.g., “agree”). We continue to treat

the data as categorical and apply our technique again. Finally, because the

responses could be treated as ordinal data we use a specific recoding scheme

that has many names such as “bipolar coding” (Greenacre, 1984), fuzzy coding,

or “doubling” (Greenacre, 2014; Lebart et al., 1984). We refer to this coding515

henceforth as “fuzzy coding” (described below). We compare and contrast the

results of each analyses with respect to which observations were identified as

the robust subsample across each technique and several α levels (i.e., α � .5,
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α � .75, α � .9). Finally, we also illustrate how to use the bootstrap to define

empirical thresholds for outliers given the robust squared MDs.520

With fuzzy coding each original variable was represented by two columns where

the “�” column is the observed value minus the minimum of the variable for that

question, and the “�” column is the maximum of the variable for that question

minus the observed value. For example, the BSAM has 5 possible levels (1, 2,

3, 4, 5) so each “�” column will use 1 as the minimum and each “�” column525

will use 5 as the maximum, even if there are no observed values of 1 or 5 in the

data themselves. The data are then normed so that each pair of columns (i.e., �
and �) sum to 1. Because the data behave like disjunctive data, we can apply

MCA and thus our GMCD approach also works to find a robust subset and help

identify outliers. The two columns are then normalized so that the row sums530

equal the total number of original variables. Fuzzy coding is illustrated in Table

2. Fuzzy coding transforms variables into “pseudo-disjunctive” in that, from the

perspective of CA and MCA, the data tables behave like disjuntive tables (see

Table 1): the sums of the rows equal to the number of (original) variables, the

sum of variables (each pair of columns) equal the number of rows, and the sum535

of the table is equal to the number of rows � the number of (original) variables.

We refer to the original BSAM data as “as is”, the recoded for rare responses

version “recode”, and the ordinal version as “ordinal”. We applied the GMCD

to each with three alpha levels: α � .5, α � .75, α � .9 for a total of nine

applications. As in the Fast-MCD algorithm, α controls the proportion of540

samples to identify as the H subset. The size of H is computed as H �
tp2�HIq � I � p2� pI �HIq � αqu where HI � mod ppI � J � 1q, 2q (which
is the same subsample size computation as the rrcov (Todorov & Filzmoser,

2009) and robustbase (Maechler et al., 2018) packages in R via the h.alpha.n

function). Because each data set has a different number of columns (J) the same545

α will produce a different size H. Each application of the analysis was run for

1, 000 iterations for the GMCD algorithm.
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Table 2: Example of fuzzy coding. Example of data "doubling" via fuzzy for

ordinal data with the brief survey of autobiographical memory (BSAM).

(a) CDR ordinal example

Q1: Specific events Q2: Recall objects

OND01_TWH_1100 2 4

OND01_SBH_1200 4 4

... ... ...

OND01_HDH_5100 5 4

OND01_HDH_5201 4 5

(b) Doubling for ordinal data with normalization so each variable sums to 1

Q1� Q1� Q2� Q2�

OND01_TWH_1100 2�1
4 � 1

4
5�2

4 � 3
4

4�1
4 � 3

4
5�4

4 � 1
4

OND01_SBH_1200 4�1
4 � 3

4
5�4

4 � 1
4

4�1
4 � 3

4
5�4

4 � 1
4

... ... ... ... ...

OND01_HDH_5100 5�1
4 � 4

4
5�5

4 � 0
4

4�1
4 � 3

4
5�4

4 � 1
4

OND01_HDH_5201 4�1
4 � 3

4
5�4

4 � 1
4

5�1
4 � 4

4
5�5

4 � 0
4
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Figure 2 shows all nine applications of the generalized MCD applied to the

BSAM. To note in Figure 2 we show the MDs and robust MDs (not squared).

Part of the reason we show these is because as with the toy data in the previous550

section some observations excluded from the H subsample (denoted in blue)

have very high robust squared MDs by comparison to the H subsample (denoted

in red). Though these are the same data, we see interesting behaviors when we

treat the data differently. First, when α is low, we see a greater exaggeration of

outlying individuals with respect to the “inliers” and the H subset. However555

this behavior essentially disappears as α increases. Finally we also see that the

“ordinal” version of the data appears to behave quite differently from the other

versions as α increases. In general, the MD and robust MD estimation are highly

similar, with only a small gap between the H subsample and the observations

excluded from H. The robust MD estimates across techniques tends to vary560

as a consequence of both data representation (as is, recoded, ordinal) and α.

However the H subsamples across each of these are highly similar.

