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Sensory data about most natural task-
relevant variables are confounded by task-
irrelevant sensory variations, called nuisance
variables. To be useful, the sensory signals that
encode the relevant variables must be untangled
from the nuisance variables through nonlinear
transformations, before the brain can use or
decode them to drive behaviors. The informa-
tion to be untangled is represented in the cortex
by the activity of large populations of neurons,
constituting a nonlinear population code. Here
we provide a new way of thinking about non-
linear population codes and nuisance variables,
leading to a theory of nonlinear feedforward
decoding of neural population activity. This
theory obeys fundamental mathematical limita-
tions on information content that are inherited
from the sensory periphery, producing redun-
dant codes when there are many more corti-
cal neurons than primary sensory neurons. The
theory predicts a simple, easily computed quan-
titative relationship between fluctuating neural
activity and behavioral choices if the brain uses
its nonlinear population codes optimally: more
informative patterns should be more correlated
with choices.

1 Introduction

How does an animal use, or ‘decode’, the information
represented in its brain? When the average responses
of some neurons are well-tuned to a stimulus of inter-
est, this is straightforward. In binary discrimination
tasks, for example, a choice can be reached simply by
a linear weighted sum of these tuned neural responses.
Yet real neurons are rarely tuned to precisely one vari-
able: variation in multiple stimulus dimensions influ-

ence their responses. As we show below, this can dilute
or even abolish the mean tuning to the relevant stimu-
lus. The brain cannot simply use linear computation,
nor can we understand neural processing using linear
models.

To see this problem in a simple case, imagine a sim-
plified model of a visual neuron that includes an ori-
ented edge-detecting linear filter followed by additive
noise, with a Gabor receptive field like simple cells in
primary visual cortex (Figure 1A). If an edge is pre-
sented to this model neuron, different rotation angles
will change the overlap, producing a different mean.
This neuron is then tuned to orientation.

However, when the edge has the opposite polarity,
with black and white reversed, then the linear response
is reversed also. If the two polarities occur with equal
frequency, then the positive and negative responses
cancel on average. The mean response of this linear
neuron to any given orientation is therefore precisely
constant, so the model neuron is untuned.

Notice that stimuli aligned with the neuron’s pre-
ferred orientation will generally elicit the highest or
lowest response magnitude, depending on polarity.
Edges with the smallest response to one polarity will
also have the smallest response to its inverse. Thus,
even though the mean response of this linear neuron is
zero, independent of orientation, the variance is tuned.

To estimate the variance, and thereby the orientation
itself, the brain can compute the square of the linear
responses. This would allow the brain to estimate the
orientation independently from polarity. This is consis-
tent with the well-known energy model of complex cells
in primary visual cortex, which use squaring nonlinear-
ities to achieve invariance to the polarity of an edge [1].
We will return to this paradigmatic example of simple
nonlinear computation throughout this article.

Generalizing from this example, we identify edge po-
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larity as a ‘nuisance variable’ — a property in the world
that alters how task-relevant stimuli appear but is, it-
self, irrelevant for the current task (here, perceiving
orientation). Other examples of nuisance variables in-
clude the illuminant for guessing surface color, posi-
tion for object recognition, expression for face iden-
tification, or pitch for speech recognition. Nuisance
variables generally make it hard to extract the task-
relevant variables from sense data, which is the central
task of perception [2–5]. (Of course, what is a nuisance
for one task might be a target variable in another task,
and vice versa.)

The prevailing neuroscience view of this disentan-
gling process is deterministic: the output of a com-
plex (often multi-stage) nonlinear function identifies
the variables of interest [2, 3, 6]. Here we take a sta-
tistical perspective: the brain learns from its history of
sensory inputs which statistics of its many sense data
can be used to extract the task-relevant variable. In the
orientation estimation task above, the relevant statistic
was not the mean but the variance.

Just because a neural population encodes informa-
tion, it does not mean that the brain decodes it all.
Here, encoding specifies how the neural responses re-
late to the stimulus input; similarly, decoding specifies
how the neural responses relate to the behavioral out-
put. To understand the brain’s computational strat-
egy we must understand how encoding and decoding
are related, i.e. how the brain uses the information it
has. As we will see, our statistical perspective provides
a simple way of testing whether the brain’s decoding
strategy is efficient, based on whether neural response
patterns that are informative about the task-relevant
sensory input are also informative about the animal’s
behavior in the task.

2 Results

2.1 Task, stimulus, neural responses, ac-
tion

To specify our mathematical framework for nonlinear
decoding, we model a task, a stimulus with both rel-
evant and irrelevant variables, neural responses, and
behavioral choices.

In our task, an agent observes a multidimensional
stimulus (s,n) and must act upon one particular rele-
vant aspect of that stimulus, s, while ignoring the rest,
n. The irrelevant stimulus aspects serve as nuisance
variables for the task (the letter n stands for nuisance).
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Figure 1: Simple nonlinear code for orientation induced
by two polarities. (A) Receptive field for a linear neu-
ron. (B) Four example images, each with an orienta-
tion s ∈ [0, π) and a polarity n ∈ {−1,+1}. (C) Even
though the mean response of the linear neuron is tuned
to orientation if polarity were specified (conditional
mean, red), the mean response is untuned when the po-
larity is unknown and could take any value (marginal
mean, black). (D) Tuning is recovered by the marginal
variance even if the polarity is unknown (blue).

Together, these stimulus properties determine a com-
plete sensory input that drives some responses r in a
population of N neurons according to the distribution
p(r|s,n).

We consider a feedforward processing chain for the
brain, in which the neural responses r are nonlinearly
transformed downstream into other neural responses
R(r), which in turn are used to create a perceptual
estimate of the relevant stimulus ŝ:

(s,n)→ r → R→ ŝ (1)

We model the brain’s estimate as a linear function
of the downstream responses R. Ultimately these es-
timates are used to generate an action that the exper-
imenter can observe. Here we assume that the task is
local or fine-scale estimation: the subject must directly
report its estimate ŝ for the relevant stimuli near a ref-
erence s0. We measure performance by the variance of
this estimate, σ2

ŝ .

We assume that we have recorded activity only from
some of the upstream neurons, so we don’t have direct
access to R, only r. Nonetheless we would like to learn
something about the downstream computations used
in decoding. In this paper we show how to use the
statistics of cofluctuations in r and ŝ to estimate the
quality of nonlinear decoding.
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2.2 Signal and noise

The population response, which we take here to be the
spike counts of each neuron in a specified time window,
reflects both signal and noise, where signal is the re-
peatable stimulus-dependent aspects of the response,
and noise reflects trial-to-trial variation. Convention-
ally in neuroscience, the signal is often thought to be
the stimulus dependence of the average response, i.e.
the tuning curve f(s) =

∑
r r p(r|s) = 〈r|s〉 (angle

brackets denote an average over all responses given
the condition after the vertical bar). Below we will
broaden this conventional definition to allow the signal
to include any stimulus-dependent statistical property
of the population response.

Noise is the non-repeatable part of the response,
characterized by the variation of responses to a fixed
stimulus. It is convenient to distinguish internal noise
from external noise. Internal noise is internal to
the animal, and is described by response distribution
p(r|s,n) when everything about the stimulus is fixed.
This could also include uncontrolled variation in inter-
nal states [7–10], like attention, motivation, or wander-
ing thoughts. External noise is variability generated by
the external world, or nuisance variables, such as the
positions of all dots in a random dot kinematogram [11]
or the polarity of an edge (Figure 1). External noise
leads to a neural response distribution p(r|s) where
only the relevant variables are held fixed. Both types
of noise can lead to uncertainty about the true stimu-
lus.

Trial-to-trial variability can of course be correlated
across neurons. Neuroscientists often measure two
types of second-order correlations: signal correlations
and noise correlations [12–20]. Signal correlations mea-
sure shared variation in responses r averaged over the
set of stimuli s: ρsignal = Corr(r). (Internal) noise cor-
relations measure shared variation that persists even
when the stimulus is completely identical, nuisance
variables and all: ρnoise(s,n) = Corr(r|s,n).

For multidimensional stimuli, however, these are
only two extremes on a spectrum, depending on how
many stimulus aspects are fixed across the trials to be
averaged. We propose an intermediate type of corre-
lation: nuisance correlations. Here we fix the task-
relevant stimulus variable(s) s, and average over the
nuisance variables n: ρnuisance = Corr(r|s). Just as
signal correlations don’t mean correlations between sig-
nals, nuisance correlations are not correlations between
nuisance variables, but rather between neural responses

induced by the external noise or nuisance variation.
Of course nuisance correlations will be task-dependent,
since the task determines which variables are nuisance
and which are relevant [21,22].

Critically, but confusingly, some so-called ‘noise’ cor-
relations and nuisance correlations actually serve as
signals. This happens whenever the statistical pat-
tern of trial-by-trial fluctuations depends on the stim-
ulus, and thus contain information. For example, a
stimulus-dependent noise covariance functions as a sig-
nal. There would still be true noise, i.e. irrelevant trial-
to-trial variability that makes the signal uncertain, but
it would be relegated to higher-order fluctuations [23]
such as the variance of the response covariance (Figure
2D, Table 1). Stimulus-dependent correlations, princi-
pally due to nuisance variation, lead naturally to non-
linear population codes, as we will explain below.

2.3 Nonlinear encoding by neural popula-
tions

Most accounts of neural population codes actually ad-
dress linear codes, in which the mean response is tuned
to the variable of interest and completely captures all
signal about it [24–28]. We call these codes linear be-
cause the neural response property needed to best es-
timate the stimulus near a reference (or even infer the
entire likelihood of the stimulus, Supplement S1.2) is a
linear function of the response. Linear codes for differ-
ent variables may arise early in sensory processing, or
after many stages of computation [2, 5].

If any of the relevant signal can only be extracted
using nonlinear functions of the neural responses, then
we say that the population code is nonlinear.

It is illuminating to take a statistical view: unlike
a linear code, the information is not encoded in mean
neural responses but instead by higher-order statistics
of responses [16, 29]. These functional and statistical
views are naturally linked because estimating higher-
order statistics requires nonlinear operations. For in-
stance, information from a stimulus-dependent covari-
ance Q(s) =

〈
rr>|s

〉
can be decoded by quadratic op-

erations R = rr> [22, 30, 31]. Table 1 compares the
relevant neural response properties for linear and non-
linear codes.

A simple example of a nonlinear code is the
exclusive-or (XOR) problem. Given the responses of
two binary neurons, r1 and r2, we would like to de-
code the value of a task-relevant signal s = XOR(r1, r2)
(Figure 2A). We don’t care about the specific value of
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linear nonlinear quadratic

raw data r R(r) rr>

signal Mean(r|s) Mean(R|s) Mean(rr>|s)
noise Cov(r|s) Cov(R|s) Cov(rr>|s)

Table 1: Neural response properties relevant for lin-
ear and nonlinear codes. In each case, the brain must
estimate the stimulus from a single example of neural
data, but the relevant function of that data is linear for
linear codes, and nonlinear for nonlinear codes. The
noise and signal can be quantified by the correspond-
ing covariance and stimulus-dependent changes in the
corresponding means (i.e. the tuning curve slope).

r1 by itself, and in fact r1 alone tells us nothing about
s. The same is true for r2. The signal is actually re-
flected in the trial-by-trial correlation between r1 and
r2: when they are the same then s = −1, and when
they are opposite then s = +1. The correlation, and
thus the relevant variable s, can be estimated nonlin-
early from r1 and r2 as ŝ = −r1r2.

