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Abstract 
Motivation: Approximately 8% of the human genome is derived from endogenous retroviruses 

(ERVs). In recent years, an increasing number of human diseases have been found to be 

associated with ERVs. However, it remains challenging to accurately detect the full spectrum of 

polymorphic (unfixed) ERVs using next-generation sequencing (NGS) data.  

 

Results: We designed a new tool, ERVcaller, to detect and genotype transposable element (TE) 

insertions, including ERVs, in the human genome. We evaluated ERVcaller using both simulated 

and real benchmark whole-genome sequencing (WGS) datasets. By comparing with existing 

tools, ERVcaller consistently obtained both the highest sensitivity and precision for detecting 

simulated ERV and other TE insertions derived from real polymorphic TE sequences. For the 

WGS data from the 1000 Genomes Project, ERVcaller detected the largest number of TE 

insertions per sample based on consensus TE loci. By analyzing the experimentally verified TE 

insertions, ERVcaller had 94.0% TE detection sensitivity and 96.6% genotyping accuracy. PCR 

and Sanger sequencing in a small sample set verified 86.7% of examined insertion statuses and 

100% of examined genotypes. In conclusion, ERVcaller is capable of detecting and genotyping 

TE insertions using WGS data with both high sensitivity and precision. This tool can be applied 

broadly to other species. 

 

Availability: www.uvm.edu/genomics/software/ERVcaller.html 

 

Contact: dawei.li@uvm.edu 

 

Supplementary information: Supplementary data are available at Bioinformatics online. 

  

Keywords: Transposable element (TE); Endogenous retrovirus (ERV); Polymorphic ERV 

insertions; Whole-genome sequencing (WGS); ERVcaller 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/332833doi: bioRxiv preprint 

http://www.uvm.edu/genomics/software/ERVcaller.html
mailto:dawei.li@uvm.edu
https://doi.org/10.1101/332833
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

Introduction 
Origin of endogenous retroviruses 

Transposable elements (TEs), which were first found in maize, are groups of mobile DNA 

sequences that collectively comprise a large percentage of most eukaryotic genomes, e.g., 44% 

of the human genome (Mills, et al., 2007). TEs can be categorized into two classes based on 

whether their transposition intermediate is RNA or DNA: Class I (RNA) retrotransposons, and 

Class II (DNA) DNA transposons (Wessler, 2006). There are four types of mobile elements in 

the human genome, including Alu, long interspersed element-1 (LINE1), short interspersed 

nuclear element/variable number tandem repeat/Alu (SVA), and endogenous retrovirus (ERV). 

ERVs are a unique group of Class I TEs resulting from the fixation of ancient retroviral 

infections and integrations into the host genome (Katzourakis, et al., 2007). In the human 

genome, 8% of all nucleotides are from ERVs (International Human Genome Sequencing, 2001; 

Jern and Coffin, 2008). The human ERVs (HERVs) as a whole are fairly old, dating back 35 

million years. Most, if not all HERVs, are not replication-competent due to accumulated 

mutations, insertions, deletions, or having become solo-long terminal repeats (solo-LTRs) (Jern 

and Coffin, 2008; Kazazian and Moran, 2017; Marchi, et al., 2014). HERV K family (HERV-K) 

are relatively younger, having integrated in the past million years. Insertionally polymorphic 

HERV-K insertions have been reported in the human populations (Belshaw, et al., 2005; Kahyo, 

et al., 2017; Macfarlane and Badge, 2015; Wildschutte, et al., 2016).  

 

Endogenous retroviruses and human diseases 

ERVs in the human genome have been shown to effect both the genome structure and biological 

functions (Kazazian and Moran, 2017; Navarro, 2017). ERVs can lead to genomic 

rearrangements through non-allelic homologous recombination with other ERV copies (Thomas, 

et al., 2018). ERVs can also behave as a source of promoters, enhancers, or transcriptional factor 

binding sites for regulating human gene expression levels (Fuentes, et al., 2018; Jern and Coffin, 

2008). They can either systematically transcribe stage-specific RNAs in early embryonic 

development (Goke, et al., 2015; Robbez-Masson and Rowe, 2015) or express under certain 

disease conditions (Rooney, et al., 2015), or by interaction with certain infectious agents, e.g., 

human immunodeficiency virus and Epstein-Barr virus (Garrison, et al., 2007; Handsaker, et al., 

2011; Leung, et al., 2018). Expressed viral genes, e.g., gag and pol, can interact with the human 
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transcriptome or modulate the human immune system (Jern and Coffin, 2008). Expression of 

ERVs has thus been associated with autoimmune diseases (Brodziak, et al., 2012; Groger and 

Cynis, 2018; Marguerat, et al., 2004), mental disorders (Douville and Nath, 2014; Li, et al., 

2015; Slokar and Hasler, 2015), cancers (Gonzalez-Cao, et al., 2016; Kassiotis, 2014), and many 

other human diseases.  

 

Compared to monomorphic (fixed) ERVs, which are shared by all humans and usually 

ancient retroviral integration events, polymorphic (unfixed) ERVs are typically more recently 

integrated (Belshaw, et al., 2005). Fixed ERVs are more likely to have been co-opted to serve a 

function for the host organism. For example, these ERVs contain motifs for gene regulation 

(Chuong, et al., 2013; Fort, et al., 2014; Jern and Coffin, 2008), and co-option of ERVs is a 

driving force behind the evolution of the human immune system (Chuong, et al., 2016). By 

comparison, the polymorphic ERVs are more likely to retain biological functions as “viruses”. 

The speculated pathogenic mechanisms of polymorphic ERVs include disrupting the function of 

human genes at or near their integration sites, expressing viral proteins such as Env, or altering 

the adaptive and innate immune response (Moyes, et al., 2007). Although the pathogenicity of 

polymorphic ERVs is still poorly understood due to the complexity of ERV sequences, some 

polymorphic ERVs have been found to be associated with human diseases (Belshaw, et al., 2005; 

Karamitros, et al., 2018; Marchi, et al., 2014). For example, a polymorphic HERV-K insertion in 

the RASGRF2 gene was recently found to be significantly associated with intravenous drug 

abuse (Karamitros, et al., 2018). This study focuses on identifying genome-wide polymorphic 

ERVs and other TEs. 

