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Abstract

Determining the composition of bacterial communities beyond the level of a genus
or species is challenging because of the considerable overlap between genomes
representing close relatives. Here, we present the mSWEEP method for identifying
and estimating the relative abundances of bacterial lineages from plate sweeps of
enrichment cultures. mSWEEP leverages biologically grouped sequence assembly
databases, applying probabilistic modelling, and provides controls for false
positive results. Using sequencing data from major pathogens, we demonstrate
significant improvements in lineage quantification and detection accuracy. Our
method facilitates investigating cultures comprising mixtures of bacteria, and
opens up a new field of plate sweep metagenomics.

Background

High-throughput sequencing technologies have enabled researchers to study
bacterial populations in unprecedented detail using whole-genome sequencing
(WGS) of pure individual bacterial colonies. Sequencing of individual isolates has
provided insights into antimicrobial resistance and the complex ecology of the
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spread of antimicrobial resistant variants globally. The application of community
profiling metagenomics, in which the 16S rRNA gene is sequenced from complex
multi-species samples, can provide information about the composition and
dynamics of highly diverse bacterial populations. However, the resolution of this
approach is limited because assignment beyond the level of genus/species to
individual variant is generally not possible due to insufficient nucleotide variation
[1]. Whole-genome shotgun metagenomics delivers a much higher resolution than
16S rRNA sequencing [2] but widespread application is hindered by the cost
associated with sequencing a sample to a sufficient depth to capture the diverse set
of organisms that may be present in the sample [3].

Current methods for identifying bacteria from sequencing data usually focus on
analysing predetermined single nucleotide variants (SNVs) and/or marker genes to
capture the variation contained in a mixed colony [4-6], or on analysing isolated
colonies. Many potential applications require an analysis of data from mixed
colonies where methods developed for pure colonies are insufficient. Furthermore,
whilst the SNV-based approach has been successful in studies of the history of the
human population, focusing solely on SNVs inadequately captures the greater
variability and different modalities of variation in bacterial genomes. Conversely,
solely gene-based approaches can capture some of this while potentially losing
finer detail. Therefore, we aimed to strike a balance between these two approaches
by making use of a complete genome reference database.

Here, we have developed the mSWEEP method, which is designed to make efficient
use of large collections of reference genomes that are available for numerous
important human pathogens and other culturable bacterial species. mSWEEP
combines clustering of the reference genomes into biologically relevant groups,
fast pseudoalignment of reads to the references, fast and accurate probabilistic
inference of the cluster abundances, and a method for controlling false positive
detections.

Although applicable to any scenario where reference genomes for the sequenced
bacteria are available, mSWEEP specifically enables a new kind of high-resolution
analysis in plate sweep metagenomics, where a mixture of colonies is harvested
from an enrichment culture by sweeping the whole plate in contrast to isolating a
single colony. Plate sweep experiments fall between whole-genome sequencing of
single colonies and culture-independent metagenomics by analysing the entire
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complexity of a community from a specific growth medium. As illustrated in our
experiments, this setting is ideal for analysing samples representing populations of
pathogenic bacteria, where the infecting species of primary interest have generally
been previously encountered and sequenced frequently. By leveraging on existing
high-resolution genomic pictures of pathogen populations, mSWEEP provides
means to address a range of novel biological questions related to within-host
variation, transmission, and the effect of ecological factors on the microbial
diversity present in samples.

Results
Lineage identification

Abundance estimation with mSWEEP is performed in two phases: reference
preparation, performed once for a given reference collection, and analysis of
samples (Figure 1). Reference preparation consists of defining a reference sequence
database and grouping the sequences according to biological criteria such as
sequence types (ST), clonal complexes (CC), or by using a clustering algorithm for
bacterial genomes. Grouping related reference sequences is essential in enabling
identification of the taxonomic origin of each read [7] and enables abundance
estimation when the sequencing reads originate from a sequence having no exact
match in the reference database but which is represented by sequences from
closely related organisms within the same group (typically bacterial lineage).
Consequently, accuracy of the abundance estimates provided by mSWEEP is reliant
on an extensive reference database and a biologically meaningful grouping.

We constructed detection thresholds for the groups during the reference preparation
from the reads used to assemble the reference sequences (Figure 1). We randomly
chose one reference sequence at a time, removing it from the reference set,
resampling the reads from the removed sequence, estimating abundances from the
resampled reads, and repeating the process for all groups within the reference set.
The detection threshold for a given group was determined by examining
abundance estimates obtained when the group is not the true source and setting
the threshold at the maximum false abundance estimate. This approach provides a
statistical confidence score for estimates exceeding the detection thresholds,
corresponding to the level of error deemed acceptable in abundance estimation
from the resampled reads.
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Figure 1 Flowchart of the mSWEEP pipeline describing a typical workflow for relative
abundance estimation. The input part refers to the input data, reference preparation to
the operations that need to be performed once per set of reference sequences, and
analysis contains the steps run for every sample.