Some experiments have reported stimulus-dependent
internal noise correlations that depend on the sig-
nal, even for a completely fixed stimulus without any
nuisance variation [32–36]. Other experiments have
turned up evidence for nonlinear population codes by
characterizing the nonlinear selectivity directly [6, 37,
38].

More typically, however, stimulus-dependent corre-
lations arise from external noise, leading to what we
call nuisance correlations. In the introduction (Figure
1) we showed a simple orientation estimation example
in which fluctuations of an unknown contrast elimi-
nate the orientation tuning of mean responses, rele-
gating the tuning to variances. Figure 2B–E shows
a slightly more sophisticated version of this example,
where instead of two image polarities, we introduce
spatial phase as a continuous nuisance variable. This
again eliminates mean tuning, but introduces nuisance
covariances that are orientation tuned.

One might object that although the nuisance covari-
ance is tuned to orientation, a subject cannot com-
pute the covariance on a single trial because it does
not experience all possible nuisance variables to av-
erage over. This objection stems from a conceptual
error that conflates the tuning (signal) with the raw
sense data (signal+noise). In linear codes, the subject
does not have access to the tuned mean response 〈r|s〉,
just a noisy single-trial version of the mean, namely

r. Analogously, the subject does not need access to
the tuned covariance, just a noisy single-trial version
of the covariance, rr> (Table 1). In this simple exam-
ple, the nuisance variable of spatial phase ensures that
quadratic statistics contains relevant information.

2.4 Decoding and choice correlations

To study how neural information is used or decoded,
past studies have examined whether neurons that are
sensitive to sensory inputs also reflect an animal’s be-
havioral outputs or choices [39–47]. However, this
choice-related activity is hard to interpret, because it
may reflect decoding of the recorded neurons, or merely
correlations between them and other neurons that are
decoded instead [48].

In principle, we could discount such indirect rela-
tionships with complete recordings of all neural activ-
ity. This is currently impractical for most animals,
and even if we could record from all neurons simulta-
neously, data limitations would prevent us from fully
disambiguating how neural activities directly influence
behavior.

To understand key principles of neural computation,
however, we may not care about all detailed patterns of
decoding weights and their underlying synaptic connec-
tivity. Instead we may want to know only certain prop-
erties of the brain’s strategies. One important property
is the efficiency with which the brain decodes available
neural information as it generates an animal’s choices.

Conveniently, testable predictions about choice-
related activity can reveal the brain’s decoding effi-
ciency, in the case of linear codes [28]. Next we review
these predictions, and then generalize them to nonlin-
ear codes.

2.5 Choice correlations predicted for opti-
mal linear decoding

We define ‘choice correlation’ Crk as the correlation
coefficient between the response rk of neuron k and
the stimulus estimate (which we view as a continuous
‘choice’) ŝ, given a fixed stimulus s:

Crk = Corr(rk, ŝ|s) (2)

This choice correlation is a conceptually simpler and
more convenient measure than the more conventional
statistic, ‘choice probability’ [49], but it has almost
identical properties (Methods 4.2) [28,48].
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Figure 2: Nonlinear codes. A: Simple example in which a stimulus s is the XOR of two neural responses (top).
Conditional probabilities p(r1, r2|s) of those responses (bottom) show they are anti-correlated when s = +1 (red)
and positively correlated when s = −1 (blue). This stimulus-dependent correlation between responses creates a
nonlinear code. The remaining panels show that a similar stimulus-dependent correlation emerges in orientation
discrimination with unknown spatial phase. B: Gabor images with two orientations and three spatial phases.
C: Mean responses of linear neurons with Gabor receptive fields are sensitive to orientation when phase is fixed
(arrows), but point in different directions for different spatial phases. When phase is an unknown nuisance
variable, this mean tuning therefore vanishes (black dot). D: The response covariance Cov(r1, r2|s) between
these linear neurons is tuned to orientation even when averaging over spatial phase. Response covariances for
four orientations are depicted by ellipses. E: A continuous view of the covariance tuning to orientation for a
pair of neurons.
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Intuitively, if an animal is decoding its neural infor-
mation efficiently, then those neurons encoding more
information should be more correlated with the choice.
Mathematically, one can show that choice correlations
indeed have this property when decoding is optimal
[28]:

Copt
rk

=

√
Jrk
J

(3)

where J and Jrk are, respectively, the linear Fisher In-
formation [23] based on the entire population r or on
neuron k’s response rk (Methods 4.2). This relation-
ship holds for a locally optimal linear estimator,

ŝ = w · r + c (4)

regardless of the structure of noise correlations.
Another way to test for optimal linear decoding

would be to measure whether the animal’s behavioral
discriminability matches the discriminability for an
ideal observer of the neural population response. Yet
this approach is not feasible, as it requires one to mea-
sure simultaneous responses of many, or even all, rel-
evant neurons. In contrast, the optimality test (Eq 3)
requires measuring only single neuron responses, which
is vastly easier. Neural recordings in the vestibular sys-
tem are consistent with optimal decoding according to
this prediction [28].

2.6 Nonlinear choice correlations for opti-
mal decoding

However, when nuisance variables wash out the mean
tuning of neuronal responses, we may well find that a
single neuron has both zero choice correlation and zero
information about the stimulus. The optimality test
would thus be inconclusive.

This situation is exactly the same one that gives rise
to nonlinear codes. A natural generalization of Equa-
tion 3 can reveal the quality of neural computation on
nonlinear codes. We simply define a ‘nonlinear choice
correlation’ between the stimulus estimate ŝ and non-
linear functions of neural activity R(r):

CRk = Corr(Rk(r), ŝ|s) (5)

(Methods 4.2), where Rk(r) is a nonlinear function of
the neural responses. If the brain optimally decodes
the information encoded in the nonlinear statistics of
neural activity, according to the simple nonlinear ex-
tension to Eq 4,

ŝ = w ·R(r) + c (6)

then the nonlinear choice correlation satisfies the equa-
tion

Copt
Rk(r) =

√
JRk(r)

J
(7)

where JRk(r) is the linear Fisher Information in Rk(r)
(Methods 4.2.2).

As an example of this relationship, we return to
the orientation example. Here the response covari-
ance Σ(s) = Cov(r|s) depends on the stimulus, but
the mean f = 〈r|s〉 = 〈r〉 does not. In this model,
optimally decoded neurons would have no linear cor-
relation with behavioral choice. Instead, the choice
should be driven by the product of the neural re-
sponses, R(r) = vec(rr>), where vec(·) is a vectoriza-
tion that flattens an array into a one-dimensional list
of numbers. Such quadratic computation is what the
energy model for complex cells is thought to accom-
plish for phase-invariant orientation coding [1]. Fig-
ure 3 shows linear and nonlinear choice correlations
for pairs of neurons, defined as Crirj = Corr(rirj , ŝ|s).
When decoding is linear, linear choice correlations are
strong while nonlinear choice correlations are near zero
(Figure 3A,B). When the decoding is quadratic, here
mediated by an intermediate layer that multiplies pairs
of neural activity, the nonlinear choice correlations are
strong while the linear ones are insignificant (Figure
3C,D).

2.7 Which nonlinearity?

If the brain’s decoder optimally uses all available in-
formation, choice correlations will obey the prediction
of Eq. 7 even if the specific nonlinearities used by the
brain differ from those selected for evaluating choice
correlations (Methods 4.2.3). The prediction will hold
as long as the brain’s nonlinearity can be expressed as
a linear combination of the tested nonlinearities (Meth-
ods 4.2.3). Figure 4 shows a situation where informa-
tion is encoded by quadratic and cubic sufficient statis-
tics of neural responses, while a simulated brain de-
codes them near-optimally using a generic neural net-
work rather than a set of nonlinearities matched to
those sufficient statistics. Despite this mismatch we
can successfully identify that the brain is near-optimal
by applying Eq 7, even without knowing the simulated
brain’s true nonlinear transformations.

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332353doi: bioRxiv preprint 

https://doi.org/10.1101/332353
http://creativecommons.org/licenses/by/4.0/


0 .5 1–.5 0 .5 1–.5

Corr(ri ,ŝ|s)
Corr(ri ,ŝ|s) Corr(rjrk ,ŝ|s)

Corr(rjrk ,ŝ|s)

ŝ = w.r

ŝ = w.R

r

w R

w

r

Choice correlation (CC)

Frequency
of CC

Frequency
of CC

Choice correlation (CC)

rj rkrirj rkri

Linear
CC

Linear
CC

Nonlinear
CC

Nonlinear
CC

A

B

C

D

neural
responses

synaptic
weights

estimate

Figure 3: Linear and nonlinear choice correlations suc-
cessfully distinguish network structure. A linearly de-
coded population (A) produces nonzero linear choice
correlations (B), while the nonlinear choice correla-
tions are randomly distributed around zero. The situ-
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Figure 4: Identifying optimal nonlinear decoding by
a generic neural network using nonlinear choice corre-
lation. A: Responses encode stimulus information in
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brain using ReLu nonlinearities trained to extract that
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nomial nonlinearities to extract the information from
responses. C,D: Choice correlations with polynomial
nonlinear statistics show the network computations are
consistent with optimal nonlinear decoding, regard-
less if the tested statistics match(Network B) or not
match(Network A) the actual decoder(Methods 4.2.3).

2.8 Redundant codes

It might seem unlikely that the brain uses optimal, or
even near-optimal, nonlinear decoding. Even if it does,
there are an enormous number of high-order statistics
for neural responses, so the information content in any
one statistic could be tiny compared to the total infor-
mation in all of them. For example, with N neurons
there are on the order of N2 quadratic statistics, N3

cubic statistics, and so on. With so many statistics
contributing information, the choice correlation for any
single one would then be tiny according to the ratio in
Eq 7, and would be indistinguishable from zero with
reasonable amounts of data. Past theoretical studies
have described nonlinear (specifically, quadratic) codes
with extensive information that grows proportionally
with the number of neurons [16, 30]. This would in-
deed imply immeasurably small choice correlations for
large, optimally decoded populations.

A resolution to these concerns is information-
limiting correlations [27]. The past studies that de-
rive extensive nonlinear information treat large cortical
populations in isolation from the smaller sensory pop-
ulation that would naturally provide its input [16, 30].
However, when a network inherits information from a
much smaller input population, the expanded neural
code becomes highly redundant: the brain cannot have
more information than it receives. Noise in the input is
processed by the same pathway as the signal, and this
generates noise correlations that can never be averaged
away [27].

Previous work [27] characterized linear information-
limiting correlations for fine discrimination tasks by de-
composing the noise covariance into Σ = Σ0 + εf ′f ′

>
,

where ε is the variance of the information-limiting com-
ponent and Σ0 is noise that can be averaged away with
many neurons.