 

Existing tools for detecting polymorphic ERVs and other TEs 

To determine the pathogenic effects of ERVs, it is necessary to first identify the full spectrum of 

polymorphic ERV insertions in the human genome. Similar to single nucleotide polymorphisms 

(SNPs), the same ERV insertions can be found in one or more individuals, leading to 

polymorphic ERV loci. Indeed, many polymorphic ERV loci have been recently discovered in 

the human genome (Kahyo, et al., 2017; Macfarlane and Simmonds, 2004; Marchi, et al., 2014; 

Wildschutte, et al., 2016). For example, Lee et al. discovered a total of 15 polymorphic ERV loci 

by screening 44 individuals (Lee, et al., 2012). By screening additional samples, Emanuele et al. 
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found 17 loci, including two novel loci (Marchi, et al., 2014), with an average of six 

polymorphic ERV insertions per human genome. By analyzing a different set of samples, 

Wildschutte et al. found 19 new loci (Wildschutte, et al., 2016). These studies indicate that more 

polymorphic ERV loci likely exist in the human population, which have not yet been discovered.  

 

With the wide-spread application of next-generation sequencing (NGS) technologies, 

some bioinformatics tools have been used to discover polymorphic TEs. VariationHunter 

(Hormozdiari, et al., 2009; Hormozdiari, et al., 2010) and Hydra (Quinlan, et al., 2010), which 

were originally designed for detecting general structural variations, were first adapted for 

detecting polymorphic TE insertions using whole-genome sequencing (WGS) data. However, 

due to the long fragment insertions and highly abundant repeated sequences, the detection of 

polymorphic TEs, including ERVs, is more difficult than the detection of SNPs, small insertions 

and deletions (Indels), or other structural variations. Specific tools were then developed, 

including TEA (Lee, et al., 2012), RetroSeq (Keane, et al., 2013), TIF (Nakagome, et al., 2014), 

Mobster (Thung, et al., 2014), Tangram (Wu, et al., 2014), TEMP (Zhuang, et al., 2014), ITIS 

(Jiang, et al., 2015), STEAK (Santander, et al., 2017), and MELT (Gardner, et al., 2017) 

(Supplementary Table 1). Although each software has its own merits, many of these tools are 

limited or insufficient for accurately detecting or genotyping the full spectrum of TE insertions, 

particularly for ERVs. For example, most tools were designed to screen the consensus TE 

references only, and thus would potentially miss ERV and other TE insertions containing novel 

TE sequences or those having many point mutations or indels (Goerner-Potvin and Bourque, 

2018). 

 

A new software: ERVcaller 

In this study, we developed a novel software, ERVcaller, to detect and genotype genome-wide 

TE insertions, particularly ERVs, with paired-end or single-end WGS data. Due to the 

optimization of multiple operations, ERVcaller achieved both high sensitivity and precision, and 

thus, identified new ERV and other TE insertions, which could not be detected by most of the 

existing tools. ERVcaller generates the genotypes of the identified ERVs and other TEs in VCF 

files for subsequent analyses. 
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Methods 
ERVcaller software algorithm 

Extract unmapped and anomalous reads  

ERVcaller first aligns raw FASTQ reads to the human reference genome using BWA-MEM (Li, 

2013) with the default parameters. It can also directly use a pre-aligned BAM file generated by 

either BWA-MEM or other aligners as input. ERVcaller supports the use of multiple BAM files 

as inputs for a single sample. ERVcaller then extracts reads that either do not align or align 

anomalously to the human genome using Samtools (Li, et al., 2009). Specifically, to obtain one-

end unmapped reads, ERVcaller extracts (selects) reads flagged as unmapped (SAM flag=4) and 

then removes those also flagged as mate unmapped and non-primary alignment (SAM flag=264). 

To obtain one-end mapped reads, ERVcaller extracts reads flagged as mate unmapped (SAM 

flag=8) and then removes those also flagged as read unmapped and non-primary alignment 

(SAM flag=260). To obtain anomalous reads, ERVcaller extracts reads flagged as neither 

mapped in a proper pair nor having both the read and its mate-pair unmapped (SAM flag≠14) 

and then extracts the reads with one end uniquely aligned to the human reference genome and the 

other end aligned to multiple locations. To obtain soft-clipped reads, ERVcaller extracts reads 

flagged as being mapped in a proper pair (SAM flag=2) and then extracts the unmapped portions 

of soft-clip reads (≥ 20 base pair (bp)) in FASTQ format using SE-MEI 

(https://github.com/dpryan79/SE-MEI) (Supplementary Figure 1). 

 

Align the obtained reads against the TE references 

ERVcaller aligns all obtained reads concurrently against all TE references using BWA-MEM 

with customized parameters (Supplementary Table 2). Three types of supporting reads are 

extracted for detecting TE insertion events. Chimeric reads (also known as discordant reads) are 

defined as a read pair having one end aligned to the human reference genome while the other end 

does not align to the human reference genome but aligns to a TE reference sequence(s) (Chen, et 

al., 2018). Improper reads are defined as a read pair having both ends aligned to the human 

reference genome but not the same chromosome or within the insert size of each other, and one 

end uniquely aligned to the human reference and the other end aligned to a TE sequence. Split 

reads (also known as soft-clipped reads) are reads with one portion aligning to the human 
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reference genome (the two ends still mapped in a proper pair) and the other portion aligned to a 

TE reference sequence(s) (Chen, et al., 2018) (Supplementary Figure 2).  