The overlap of the H subsample between all applications of the BSAM analyses

is shown in Table 3. When α is small there is more variability between the

different versions. As α increases the H subset becomes much more similar565

across all versions. However it is important to note that of all of these analyses,

the “as is” and the “ordinal” generally find the same observations as part of the

H subset, even though the data are represented in two completely different ways.

The mostly common subsamples between “as is” and ordinal analyses show that

both retain essentially the same information.570

Besides the identification of robust subsamples (and covariance structures), MCD

algorithms reveal “masking” effects and identify outliers. In some of our BSAM

examples in Figure 2 it is fairly easy to identify “inliers” and the extreme outliers

that were previously subject to the “masking” effects. For example, in the “as

is” data regardless of the α, it is clear that an outlier subset of individuals have575

unique response patterns that differ greatly from the rest of the sample.
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Figure 2: Generalized MCD applied to the brief survey of autobiographical

memory (BSAM) data from ONDRI. Left to right is the alpha level and top to

bottom is how the data were coded. All plots show observed vs. robust Maha-

laniobis distances (MD). Observations in red are the H subsample, observations

in blue are not in the H subsample. Axes are scaled to the same values within

each recoding to highlight the changes in robust MD.
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Table 3: Generalized MCD subsample sizes. A = As is, R = Recode, O = Ordinal. Only the lower

triangle and diagonal are shown. The diagonal here indicates the size of the H subset (out of N � 300).

The value in each cell is the number of overlapping subjects identified as the robust subsample for each

version of the brief survey on autobiographical memory (BSAM). Generally as the α increases, overlap

becomes more likely. As is and ordinal tend to overlap across all versions.

A.5 A.75 A.9 R.5 R.75 R.9 O.5 O.75 O.9

As Is .5 58.33%

As Is .75 54.33% 79.00%

As Is .9 58.00% 78.00% 91.67%

Recode .5 44.67% 49.00% 54.00% 57.00%

Recode .75 52.33% 63.33% 73.33% 56.00% 78.33%

Recode .9 57.33% 72.00% 84.00% 56.67% 78.00% 91.33%

Ordinal .5 40.00% 47.33% 52.00% 42.67% 46.00% 50.67% 53.33%

Ordinal .75 54.33% 69.00% 74.67% 51.00% 63.00% 70.00% 52.33% 76.67%

Ordinal .9 56.67% 76.33% 87.00% 55.33% 72.67% 82.67% 53.33% 76.67% 90.67%
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As previously described MCD algorithms aim to find the most robust H subsam-

ple wherein the scatter (covariance) is minimized. Sometimes, observations in

the H subsample have higher robust squared MDs than those outside of the H

subsample, like in the “as is” BSAM at α � .5. However other times, as in the580

ordinal BSAM at α � .9, there is no clear division between the H subsample and

the rest of the observations. Therefore to help identify inliers and outliers we

recommend using the bootstrap (Efron, 1982, 1992) to generate a distribution of

robust squared MDs. We refer to outliers here as those above some threshold,

and “inliers” as those individuals that are not identified as outliers.585

The bootstrap derived distribution of robust squared MDs can be used to identify

observations in the sample that exist inside or outside of particular thresholds.

The bootstrap procedure we used is as follows. First we bootstrapped the data

(in disjunctive or fuzzy format) to create a new BSAM data set of the same

size. Next we preprocessed the data just as in standard MCA and projected the590

preprocessed data onto the robust singular vectors to compute robust squared

MDs. We repeat this process many (e.g., 100) times. Each bootstrapped version

of the data generates a set of robust squared MDs. All of the robust squared

MDs across all bootstrapped sets are then used to create a distribution of robust

squared MDs. We use the distribution of bootstrapped robust squared MDs to595

identify any of the originally observed robust squared MDs that are outside of a

given threshold. For this example we used two thresholds: (1) a fixed threshold at

95% of the bootstrapped robust squared MDs distribution, and (2) proportional

to H subsample size for each analysis (as determined by α). In Figure 3 we

highlight individuals below both thresholds (red), between the thresholds (gold),600

and above the 95% threshold (blue). For the bootstrap procedure we refer to

“inliers” as those individuals that are always under both thresholds. We show

two types of outliers in this example: the less extreme outliers between the two

thresholds and the extreme outliers beyond the 95% threshold. We use both

outlier thresholds to highlight the behavior of the bootstrap procedure across605

the different applications of the BSAM analyses.