The first phase of analysis is pseudoaligning [8] sequencing reads to the reference
sequences. Pseudoalignment produces binary compatibility vectors indicating which
reference sequences a read pseudoaligns to. Based on the pseudoalignment count
to each reference group, we defined the likelihood of a read originating from each
of the groups. We assumed that 1) if multiple groups have the same total number
of reference sequences, the group with a higher fraction of pseudoalignments is
the more likely source for the read, and 2) the likelihood of the read to originate
from a group is not dependant on the number of reference sequences in the group.
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Basing the likelihood on the pseudoalignment compatibility vectors defines an
extension of a probabilistic model that has previously been applied in RNA-
sequencing [9, 10] and to bacterial data [7]. The extended model utilizes multiple
reference sequences from each group as opposed to the previous attempts that rely
on selecting a single, best-representative sequence from each of the groups [7].
Our model obtained the relative abundances of the reference groups by considering
the generating process for a sample as a pooling of sequencing reads originating
from the reference groups according to some unknown proportions, corresponding
to a statistical mixture model. We fit the model and inferred the mixing
proportions using variational inference [10].

Assigning single-colony isolates to lineage

We compared the performance of mSWEEP against two existing methods capable
of either strain or lineage identification: metakallisto [11] and BIB [7]. The main
differences between the methods are that metakallisto attempts to identify
individual strains based on all available sequences, BIB uses grouped reference
sequences with a single representative sequence from each group to assign
abundances to the groups, and mSWEEP identifies the presence of groups by using
grouped reference sequences with all the available sequence as representatives.

As the reference data, we used bacterial sequence assemblies from four studies [12-
15] augmented by single representative sequences from 27 species; a total of 3815
reference sequences. We grouped the sequences in either clonal complexes,
lineages identified with the BAPS clustering algorithm [16], or on the species-level.
We removed 504 sequences from all groups represented by more than one
sequence to create a dataset where the true group is known but the true sequence
is not available to the method pipeline (Table 1). In addition to the test data
described in Table 1, we referred to a study sequencing 61 K. pneumoniae isolates
from Thailand [17] to assess the accuracy of all methods when the reference
sequences and the test samples were not obtained from the same source.
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Grouping Species Sequences Test sequences Groups Test
groups
Clonal Campylobacter coli 120 27 1 1
complex  Campylobacter jejuni 462 73 13 11
Escherichia coli 1509 188 132 54
Klebsiella pneumoniae 1351 129 79 39
Species Klebsiella 9 3 1 1
quasipneumoniae
Klebsiella variicola 12 3 1 1
Staphylococcus aureus 181
Lineage Staphylococcus 143 81 3 3
epidermidis
Species Multiple species with 28 28
single sequences
total 3815 504 259 110

Table 1 Reference data used to perform the analyses and to evaluate the performance
of MSWEEP, metakallisto, and BIB. Clonal complexes are defined as either single-locus
variants from the central sequence type (Campylobacter jejuni, Campylobacter colj) or
double-locus variants (Klebsiella pneumoniae and Escherichia coli). The Staphylococcus
epidermidis lineages were identified in the original study with the BAPS clustering
algorithm.

mSWEEP significantly outperformed BIB and metakallisto in cases measuring
accuracy of abundance estimates in the true group (Figure 2; p < 10, in all
comparisons, Wilcoxon signed-rank test; median error in all estimates for
mSWEEP was 0.00003, for BIB 0.23, and for metakallisto 0.54). When measured by
highest estimates in the incorrect groups, mSWEEP outperformed the other two
methods in all cases except the S. epidermidis 11-group clustering and the K.
pneumoniae out-of-reference samples (Figure 2; p < 0.0012, Wilcoxon signed-rank
test; median error in all estimates for mSWEEP was 0.000002, for BIB 0.05, and for
metakallisto 0.01). In these two latter cases, mSWEEP and metakallisto performed
similarly (Figure 2; p > 0.10 when testing for the difference in accuracy in either
direction, Wilcoxon signed-rank test). Since metakallisto attempts to identify
strains rather than lineages, the observed behaviour is likely a result of the
majority of the abundance estimates being spread across strains belonging to the
true lineage.