 

Detect genome-wide ERV and other TE insertions and perform quality controls 

ERVcaller first aligns all obtained supporting reads against the human reference genome, and 

then groups the reads in windows of two insert-sizes to identify the potential genomic regions 

containing TE insertions. ERVcaller then determines the TE insertion candidates based on the 

number of reads and the average alignment scores of supporting reads within each genomic 

region. As the human genome contains many fixed TE sequences, which have high sequence 

similarity to polymorphic TEs, ERVcaller aligns the supporting reads of each polymorphic TE 

candidate to the human reference sequence within each candidate genomic region. The TE 

candidates with no confident supporting reads are removed, i.e., when the supporting reads fully 

align to the human reference sequence of the candidate region.  

 

Fine map insertion breakpoints at single nucleotide resolution 

Once a TE insertion event is detected, ERVcaller uses the chimeric, improper, and split reads to 

determine the chromosomal location of each breakpoint (junction) at nucleotide resolution. If 

split reads spanning the breakpoints are detected, the breakpoint locations can be precisely 

determined. Without the presence of split reads, ERVcaller uses the chimeric and improper 

reads, including those crossing the breakpoints, to estimate the breakpoint location. Specifically, 

if either the upstream (5’) or downstream (3’) breakpoint of the insertion is identified, the first 

nucleotide of the nearest read to the breakpoint is considered to be the estimated breakpoint; if 

both the upstream and downstream breakpoints are identified, the median of the first nucleotide 

of the nearest read to the breakpoints is considered to be the estimated breakpoint. 

 

Genotype ERV and other TE insertions and output as VCF files 

The total number of chimeric, improper, and split reads supporting the hypothesis of the 

polymorphic TE insertion versus the total number of reads supporting the hypothesis of no 

insertion is used to determine the genotype of the TE insertion. The reads supporting no insertion 

are those which can be fully aligned to the human reference genome across the breakpoint. 

ERVcaller extracts these reads from the BAM file using Samtools and in-house Perl scripts. If 
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the number of reads supporting the presence of a polymorphic TE insertion and the number of 

reads supporting no insertion at a locus are the same, the genotype of this TE insertion is defined 

to be heterozygous (Supplementary Figure 3). However, genotyping is often complicated by 

noise derived from the sequencing process, alignment, and subsequent analyses. For example, for 

a heterozygous TE insertion, the number of reads supporting the presence of a TE insertion is 

likely to be smaller than that supporting the absence of the insertion due to the experimental and 

bioinformatics challenges in capturing low complexity sequences. Thus, by default, ERVcaller 

outputs all the TE insertions that contain a minimum of three supporting reads, including at least 

one chimeric or improper read; however, the TE insertions should be further filtered using 

appropriate criteria relative to the total number of reads or matched with the sequencing depth, 

e.g., a larger number of supporting reads is required for high-depth data. Consequently, 

ERVcaller calculates the genotype likelihood to determine the homozygous versus heterozygous 

status of each identified polymorphic TE insertion using a combined insert-size and read-depth 

approach (Handsaker, et al., 2011). Finally, ERVcaller outputs the genotypes of genome-wide 

ERV and other TE insertions in Variant Call Format (VCF) (Danecek, et al., 2011), which may 

be used for subsequent genetic association analysis. With the implemented scripts, the outputs 

from multiple samples can also be either matched to a list of previously reported consensus TE 

loci or to the TE loci detected in those samples. 

 

Software comparison 

To compare ERVcaller with the existing tools for detecting ERV and other TE insertions, we 

selected five of the most recently published tools, including ITIS (Jiang, et al., 2015), TEMP 

(Zhuang, et al., 2014), RetroSeq (Keane, et al., 2013), STEAK (Santander, et al., 2017), and 

MELT (Gardner, et al., 2017). After compilation and installation, we ran each tool with the 

default parameters. We used BWA-MEM to align raw reads to the human reference genome, and 

then used Samtools to convert the generated SAM files to indexed BAM files. Aside from ITIS, 

which uses FASTQ files as input, ERVcaller and the other four tools used BAM files as input. 

An additional TE annotation file was provided for MELT, TEMP, and RetroSeq, as required or 

recommended by these tools. MELT-SINGLE was applied to detect TE insertions. Only the TE 

insertions (events) with three or more supporting reads were kept for software comparison. To 
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examine the runtimes of these tools, we used 12 core computing nodes with 48 GB memory from 

the Vermont Advanced Computing Core cluster.  

 

Reference sequences for detecting ERV and other TE insertions 

Four TE consensus sequences, including one Alu, one LINE1, one SVA, and one HERV-K, were 

used for each tool to ensure equal comparisons. The human reference genome build GRCh38 

(hg38) downloaded from the UCSC Genome Browser was used. To examine whether the use of 

different TE references influences the performance of ERVcaller, we compared the results 

obtained by screening three different TE reference libraries, including (1) the four TE consensus 

references, (2) the 23 TE consensus references obtained from Tangram (Wu, et al., 2014), 

including 17 LINE1, four Alu, one HERV-K, and one SVA sequences, and (3) the entire 

Repbase database containing all eukaryotic repetitive DNA elements (Bao, et al., 2015).  

 

Simulation 

Due to the biological importance of ERVs, we first simulated ERV insertions using an in-house 

Perl script, and then examined the sensitivity and precision of ERVcaller and the five existing 

tools for detecting polymorphic ERV insertions. Specifically, we randomly inserted modified full 

length and partial HERV-K consensus sequences into the human chromosome 1 accessible 

locations that were masked by the 1000 Genomes Project (The Genomes Project, 2015) (referred 

to as “modified full consensus HERV-K insertions” and “modified partial consensus HERV-K 

insertions” below, respectively). The HERV-K consensus sequences were modified based on 

known features, such as orientations and mutations. The genomic locations of the simulated ERV 

insertions were matched with the distribution of real polymorphic ERV insertions reported in the 

human genome (Chaisson, et al., 2018; Wildschutte, et al., 2016). Paired-end reads of 100 bp 

length and a 500 bp insert size were simulated using pIRS (Hu, et al., 2012) with the default 

parameters. Two series of data were simulated, including 500 full length and 500 partial 

(randomly fragmented) HERV-K insertions.  