For nonlinear population codes, it is not just the
mean that encodes the signal, f(s) = 〈r|s〉, but rather
the nonlinear statistics F (s) = 〈R(r)|s〉. Likewise, the
noise does not comprise only second-order covariance
of r, Cov(r|s), but rather the second-order covariance
of the relevant nonlinear statistics, Γ = Cov(R|s) (Sec-
tion 2.2). Analogous to the linear case, these correla-
tions can be locally decomposed as

Γ = Cov(R(r)|s) = Γ0 + εF ′F ′
>

(8)

where ε is again the variance of the information-
limiting component, and Γ0 is any other covariance
which can be averaged away in large populations. The
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information-limiting noise bounds the estimator vari-
ance σ2

ŝ to no smaller than ε even with optimal decod-
ing.

Neither additional neurons nor additional decoded
statistics can improve performance beyond this bound.
As a direct consequence, when there are many fewer
sensory inputs than cortical neurons, many distinct
statistics Rk(r) will carry redundant information. Un-
der these conditions, many ratios JRk/J (Eq 7) can be
measurably large even for optimal nonlinear decoding
(Figure 5).

2.9 Decoding efficiency revealed by choice
correlations

Even if decoding is not strictly optimal, Eq. 7
can be satisfied due to information-limiting correla-
tions. Decoders that seem substantially suboptimal
because they fail to avoid the largest noise compo-
nents in Γ0 can be nonetheless dominated by the bound
from information-limiting correlations. This will occur
whenever the variability from suboptimally decoding
Γ0 is smaller than ε. Just as we can decompose the
nonlinear noise correlations into information-limiting
and other parts, we can decompose nonlinear choice
correlations into corresponding parts as well, with the
result that

Csub
R ≈ αCopt

R + ζR (9)

where ζR depends on the particular type of subopti-
mal decoding (Supporting Information S7). The slope
α between choice correlations and those predicted from
optimality is given by the fraction of estimator variance
explained by information-limiting noise, α = ε/σ2

ŝ .
This slope therefore provides an estimate of the effi-
ciency of the brain’s decoding.

Figure 5 shows an example of a decoder that would
be highly suboptimal without considering redundancy,
but is nonetheless close to optimal when information
limits are inherited.

In realistically redundant models that have more
cortical neurons than sensory neurons, many decoders
could be near-optimal, as we recently discovered in ex-
perimental data for a linear population code [28]. How-
ever, even in redundant codes there may be substantial
inefficiencies, especially for unnatural tasks [50].

3 Discussion

This study introduced a theory of nonlinear popula-
tion codes, grounded in the natural computational task
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Figure 5: Information-limiting noise makes a network
more robust to suboptimal decoding. (Left) A sim-
ulated optimal decoder produces choice correlations
that match our optimal predictions (blue, on diago-
nal). In contrast, a suboptimal decoder, such as one
that is blind to higher-order correlations (w ∝ F ′),
exhibits a suboptimal pattern of choice correlations
(red, off-diagonal) in the presence of noise Γ0 that
permits the population to have extensive information.
(Right) When information is limited, the same decod-
ing weights are less detrimental, and thus exhibit a
similar pattern of choice correlations as an optimal de-
coder.

of separating relevant and irrelevant variables. The
theory considers both encoding and decoding — how
stimuli drive neurons, and how neurons drive behav-
ioral choices. It showed how correlated fluctuations
between neural activity and behavioral choices could
reveal properties of the brain’s decoding. Unlike previ-
ous theories [16, 30], ours remains consistent with bio-
logical constraints due to the large cortical expansion of
sensory representations by incorporating redundancy
through information-limiting correlations. Crucially,
this theory provides a remarkably simple test to deter-
mine if downstream nonlinear computation decodes all
that is encoded.

Alternative methods to estimate whether animals
use their information efficiently rely upon comparing
behavioral performance to performance of an ideal ob-
server that can access the entire population. Even with
impressive advances in neurotechnology, this challenge
remains out of reach for large populations. In contrast,
our proposed method to test for optimal decoding has a
vastly lower experimental burden. It requires only that
a few cells be recorded simultaneously while an animal
performs a fine estimation or discrimination task.

On the other hand, this simple test does not of-
fer a complete description of neural transformations.
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It instead tests one important hypothesis about their
functional role — that the brain performs optimal de-
coding. The theory also provides a practical way of
estimating decoding efficiency. The brain may not be
optimal, but instead may be satisfied by a more modest
decoding efficiency. In this case, more work is needed
to understand what suboptimalities the brain tolerates
for satisfactory performance.

3.1 Which nonlinearities should we test?

If all neural signals are decoded optimally, then all
choice correlations for any function of those signals
should also be consistent with optimal decoding, since
they contain the same information. Yet for the wrong
or incomplete nonlinearities that do not disentangle the
task-relevant variables from the nuisance variables, the
test may be inconclusive, just as it was for linear decod-
ing of a nonlinear code (Figure 4): the chosen nonlinear
functions may not extract linearly decodable informa-
tion nor have any choice correlation.

The optimal nonlinearities would be those that col-
lectively extract the sufficient statistics about the rele-
vant stimulus, which will depend on both the task and
the nuisance variables. In complex tasks, like recogniz-
ing object from images with many nuisance variables,
most of the relevant information lives in higher-order
statistics, and therefore require more complex nonlin-
earities to extract. In such high-dimensional cases, our
proposed test is unlikely to be useful. This is because
our method expresses stimulus estimates as sums of
nonlinear functions, and while that is universal in prin-
ciple [51], that is not a compact way to express the
complex nonlinearities of deep networks. Alternatively,
with good guidance from trained neural network mod-
els our method could potentially judge whether those
nonlinearities provide a good description of neural de-
coding. This decoding perspective would complement-
ing studies that argue for a good match between en-
coding by convolutional neural networks [6].

The best condition to apply our optimality test is
in tasks of modest complexity but still possessing fun-
damentally nonlinear structure. Some interesting ex-
amples where our test could have practical relevance
include motion detection using photoreceptors [52], vi-
sual search with distractors (XOR-type tasks) [31,53],
sound localization in early auditory processing before
the inferior colliculus [54], or context switching in
higher-level cortex [55].

Our test for optimal nonlinear decoding really

amounts to testing for optimal linear decoding of non-
linear functions of recorded neural data. If we had
access to some putative downstream neurons that com-
puted these nonlinear functions, we could just test
whether the brain linearly decoded those neurons opti-
mally. Yet that would circumvent the most interesting
and crucial nonlinear aspects of neural computation.
Alternatively, if we could record from neurons at dif-
ferent levels of the processing chain, we could try to
characterize that nonlinear recoding between them di-
rectly, without reference to a behavioral choice. But
this would not easily relate these computations to their
functional role. The method proposed here allows us
to skip these intermediate steps and directly test the
optimality of all accumulated downstream nonlineari-
ties.

3.2 Nonlinear decoding or switched linear
decoding?

Could the brain avoid nonlinear decoding just by
switching between different linear decoders depending
on the current nuisance variable n, so that ŝ = w(n̂)·r?
The switching variable itself would have to be inferred
from sensory data, which requires marginalizing over
the task variable; this takes us back to the original
problem, but with task and nuisance variables reversed.
Even so, switched linear decoding would actually be
equivalent to nonlinear decoding whenever n̂ is esti-
mated from neural responses: ŝ = w(n̂(r)) · r = f(r).

A discrimination task with a changing class bound-
ary [12, 56, 57] is, in principle, a nonlinear task. But
if the class boundary is changed too slowly, perhaps
changing only on different days, then the brain may
well re-learn its weights rather than performing some
nonlinear decoding of recent activity. A better experi-
mental design for revealing nonlinear computation for
task context would be randomly changing the tasks,
either cued [58] or even uncued [55], on a short enough
time scale that the recent neural activity affects the
class boundary.

3.3 Limitations of the approach

For efficient decoding in a learned task, the optimal-
ity test (7) is necessary but not sufficient. If the brain
neglects some of informative sufficient statistics, and
we don’t test these neglected statistics either, then we
could find the brain is consistent with our optimal de-
coding test, yet still be suboptimal. Only if the test
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is passed for all statistics will the test be conclusive.
For an extreme example, a single neuron might pass
the test, but if other neurons don’t, then the brain is
not using its information well. On a broader scale, one
might find that all individual responses rk pass the op-
timality test, while products of responses rjrk fail. This
would be consistent with linear information being used
well while distinct quadratic information is present but
unused; on the other hand this outcome would not be
consistent with quadratic statistics that are uninfor-
mative but decoded anyway, since that would increase
the output variance beyond that expected from the lin-
ear information. In future work we will demonstrate
how we can use nonlinear choice correlations to iden-
tify properties of suboptimal decoders [59].

Our approach is currently limited to feedforward pro-
cessing, which unquestionably oversimplifies cortical
processing. Nonetheless, feedforward models do a fair
job of capturing the representational structure of the
brain [6].

Feedback could also cause suboptimal networks to
exhibit choice correlations that seem to resemble the
optimal prediction. If the feedback is noisy and
projects into the same direction that encodes the stim-
ulus, such as from a dynamic bias [60], then this could
appear as information-limiting correlations, enhancing
the match with Eq 7. This situation could be disam-
biguated by measuring the internal noise source pro-
viding the feedback, and of course this would require
more simultaneous measurements.

3.4 Comparing choice correlations from in-
ternal and external noise

Since many stimulus-dependent response correlations
are induced by external nuisance variation, not in-
ternal noise, we might not find informative stimulus-
dependent noise correlations upon repeated presenta-
tions of a fixed stimulus. Those correlations may only
be informative about a stimulus in the presence of nat-
ural nuisance variation. For example, if a picture of
a face is shown repeatedly without changing its pose,
then small expression changes can readily be identified
by linear operations; if the pose can vary then the stim-
ulus is only reflected in higher-order correlations [5].

In contrast, we should see some nonlinear choice
correlations even when nuisance variables are fixed.
This is because neural circuitry must combine re-
sponses nonlinearly to eliminate natural nuisance vari-
ation, and any internal noise passing through those

same channels will thereby influence the choice (al-
though they may be smaller and more difficult to detect
than the fluctuations caused by the nuisance variation).
This influence will manifest as nonlinear choice correla-
tions. In other words, stimulus-dependent noise corre-
lations need not predict a fixed stimulus, but they may
predict the choice (Supplementary Information S8).

For optimal decoding, the choice correlations mea-
sured using fixed nuisance variables will differ from Eq
7, which should strictly hold only when there is natural
nuisance variation. This is implicit in Eq 7, since the
relevant quantities are conditioned only on the relevant
stimulus s while averaging over the nuisance variations
n. However, under some conditions, a related predic-
tion for nonlinear choice correlations holds even with-
out averaging over nuisance variables (Supplementary
Information S8).

3.5 Conclusion

Despite the clear importance of computation that is
both nonlinear and distributed, and evidence for non-
linear coding in the cortex [31, 33–35], most neuro-
science applications of population coding concepts have
assumed linear codes and linear readouts [6, 28, 39, 61,
62]. The few that directly address nonlinear popu-
lation codes either have an impossibly large amount
of encoded information [16,30], or investigate abstract
properties unrelated to structured tasks [63]. Some ex-
perimental studies have been able to extract additional
information from recorded populations using nonlinear
decoders [31,64], but the inferred properties of such de-
coders are based on recordings being a representative
sample that can be extrapolated to larger populations.
Unknown correlations and redundancy prevents that
from being a reliable method [23,65].