We additionally compared mSWEEP and BIB by measuring accuracy in
classification based on assigning the samples to the lineage with the highest
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Figure 2 Error of abundance estimates in single-colony isolates (lower is better).
True positives represent the relative abundance estimates in the true lineage INSWEEP
and BIB) or the highest estimate for strains of the lineage (metakallisto). Highest true
negatives contain the highest estimate in an incorrect lineage (IMSWEEP and BIB) or the
highest estimate for a strain from an incorrect lineage (metakallisto). The absolute error
is deviation from an abundance of one (True positives) or zero (Highest true negatives).

abundance estimate. With this criterion, both methods correctly identified the true
clonal complex in all 100 C. jejuni and C. coli isolates, and in all 81 S. epidermidis
isolates when using the 3-cluster grouping. In the 11-cluster S. epidermidis
grouping, mSWEEP correctly identified the true lineage in 78 and BIB in 80
samples. In the 188 E. coli and 129 K. pneumoniae isolates, mSWEEP identified the
lineage correctly in 187 and 126 samples, while BIB correctly identified 184 and
117. The K. pneumoniae and E. coli isolates that were misidentified by mSWEEP
likely contain a sequence type that is missing from the reference, or are mixtures of
K. pneumoniae and E. coli lineages (Supplementary Figures 1a and 1b). Out of the
last 61 out-of-reference K. pneumoniae samples, mSWEEP identified the true origin
in all 61 isolates and BIB in 53.

The least accurate estimates for all methods (measured by the true positives and
highest true negatives) were obtained for the 81 S. epidermidis isolates when using
the second level of the hierarchical BAPS clustering with 11 groups (Figure 2),
where none of the three methods reached the level of accuracy observed in the
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other cases. These inaccuracies are explained by the comparably small reference
for the S. epidermidis population (Table 1), which does not exhibit a clear cluster
structure (Supplementary Figure 2a) beyond the coarsest BAPS clustering into
three groups. The lack of structure causes the abundance estimates to spread
across the new groups defined within each of the three top-level clusters
(Supplementary Figure 1c¢).

We further examined the grouping of the reference sequences by producing t-SNE
plots of 31-mer distances between the reference sequences including the test
isolates (Figure 3, Supplementary Figures 2a-c). The C. jejuni and C. coli, E. coli, and
K. pneumoniae references conform to the clonal complex grouping while the S.
epidermidis population only conforms to the coarsest 3-group BAPS clustering. The
t-SNE plots correctly place the assemblies into the true groups but the method
does not preserve the distances between the points or the clusters [18] and is
unsuited to analysing mixed isolate data.

Processing the 504 single-colony isolates with mSWEEP took an average of 23
minutes and 50 seconds per sample, metakallisto an average of 24 minutes and 42
seconds, and BIB an average of 143 minutes and 46 seconds per sample using the
same reference data. mSWEEP used a maximum of 79.5Gb RAM (maximum of
24.6Gb counting only the abundance estimation step), metakallisto 108.1Gb, and

Real group Figure 3 C. jejuni and C. coli reference
» e CC21 31-mer embedding. t-SNE embedding
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BIB 31.5Gb. Resource usage was obtained by running each sample separately with
eight processor cores against the full test reference of 3311 sequences in 259
groups (MSWEEP and metakallisto) or a representative sequence from each group
(BIB). Both mSWEEP and metakallisto could be sped up by running the
pseudoalignment in kallisto's batch mode (processing multiple samples
simultaneously), reducing the need to write and read from the hard disk at the cost
of increased memory usage.

Quantifying synthetic mixtures of single-colony reads

We investigated the performance of mSWEEP in quantifying samples containing
multiple lineages of bacteria from the same species by synthetically mixing reads
from the single-colony samples. Each mixture sample was set to contain a total of
one million reads from three single-colony samples from three lineages, with
randomly assigned proportions from the set (0.20, 0.30, 0.50). We used a balanced
incomplete block design to ensure that all lineages appear in at least 13 mixture
samples, and each single-colony isolate appears at least once, producing 161 C.
jejuni and C. coli, 477 E. coli, 584 K. pneumoniae, and 100 S. epidermidis synthetic
mixture samples in total.