 

To evaluate other TE insertions, we generated two additional series of data containing all 

TE types, including Alu, LINE1, SVA, and HERV-K. TE sequences were randomly inserted into 

the human genome according to the number and distribution of each TE type in the 1000 
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Genomes Project benchmark sample NA12878, i.e., 921 Alu, 124 LINE1, 46 SVA, and 7 

HERV-K (Gardner, et al., 2017; Sudmant, et al., 2015; Wildschutte, et al., 2016). The first series 

contained TE consensus sequences that we randomly modified based on the known TE features, 

including length, orientation, mutations, 3’ transduction, and target site duplications (referred to 

as “modified TE consensus insertions” below). The second series contained TE insertions 

derived from real polymorphic TE sequences that we obtained from the dbRIP database (Wang, 

et al., 2006). Each series was simulated at multiple sequencing depths, including 1X, 5X, 10X, 

15X, 20X, 25X, 30X, and 60X. 

 

1000 Genomes Project samples and data preprocessing 

To evaluate the performance of ERVcaller with real WGS data, we applied ERVcaller, MELT, 

RetroSeq, and TEMP to the low-coverage (~8.6X depth) WGS data of 45 1000 Genomes Project 

samples (Genomes Project, et al., 2010) (Supplementary Table 3). CRAM files (hg38) 

downloaded from the International Genome Sample Resource database were converted using 

Samtools to indexed BAM files, which were then used as input for each tool. The same 

parameters used for the simulated datasets were used for this real data. To compare the 

performance of these tools, we matched the detected TE insertions to 21,723 consensus TE loci. 

Consensus TE loci were defined to be the TE loci (locations) that have been reported previously 

in multiple samples. To generate these consensus loci, we collected a total of 19,420 TE loci 

based on the TE insertions maintained in the dbRIP database (Wang, et al., 2006), and those 

identified in 2,535 samples from the 1000 Genomes Project (Sudmant, et al., 2015; Wildschutte, 

et al., 2016), e.g., ~80% of the TE loci in the 1000 Genomes Project samples occurred in two or 

more samples. Additionally, we also considered a small set (3,263) of candidate TEs selected 

based on the complementary data from no more than nine samples (Chaisson, et al., 2018) 

(Supplementary Table 4). We then removed redundant TE loci by merging all these TE loci 

using a 500 bp window, resulting in a total of 21,723 consensus TE loci. 

 

We also analyzed the high-coverage (~68.5X depth) WGS data of three 1000 Genomes 

project samples with experimentally validated Alu, LINE1, and SVA insertions (Supplementary 

Table 3). These insertions were detected using Spanner (https://github.com/chipstewart/Spanner) 

and validated by polymerase chain reaction (PCR) (Stewart, et al., 2011). We downloaded the 
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raw FASTQ files from the International Genome Sample Resource database and aligned them to 

the human reference genome using BWA-MEM with the default parameters. The resulting SAM 

files were converted to sorted and indexed BAM files using Samtools, which were then used as 

inputs for each tool. As the genome build hg18 was used in the original paper (Stewart, et al., 

2011), the hgLiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver) was used to convert the 

coordinates to hg38.  

 

PCR and Sanger sequencing validation  

To evaluate the detection and genotyping accuracies of ERVcaller, we performed molecular 

experiments to verify the insertion status and genotypes of ERVs and other TEs identified by 

ERVcaller in a total of six samples (i.e., the 1000 Genomes Project samples), for which DNA 

specimens were available to our laboratory. We first selected two ERV insertion events that had 

not been previously experimentally verified and performed PCR to verify the loci in two 

samples. The primers for the two loci have been described previously (Wildschutte, et al., 2016). 

The PCR products were purified and cloned using the StrataClone Blunt PCR Cloning Vector 

pSC-B-amp/kan plasmid (Agilent Technologies, La Jolla, CA). We then used Sanger sequencing 

to verify the ERV genotypes, i.e., the alleles with and without the insertion. Based on the Sanger 

sequencing results, we then used PCR to verify the genotypes of the two loci in the remaining 

samples. For other TEs, we used PCR to verify the insertion status of 15 Alu insertions that were 

newly identified in these samples by ERVcaller. The primers for PCR were designed based on 

the 300 bp upstream and downstream sequences using Primer3 with default parameters 

(Untergasser, et al., 2012) (Supplementary Table 5).  

 

Results 
ERVcaller pipeline  

We designed a new bioinformatics tool, ERVcaller, for the accurate detection and genotyping of 

polymorphic ERV and other TE insertions. ERVcaller is composed of three modules, including 

a) extracting unmapped and anomalous reads, b) obtaining supporting reads, and c) detecting 

and genotyping TE insertions (Figure 1). The inputs for ERVcaller include either FASTQ or 

BAM file(s), the human reference genome, and TE reference sequence(s). ERVcaller first 

extracts all reads that could not be fully mapped to the human reference genome and obtains the 
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anomalous reads in which the two ends are not aligned in a proper pair. These reads are then 

aligned to the TE reference library. ERVcaller uses three types of supporting reads, i.e., 

chimeric, split, and improper reads, to determine the chromosomal location of each TE insertion, 

including both upstream and downstream breakpoints when possible (Supplementary Figure 2). 

ERVcaller outputs every TE insertion meeting the following three criteria: 1) It has at least three 

supporting reads (by default), at least one of which is a chimeric or improper read; 2) the average 

alignment score of each supporting read is greater than 30; and 3) each read contains at least 50 

bp of sequence mapped to the human reference genome. If no reads could be uniquely mapped to 

the human genome, the TE insertion would likely be a false positive; however, as some ERV 

insertions have been found within repeat regions, i.e., segmental duplications and regions 

containing fixed TEs (Wildschutte, et al., 2016), ERVcaller annotates and retains these low 

confidence TEs in a separate output file for further manual investigation. After stringent filtering, 

high confidence TE insertions are then genotyped based on the number of reads crossing the 

breakpoints, as described in the Methods section (Supplementary Figure 3). ERVcaller saves 

the resulting genome-wide ERVs and other TEs in VCF files.  