Our method to understand nonlinear neural decod-
ing requires neural recordings in a behaving animal.
The task must be hard enough that it makes some
errors, so that there are behavioral fluctuations to
explain. Finally, there should be a modest number
of nonlinearly entangled nuisance variables. Unfortu-
nately, many neuroscience experiments are designed
without explicit use of nuisance variables. Although
this simplifies the analysis, this simplification comes at
a great cost, which is that the neural circuits are being
engaged far from their natural operating point, and
far from their purpose: there is little hope of under-
standing neural computation without challenging the
neural systems with nonlinear tasks for which they are

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332353doi: bioRxiv preprint 

https://doi.org/10.1101/332353
http://creativecommons.org/licenses/by/4.0/


required.

Our statistical perspective on feedforward nonlinear
coding in the presence of nuisance variables provides
a useful framework for thinking about neural compu-
tation. Furthermore, choice-related activity provides
guidance for designing interesting experiments to mea-
sure not only how information is encoded in the brain,
but how it is decoded to generate behavior. In future
work we aim to apply this theory to experimental data
to test whether real brains decode neural information
optimally in any nonlinear tasks.

4 Methods

4.1 Encoding models

4.1.1 Orientation estimation with varying spa-
tial phase

Figure 1 illustrates how nuisance variation can eliminate a neu-
ron’s mean tuning to relevant stimulus variables, relegating the
neural tuning to higher-order statistics like covariances. In this
example, the subject estimates the orientation of a Gabor im-
age, G(x|s, n), where x is spatial position in the image, and s
and n are the orientation and spatial phase of the image, respec-
tively (Supplemental Material S2). The model visual neurons are
linear Gabor filters like idealized simple cells in primary visual
cortex, corrupted by additive white Gaussian noise. Their re-
sponses are thus distributed as r ∼ P (r|s, n) = N(r|f(s, n), εI),
where ε is the noise variance and the mean f(s, n) = 〈r|s, n〉 =∑

r r p(r|s, n) is determined by the overlap between the image
and the receptive field.

When the spatial phase n is known, the mean neural response
contains all the information about orientation s. The brain can
decode responses linearly to estimate orientation near a reference
s0.

When the spatial phase varies, however, the each mean re-
sponse to a fixed orientation will be combine across different
phases: f(s) = 〈r|s〉 =

∑
r r p(r|s) =

∫
dn
∑

r r p(r|s, n)p(n).
Since each spatial phase can be paired with another phase π ra-
dians away that inverts the linear response, the phase-averaged
mean is f(s) = 0. Thus the brain cannot estimate orientation by
decoding these neurons linearly; nonlinear computation is neces-
sary.

The covariance provides one such tuned statistic. We define
Covij(r|s, n) as the neural covariance for a fixed input image
(noise correlations), and Covij(r|s) as the neural covariance when
the nuisance varies (nuisance correlations). According to the law
of total covariance,

Covij(r|s) =

∫
dn (Covij(r|s, n) + δfi(s, n)δfj(s, n))p(n) (10)

where δfi(s, n) = fi(s, n)− 〈fi(s, n)〉n. Supplementary Informa-
tion S2 shows in detail how Covij(r|s) is tuned to s.

4.1.2 Exponential family distribution and suf-
ficient statistics

We assume the response distribution conditioned on the relevant
stimulus (but not on nuisance variables) is approximately a mem-
ber of the exponential family with nonlinear sufficient statistics,

p(r|s) = b(r) exp(H(s) ·R(r)−A(s)) (11)

where R(r) is a vector of sufficient statistics for the natural pa-
rameter H(s), b(r) is the base measure, and A(s) is the log-
partition function. The sufficient statistics contain all of the in-
formation in the population response, and all other tuned statis-
tics may be derived from them.

Estimation and inference are closely connected in the expo-
nential family. In Supplemental Material S1.2, we show that the
optimal local estimation can be achieved by linearly decoding
the nonlinear sufficient statistics, ŝ = wTR(r) + c. The decod-
ing weights minimize the variance of an unbiased decoder,

wopt =
H ′(s)

J
=

Γ−1F ′

F ′>Γ−1F ′
(12)

where F ′ = ∂ 〈R(r)|s〉 /∂s is the sensitivity of the statistics to
changing inputs, and Γ = Cov(R|s) is the stimulus-conditioned
response covariance which generally includes nuisance correla-
tions (Section 2.2).

The variance of this unbiased local estimator from the neu-
ral responses is lower-bounded by the inverse Fisher informa-
tion. For exponential family distributions with nonlinear suffi-
cient statistics R(r), the Fisher information is [23] (Supplemental
Material S1.1)

J = F ′>Γ−1F ′ (13)

4.1.3 Quadratic encoding

In a quadratic coding model, the distribution of neural responses
is described by the exponential family with up to quadratic suffi-
cient statistics, R(r) = {ri, rirj} for i, j ∈ {1, . . . , N}. A familiar
example is the Gaussian distribution with stimulus-dependent co-
variance Σ(s). In order to demonstrate the coding properties of
a purely nonlinear neural code, here we assume that the mean
tuning curve f(s) and the stimulus-conditional covariances Σij(s)
depend smoothly on the stimulus. We can quantify the informa-
tion content of the neural population using Equation 13.

4.1.4 Cubic encoding

In our cubic coding model, the distribution of neural responses
is described by the exponential family with up to cubic sufficient
statistics, R(r) = {ri, rirj , rirjrk} for i, j, k ∈ {1, . . . , N}.

We approximate a three-neuron cubic code first using purely
cubic components, and we then apply a stimulus-dependent affine
transformation to include linear and quadratic statistics. The
pure cubic code is used for a vector z with sufficient statistics

zizjzk (and a base measure e−‖z‖
4

to ensure the distribution is
bounded and normalizable).

p(z|s) = 1
Z

exp
(
−‖z‖4 + γs zizjzk

)
(14)

We approximate this distribution by a mixture of four Gaussians.
The mixture is chosen to reproduce the tetrahedral symmetry of

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332353doi: bioRxiv preprint 

https://doi.org/10.1101/332353
http://creativecommons.org/licenses/by/4.0/


the cubic distribution (Supplementary Figure 6), which allows
the cubic statistics of responses to be stimulus dependent, leaving
stimulus-independent quadratic and linear statistics.

To generate larger multivariate cubic codes for Figure (6), for
simplicity we assume the pure cubic terms only couple disjoint
triplets of variables, and sample independently from an approxi-
mately cubic distribution for each triplet. To convert this purely
cubic distribution to a distribution with linear and quadratic in-
formation, we shift and scale these cubic samples z in a manner
dependent on s:

r = f(s) + Σ1/2(s)z (15)

where f(s) and Σ(s) describes the desired signal-dependent mean
and covariance (see Supplemental Material S4).

4.2 Nonlinear choice correlations

4.2.1 Estimating choice correlation

The nonlinear choice correlation between the stimulus estimate
ŝ = w>R+ c and one nonlinear function Rk (the kth element of
the vector R) of recorded neural activity r is

CRk = Corr(Rk(r), ŝ|s) =
(Γw)k√

Γkkw>Γw
(16)

where w>Γw = σ2
ŝ is the estimator variance.

To compute this quantity from neural responses to stimuli,
we need to condition neural responses and behavior data on the
same signal s, or on the same total input (s,n) if we want to iso-
late the contribution of purely internal noise rather than nuisance
variation (Supplemental Material S8). We combine choice corre-
lations calculated under different stimulus conditions by balanced
z-scoring [66].

4.2.2 Optimality test

Locally optimal linear estimator weights for decoding statistics
R are given by linear regression as w ∝ Γ−1F ′. Substituting
these weights into (16), the optimal nonlinear choice correlation
becomes

Copt
Rk(r) =

(
ΓΓ−1F ′

)
k√

ΓkkF
′>Γ−1F ′

=
F ′k√
Γkk

σŝ =

√
JRk(r)

J
(17)

where JRk(r) = F ′k/
√

Γkk is the linear Fisher Information in
Rk(r).

For fine-scale discriminations, optimal choice correlations can
be written in many equivalent ways:

Copt
Rk

=
d′Rk

d′
=

θ

θRk

=

√
σ2
ŝ

σ2
ŝ,Rk

=

√
JRk

J
(18)

where d′ = ∆F
σ

is the discriminability. These ways reflect the
simple relationships between four quantities often used to rep-
resent information: d-prime is proportional to the square root
of the Fisher information d′ = ∆s

√
J [67]; estimator standard

deviation is bounded by the inverse square root of the Fisher in-
formation, σŝ ≥ 1√

J
; discrimination threshold is proportional to

the estimator standard deviation, θ =
√
σ2
ŝ . In different experi-

ments (binary discrimination, continuous estimation), it can be
most natural to express this relationship in different measured
quantities.

In our simulations with binary choices for fine discrimination,
we calculate the optimal nonlinear choice correlation using d-
prime [68]. d′Rk

is estimated from neural responses generated by
stimuli s± = s0 ±∆s/2 near a reference stimulus s0:

d′Rk
=

∆Fk
σRk

=
Fk(s+)− Fk(s−)√

1
2

(
σ2
Rk|s+

+ σ2
Rk|s−

) (19)

The discriminability for an decoded neural population is esti-
mated from the unbiased decoder output’s standard deviation,
d′ = 1/σŝref .

4.2.3 Nonlinear choice correlation to analyze
an unknown nonlinearity

In Figure 4, we generated neural responses given sufficient
statistics that are polynomials up to third order, R(r) =
{ri, rirj , rirjrk} (Methods 4.1.4). In contrast, our model brain
decodes the stimulus using a cascade of linear-nonlinear trans-
formations, with Rectified Linear Units (ReLU(x) = max(0, x))
for the nonlinear activation functions. We used a fully-connected
ReLU network with two hidden layers and 30 units per hidden
layer,

r(1) = r (20)

r(2) = ReLU(W (1)r(1) + b(1)) (21)

r(3) = ReLU(W (2)r(2) + b(2)) (22)

ŝ = v · r(3) + b(3) (23)

We trained the network weights and biases with backpropagation
to estimate stimuli near a reference s0 based on 20000 training
pairs (r, s) generated by the cubic encoding model. This trained
neural network extracted 91% of the information available to an
optimal decoder.