Compared to abundance estimates from the single-colony samples, estimates
obtained from the synthetic mixture samples show that the presence of sequencing
reads from multiple lineages in a synthetic mixture results in an error distribution
resembling the one observed in the single-colony samples (Figure 4,
Supplementary Figure 3). Estimates from the synthetic S. epidermidis mixture
samples using the 11-group split produce an error distribution that differs from the
single-colony error distribution more than that observed with the other groupings.
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Comparing the empirical distributions of the errors from the synthetic mixtures
and the single-colony isolates (Supplementary Figures 3 and 4) shows that for
estimates exceeding a threshold of 0.016, the accuracy of estimates from the
mixture samples stochastically dominates the accuracy observed in the single-
colony samples, except in the S. epidermidis 11-cluster case where stochastic
dominance is observed only above a threshold of 0.17. Stochastic dominance
establishes a partial ordering between two random variables and, in this case,
implies that estimates from the mixture samples are more accurate (in a
probabilistic sense) than estimates from the single-colony samples when the
estimates are large enough. In the S. epidermidis 11-cluster case we do not
establish the mixture estimates as more accurate since the distribution
(Supplementary Figure 3) and the observed threshold differ considerably from the
other cases.

The results indicate that above this relatively low background noise level of 0.016,
quantifying mixture samples is not expected to produce more false positive results
than would be obtained from single-colony samples. This justifies simplifying the
problem of determining the detection thresholds accompanying mSWEEP, which
provide a threshold for reliable detection of the reference groups in mixture
samples, to determining the thresholds based on the single-colony isolates. Due to
the requirement that the abundance estimates must be large enough for this
assumption to hold, we incorporate the threshold observed in comparing the
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estimates into the detection thresholds by using it as the minimum threshold
regardless of the results from the resampling procedure.

Results from plate sweeps

We applied the mSWEEP pipeline to three datasets containing multiple lineages of
the same species: 116 samples from C. coli and C. jejuni, 96 paired samples from E.
coli, and 179 samples from K. pneumoniae. The E. coli samples were obtained from
MacConkey plate sweeps from a cohort study of 48 Vietnamese children during a
diarrhoeal episode (48 samples), and when healthy (48 samples), purposefully
expecting multiple lineages in each sweep. Conversely, the C. coli/C. jejuni and K.
pneumoniae datasets were presumed pure cultures but flagged during downstream
analysis as mixed. In all three experiments, we applied the detection threshold
procedure (described in more detail in the Methods section) to filter the resulting
abundance estimates. We used two thresholds, corresponding to confidence scores
of 0.99 and 0.90, from now on referred to as filtering by 0.99 or 0.90 confidence
thresholds.

Population structure of commensal Escherichia coli from Viethamese

children

The most abundant sequence type complex identified in over half the samples
(diarrhoeal and control samples) was CC10 (Figure 5, Supplementary Table 1).
Notably, 95% of the samples (46/48 Diarrheal and 45/48 Healthy) harboured
multiple antimicrobial resistance genes (identified using the ARIBA software [19])
that belonged to three or more classes of drugs (Supplementary Figure 5), which we
defined as multi-drug resistance [20] (MDR. One sample was found to contain the
plasmid associated resistance gene MCR-1, which confers resistance to colistin, a
last line antimicrobial drug [21]. We found no significant difference in the
antimicrobial resistance gene profile between the healthy and diarrhoeal samples
(Two tailed, Fisher's exact test p=0.5). Supplementary Table 2 details how many
samples harboured antimicrobial resistance genes in each antimicrobial drug class;
the full antimicrobial resistance gene data can be found in Supplementary Table 3.
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We additionally examined differences between the community composition in the
healthy and diarrhoeal samples based on both the distribution of the relative
abundance estimates (alpha diversity), and changes in the identified strains (beta
diversity). The alpha diversity, measured by Shannon entropy (Supplementary
Figure 6), showed no significant differences between the two paired samples (p >
0.90, Wilcoxon signed-rank test; median Shannon entropy in diarrhoeal samples
was 0.60, and in healthy samples 0.59). However, we found significant shifts in
lineage composition (see Figure 5) when comparing the beta diversity, measured by
Bray-Curtis dissimilarity, between the two samples (p < 0.005, multivariate-
ANOVA). Tests were performed on relative abundance estimates filtered by both
0.99 and 0.90 confidence thresholds.

Co-occurrence patterns in Campylobacter lineages

The network diagram (Figure 6a) shows ST-clonal complex (CC) (nodes) of the
isolate genomes with the thickness of edges representing the number of times that
isolates from these CCs are found together in a single plate sweep sample, and the
size of the node the total number of observations. The overall amount of co-
occurrence between CCs (Figure 6b) provides basic information about the
frequency that CCs are found together in natural populations. C. jejuni CCs 45, 661,
607, 353, 48, and C. coli CC828 are all found in samples with 4 or more other CCs
and there is evidence that isolates from some CC’s cohabit with other species
including Campylobacter lari and Bacillus subtilis. While the sample set in this study
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Figure 6 C. jejuni and C. coli clonal complex (CC) coexistence in 116 samples. The
coexistence network in panel a was constructed from relative abundance estimates
filtered by detection thresholds constructed using a confidence score of either 0.90
(dashed edges) or 0.99 (solid edges). An edge between two groups represents
coexistence in at least two samples with the chosen threshold. Edge size is proportional
to the number of times the joined nodes were observed together, and node size to the
total times the group was detected. Panel b visualizes the unfiltered relative abundance
estimates in the same reference groups (rows) as in panel a, across 116 samples
(columns).

was deliberately selected to include mixed isolate samples, quantifying the co-
occurrence of species and lineages can provide information about different
ecologies or lineage interactions, particularly when CCs are known to have varied
sources, such as different hosts.