32

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2019. ; https://doi.org/10.1101/333005doi: bioRxiv preprint 

https://doi.org/10.1101/333005
http://creativecommons.org/licenses/by-nc-nd/4.0/


With the bootstrap procedure, especially in the α � .5 analyses, we can see

that the “inliers” constitute a more homogeneous set than those identified

as the H subsample (Fig. 3). This is in part because the MCD algorithm

identifies a subset with the minimum determinant (scatter) but not necessarily610

the most homogeneous H subsample. Furthermore the bootstrap procedure

helps better identify inliers and outliers when the robust MDs have a relatively

linear relationship the MDs like in the ordinal examples with α � .75 and

α � .9. Similar to the H subsample identification, when α is small there is

more variability between the different versions. In the fixed analyses (1) as α615

increases the inliers become much more similar across all versions, and (2) the

“as is” and the “ordinal” generally find the same observations as part of the

inliers, even though the data are represented in two completely different ways.

For the identification of inliers and outliers we strongly recommend using the

bootstrap procedure instead of just the H subsample (e.g., red individuals in620

Fig. 2) or, for example, quantiles of the robust squared MDs. The bootstrap

procedure provides a more stable assessment of individuals and their likelihood

of classification as “inlier” or “outlier”.

ADNI Data

Data used in the preparation of this article come from Phase 1 of the ADNI625

database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-private

funding partnership and includes public funding by the National Institute on

Aging, the National Institute of Biomedical Imaging and Bioengineering, and

the Food and Drug Administration. The primary goal of ADNI has been to

test a wide variety of measures to assess the progression of mild cognitive630

impairment and early Alzheimer’s disease. The ADNI project is the result of

efforts of many coinvestigators from a broad range of academic institutions and

private corporations. Michael W. Weiner (VA Medical Center, and University of

California-San Francisco) is the ADNI Principal Investigator. Subjects have been

recruited from over 50 sites across the United States and Canada (for up-to-date635
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Figure 3: Bootstrapping procedure applied the generalized MCD of the brief

survey of autobiographical memory (BSAM). All plots show observed vs. robust

Mahalanobis distances (MD). Observations in red are the bootstrap ’inliers’,

observations in blue are outside the bootstrap threshold, and observations in

gold are in between. Axes are scaled to the values within each plot to better

highlight the cutoffs via the bootstrap distributions.
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information, see www.adni-info.org).

The ADNI sample for use here was N � 613 across three diagnostic groups:

Alzheimer’s disease (AD) = 264, Mild cognitive impairment (MCI) = 166, and a

control group (CON) = 183. We used several data sets of different data types

from ADNI: single nucleotide polymorphisms (SNPs) as categorical data, the640

clinical dementia rating (CDR) as ordinal data, and volumetric estimates from

five brain regions as continuous data. Just as with ordinal data, continuous data

can also be transformed in a way where it behaves like disjunctive data. These

data can be acquired in ADNI via the genome-wide data and the ADNIMERGE R

package.645

We used SNPs from the ADNI cohort that were associated with APOE and

TOMM40 which are strong genetic contributions to AD (Roses et al., 2010). SNP

data were preprocessed for participant and SNP missingness (5%, i.e., required

95% completeness), and minor allele frequency   5%. Infrequent genotypes (e.g.,

  5%) were recoded; in this particular case all “aa” levels that were   5% were650

combined with “Aa” – essentially dichotomizing the presence and absence of “a”

(i.e., “AA” vs. presence of “a”; a.k.a. the dominant inheritance model). We were

thus left with 13 SNPs that spanned 35 columns: 4 of our SNPs were recoded to

combine “Aa” and “aa” (i.e., “AA” vs. “Aa+aa”) and the remaining 9 SNPs

each had three levels (i.e., “AA”, “Aa”, and “aa”).655

The CDR is a structured interview that has six domains: memory, orientation,

judgement, communication, home and hobbies, and self-care (Morris (1993);

see also http://alzheimer.wustl.edu/cdr/cdr.htm). After the interview ratings

are applied to each category with the following possible responses: 0 (normal),

0.5 (very mild), 1 (mild), 2 (moderate), and 3 (severe). The CDR has ordinal660

responses so we recoded the CDR with fuzzy coding.

We also included five brain volumetric estimates known to be impacted by AD:

ventricles, hippocampus, enthorinal cortex, fusiform gyrus, and medial temporal

regions. The volumetric estimates here are treated as continuous data. Similar
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to ordinal data, we code the data as “doubled” continuous data so that they,665

too, behave like disjunctive data. We refer to the transformation of continuous

to pseudo-disjunctive data specifically as the “Escofier transform” (Beaton et al.,

2016) because it was introduced by Escofier (1979). The transformation is similar

to “fuzzy coding” in that it too is “bipolar”. The “doubling” of continuous data

is simpler than with ordinal and only requires that we add or subtract 1 from the670

centered and scaled data, and divide each value by 2. An example of “doubling”

for continuous data can be seen in Table 4. With “doubled” continous data we

can apply GMCD to continuous data because it now behaves like disjunctive data.