4.3 Information-limiting correlations

Only specific correlated fluctuations limit the information con-
tent of large neural populations [27]. These fluctuations can ul-
timately be referred back to the stimulus as r ∼ p(r|s + ds),
where ds is zero mean noise, whose variance 1/J∞ determines
the asymptotic variance of any stimulus estimator. These
information-limiting correlations for nonlinear computation can
be characterized by the covariance of the sufficient statistics,
Γ = Cov(R|s) conditioned on s; the information-limiting compo-
nent arises specifically from the signal covariance Cov(F (s)|s).
Since the signal for local estimation of stimuli near a reference
s0 is F ′(s) = d

ds
〈R(r)|s〉, the information-limiting component of

the covariance is proportional to F ′F ′
>

:

Γ = Γ0 + 1/J∞F (s)′F (s)′
>

(24)

Here Γ0 is any covariance of R that does not limit information in
large populations. Substituting this expression into (13) for the
nonlinear Fisher Information, we obtain

J = F ′Γ−1F ′ =
1

1/J∞ + 1/J0
(25)

where J0 = F ′Γ−1
0 F ′ is the nonlinear Fisher Information allowed

by Γ0. When the population size grows, the extensive informa-
tion term J0 grows proportionally, so the output information will
asymptote to J∞.

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332353doi: bioRxiv preprint 

https://doi.org/10.1101/332353
http://creativecommons.org/licenses/by/4.0/


Author contributions

XP conceived the theoretical framework. XP and QY performed
the theoretical analyses. QY performed the simulations. QY and
XP wrote the manuscript.

Acknowledgements

The authors thank Jeff Beck, Valentin Dragoi, Arun Parajuli,
Andreas S. Tolias, Edgar Walker, R. James Cotton and Alex
Pouget for helpful conversations. This work was supported by
NSF CAREER grant 1552868 and NeuroNex grant 1707400 to
XP.

References

[1] Adelson EH, Bergen JR (1985) Spatiotemporal en-
ergy models for the perception of motion. Josa a
2: 284–299.

[2] DiCarlo JJ, Cox DD (2007) Untangling invariant
object recognition. Trends in cognitive sciences
11: 333–341.

[3] Rust NC, DiCarlo JJ (2010) Selectivity and toler-
ance (invariance) both increase as visual informa-
tion propagates from cortical area v4 to it. Journal
of Neuroscience 30: 12978–12995.

[4] Pagan M, Urban LS, Wohl MP, Rust NC (2013)
Signals in inferotemporal and perirhinal cortex
suggest an untangling of visual target information.
Nature neuroscience 16: 1132.

[5] Meyers EM, Borzello M, Freiwald WA, Tsao D
(2015) Intelligent information loss: the coding of
facial identity, head pose, and non-face informa-
tion in the macaque face patch system. Journal of
Neuroscience 35: 7069–7081.

[6] Yamins DL, Hong H, Cadieu CF, Solomon
EA, Seibert D, DiCarlo JJ (2014) Performance-
optimized hierarchical models predict neural re-
sponses in higher visual cortex. Proceedings of the
National Academy of Sciences 111: 8619–8624.

[7] Ecker AS, Berens P, Keliris GA, Bethge M, Lo-
gothetis NK, Tolias AS (2010) Decorrelated neu-
ronal firing in cortical microcircuits. science 327:
584–587.

[8] Ecker AS, Berens P, Cotton RJ, Subramaniyan M,
Denfield GH, Cadwell CR, Smirnakis SM, et al.

(2014) State dependence of noise correlations in
macaque primary visual cortex. Neuron 82: 235–
248.

[9] Denfield GH, Ecker AS, Shinn TJ, Bethge M,
Tolias AS (2017) Attentional fluctuations induce
shared variability in macaque primary visual cor-
tex. bioRxiv : 189282.

[10] Ecker AS, Denfield GH, Bethge M, Tolias AS
(2016) On the structure of neuronal population ac-
tivity under fluctuations in attentional state. Jour-
nal of Neuroscience 36: 1775–1789.

[11] Jazayeri M, Movshon JA (2006) Optimal repre-
sentation of sensory information by neural popu-
lations. Nature neuroscience 9: 690–696.

[12] Bondy AG, Cumming BG (2016) Feedback dy-
namics determine the structure of spike-count cor-
relation in visual cortex. bioRxiv : 086256.

[13] Averbeck BB, Latham PE, Pouget A (2006) Neu-
ral correlations, population coding and computa-
tion. Nature reviews neuroscience 7: 358.

[14] Cohen MR, Kohn A (2011) Measuring and in-
terpreting neuronal correlations. Nature neuro-
science 14: 811.

[15] Kohn A, Coen-Cagli R, Kanitscheider I, Pouget A
(2016) Correlations and neuronal population in-
formation. Annual review of neuroscience 39.

[16] Ecker AS, Berens P, Tolias AS, Bethge M (2011)
The effect of noise correlations in populations of
diversely tuned neurons. Journal of Neuroscience
31: 14272–14283.

[17] Abbott LF, Dayan P (1999) The effect of corre-
lated variability on the accuracy of a population
code. Neural computation 11: 91–101.

[18] Cohen MR, Maunsell JH (2009) Attention im-
proves performance primarily by reducing in-
terneuronal correlations. Nature neuroscience 12:
1594.

[19] Cohen MR, Newsome WT (2009) Estimates of the
contribution of single neurons to perception de-
pend on timescale and noise correlation. Journal
of Neuroscience 29: 6635–6648.

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332353doi: bioRxiv preprint 

https://doi.org/10.1101/332353
http://creativecommons.org/licenses/by/4.0/


[20] Gawne TJ, Richmond BJ (1993) How independent
are the messages carried by adjacent inferior tem-
poral cortical neurons? Journal of Neuroscience
13: 2758–2771.

[21] Ralf H, Bethge M (2010) Evaluating neuronal
codes for inference using fisher information. In:
Advances in neural information processing sys-
tems. pp. 1993–2001.

[22] Burge J, Jaini P (2017) Accuracy maximization
analysis for sensory-perceptual tasks: Computa-
tional improvements, filter robustness, and coding
advantages for scaled additive noise. PLoS com-
putational biology 13: e1005281.

[23] Beck J, Bejjanki VR, Pouget A (2011) Insights
from a simple expression for linear fisher informa-
tion in a recurrently connected population of spik-
ing neurons. Neural computation 23: 1484–1502.

[24] Paradiso M (1988) A theory for the use of visual
orientation information which exploits the colum-
nar structure of striate cortex. Biological cyber-
netics 58: 35–49.

[25] Zohary E, Shadlen MN, Newsome WT (1994) Cor-
related neuronal discharge rate and its implica-
tions for psychophysical performance. Nature 370:
140–143.

[26] Sompolinsky H, Yoon H, Kang K, Shamir M
(2001) Population coding in neuronal systems
with correlated noise. Physical Review E 64:
051904.

[27] Moreno-Bote R, Beck J, Kanitscheider I, Pitkow
X, Latham P, Pouget A (2014) Information-
limiting correlations. Nature neuroscience 17:
1410–1417.

[28] Pitkow X, Liu S, Angelaki DE, DeAngelis GC,
Pouget A (2015) How can single sensory neurons
predict behavior? Neuron 87: 411–423.

[29] Shamir M, Sompolinsky H (2004) Nonlinear popu-
lation codes. Neural computation 16: 1105–1136.

[30] Shamir M, Sompolinsky H (2006) Implications of
neuronal diversity on population coding. Neural
Computation 18: 1951–1986.

[31] Pagan M, Simoncelli EP, Rust NC (2016) Neural
quadratic discriminant analysis: Nonlinear decod-
ing with v1-like computation. Neural computation
28: 2291–2319.

[32] Gutnisky DA, Dragoi V (2008) Adaptive coding of
visual information in neural populations. Nature
452: 220.

[33] Kohn A, Smith MA (2005) Stimulus dependence
of neuronal correlation in primary visual cortex
of the macaque. The Journal of neuroscience 25:
3661–3673.

[34] Averbeck BB, Lee D (2006) Effects of noise cor-
relations on information encoding and decoding.
Journal of Neurophysiology 95: 3633–3644.

[35] Ohiorhenuan IE, Mechler F, Purpura KP, Schmid
AM, Hu Q, Victor JD (2010) Sparse coding and
high-order correlations in fine-scale cortical net-
works. Nature 466: 617.

[36] Ponce-Alvarez A, Thiele A, Albright TD, Stoner
GR, Deco G (2013) Stimulus-dependent variabil-
ity and noise correlations in cortical mt neurons.
Proceedings of the National Academy of Sciences
110: 13162–13167.

[37] Rigotti M, Barak O, Warden MR, Wang XJ, Daw
ND, Miller EK, Fusi S (2013) The importance of
mixed selectivity in complex cognitive tasks. Na-
ture 497: 585–590.

[38] Pagan M, Rust NC (2014) Dynamic target match
signals in perirhinal cortex can be explained by
instantaneous computations that act on dynamic
input from inferotemporal cortex. The Journal of
Neuroscience 34: 11067–11084.

[39] Britten KH, Newsome WT, Shadlen MN, Cele-
brini S, Movshon JA (1996) A relationship be-
tween behavioral choice and the visual responses
of neurons in macaque mt. Visual neuroscience 13:
87–100.

[40] Shadlen MN, Britten KH, Newsome WT,
Movshon JA (1996) A computational analysis of
the relationship between neuronal and behavioral
responses to visual motion. Journal of Neuro-
science 16: 1486–1510.

[41] Dodd JV, Krug K, Cumming BG, Parker AJ
(2001) Perceptually bistable three-dimensional

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332353doi: bioRxiv preprint 

https://doi.org/10.1101/332353
http://creativecommons.org/licenses/by/4.0/


figures evoke high choice probabilities in cortical
area mt. Journal of Neuroscience 21: 4809–4821.

[42] Krajbich I, Armel C, Rangel A (2010) Visual fix-
ations and the computation and comparison of
value in simple choice. Nature neuroscience 13:
1292.

[43] de Lafuente V, Romo R (2005) Neuronal correlates
of subjective sensory experience. Nature neuro-
science 8: 1698.

[44] Treue S, Trujillo JCM (1999) Feature-based atten-
tion influences motion processing gain in macaque
visual cortex. Nature 399: 575.

[45] Roitman JD, Shadlen MN (2002) Response of
neurons in the lateral intraparietal area during a
combined visual discrimination reaction time task.
Journal of neuroscience 22: 9475–9489.

[46] Gu Y, Angelaki DE, DeAngelis GC (2008) Neu-
ral correlates of multisensory cue integration in
macaque mstd. Nature neuroscience 11: 1201.

[47] Purushothaman G, Bradley DC (2005) Neural
population code for fine perceptual decisions in
area mt. Nature neuroscience 8: 99.

[48] Haefner RM, Gerwinn S, Macke JH, Bethge M
(2013) Inferring decoding strategies from choice
probabilities in the presence of correlated variabil-
ity. Nature neuroscience 16: 235–242.

[49] Britten KH, Newsome WT, Shadlen MN, Cele-
brini S, Movshon JA (1996) A relationship be-
tween behavioral choice and the visual responses
of neurons in macaque mt. Visual Neuroscience
13: 87-100.

[50] Nienborg H, Cumming BG (2007) Psychophysi-
cally measured task strategy for disparity discrim-
ination is reflected in v2 neurons. Nature neuro-
science 10: 1608.

[51] Hornik K (1991) Approximation capabilities of
multilayer feedforward networks. Neural networks
4: 251–257.

[52] Poggio T, Koch C (1987) Synapses that compute
motion. Scientific American 256: 46–53.