There is some preliminary evidence that common clinical lineages CC45 and CC21
are rarely found together in a single sample (plate sweep) while other lineages,
such as the chicken associated CC353, are frequently isolated from samples
containing multiple strains. From an evolutionary perspective, it is unlikely that
closely related strains can stably occupy identical niches because competition
would be expected to lead one to prevail. The results demonstrate co-occurrence of
strains within individual host animals and multi-strain infections in humans and
provide information about the complex ecology of co-occurring interacting species
that leads to the observed community structure in a given sample.
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Multi-drug resistant Klebsiella pneumoniae coexist with other lineages

The coexistence network (Figure 7) and the sample-lineage heatmap
(Supplementary Figure 7) for the 179 human clinical samples of K. pneumoniae
demonstrates common co-occurrence of K. pneumoniae with a wide variety of E.
coli lineages, as well as occasional co-occurrence with Acinetobacter baumanii and
other species. Both E. coli and A. baumanii grow on the media used for culture of K.
pneumoniae. Clonal complexes of K. pneumoniae centred on sequence types
associated with high levels of multi-drug resistance (e.g. ST258, ST147 and ST101)
were frequently observed co-existing with a variety of other K. pneumoniae lineages
as well as with each other, and with other important Gram-negative pathogens.
Developing a deeper understanding of these community structures and
interactions will be critical for monitoring horizontal transfer of antimicrobial
resistance genes between taxa.

Klebsiella pneumoniae @ Morganella morganii © CC349
Escherichia coli o CC38
Other species O cc10 © CC80
—— Edge using 0.99filtering @ CC20 ® CCi4
- - Edge using 0.90 filtering
Edges appear at least 3 times .00258 O CC73
O CC405 @ cC147 @ ST432
@ Klebsiella oxytoca
@ CC307 @ ST42
a CC36. cCos @ Acinetobacter baumannii
@OKlebsiella variicola
@ ST45 @ cCcC37 O CC86
O CC95 @ ST295 @ CC29
@ ST198 @ ST35 @ ST405
@ Klebsiella quasipneumoniae @®s
T101 O
CC131
© ST354 @ Enterobacter cloacae @ ST461 o CC59
© chzé o3 ® STI6 © ST1213 @ ST1758 e Raoultella ornithinolytica
O CCs9 @ CC13 @Pseudomonas aeruginosa

Figure 7 K. pneumoniae lineage coexistence in 179 mixture samples. The
coexistence network was constructed from relative abundance estimates remaining
after filtering by the detection thresholds. Visible edges denote coexistence in at least
three samples. Dashed edges represent coexistence when using detection thresholds
corresponding to the 0.90 confidence score, and solid edges using the 0.99 detection
threshold. Node sizes are proportional to the number of times the lineage was
observed; edge sizes to the number of times coexistence was established.
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Discussion

Metagenomics using high-throughput sequencing has become a common approach
when investigating the bacterial composition of different environments or changes
introduced by intervention, such as in the human gut microbiome. In most
epidemiological applications, the relevant target organisms are culturable using
established media which offers a clear advantage to obtaining high sequencing
depths in a cost-effective manner. We developed the mSWEEP pipeline to enable
high-resolution inference of the lineages present in plate sweeps of enrichment
cultures. mSWEEP can be used to infer the detailed population structure of a single
species, or the diverse populations of bacteria typically encountered in clinical and
public health settings where standard culturing media is routinely used to isolate
epidemiologically relevant organisms. This pipeline also estimates the relative
abundance of lineages and reliability cut-offs. mSWEEP was designed to have a
minimal execution time using the latest advances in RNA-seq analysis and its
maximum memory footprint is determined by the pseudoalignment algorithm. We
demonstrated significant improvements in accuracy over the previous state-of-
the-art method in our experiments.