 

Comparative analyses of detection of simulated ERV and other TE insertions 

We performed a comprehensive comparison for detecting ERV and other TE insertions between 

ERVcaller and five existing tools, including RetroSeq, STEAK, ITIS, TEMP, and MELT 

(Supplementary Table 1). To measure sensitivity and precision, we used the TE consensus 

sequences as the reference and applied each tool to a total of four series of simulated data 

containing, 1) modified full consensus HERV-K insertions, 2) modified partial consensus 

HERV-K insertions, 3) modified consensus TE insertions, and 4) TE insertions derived from real 

polymorphic TE sequences. ERV and other TE types were evaluated separately. Sensitivity 

(detection power) was defined as the ratio of correctly identified versus total simulated TE 

insertions. Precision was defined as the ratio of correctly identified versus total identified TE 

insertions. The sensitivity and precision were calculated at sequencing depths from 1X to 60X. 

Additionally, the accuracies for detecting insertion breakpoints and the runtimes were compared 

among all six tools. 
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We first compared the runtimes of the six tools. The four series of simulated data were 

combined for this analysis. ERVcaller had the shortest runtime (6.9 mins) at a sequencing depth 

of 30X with 12 cores and 48 GB memory, followed by TEMP (8.8 mins), RetroSeq (16.6 mins), 

STEAK (51.5 mins), MELT (63.5 mins), and ITIS (553.1 mins) (Figure 2A). We further 

evaluated the runtime of ERVcaller for three TE libraries, including the four TE consensus 

references, the 23 consensus references, and the entire Repbase database. ERVcaller only had a 

slightly longer runtime (8.4 mins) when using the entire Repbase database (Figure 2B). This 

high speed allows ERVcaller to identify the full spectrum of ERV and other TE insertions in a 

large number of samples. 

 

We then measured the sensitivity and precision of the six tools for detecting HERV-K 

insertions. For detecting full HERV-K insertions, all six tools achieved a high sensitivity (> 

95%) when the sequencing depth was 30X or higher (Figure 3A). ERVcaller, RetroSeq, and 

MELT achieved > 98% precision, while TEMP, STEAK, and ITIS had 88%, 26%, and 13% 

precision, respectively (Figure 3A). For detecting the partial HERV-K insertions, ERVcaller, 

RetroSeq, and TEMP consistently achieved high sensitivity (> 95%) at 30X depth, while ITIS 

and STEAK only had < 20% sensitivity (Figure 3B). Aside from ITIS and STEAK (< 10%), all 

four other tools showed high precision (> 95%) (Figure 3B). Thus, for detecting the full and 

partial HERV-K insertions, only ERVcaller, RetroSeq, and MELT achieved both high sensitivity 

and precision among the six tools analyzed.  

 

 We further evaluated the performance of the tools for detecting all TE insertions, 

including Alu, LINE1, SVA, and HERV-K. For detecting the modified consensus TE insertions, 

only TEMP (98%) and ERVcaller (94%) had consistently high sensitivity at 30X depth (Figure 

3C), while RetroSeq, ITIS, and MELT had a decreased sensitivity (~84%), and STEAK had the 

lowest sensitivity (61%) (Supplementary Figure 4). ERVcaller, RetroSeq, TEMP, and MELT 

consistently had > 98% precision, while STEAK and ITIS had < 25% precision (Figure 3C). For 

detecting the TE insertions derived from real polymorphic TE sequences, ERVcaller achieved 

the highest sensitivity (90%) at 30X, followed by TEMP (89%), RetroSeq (86%), STEAK 

(84%), MELT (80%), and ITIS (73%) (Figure 3D). The precision remained similar, i.e., > 98% 

for ERVcaller, RetroSeq, TEMP, and MELT, and < 25% for STEAK, and ITIS (Figure 3D). All 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/332833doi: bioRxiv preprint 

https://doi.org/10.1101/332833
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

six tools had decreased sensitivity when analyzing the real polymorphic TE insertions. However, 

ERVcaller was the least affected compared to the five existing tools, retaining both the highest 

sensitivity and precision among the six tools.  

  

To compare the accuracies for detecting breakpoints, we only evaluated four of the six 

tools because ITIS and STEAK were not designed to detect breakpoints at single nucleotide 

resolution. If the detected breakpoint coordinates were within a 2-bp window of the simulated 

coordinate, it was considered correctly detected. We found that MELT and ERVcaller showed 

consistently higher accuracy, e.g., > 90% at depths ≥ 30X, than RetroSeq and TEMP. The latter 

two obtained significantly lower accuracies, particularly for detecting TE insertions from the 

consensus sequences and the dbRIP database (Supplementary Table 6). Thus, both MELT and 

ERVcaller are capable of correctly detecting the breakpoints of ERVs and other TEs, regardless 

of the insertion length or TE type.  

 

To evaluate whether repetitive and redundant sequences in the TE references influenced 

the sensitivity and precision of ERVcaller, we analyzed all the four simulated datasets by 

screening three different TE libraries. When the four consensus references were used, ERVcaller 

consistently showed high sensitivity (> 95% and > 88%, respectively) and precision (> 99%) for 

detecting the HERV-K and other TE insertions at depths ≥ 30X (Supplementary Figure 5). 

When the 23 consensus references were used, ERVcaller showed the same sensitivity and 

precision as for the four consensus references. When the whole Repbase database was used, the 

sensitivity only decreased 2 – 5%, and the precision remained > 99%. Hence, ERVcaller 

achieved both high sensitivity and precision without being significantly influenced by the 

selection of TE references. This suggests that larger TE reference libraries, presumably 

containing additional ERVs and other TEs, may be valuable for ERVcaller to detect novel or 

highly mutated ERV and other TE insertions.  