[53] Ma WJ, Navalpakkam V, Beck JM, Van Den Berg
R, Pouget A (2011) Behavior and neural basis of

near-optimal visual search. Nature neuroscience
14: 783.

[54] Davis KA, Ramachandran R, May BJ (2003) Au-
ditory processing of spectral cues for sound local-
ization in the inferior colliculus. Journal of the As-
sociation for Research in Otolaryngology 4: 148–
163.

[55] Saez A, Rigotti M, Ostojic S, Fusi S, Salzman
C (2015) Abstract context representations in pri-
mate amygdala and prefrontal cortex. Neuron 87:
869–881.

[56] Cohen MR, Newsome WT (2008) Context-
dependent changes in functional circuitry in visual
area mt. Neuron 60: 162–173.

[57] Lange RD, Haefner RM (2016) Inferring the
brain9s internal model from sensory responses in
a probabilistic inference framework. bioRxiv :
081661.

[58] Mante V, Sussillo D, Shenoy KV, Newsome WT
(2013) Context-dependent computation by recur-
rent dynamics in prefrontal cortex. Nature 503:
78-84.

[59] Yang Q, Pitkow X (2015) Robust nonlinear neural
codes. Cosyne abstract .

[60] Haefner RM, Berkes P, Fiser J (2016) Perceptual
decision-making as probabilistic inference by neu-
ral sampling. Neuron 90: 649–660.

[61] Ma WJ, Beck JM, Latham PE, Pouget A (2006)
Bayesian inference with probabilistic population
codes. Nature neuroscience 9: 1432.

[62] Graf AB, Kohn A, Jazayeri M, Movshon JA (2011)
Decoding the activity of neuronal populations in
macaque primary visual cortex. Nature neuro-
science 14: 239.

[63] Babadi B, Sompolinsky H (2014) Sparseness and
expansion in sensory representations. Neuron 83:
1213–1226.

[64] Maynard E, Hatsopoulos N, Ojakangas C, Acuna
B, Sanes J, Normann R, Donoghue J (1999)
Neuronal interactions improve cortical population
coding of movement direction. Journal of Neuro-
science 19: 8083–8093.

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332353doi: bioRxiv preprint 

https://doi.org/10.1101/332353
http://creativecommons.org/licenses/by/4.0/


[65] Kanitscheider I, Coen-Cagli R, Kohn A, Pouget
A (2015) Measuring fisher information accurately
in correlated neural populations. PLoS computa-
tional biology 11: e1004218.

[66] Kang I, Maunsell JH (2012) Potential confounds
in estimating trial-to-trial correlations between
neuronal response and behavior using choice prob-
abilities. Journal of neurophysiology 108: 3403–
3415.

[67] Berens P, Ecker AS, Gerwinn S, Tolias AS, Bethge
M (2011) Reassessing optimal neural population
codes with neurometric functions. Proceedings
of the National Academy of Sciences 108: 4423–
4428.

[68] Green DM, Swets JA (1966) Signal detection the-
ory and psychophysics. John Wiley.

[69] Bethge M, Rotermund D, Pawelzik K (2002) Op-
timal short-term population coding: when fisher
information fails. Neural computation 14: 2317–
2351.

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332353doi: bioRxiv preprint 

https://doi.org/10.1101/332353
http://creativecommons.org/licenses/by/4.0/


Supplemental material

S1 Exponential family distributions

For a stimulus s and a response r, the conditional prob-
ability is a member of the exponential family when

p(r|s) = b(r) exp
(
H(s)>R(r)−A(s)

)
(26)

where H(s) are the natural parameters, R(r) are the
sufficient statistics, A(s) and b(r) are the log nor-
malizer and base measure. The statistics R(r) are
called sufficient because they contain all the informa-
tion needed to estimate the stimulus s.

S1.1 Fisher information

One measure of information content that a population
response contains about a stimulus is the Fisher infor-
mation J(s) [16, 24–27, 29]. The Fisher information is
given by

J = −
〈
∂2

∂s2
log p(r|s)

〉
p(r|s)

(27)

=

〈(
∂

∂s
log p(r|s)

)2
〉
p(r|s)

(28)

For distributions p(r|s) in the exponential family with
sufficient statistics R(r), we can compute these quan-
tities analytically. We denote the mean of the sufficient
statistics as F (s) = 〈R(r)|s〉. This mean 〈R|s〉 can be
obtained by differentiating A(s) by the natural param-
eters H(s),

F =
∂A(s)

∂H(s)
(29)

Equation 29 can give us the first and second derivatives
of A(s) over s.

A′ =
∑
i

∂A

∂Hi

dHi

ds
= H ′>F (30)

A′′ = H ′′>F +H ′>F ′ (31)

Thus we can compute two definitions of Fisher infor-
mation.

J = −
〈
∂2

∂s2
logP (r|s)

〉
P (r|s)

(32)

= A′′ −H ′′>F (33)

= H ′>F ′ (34)

and

J =

〈(
∂

∂s
logP (r|s)

)2
〉
P (r|s)

(35)

= H ′>(〈RR>〉 − FF>)H ′ (36)

= H ′>ΓH ′ (37)

where Γ = Cov[R(r)|s].
Since the two definition are equivalent, we have

H ′ = Γ−1F ′ (38)

Substituting Equation 38 into Equation 37, we find the
Fisher Information for the exponential family [23]

J = F ′>Γ−1F ′ (39)

S1.2 Estimation in the exponential family

Again assuming responses come from this distribution,
we want to compute the maximum likelihood stimulus,
ŝ, near a reference stimulus s0:

ŝ = argmax
s

p(r|s) (40)

= argmax
s

log p(r|s) (41)

= argmax
s

H(s)>R(r)−A(s) (42)

A Taylor expansion around the reference yields

H(s)>R(r)−A(s)

≈ [H>R−A]

+[H ′>R−A′](s− s0)

+1
2(s− s0)>[H ′′>R−A′′](s− s0) + · · ·

(43)

where all functions and derivatives are evaluated at s0.
We find the maximum by differentiating with respect
to s and setting the result equal to zero:

0 = [H ′>R−A′] + (s− s0)[H ′′>R−A′′] (44)

The solution is

s = s0 −
H ′>R−A′

H ′′>R−A′′
(45)

Since r is a random quantity, we can express R as
a mean and a deviation away from that mean: R =
〈R|s0〉 + δR = F + δR. In this case, H ′′>R − A′′ =
H ′′>F−A′′+H ′′>δR, where the mean term is precisely
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the negative Fisher Information −J(s0). If the trial-to-
trial fluctuations in the uncertainty are small relative
to the average uncertainty then this Fisher term will
dominate. Then we have

s = w>R+ c (46)

where

w =
H ′

J
=

Γ−1F ′

F ′>Γ−1F ′
(47)

and where we used the results from Equations 13 and
38, with Γ = Cov(R|s0) and F = 〈R|s0〉. Thus, in this
limit, the optimal estimator for s is a linear decoding
of the sufficient statistics R(r).

S2 Orientation estimation task
with varying spatial phase

In Figure 2B, the subject’s task is to estimate orienta-
tion s near a reference s0, based on images G of Gabor
patterns given by

G(x|s, n) = e−‖x‖
2

cos (k · x+ n) (48)

where k = κ(cos s, sin s). Here the target s is the ori-
entation of the pattern, n is a nuisance variable re-
flecting the spatial phase, x is the pixel location in the
image, and k is a spatial frequency vector with ampli-
tude κ = ‖k‖. We assume the spatial receptive field of
simple cell j in primary visual cortex is also described
by a Gabor function

RFj(x, sj , nj) = e−‖x‖
2

cos (kj · x+ nj) (49)

kj = κ(cos sj , sin sj) (50)

where each neuron has a preferred orientation sj , spa-
tial phase nj , and spatial frequency kj . Here for sim-
plicity we assume that all neurons’ preferred spatial
frequencies have the same amplitude κ that matches
the input image.

We model the mean neuronal responses by the over-
lap between the image and their linear receptive field.
This overlap determines the tuning curve of each neu-
ron:

fj(s, n) =

∫
dxG(x|s, n)RFj(x, sj , nj)

=
[
e−

1
4
κ2 cos (s−sj) cos (n+ nj)

+ e+ 1
4
κ2 cos (s−sj) cos (n− nj)

] π
4
e−

1
4
κ2

(51)

This expression can be written in the form:

fj(s, n) = Aj(s) cos (n+ ψj(s)) (52)

using the stimulus-dependent response amplitude

Aj(s) = C
√

2 cosh 2βj(s) + 2 cos 2nj (53)

and phase

ψj(s) = nj − αj(s) (54)

where we define the constants

C =
π

4
exp

(
−1

4
κ2

)
(55)

βj(s) =
1

4
κ2 cos(s− sj) (56)

αj(s) = tan−1 exp (βj(s)) sin 2nj
exp (−βj(s)) + exp (βj(s)) cos 2nj

(57)

Equation 52 reveals that the mean response of each
neuron traces out a sinusoidal oscillation in n, where
the amplitude and phase depend on s and the spe-
cific neuron j. The mean tuning for each pair of neu-
rons therefore traces out an ellipse as a function of
the nuisance variable, the input’s spatial phase. When
we average over the ellipse generated by the nuisance
variable n, the mean tuning to s is abolished — but
the response covariances (nuisance correlations) re-
main tuned to s.

Assuming each neuron’s response variability is drawn
independently from a standard Gaussian N (0, 1), we
can write the response distribution as

P (r|n, s) = N (f(s, n), I) (58)

If the spatial phase n were fixed and known, the brain
could estimate the orientation just from the mean tun-
ing of the neural responses. However, if the spatial
phase is unknown and varies between stimulus presen-
tations uniformly from 0 to 2π, the mean tuning f(s)
can be expressed as

fj(s) = 〈rj |s〉 =

∫
rj p(rj |s)drj (59)

=

∫∫
rj p(rj |s, n) p(n) drj dn (60)

=

∫
fj(s, n)p(n) dn (61)

=
1

2π

∫
fj(s, n) dn (62)

=
Aj(s)

2π

∫ 2π

0
cos (n+ ψj(s)) dn = 0

(63)
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This shows that there is no signal in the mean re-
sponses.

However, the brain can perform quadratic computa-
tions to eliminate the nuisance variable. We can de-
fine Covij [r|s, n] as the neural covariance (noise cor-
relations) when everything in the image is fixed, and
Covij [r|s] as the neural covariance when the nuisance
is unknown and free to vary (nuisance correlations).
Then Covij [r|s] is

Covij [r|s] = 〈(ri − fi(s))(rj − fj(s))|s〉 (64)

= 〈rirj |s〉 =

∫∫
rirj p(r|s)dridrj (65)

=

∫
dn

∫∫
rirj p(r|s, n)p(n)dridrj (66)

=

∫
dn p(n)〈rirj |s, n〉 (67)

=

∫
dn p(n) (Covij [r|s, n] + fi(s, n)fj(s, n))

(68)

=
1

2π
δij +

1

2π

∫
dnfi(s, n)fj(s, n) (69)

=
1

2π
δij +

1

2π
Dij(s) (70)

where Dij(s) is given by

Dij(s) =

∫
dnfi(s, n)fj(s, n)

=

∫
dnAi(s) cos (n+ ψi(s))Aj(s) cos (n+ ψj(s))

= π cos(ψi(s)− ψj(s))Ai(s)Aj(s)
(71)

Here when we compute Equation 71, we used the
trigonometric identity: 2 cos(x) cos(y) = cos(x + y) +
cos(x− y), and

∫
cos(2n+ ψi + ψj)dn = 0.