mSWEEP provides considerable power for improving our understanding of
infection by recovering a true representation of bacteria in a complex sample. For
example, genotyping studies have shown that C. jejuni and C. coli colonizing the
primary host (birds and mammals) form clusters of related isolates that are host-
associated [22], which can be used to identify the reservoir for human infection
[23]. However, multiple organisms can be isolated from the same sources [24, 25].
The co-occurrence of different organisms could be a snapshot in time of a wider
process of lineage succession [26] in which the resident microbiota might resist
new colonizations or be displaced by recently acquired bacteria [27, 28]. Further,
we suggest we may be able to infer complex interactions between organisms that
occupy different microniches [29] and are not in direct competition [30, 31] by
analysing their co-occurrence. Therefore, this approach provides a means to
investigate the nature of polymicrobial infections to improve our understanding of
the spread of a specific organism between hosts and transmission to humans in
addition to enabling characterization of physical and temporal variation in the
distribution of lineages among multi-strain samples.
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Because of limitations in the initial culture and DNA isolation processes, we can
only infer relative (not absolute) abundances. However, this is not a significant
limitation as the absolute abundances of target organisms are also subject to large
biological and technical variation. Memory requirements for large reference
collections or simultaneous analysis of multiple samples necessitate a dedicated
computer cluster to run the analysis pipeline, but even for very large reference
collections the resource usage is still at the level available at most bioinformatics
centres. Alternatively, the reference sequences can be modified to include only the
directly relevant species, which makes the method widely applicable to biologists.
As with any method intended to identify sequence variation, the target species
need to be relatively well known to allow building of sufficiently informative
reference databases. Similarly, to allow for sensible and easily interpretable
inferences, the biological clustering of the reference database should be based on
well-established biological entities, such as multi-locus sequence types (STs) or
clonal complexes (CCs) which are frequently employed as labels of lineages. As a
by-product, mSWEEP can also be used to estimate the quality of the reference
collection and to discard contaminated or mis-identified genomes.

Strain identification from metagenomic data has been recently suggested by the
StrainPhlAn method [32]. mSWEEP, and similar methods, are complementary to
StrainPhlAn as these methods analyse similar data but from different directions.
mSWEEP assigns strains present in the sample to biologically established
genetically separated lineages and estimates the relative abundance of these,
whereas StrainPhlAn infers SNPs and phylogenetic relations within the whole
sample. Given the flexibility and generality of the mSWEEP approach, we
anticipate this method will pave the way for numerous novel applications of plate
sweep metagenomics in many fields of microbiology.

Conclusions

mSWEEP represents a novel means to quantify the composition of bacterial
communities beyond the resolution offered by bacterial identification methods
based on 16S ribosomal RNA gene sequencing or whole-genome shotgun
metagenomics. We have demonstrated significant improvements in accuracy over
similar methods, and novel co-existence analyses using plate sweeps of
enrichment cultures of the human pathogens Campylobacter jejuni, Campylobacter
coli, Escherichia coli, Klebsiella pneumoniae and Staphylococcus epidermidis. We
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expect that mSWEEP will find use in similar studies of bacterial pathogens, where
high-resolution inference is required, ample reference collections for the species of
interest are available, and the plate sweep metagenomic approach can be applied
in-depth at a fraction of the current cost of single-colony sequencing.

Methods

Reference construction

The reference sequences (Table 1, Supplementary Table 4) are the genomic
assemblies of a number of strains or species that represent the organisms of
interest in a sample. We used a collection of assemblies from four studies [12-15]
augmented with the genomes of a representative strain from 27 species that were
identified in the real mixture data by MetaPhlAn [33].

Grouping the reference sequences

We used the multilocus sequence types of the C. coli, C. jejuni, E. coli and K.
pneumoniae reference sequences to group them into clonal complexes defined by
the allelic profile of a central sequence type, and all other sequence types that vary
in at most a single MLST locus (C. coli and C. jejuni) or in at most two loci (E. coli
and K. pneumoniae). The K. pneumoniae reference contained sequences belonging
to K. variicola, K. quasipneumoniae, and K. quasivariicola which we assigned to three
groups defined by the three species. We similarly treated the 181 S. aureus
contained in the S. epidermidis study as a single group, and split the 143 S.
epidermidis sequences using the first and second levels of the hierarchical
clustering produced by the hierBAPS [16] software (version 6.0). The complete
grouping is provided in Supplementary Table 4.