 

Comparative analyses of detection of ERV and other TE insertions in 1000 Genomes 

Project samples 

To further evaluate the performance of ERVcaller in analyzing real benchmark data, we analyzed 

the WGS data of 45 samples from the 1000 Genomes Project. Due to the low precision of ITIS 
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and STEAK shown in the above in silico analyses, we compared ERVcaller with only three other 

tools, including MELT, RetroSeq, and TEMP. We first compared each detected TE locus with 

the 21,723 consensus TE loci (locations) that we curated based on a large number of existing 

datasets (Supplementary Table 4) (described in the Method section). A TE insertion was 

considered to be correctly detected if its coordinate was matched within a 500 bp window of one 

of these consensus TE loci. ERVcaller detected 7,607 consensus TE loci in the 45 samples, 

including 5,945 Alu, 902 LINE1, 311 SVA, 19 HERV-K, and 430 complex or mixed TE loci. By 

comparison, MELT, RetroSeq, and TEMP detected 7,189, 7,845, and 5,346 TE loci, 

respectively. A total of 4,121 were detected by all the four tools. The TE insertions detected by 

two or more tools were considered more confident than those detected by only one tool. 

ERVcaller detected the largest number of consensus TE loci (7,371) that were also identified by 

at least one other tool; by comparison, MELT detected 6,844 loci, followed by RetroSeq (6,808), 

and TEMP (5,130). On the other hand, only 488 out of the 21,723 loci were detected by at least 

two other tools but not detected by ERVcaller, while the corresponding numbers were 1,015, 

1,053, and 2,647 for MELT, RetroSeq, and TEMP, respectively. Thus, ERVcaller detected the 

largest number of consensus (i.e., previously published) TE loci compared to the other three 

tools regarding detection of consensus ERV and other TE loci (Figure 4A).  

 

We then analyzed the total number of TE insertions (events) identified at the 4,121 

consensus TE loci that were detected by all the four tools in the 45 samples (Figure 4B). MELT 

(41,986) and ERVcaller (41,726) detected comparable numbers of TE insertions at those loci. 

RetroSeq and TEMP only detected 29,100 and 22,396 TE insertions respectively. Furthermore, 

ERVcaller and MELT jointly detected a total of 37,878 TE insertions, accounting for 90% of the 

TE insertions detected by each. Thus, ERVcaller and MELT both detected significantly more TE 

insertions at the consensus TE loci than RetroSeq and TEMP. 

 

We analyzed the proportion of each TE type for the TE loci that were detected by each 

tool alone. We found that ~60% of the TE insertions only detected by TEMP were LINE1 

(Figure 4C). By comparison, LINE1 insertions detected by the other tools consistently 

accounted for < 20% of the total TEs. Indeed, in the benchmark NA12878 sample, the 

proportions of Alu, LINE1, SVA, and HERV-K were 83.9%, 11.3%, 4.19%, and 0.6%, 
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respectively (Sudmant, et al., 2015; Wildschutte, et al., 2016). We then analyzed the percentage 

of singleton TE insertions (i.e., those observed in only one of the 45 samples) among the TE loci 

that were detected by each tool alone. We found that 83% of the TE loci only detected by MELT 

were singletons, while ERVcaller and the two other tools consistently had a percentage of ~65% 

(Figure 4D). Approximately, 62% of the TE loci only detected by MELT were already reported 

by the 1000 Genomes Project (Sudmant, et al., 2015), while ERVcaller and the two other tools 

consistently had < 35% (Figure 4E). This might be partially explained by the fact that MELT 

was originally developed for the 1000 Genomes Project (Sudmant, et al., 2015) and was used to 

generate most of the 21,723 consensus TE loci that we used in this paper.  

 

We also analyzed the average number of TEs detected per sample by each tool 

(Supplementary Table 7). ERVcaller detected a total of 1,311 TE insertions at the consensus 

TE loci, followed by MELT (1,133), RetroSeq (893), and TEMP (607) (Figure 4F). Thus, 

ERVcaller detected 13.6%, 31.9%, and 53.7% more TE insertions per sample compared to 

MELT, RetroSeq, and TEMP, respectively. On the other hand, we analyzed the percentage of TE 

insertions that were not from the consensus TE loci. We found that an average of 21% of the TE 

insertions detected by ERVcaller were not from the consensus TE loci, while the average 

percentages for MELT, TEMP, and RetroSeq were 16%, 25%, and 65%, respectively (Figure 

4G). The lower percentage (16%) achieved by MELT might also be explained, at least partially, 

by the reason outlined above. Thus, compared to the other tools, ERVcaller detected the largest 

number of TE insertions at the consensus TE loci. 

 

We additionally analyzed the polymorphic HERV-K insertions detected in the 45 

samples. ERVcaller identified a total of 281 HERV-K insertions in these samples. By 

comparison, TEMP, MELT, and RetroSeq detected 315, 912, and 1,118, respectively. When we 

matched the HERV-K insertions to the consensus HERV-K loci, most of which have been 

experimentally verified (Wildschutte, et al., 2016), we found that 94.7% of all HERV-K 

insertions detected by ERVcaller were matched with the consensus HERV-K loci. By 

comparison, the percentages for TEMP, MELT, and RetroSeq were 63.8%, 39.1%, and 24.7%, 

respectively. Thus, ERVcaller detected the highest percentage of confident HERV-K insertions 

among the consensus (mostly experiment-verified) HERV-K loci.  
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Based on the 45 samples, ERVcaller detected an average of 6.2 HERV-K insertions per 

individual, ranging from 1 to 10, involving a total of 30 different loci (Supplementary Table 8). 

Eight of the 30 loci have not been previously reported. Six of the eight loci were replicated by 

two or three of the evaluated tools, and the other two were replicated by either TEMP or 

RetroSeq. This result further indicates that ERVcaller can accurately detect new HERV-K 

insertions. 