This demonstrates that the neural covariance
Covij [r|s] depends on the orientation s. While lin-
ear computation is useless for estimating orientation
since the mean responses are untuned (59), quadratic
(or higher-order) nonlinear computations can be used
to estimate the orientation.

S3 Quadratic coding model

In a purely quadratic coding model (no linear infor-
mation), the distribution of neural responses is de-
scribed by the exponential family with quadratic suf-
ficient statistics, p(r|s) ∼ exp [H(s)>R(r)] where

R(r) = (. . . , rirj , . . .). A familiar example is a Gaus-
sian distribution with stimulus-dependent covariance:
p(r|s) = N(f ,Σ(s)).

As a concrete example we construct a covariance that
rotates with stimulus s. Any covariance matrix needs
to be positive semidefinite. We build Σ(s) by setting
the eigenvalues to be positive and s-independent and
eigenvectors to form an orthogonal basis that rotates
with s:

Σ(s) = V (s)ΛV (s)> (72)

where V (s) = expAs is a rotation matrix in which
A = −A> is a real antisymmetric matrix with pure
imaginary eigenvalues, and Λ is a diagonal matrix com-
posed of all positive eigenvalues.

To calculate the Fisher Information (Equation 13),
we need to first calculate the derivative of the mean
F ′ = ∂

∂s 〈R(r)|s〉 and covariance Γ = Cov[R(r)|s] of
the quadratic sufficient statistics.

Because the mean of r is not dependent on the stim-
ulus in this example, we can compute F ′ij = 〈rirj |s〉′ =
Σ′ij(s), where Σ′ij(s) is the derivative of the covariance
of r,

Σ′(s) = UeΩs(ΩX −XΩ)e−ΩsU> (73)

Here Ω is a diagonal matrix of eigenvalues for A, U
is an orthogonal matrix of the eigenvectors of A, and
X = U>ΛU .

The elements in Γ can be expressed as Γij,kn =
〈rirjrkrn|s〉 − 〈rirj |s〉 〈rkrn|s〉. We can use the follow-
ing identity for a Gaussian to compute this fourth-order
quantity:

〈rirjrkrn|s〉 = 〈rirj |s〉 〈rkrn|s〉+ 〈rjrn|s〉 〈rirn|s〉
+ 〈rirn|s〉 〈rjrk|s〉

(74)

where

〈rirj |s〉 = Σij + fifj (75)

Substitution of the response covariance (Equation 72)
into Equation 74 allows us to calculate the covariance
Γ of the quadratic sufficient statistics, and thereby to
estimate the stimulus and Fisher information for this
quadratic code.

S4 Cubic codes

In Figure 6 we assume the brain encodes the stim-
ulus using a cubic code. A simple cubic code in
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z = (zi, zj , zk) ∈ R3 can be written as

p(z|s) = 1
Z exp

(
γ(s)zizjzk − |z|4

)
(76)

where we include the base measure e−|z|
4

to ensure
normalizability (Figure 6A).

For mathematical convenience, we approximate this
code by a mixture of Gaussians.

p(z|s) ≈
4∑

a=1

p(a)p(z|a) (77)

=
∑
a

1

4
N (z|µa,Σa) (78)

where
µa =

s√
1 + s2

va (79)

and

Σa =
1

(1 + s2)2
(I + s2vav

>
a ) (80)

The vectors va reflect the four corners of the tetrahe-
dron, va,i = ±1, to match the tetrahedral symmetry of
the pure cubic code (Equation 76, Figure 6). To sample
from this distribution, we randomly choose a compo-
nent a and then sample from the gaussian N (z|µa,Σa)
conditioned on that component.

This distribution has zero mean and identity covari-
ance but a nontrivial skewness tensor, and qualita-
tively matches the corresponding distribution for the
true exponential family distribution with cubic suffi-
cient statistics (Figure 6).

Exponential family

A B C D

Mixture of gaussians

Figure 6: Multivariate skewed distributions. (A) Iso-
probability contour of an exponential family distribu-
tion with cubic statistics in three dimensions, drawn
from p(z|s) ∝ exp (sz1z2z3 − ‖z‖4). (B) Isoprobability
contour for a mixture of four gaussians (Eq 78). (C,D)
Samples drawn from the mixture form, with s = 1, 2.

For simplicity, we consider pure cubic codes with
non-overlapping cliques of three variables.

p(z|s) =
∏
α

p(zα|s) =
∏
α

p(zα1 , zα2 , zα3 |s) (81)

To convert this purely cubic distribution into a dis-
tribution with linear and quadratic information as well,

we simply shift and scale the distribution in a manner
dependent on s:

r = f(s) + Σ1/2(s) zΣ1/2(s) (82)

z ∼ 1

Z(s)
exp

∑
ijk

γijk(s)zizjzk − |z|4
 (83)

These affine transformations can be incorporated di-
rectly into each component of the mixture of gaussians,

p(r|a) = N (r|f(s)+ma(s),Σ
1/2(s)Sa(s)Σ

1/2(s) (84)

Note that the linear and quadratic information terms
are independent of the component a.

S5 Using nonlinear choice correla-
tion to analyze unknown nonlin-
earities

The true nonlinearity that the brain uses to estimate
the stimulus is unknown. Thus a crucial question in our
decoding analysis is, which nonlinearities to consider?
One reasonable set is polynomials in r, i.e. a Taylor
series expansion of the neural nonlinearities, Ψ(r) =
(ri, rirj , rirjrk, ...).

The locally optimal decoder is a weighted sum of the
sufficient statistics R(r) (Equation 46):

ŝopt = w ·R(r). (85)

However, the brain might choose a different nonlinear
basis g(r):

ŝbrain = v · g(r). (86)

As long as the brain’s nonlinear function spans the
same function basis as the sufficient statistics, we can
still get all of the information about stimulus from neu-
ral population. This allows us to use choice correlation
between brain’s estimate ŝbrain and our analysis non-
linearity Ψ(r) to check the optimality condition (Equa-
tion 7).

In Figure 4, we assumed that the optimal nonlin-
ear basis function R is polynomial nonlinearity up to
third order, R(r) = (ri, rirj , rirjrk, ...). We used cubic
codes described in Methods 4.1.4 to generate neural re-
sponses for which R(r) are sufficient statistics for the
stimulus. In this simulation, 18 neuronal responses (six
cliques of size 3) were generated using cubic codes.

Our model brain decodes the stimulus using a cas-
cade of linear-nonlinear transformations, with Rectified
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Linear Units (ReLU(x) = max(0, x)) for the nonlinear
activation functions. We used a fully-connected ReLU
network with two hidden layers and 30 units per hidden
layer,

ŝbrain = v · r(3) + b(3) (87)

r(3) = ReLU(W (2)r(2) + b(2)) (88)

r(2) = ReLU(W (1)r(1) + b(1)) (89)

r(1) = r (90)

We trained the neural network with 20000 response
samples generated from a cubic code driven by stim-
uli near the reference s0. We optimized the estimation
performance for the neural network using backpropa-
gation to find weights {W (`)}, biases {b(`)}, and read-
out vector v that minimized the mean squared error.
Our trained neural network performed near-optimally,
extracting 91% of the Fisher information compared to
optimal decoding based on the true sufficient statistics.

Feigning ignorance of our simulated brain’s true de-
coder, we used mononomial nonlinearities Ψ(r) in our
the nonlinear choice correlation test (Equation 7). The
simulated choice correlations were calculated by Equa-
tion 5, where R(r) = Ψ(r) based on neural responses
driven by the reference stimulus s0, and the stimulus
estimate was ŝbrain. The optimal choice correlation is
computed using Equation 7, where

√
JΨ(r) = d′Ψ/∆s =

∆FΨ
∆s σΨ

, and
√
J ≈ 1/σŝbrain

. We computed ∆FΨ based
on neural population responses r+ and r− driven by
stimuli s+ = s0 ± ∆s/2. The change in mean was
∆FΨ = 〈Ψ(r+)〉 − 〈Ψ(r−)〉, and the average standard

deviation was σΨ =
√

1
2Var(Ψ(r+)) + 1

2Var(Ψ(r−)).

σ2
ŝbrain

is the variance of estimate of reference stim-
ulus s0 using the trained neural network. Based on
these quantities, Figure 4 shows that we can success-
fully identify that the brain is near-optimal.

S6 Information-limiting correla-
tions

Information-limiting correlations can ultimately be re-
ferred back to the stimulus, to appear as r ∼ p(r|s +
ds), where ds is zero mean noise with variance 1/J∞
which determines the uncertainty of stimulus. Apply-
ing the law of total covariance, we can decompose the
covariance of nonlinear statistics R(r) conditioned on

the stimulus into two parts:

Γ =Covr,ds(R(r)|s)
= 〈Covr(R(r)|s, ds)〉ds + Covds 〈R(r)|s, ds〉r

(91)

where 〈·〉p indicates an expectation value over the dis-
tribution p. The first term can be computed as follows,

〈Covr(R(r)|s, ds)〉ds = 〈Γ(s+ ds)〉ds (92)

≈
〈
Γ0 + dsΓ′

〉
ds

(93)

= Γ0 (94)

Here we denote the covariance of R(r) given s and
ds as Γ(s + ds). The second equality used a Taylor
expansion of Γ(s + ds) around s. The third equality
used the fact that the mean of ds is zero. Γ0 is the
covariance of R in the absence of information-limiting
correlations. The second term in Equation 91 can be
expressed as

Covds 〈R(r)|s, ds〉r (95)

= Covds(F (s+ ds)) (96)

≈ Covds(F (s) + dsF ′(s)) (97)

=
1

J∞
F ′(s)F ′(s)> (98)

Here we have written the mean of R(r) given s and ds
as F (s + ds). The second equality used a first-order
expansion of F (s + ds) around s. The third equality
used the fact that the variance of ds is 1/J∞.