Pseudoalignment

We used kallisto [8] (version 0.45) with default settings to perform
pseudoalignment. Pseudoalignment produces binary compatibility vectors which
indicate whether the read pseudoaligns to a reference sequence or not. In our
model, we sum the pseudoalignment counts within each reference group and thus
consider the observations of the reads r, = (1, 1,...,In, x), 1 = 1,...,N as containing only
the information about the number of pseudoalignments r,xwithin each of the K
groups.
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Abundance estimation model

We assume that the reads r, are conditionally independent given the mixing
proportions of the groups 8 = (84, ..., 8x), and augment the model with the latent
indicator variables I = I,, ..., Iy which denote the true source group of each read.
The joint distribution of the collection of reads R = r, ..., 1y, the indicator variables
I =1, ..., Iy for the source group, and the mixing proportions of the groups 6 =

(04, ..., %) is defined as

pR1LO=p@ | [ | [ pon 11 =0p0 = k10).
n=1 k=1

(1)

The formulation in Equation (1) corresponds to a mixture model with observations
, categorically distributed latent variables I,,, event probability parameters 6,and
the likelihood p(n, | I, = k) of observing the full pseudoalignment count vector 7,
given that the group k is the true source.

Likelihood

The likelihood p(r;, | I,, = k) needs to be defined carefully in order to satisfy the
goals of invariance to group identity and size, and monotonicity with increasing
pseudoalignment counts within a group. Given the vector r,, whose components
rx denote the pseudoalignment count in group k, we define the likelihood

p(n, | I, = k) of observing the whole vector r, assuming that k is the true group in

three parts
p(r, | I, = k) = 0.01, whenr,, = 0,and

(2)

p(ry | I, = k) =0.99, when#k = I andr,, > 0, or
(3)

p(n | I, =k) = % 0.99, when #k > 1andr,;, >0,
(4)
with

B(ag+rn i, tk—1n k+ Br)
f(T'n o k) e ( #k ) ( kTInk nk k : and
’ Tnk B(ay +#k,By)
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K #k

_ ap + e+ G — 1)
Z(Tn)‘nn ap + B + 2#k + (G — 1)’

k=1j=1

(5)

where B(a, b) is the beta function and #k is the number of reference sequences in
the group k. The denominator Z(r,) in Equations (4) and (5) arises from deriving
the normalizing constant for normalizing f (7, x, k) over r.. The derivation follows
from using the identity B(a + 1,b) = B(a, b) a;:b to express each f (1, k), k =

{1,...,K : #k > 1} as a product of the probability mass function of a beta-binomial

#k A+ Tne+(—1)
J=1gp 4+ By +2#k+ (j— 1)

which leads to the form f (7, , k) has in Equation (5). Then, Z(r,) is obtained by
considering normalizing over the full vector

F) = (F@nnDreeir f T k)sevos f(rnio K)), where k = {1,...,K : #k > 1},

The formulation of f(r,,, k) in Equations (4) and (5) intuitively arises when the

distribution with parameters (a; + #k, Bi), and the term []

probability mass function of a beta-binomial random variable with

_B@b) _ This factor is the
B(ap+#kBr)

inverse of the value of the probability mass function when the observed value is

hyperparameters (ay, ) is multiplied by the factor

equal to the total number of groups #k, meaning in our context a read which is
compatible with all reference sequences in a group. Formulating the likelihood in
this manner (Equations 4 and 5) causes groups where all sequences in the group
are compatible with the read to have equal likelihoods. Compared to a model
assuming independence between the groups, this formulation reduces the effect of
the likelihoods being flattened in groups with large numbers of assigned reference
sequences when compared to small groups, which is necessary to compare groups
that differ greatly in size.

Reads with identical pseudoalignment count vectors r, have the same likelihood
and can be assigned into equivalence classes defined by the count of compatible
sequences in each group. This enables a computational optimization where the
likelihoods need only be calculated for the observed equivalence classes and then
multiplied by the total number of times each equivalence class was observed.

Model hyperparameters

Instead of using the parametrization (a4, f)) in Equation (5), we use a
reparameterization where
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ak d) 1
m, = ——, pp = ——— .
k ay + Pi k ay + Pi

(6)

The first parameter m;, corresponds to the mean of the beta distribution that has
been compounded with a binomial distribution to obtain the beta-binomial
component in Equation 6, and the second parameter ¢, represents a measure of
variation in the success probability of each observation [34].

We constrain the mean success rate m; to m, € (0.5,1), which produces beta-
binomial distributions with an increasing probability mass function [35] in the
number of compatible sequences r, ,, which leads to the definition in Equation 5
having the same property. Increasing probability mass functions fulfill our
requirement for the likelihood that of two equally sized groups with different
number of compatible reference sequences, the one with more compatible
sequences is always a better candidate for being the true source. The values of the
parameters (1, ¢,) are set to m, = 0.65,¢; = 1 — m, + 0.01]k|~! to robustly
capture the variance in the alignment count distributions.