Our mixed data was thus a matrix of I � 613 �J � 57 (13 SNPs categorical

that spanned 35 columns, 6 CDR domains that spanned 12 columns, and 5 brain675

regions that spanned 10 columns).

Figure 4 shows our GMCD applied to the mixed data set. In Figure 4a we

see the observed MD and χ2-distances which suggests the presence of some

possible outliers as well as a possibly homogeneous group of individuals near

that extend outward from 0. In Figures 4b and c, individuals in red are those680

within the subsample and blue are those excluded; Figure 4b shows the observed

squared MD and χ2-distances for individuals (in red) that comprise the “best”

determinant (the sample at convergence). Finally, as with the standard MCD

algorithm we can also compute robust MD which helps revealing “masking”

effects by exaggerating the more extreme individuals. Figure 4c shows the685

observed vs. robust MD; the robust MD was computed with respect to the

individuals identified as the minimum determinant set in Figure 4b. Figure 4d

shows outliers (in blue) as identified through our bootstrap procedure. As before

we used two cutoffs: the lower bound was proportional to the H subsample

and the upper was the 95%-ile of the bootstrap distribution. In the mixed data690

case 335 observations were identified as H subsample and 432 were identified as

inliers of the total 613 observations. In this example, 335 of the H subsample

overlapped with the inliers.
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Table 4: Example of Escofier transform. Example of data "doubling" via the "Es-

cofier transform" for continous data with the volumetric estimates for (structural)

brain imaging as an example.

(a) Volumetric brain regions continuous (Z-scores) exam-

ple

Hippocampus Fusiform

001_S_4321 0.34 -0.46

006_S_1234 -0.39 1.80

... ... ...

007_S_0880 -1.02 0.92

004_S_8866 -0.10 0.26

(b) Escofier-style doubling for continuous data

Hippocampus� Hippocampus� Fusiform� Fusiform�

001_S_4321 1�0.34
2 � 0.33 1�0.34

2 � 0.67 1�p�0.46q
2 � 0.73 1�p�0.46q

2 � 0.27

006_S_1234 1�p�0.39q
2 � 0.70 1�p�0.39q

2 � 0.30 1�1.80
2 � �0.40 1�1.80

2 � �1.40

... ... ... ... ...

007_S_0880 1�p�1.02q
2 � 1.01 1�p�1.02q

2 � �0.01 1�0.92
2 � 0.04 1�0.92

2 � 0.96

004_S_8866 1�p�0.1q
2 � 0.55 1�p�0.1q

2 � 0.45 1�0.26
2 � 0.37 1�0.26

2 � 0.63
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Figure 4: Application of generalized MCD to mixed data. Data are comprised

of SNPs (categorical), clinical dementia rating (ordinal) and volumetric brain

estimates (continuous) from ADNI. (a) shows the observed distances. (b) shows

the observed distances with the H subset colored in red. (c) shows the observed

vs. robust squared Mahalanobis distances (MDs). (d) shows the same as (c) but

colored according to outlier/inlier thresholds from our bootstrap procedure.
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Discussion

We presented the first MCD-based approach that generalizes to virtually any data695

type (i.e., categorical, ordinal, continuous). Our approach relies on Mahalanobis

distances derived from CA via the SVD and avoids many of the issues of

Mahalanobis-like distances that Goodall (1966) noted (i.e., excessive weight or

arbitrary metrics). Furthermore, because our generalized MCD relies on CA we

can use some simple recoding approaches that allow data tables to behave like700

disjunctive tables (see Tables 2 and 4). Our approach, like many MCD-based and

-inspired approaches (Boudt et al., 2017; Fritsch, Varoquaux, Thyreau, Poline,

& Thirion, 2012; Mejia et al., 2017; Rousseeuw & Van Driessen, 1999), identifies

a robust substructure. Also like many other approaches, our generalized MCD

makes use of additional information to identify inliers vs. outliers, as opposed to705

simply using the H subset. Here we have opted to use a bootstrap procedure;

this bootstrap procedure is easily adapted, can accomodate any threshold, and

provides frequency estimates of outlierness (or inlierness) per observation.