Equation 91 can therefore be written as

Γ = Γ0 +
1

J∞
F (s)′F (s)′

>
(99)

which is a rank-one perturbation of the covariance Γ0.
To compute the nonlinear Fisher Information,

JR(r) = F ′>Γ−1F ′, we can use the Sherman-Morrison
lemma to compute Γ−1:

Γ−1 = Γ−1
0 −

Γ−1
0 F ′F ′>Γ−1

0

J∞ + F ′Γ−1
0 F ′>

(100)

Substituting these equations into the nonlinear Fisher
Information (Equation 13) and simplifying, we obtain

JR(r) =
1

1/J∞ + 1/J0
(101)

Here J0 = F ′>Γ−1
0 F ′ is the nonlinear Fisher Informa-

tion in the absence of information-limiting correlations.
When the population size grows, the term J0 grows
proportionally [16,29], so for large populations the out-
put information saturates at J∞.
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S7 Nonlinear choice correlation for
suboptimal decoding

A decoder that would be suboptimal for one pop-
ulation code could be near-optimal in the presence
of information-limiting noise. In this case, nonlinear
choice correlations can be decomposed into a sum of
two terms, one from the information-limiting compo-
nent and the other from the rest of the noise [28]:

CRk =
(Γw)k
σkσŝ

=
(Γ0w + 1

J∞
F ′F ′>w)k

σkσŝ
(102)

For unbiased decoding, w>F ′ = 1. Some manipulation
gives

CRk =
(Γ0w)k
Γ0kσ0ŝ

σ0ŝ

σŝ

Γ0k

Γk
+
F ′k
σk
σŝ

1/J∞
σ2
ŝ

(103)

where Γ0k = (Γ0)kk ≈ Γkk for small information-
limiting noise variance 1/J∞ � Γ0k (which nonetheless
can have a large effect on information despite the small
variance), and where σ0ŝ is the standard deviation of
the estimate produced by the same suboptimal decoder
w in the absence of information-limiting correlations,
i.e. when the covariance of the sufficient statistics is
Γ0. The variance of ŝ can itself be decomposed into
two terms as well:

σ2
ŝ = w>Γw = w>Γw +

1

J∞
w>F ′F ′>w

= σ2
0ŝ + 1/J∞

(104)

where we assume unbiased decoding, which implies
w>F ′ = 1. This expression allows us to represent the
ratio σ0ŝ

σŝ
as

σ0ŝ

σŝ
=

√
1− 1/J∞

σ2
ŝ

=
√

1− α (105)

with α = 1/J∞
σ2
ŝ

. Substituting these into (Eq 103) we

find that the choice correlation for a suboptimal de-
coder in the presence of information-limiting correla-
tions is a weighted sum of the choice correlations for
optimal and suboptimal decoding:

Csub
R ≈ αCopt

R + Csub
R

√
1− α (106)

Here Csub
R and Copt

R are, respectively, the choice corre-
lations for suboptimal decoding without information-
limiting noise (so Γ = Γ0), and choice correlations for
optimal decoding.

The slope α between choice correlations and those
predicted from optimal decoding is equal to the fraction
of estimator variance explained by information-limiting
noise. This slope therefore provides an estimate of the
efficiency of the brain’s decoding.

S8 Comparing choice correlations
from internal or external noise

The response covariance that drives fluctuations in
choices could arise from internal or external (nuisance)
variability, or both. Choice correlations predicted for
optimal decoding differ depending on whether we con-
dition on the nuisance variables or not. In the main
text, we described optimal choice correlations under
the distribution p(r|s). This includes variations caused
by external nuisance variables, which is sensible since
this is what the brain’s decoder must handle. However,
it is also potentially informative to examine how purely
internal variability correlates with choice, as this is of-
ten how choice correlations are assessed. In this sec-
tion, we derive the choice correlations driven by purely
internal noise, for a decoder that learned to remove
external nuisance variation as well.

For simplicity we assume that the nonlinear sufficient
statistics R(r) are linearly tuned to both the stimulus
s and a scalar nuisance variable n,

R(r) = F ′s+G′n+ η (107)

where F ′ and G′ characterize the sensitivity of R(r)
to stimulus s and nuisance n, and an internal noise
source η has zero mean with covariance H. We assume
the brain has a prior over the nuisance variation, p(n),
with zero mean and variance ξ. The total covariance
for internal and external fluctuations is then

Γ = H + ξG′G′> (108)

When we measure choice correlations while fixing
the nuisance variables in the experiment, we assume
the brain retains its decoding strategy accounting for
both internal noise and unknown nuisance variation,
and not the optimal decoding strategy when the nui-
sance is fixed and known. These decoding weights are

w =
Γ−1F ′

J1
(109)

where the denominator J1 = F ′>Γ−1F ′ is the Fisher
information about s when there is natural nuisance
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variation following p(n). For distributions in the expo-
nential family, this information saturates the Cramer-
Rao bound on an estimator’s variance, so that J1 =
1/σ2

ŝ . [69] The normalization by J1 ensures the decod-
ing is locally unbiased. These weights are used to esti-
mate the stimulus according to

ŝ = w>R(r) + b (110)

Choice correlations in this fixed-nuisance experiment
will be denoted by a lowercase c:

csub
Rk

= Corr(Rk, ŝ|s, n) (111)

We include the superscript csub as a reminder that
these choice correlations do not follow the optimal pat-
tern when the decoder is not matched to only the
purely internal variability, as here.

We can express these choice correlations as:

csub
Rk

=
Cov(Rk, ŝ|s, n)

σRk|s,nσŝ|s,n
(112)

The covariance between ŝ and R is

Cov(R, ŝ|s, n) = 〈Rŝ|s, n〉 (113)

= 〈RR>|s, n〉w (114)

=
HΓ−1F ′

J1
(115)

For the scalar nuisance variable we assume here, we
can use the Sherman-Morrison lemma to decompose
the inverse of the total covariance into a rank-one per-
turbation of the internal noise inverse covariance:

Γ−1 = (H + ξG′G′>)−1 (116)

= H−1 − H−1G′G′>H−1

1/ξ +G′>H−1G′
(117)

Substituting this inverse covariance into Equation 113,
we obtain

Cov(R, ŝ|s, n) (118)

=
1

J1
H(H−1 − H−1G′G′>H−1

1/ξ +G′H−1G′>
)F ′ (119)

=
1

J1
(F ′ − G′G′>H−1F ′

1/ξ +G′H−1G′>
) (120)

This last expression can be rewritten using elements of
the Fisher information matrix, whose inverse bounds

the covariance of any joint estimator of the signal and
nuisance variables, (ŝ, n̂):

J(s, n) =

[
J11 J12

J12 J22

]
=

[
F ′>H−1F ′ F ′>H−1G′

G′>H−1F ′ G′>H−1G′

]
(121)

With these substitutions, we have

Cov(R, ŝ|s, n) =
1

J1

(
F ′ − J12

1/ξ + J22
G′
)

(122)

The denominator of Equation 112 involves the vari-
ance of the sufficient statistics,

σ2
Rk|s,n = Hkk (123)

and the variance of the brain’s decoder,

σ2
ŝ = w>Hw (124)

= w>(Γ− ξG′G′>)w (125)

=
1

J1
− J2

12

ξJ2
1

1

(1/ξ + J22)2
(126)

where we used the following results:

w>G′G′>w =

(
F ′Γ−1

J1
G′
)2

(127)

=
1

J2
1

(
F ′H−1G′ − F

′Γ−1G′G′H−1G′

1/ξ +G′H−1G′

)2

(128)

=
1

J2
1

(
J12 −

J12J22

1/ξ + J22

)2

(129)

=
J2

12

ξ2J2
1

1

(1/ξ + J22)2
(130)

Combining the results from Equation 122, 126 and
123, we can compute Equation 112

csub
Rk

= Corr(Rk, ŝ|s, n) (131)

=
Cov(Rk, ŝ|s, n)

σRk|s,nσŝ|s,n
(132)

=

1
J1

(
F ′k −

J12
1/ξ+J22

G′k

)
√
Hkkσŝ|s,n

(133)

The optimal choice correlation when there is natural
nuisance variation (Eq 7) is given by

Copt
Rk

=

√
J1,Rk

J1
=

F ′k
σRk|s

√
J1

(134)

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332353doi: bioRxiv preprint 

https://doi.org/10.1101/332353
http://creativecommons.org/licenses/by/4.0/


where J1,Rk = F ′k/σRk|s is the Fisher Information in
Rk about s when there is natural nuisance variation,

and σRk|s =
√
Hkk + ξG′2k is the standard deviation of

the statistic Rk, again when there is natural nuisance
variation.

The choice correlations for the same decoder dif-
fer under experimental conditions with and without
nuisance variation: Copt

Rk
and csub

Rk
. We find that the

nuisance-conditioned choice correlations csub
Rk

relate to

the optimal nuisance-averaged choice correlations Copt
Rk

according to

csub
Rk

= βkC
opt
Rk
− γk (135)

where we have defined the following constants:

βk =
σRk|s

σRk|s,n

1√
J1σŝ|s,n

(136)

=

√
Hkk + ξG′2k

Hkk

1√
J1σŝ|s,n

(137)

=

√
Hkk + ξG′2k

Hkk

1√
1− J2

12
ξJ1

1
(1/ξ+J22)2

(138)

and

γk =
G′k√
Hkk

J12

(1/ξ + J2)J1σŝ|s,n
(139)

The slope βk and offset γk of the relationship be-
tween these two types of choice correlations (Equation
135) depends on the amount of nuisance variation com-
pared to internal noise and the suboptimality of the
brain’s decoding strategy. When the signal and nui-
sance can be disentangled, that is, estimated nearly
independently using the statistics R(r), then J12 is
small and the choice correlations driven purely by inter-
nal fluctuations closely match the optimal choice cor-
relations in the presence of nuisance variation (Figure
7A). In contrast, when nuisance variations remain par-
tialy confused with the signal, then J12 is large and
the choice correlations for fixed nuisance variables may
differ from the optimal pattern seen when allowing nui-
sance variables to change from trial to trial (Figure 7B).

For the simulations in Figure 7, we set the sufficient
statistics to be linear R(r) = r for simplicity. Neu-
ral responses were generated from a Gaussian distri-
bution with a stimulus-dependent mean and identity
covariance H = I: p(r|s, n) = N (F ′s + G′n, I). In
Figure 7A, F ′ and G′ are set to be orthogonal to en-
sure J12 = F ′>H−1G′ = 0. They are picked from the
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Figure 7: Comparing choice correlations caused by in-
ternal and external noise. (A) When estimates of nui-
sance variables are independent of estimates of task-
relevant signals, the optimal choice correlations driven
by internal noise, csub

Rk
, match the optimal pattern Copt

Rk
expected for optimal decoding under natural nuisance
variation (Equation 7). (B) When the signal and nui-
sance variables remain confounded by an estimator and
decoding is evaluated under different conditions than
those for which it was optimized, then the choice cor-
relations need not match this optimal prediction.

eigenvector of a symmetric matrix A>A, where A is a
matrix whose elements are generated from uniform dis-
tribution bounded by 0 and 1. In Figure 7B, each ele-
ment in F ′ andG′ is drawn from a uniform distribution
over the interval [0, 1]. We simulate 10000 responses of
a population with N = 50 neurons. The stimulus is
set to 0 and the nuisance is fixed to be 1. The brain’s
decoder assumes a Gaussian prior over the nuisance
variation with zero mean and variance ξ = 2. The de-
coding weights follow Equation 109, and the stimulus
is estimated using Equation 110. Choice correlations in
this fixed-nuisance experiment are computed by Equa-
tion 111 (vertical axis in Figure 7). The predicted op-
timal choice correlation is computed by Equation 134
(horizontal axis in Figure 7). In this setting, βk ≈ 1
when J12 = 0.

In this context, it is especially noteworthy that a
mismatch between choice correlations and the optimal
pattern might not indicate that the brain is subopti-
mal, but instead that the experimental task may not
match the natural tasks for which the brain could have
been optimized.
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