 

Detection of experimentally verified TE insertions and genotypes 

To measure the sensitivity of ERVcaller for detecting experimentally verified TE insertions, we 

first analyzed the WGS data of a trio from the 1000 Genomes Project, which contained PCR-

verified insertion statuses for 1,136 TE insertions (events), including 1,029 Alu, 99 LINE1, and 

eight SVA (Stewart, et al., 2011). ERVcaller detected 97%, 87%, and 87.5% of them, 

respectively, or 95.7% when the three TE types were combined (Supplementary Table 9). Here, 

the ratio of correctly identified (experimentally verified) versus total examined (experimentally 

verified) TE insertions was defined to be the detection sensitivity. By comparison, MELT, 

RetroSeq, and TEMP obtained 97.3%, 96.9%, and 66.1% sensitivity, respectively, when the 

three TE types were combined. To further compare the sensitivity of ERVcaller with MELT, 

RetroSeq, and TEMP, we then analyzed another dataset. It included 28 Alu, 29 LINE1, and 25 

SVA insertions that were previously reported by MELT in 21 samples from the 1000 Genomes 

Project (Gardner, et al., 2017), as well as six HERV-K insertions that were previously reported 

by RetroSeq in four additional samples (Keane, et al., 2013; Wildschutte, et al., 2016). All 88 

insertions in the 25 samples had already been verified by PCR or Sanger sequencing. Our 

analysis showed that ERVcaller and MELT had comparable sensitivity (> 70%) in identifying 

these verified TE insertions, while RetroSeq and TEMP showed significantly lower sensitivity (< 

45%) (Supplementary Table 10). Among the 88 insertions, 82 were originally reported by 

MELT; however, in our analysis, we only detected 60 of the 82 insertions using MELT, which 

might be due to our use of MELT parameters different from those used in its original paper.  

 

To measure the accuracy of ERVcaller for genotyping TE insertions, we analyzed the 

same trio, which also contained PCR-verified genotypes for 1,080 TE insertions, including 970 
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Alu, 98 LINE1, and 12 SVA (Stewart, et al., 2011). ERVcaller correctly genotyped 98.0%, 

83.3%, and 83.3% of them, respectively, or 96.6% when the three TE types were combined. We 

also analyzed the same data using MELT; the only other tool evaluated which was also able to 

generate TE genotypes. MELT correctly genotyped 95.2%, 84.7%, and 83.3% of them, 

respectively, or 94.1% when they were combined, slightly lower than ERVcaller 

(Supplementary Table 9).  

 

PCR and Sanger sequencing validation of new TE insertions and genotypes 

As ERVcaller identified a total of 25,875 TE insertions that have never been previously reported 

in these 45 samples, we performed PCR for a total of 15 TE insertions that were newly identified 

by ERVcaller in the six samples with DNA specimens available to our laboratory. Thirteen out 

of the 15 TEs were verified. Among the 13 verified TEs, eight were identified by ERVcaller but 

not detected by any of the three other tools; three were able to be detected by MELT; and two 

were able to be detected by two or three other tools (Supplementary Table 5). The results 

indicate that ERVcaller is capable of detecting new TE insertions that might not be detected by 

other tools.  

 

To evaluate the genotyping accuracy of ERVcaller, we chose two heterozygous HERV-K 

insertions that were identified by ERVcaller but had not been verified in two of the six samples 

with available DNA specimens. We first used Sanger sequencing to validate the genotypes of the 

two loci in the two samples (Supplementary Figure 6), and then used PCR to genotype the two 

loci in all six samples. All 12 genotypes detected by ERVcaller were verified in the six samples. 

One genotype was found to have been incorrectly determined by MELT (Supplementary Table 

11). 

 

Discussion 
Polymorphic ERV and other TE insertions are important categories of structural variations that 

are critical in human evolution and the development of human diseases (Burns, 2017; Jern and 

Coffin, 2008). The sequences of these variations are typically repetitive, and thus difficult to 

detect using short NGS reads. In this study, we improved upon the existing TE calling algorithms 

and developed ERVcaller to detect and genotype genome-wide ERV and other TE insertions 
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using NGS data. By applying it to series of simulated datasets, we demonstrated that ERVcaller 

obtained both the highest sensitivity and precision when analyzing WGS data with a sequencing 

depth of ≥ 30X, except TEMP, which had higher sensitivity but lower precision. This was 

especially the case with the TE datasets simulated based on real polymorphic TE sequences, i.e., 

those in the dbRIP database. By further applying ERVcaller to 45 samples from the 1000 

Genomes project, we detected the largest number of consensus TE loci that were consistently 

detected by at least one of the other tools that we evaluated. ERVcaller also identified the largest 

number of TE insertions per sample at these consensus TE loci. Based on our analyses of 

previously PCR-verified TE insertions, ERVcaller achieved high sensitivity (94.0%) for 

detecting TE insertions and high genotyping accuracy (96.6%). Our PCR and Sanger sequencing 

results in an additional small sample set also verified 86.7% (13 out of 15) of identified TEs and 

100% of genotypes (i.e., the ratio of verified versus predicted genotypes, or 12 out of 12). 

ERVcaller also identified many new TE insertions that were not detected by any of the other 

tools. 

 

ERVcaller achieves both higher sensitivity and precision than other tools for several reasons. 

ERVcaller implements a high mapping-rate aligner, BWA-MEM, and adopts customized 

parameters to align each read simultaneously to multiple references or locations. ERVcaller uses 

three types of supporting reads (chimeric, improper, and split reads), and determines the top 

candidate location(s) based on the average alignment scores of all supporting reads. It also 

implements stringent quality control procedures, i.e., reciprocal alignment of the supporting 

reads against the human reference sequence within each candidate region. For example, as a 

result of the customized BWA-MEM parameters, ERVcaller significantly increases the 

sensitivity for detecting novel and highly mutated TE insertions (e.g., when using the 

“LTR5_Hs” sequence as the only reference, ERVcaller was still capable of discovering 

insertions derived from related sequences, such as “LTR5A/B”). 