Inference

We perform inference over the mixing proportions 6 of the different groups using
fast collapsed variational inference [36]. The method collapses the mixing
proportions fand uses natural gradients to optimise an approximation to the
posterior distribution over the indicator variables I,,, assuming the distribution
factorises over 6 and I,,. The same variational Bayesian method was also used in
BitSeqVB [10] to obtain transcript expression levels and has been applied to
estimate mixing proportions in bacterial sequencing data in BIB [7] using a
different likelihood. The prior distribution on the mixing proportions 8 is set to
Dirichlet(q, ..., @) with a = 1. The same prior was also used by BIB. Since reads
originating from the same equivalence class have the same likelihood, variational
inference will yield identical posterior inferences for them. This allows us to
perform the inference on the smaller number of equivalence classes rather than all
reads, leading to faster inference.

Detection thresholds

Detection thresholds define a means to quantify reliable identification of the
reference groups through constructing a minimum relative abundance threshold
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on the groups. Abundance estimates that fall under the threshold are considered
unreliable and set to zero. To obtain the detection thresholds (Figure 1), we
generate 100 samples from each reference group within a species by resampling
one million sequencing reads, roughly matching the number of reads in our study
samples, from the reads used to assemble the reference sequences. Only one
reference sequence is used in each new sample. Reads included in the new samples
are sampled with replacement with each read having the same probability of being
included. Reference sequences used for resampling were chosen at random such
that the number of reference sequences from each group corresponds to the square
root of the total size of the group. Each group is represented at least once, except
for groups which contain only one reference sequence where we apply the
maximum detection threshold observed for other groups of the same species.
Similarly, species that are represented in the reference by a single group were not
resampled from, and the detection threshold was instead fixed at 0.05. After
resampling from the reference sequences, the new samples are put through
pseudoalignment and mSWEEP abundance estimation without including the
reference sequences used in resampling as pseudoalignment targets.

In defining the detection thresholds, the relative abundance estimates obtained
from the resampled sequencing reads are represented by 8, ; j,wWheren = 1,...,N
(in our examples we chose N = 100) indicates the new samples resampled from
the reference groupi = 1,...,K. The third index j = 1,...,K denotes the reference
group that the abundance estimate was obtained for. We first define source-
specific thresholds g; ; that give a threshold on the reference groups j assuming
that the true group i in the sample is known. The source-specific threshold g; ; on
group j # i is defined by ordering the relative abundance estimates for the cluster
J Oni j» in an ascending order in n, and determining the cutoff point g; ; where
m,m € {1,...,N}, relative abundance estimates fall below the cutoff. Using the
source-specific thresholds g; ;, we define the detection threshold g; on group i as

q; = max{max{j: q;;}, €}, where € is the constant minimum threshold for a specific

grouping of the sequences within a species that is observed when comparing the
empirical cumulative distribution functions in Supplementary Figure 4. We
recommend that € be determined for new species by a synthetic mixing procedure
similar to what was used to compare the accuracy of mixture estimates to their
single-colony counterparts in Figure 4.
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Based on the selected value of m, we define a statistical confidence score for the
abundance estimates exceeding the detection threshold g; as

(N-m)+1 _ m
N+1 N+1

(7)

which corresponds roughly to the fraction of resampled samples that exceed the
threshold corresponding to the value of m. Using a value of m closer to the number
of samples in constructing the detection thresholds result in stricter thresholds
and thus more confidence in the abundance estimates exceeding the threshold.
Results reported in our experiments include thresholds constructed with m = 100
and m = 90, corresponding to confidence scores (Equation 7) of approximately
0.99 and 0.90, respectively.

E. coli plate sweeps from Viethamese children

In Ho Chi Minh City, 750 children were recruited into a diarrhoeal cohort study and
followed for 2 years. Stool samples were collected at routine sampling points and
when the children had an episode of diarrhoea. All stool samples were cultured to
identify pathogens and onto MacConkey plates to isolate E. coli and other
Enterobacteriaceae. The MacConkey plates were scraped and stored in 20% glycerol
at -80°C. The frozen plate sweeps from 48 diarrhoea episodes, paired with 48
asymptomatic samples (96 in total), were revived on MacConkey media; plates
were scraped and total genomic DNA was extracted using the Wizard genomic DNA
purification kit (Promega, USA). The extracted DNA was sequenced using the
[llumina HiSeq platform using the method described elsewhere [37]. Antimicrobial
resistance genes were detected using the ARIBA software [19]. The raw sequence
data data can be found in the ENA under the accession numbers detailed in table
Supplementary Table 5.
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