Our generalized MCD was designed around the necessity to identify robust

structures and outliers in complex non-quantitative data. Within the ONDRI710

study we had realized that many if not all existing MCD-like and related

techniques could not accomodate our needs. We required a multivariate outlier

technique that could work on categorical, ordinal, or mixed data with ease. While

there are other possible algorithms (e.g., Candès et al., 2011; Fan et al., 2013)

we chose to extend the MCD because it is a reliable and widely-used technique715

(Rousseeuw & Van Driessen, 1999 has been cited 1, 969 times at the time we wrote

this paper), and available in languages routinely used for multivariate analyses

(e.g., https://cran.r-project.org/web/packages/robustbase/index.html, https:

//cran.r-project.org/web/packages/rrcov/index.html, and https://wis.kuleuven.

be/stat/robust/LIBRA). We have also made the GMCD available in an R720

package generally focused on outliers and robust structures (see https://github.

com/derekbeaton/ours).
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Generalized MCD beyond our examples

We established a generalized across data types MCD. In most practical and

simple cases, data matrices typically consist of one type of data. However with725

studies such as ONDRI and ADNI, the boundaries of what constitutes a “data

set” are blurry: researchers analyze multiple variables from a variety of sources.

Often these variables are of different types. Our example with the ADNI data

highlights a typical data set that stems from these types of studies. However in

the ADNI example we treated each variable as an independent measure which730

was somewhat unrealistic: each individual variable was part of a larger related

set of variables in distinct data tables (e.g., SNPs, the CDR, and brain imaging).

A family of techniques have been designed specifically to handle such data sets:

Multiple Factor Analysis (MFA; Abdi, Williams, & Valentin, 2013; Escofier &

Pagès, 1994). The MFA technique was designed for many variables that stem735

from specific data partitions measured on the same observations. Furthermore,

the MFA technique has been extended based on the work by Escofier (1979) and

Escofier and Pagès (1994) to accomodate mixed data types (Bécue-Bertaut &

Pagès, 2008). Our GMCD approach does not only apply for single data tables

but also for MFA-type problems.740

Our approach also inherently allows for a priori defined covariance structures.

GCA, as defined by Escofier (1983) and Escofier (1984), allows for some known

sets of weights (e.g., WI) or expected values (e.g., EX). Because our generalized

MCD is based on GCA, we do not depend on the sH sample set to 0s in the

iterative process. Rather, if some known weights and/or some known structure745

exists, then we can use those to identify the most robust set and outliers in the

observed values.

Finally, in MCA it is typical to discard many of the low-variance components

(Abdi & Valentin, 2007), though we do not do so for our GMCD. The removal

of low-variance components stems from the fact that the dimensionality and750

variance in MCA comes from the complete disjunctive data that spans J columns,
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as opposed to the C variables (where J ¡ C). The “Benzécri correction” is the

most common approach to identify which low-variance components to discard

(Benzécri, 1979): components with eigenvalues smaller than 1{C.

Limitations755

While our approach opens many avenues to extend the MCD there are some

limitations. First, the “Benzécri correction” (Benzécri, 1979) discards low-

variance components and thus we can compute a Mahalanobis-like distance

from some arbitrary set of high-variance components. However, this does not

work well in practice: in most cases outliers typically express high values on760

low-variance components. If we were to discard low-variance components we

might not identify a proper robust structure nor identify appropriate outliers.

Furthermore, the dimensionality correction (Benzécri, 1979) of the space is only

established for strictly categorical—and thus completely disjunctive—data. How

to determine, and then use, the correct dimensionality of the space (especially765

for mixed variables) is an open question. For now we have opted for the more

conservative approach: require full rank data I ¡ J and retain all components.

Finally our algorithm does not include one particular feature of the standard

MCD algorithm: we are not able to compute a robust center. Rather, our robust

center exists entirely within the χ2-space as defined by the factor scores because770

subset MCA “maintains the geometry [. . . ] and χ2-distances of the complete

MCA [. . . ]” (Greenacre & Pardo, 2006). For example if we were to apply our

technique with continuous data (recoded as in Table 4) and compare against the

standard MCD we would obtain slightly different results.

Conclusions775

The MCD is a very reliable and widely-used approach to identify robust multi-

variate structures and likely outliers. However until now the MCD could only be

used for data that are (or were assumed to be) continuous. Our approach uses
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CA to define Mahalanobis distances (via the singular vectors) and allows us to

do so for virtually any data type. We believe that our generalized MCD via GCA780

opens many new avenues to develop multivariate robust and outlier detection

approaches for the complex data sets we face today. Not only does GCA provide

the basis for a new family of MCD techniques but our technique also suggests

ways to approach other robust techniques (Candès et al., 2011; Fan et al., 2013).

With complex studies that contain many mixed-variables, techniques like our785

generalized MCD will be essential to maintain data quality and integrity.
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