 

The existing tools for the detection of TE insertions have significantly driven the past research 

into polymorphic TE insertions in the human genome. However, each of the existing tools still 

has some limitations. For example, TEMP, ITIS, and STEAK have no functions for genotyping. 

RetroSeq was able to genotype TE insertions; however, the genotyping function has been 
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removed from its latest version. ITIS is not practical for analyzing large datasets due to 

computing time. Neither ITIS nor STEAK was able to efficiently detect partial ERV insertions 

(Figure 3B). MELT was newly designed to detect TE insertions; however, it only uses the 

aligned BAM files generated by BWA, limiting its utilization with BAM files from other 

aligners, and it only uses the reads with both ends unmapped within a one-million bp region, 

limiting the detection of the polymorphic TE insertions located close to fixed TEs. By 

comparison, ERVcaller was designed to efficiently detect and genotype TE insertions at single 

nucleotide resolution, regardless of the types and lengths of the TEs. ERVcaller is based on read 

alignment without the use of the prior reference repeat annotation information for detecting 

supporting reads or filtering false TE insertions, and thus it is likely to detect more TE insertions, 

regardless of TE locations. ERVcaller supports the use of both FASTQ and BAM files generated 

by BWA, Bowtie2 or other aligners. Not all published tools were compared in this study. For 

example, TIF (Nakagome, et al., 2014) was not analyzed because it only used split reads for TE 

detection. Tangram, which is also commonly used, was not included in this analysis due to 

installation issues (Rishishwar, et al., 2017; Wu, et al., 2014). Supplementary Table 1 

summarizes the comparison of the features of ERVcaller with the existing tools. 

 

ERVcaller shares some of the limitations common to other NGS-based software. First, 

ERVcaller requires a TE reference(s) as it is based on sequence alignment. Second, it is 

challenging to identify the TE insertions that contain longer target site duplications at the 

breakpoints (Kahyo, et al., 2017). As a trade-off with high precision, ERVcaller would miss 

some of the TE insertions located in repetitive sequence regions, which is common to all tools of 

this kind. Third, due to the two LTRs of ERVs, it is challenging for all the tools, including 

ERVcaller, to determine their length, along with many other sequence features of identified ERV 

insertions using NGS reads with a short insert size, e.g., < 900 bp. These issues may be partially 

addressed by increasing insert size, read length, and depth of the NGS data, applying local de 

novo assembly, or using third-generation sequencing. Fourth, ERVcaller is designed to detect the 

TE insertions that are not present in the human reference genome. To detect the polymorphic 

TEs already present in the human reference genome, an alternate reference assembly may be 

created with all polymorphic TEs of interest removed. Alternatively, structural variation 

detection tools may be used to screen for polymorphic reference TEs as deletions.  
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ERVs have been reported to be associated with many human diseases. Many high frequency 

polymorphic ERV loci have been recently identified in human populations (Marchi, et al., 2014; 

Wildschutte, et al., 2016). Evidence suggests that there might be a large number of undiscovered 

polymorphic ERVs in the human genome (Moyes, et al., 2007). Indeed, in this study, ERVcaller 

newly identified eight polymorphic HERV-K loci in only 45 samples. Moreover, the number of 

polymorphic ERVs per individual and the frequencies of these ERVs vary significantly between 

different human samples (Wildschutte, et al., 2016). Presumably, some of the variable loci are 

associated with the human migration or susceptibility to certain diseases, and thus are 

population- or disease-specific. This suggests that polymorphic ERVs should be investigated to 

study their roles in human diseases and health, and to identify disease genes with the possibility 

of serving as genetic markers.  

 

Software availability 

ERVcaller is an open-source software. ERVcaller v1.3 source code, documentation, and example 

data are available at www.uvm.edu/genomics/software/ERVcaller.html. 

 

Electronic database information 

Accession numbers and URLs for data presented herein are as follows:  

Repbase database: http://www.girinst.org; 

dbRIP: http://dbrip.brocku.ca; 

UCSC Genome Browser database: http://hgdownload.soe.ucsc.edu/downloads.html#human; 

International Genome Sample Resource database: http://www.internationalgenome.org/home. 
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Figure Legends  

 
 

Figure 1 ERVcaller workflow. The three major components include A) extracting unmapped 

and anomalous reads; B) obtaining supporting reads; and C) detecting and genotyping ERV and 

other TE insertions. 
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Figure 2 Comparison of runtimes of ERVcaller with the five existing tools for analyzing the 

simulated datasets. A) Four consensus references were used by each tool. B) Three reference 

libraries were used by ERVcaller, including the four consensus references, the 23 consensus 

references, and the Repbase database.  
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Figure 3 Comparison of sensitivity and precision of ERVcaller with the five existing tools for 

analyzing four different simulated datasets, including A) the dataset with modified full consensus 

HERV-K insertions; B) the dataset with modified partial consensus HERV-K insertions; C) the 

dataset with modified consensus TE insertions; and D) the dataset with TE insertions derived 

from real polymorphic TE sequences.  
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Figure 4 Comparison of ERVcaller with three other tools for analyzing the 45 samples from the 

1000 Genomes Project. A) Comparison of the numbers of consensus TE loci identified in the 45 

samples. B) Comparison of the total numbers of TE insertions at the 4,121 consensus TE loci 

identified in the 45 samples. C) The proportions of TE types for different tools. D) The 

percentages of singleton consensus TE loci detected by each tool only. E) The percentages of the 

consensus TE loci detected by each tool alone based on data reported by the 1000 Genomes 

Project (Sudmant, et al., 2015). F) The average numbers of TE insertions per sample at the 

consensus TE loci detected by each tool. G) The percentages of TE insertions per sample that 

were not from the consensus TE loci detected by each tool. 
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