

1 **Title**

2 Ethylene signaling regulates natural variation in the abundance of antifungal acetylated
3 diferuloylsucroses and *Fusarium graminearum* resistance in maize seedling roots

4
5 **Authors**

6 Shaoqun Zhou^{1,2}, Ying K. Zhang^{1,3}, Karl A. Kremling⁴, Yezhang Ding⁵, John S. Bennett⁶, Justin
7 S. Bae¹, Dean K. Kim¹, Michael V. Kolomiets⁶, Eric A. Schmelz⁵, Frank C. Schroeder¹, Edward
8 S. Buckler^{4,9}, and Georg Jander^{1,*}

9
10 ¹Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853

11 ²Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY14853

12 ³Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853

13 ⁴Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY14853

14 ⁵Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA
15 92093

16 ⁶Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX,
17 77840

18 ⁷United States Department of Agriculture-Agricultural Research Service, Robert W. Holley
19 Center for Agriculture and Health, Ithaca, New York 14853

20
21 *To whom correspondence should be addressed

22 Email: gj32@cornell.edu

23 Phone: (1) 507-254-1365

24
25 Main body word count: 6,227

26 Sectional word count:

27 Introduction: 682

28 Materials and Methods: 2,364

29 Results: 2,024

30 Discussion: 1,059

31 Acknowledgements: 98

32
33 Number of Figures: 8

34 Figures in Color: 2, 3, 4, 5, 6, 7 & 8

35
36 Supporting Information: 9 Figures and 5 Tables

39 **Summary**

40 • The production and regulation of defensive specialized metabolites plays a central role in
41 pathogen resistance in maize (*Zea mays*) and other plants. Therefore, identification of
42 genes involved in plant specialized metabolism can contribute to improved disease
43 resistance.

44 • We used comparative metabolomics to identify previously unknown antifungal
45 metabolites in maize seedling roots, and investigated the genetic and physiological
46 mechanisms underlying their natural variation using quantitative trait locus (QTL)
47 mapping and comparative transcriptomics approaches.

48 • Two maize metabolites, smilaside A (3,6-diferuloyl-3',6'-diacetylsucrose) and smiglaside
49 C (3,6-diferuloyl-2',3',6'-triacetylsucrose), that may contribute to maize resistance against
50 *Fusarium graminearum* and other fungal pathogens were identified. Elevated expression
51 of an ethylene receptor gene, *ETHYLENE INSENSITIVE 2 (ZmEIN2)*, co-segregated with
52 decreased smilaside A/smiglaside C ratio. Pharmacological and genetic manipulation of
53 ethylene availability and sensitivity *in vivo* indicated that, whereas ethylene was required
54 for the production of both metabolites, the smilaside A/smiglaside C ratio was negatively
55 regulated by ethylene sensitivity. This ratio, rather than the absolute abundance of these
56 two metabolites, was important for maize seedling root defense against *F. graminearum*.

57 • Ethylene signaling regulates the relative abundance of the two *F. graminearum*-
58 resistance-related metabolites and affects resistance against *F. graminearum* in maize
59 seedling roots.

60

61 Keywords: Acetylated diferuloylsucrose, ethylene, *Fusarium graminearum*, metabolite QTL
62 mapping, *Zea mays* (maize)

63

64

65

66 **Introduction**

67 Plants in natural and manmade ecosystems are continuously exposed to microbial pathogens.
68 Specialized metabolic pathways that give rise to diverse arsenals of bioactive defense
69 compounds allow plants to efficiently fend off pathogen attacks. The significance of plant
70 specialized metabolism in agriculture is exemplified by the association of specific biosynthetic
71 genes with resistance against insect pests and phytopathogens (Meihls *et al.*, 2013; Handrick *et*
72 *al.*, 2016; Yang *et al.*, 2017). Such studies highlight the potential of enlisting naturally occurring
73 specialized metabolites in crop species to enhance quantitative disease resistance.

74 In North America, maize (*Zea mays*) is the most important agricultural crop, with over 13
75 billion bushels produced per annum, of which approximately 10% is lost to disease (Mueller,
76 2016a; Mueller, 2016b; Mueller, 2017). Maize is also known for its great genetic diversity,
77 involving both nucleotide polymorphisms and structural genomic variation (Buckler *et al.*, 2006;
78 Jiao *et al.*, 2017). The genetic architecture of disease resistance in maize has been investigated
79 extensively using publicly available genetic resources (Mideros *et al.*, 2012; Olukolu *et al.*,
80 2014; Benson *et al.*, 2015). Compared to foliar and ear diseases, maize seedling diseases remain
81 a relatively understudied area, even though in some years they can account for more yield loss
82 than any single disease in the aboveground tissues (Mueller, 2016a). This may be due to the fact
83 that experimental methods developed for large scale screening of diseases in aboveground
84 tissues, such as controlled pathogen inoculation and visual symptom scoring, are difficult to
85 apply to seedling diseases under field conditions.

86 *Fusarium graminearum* is one of the most common causal pathogens of maize seedling
87 disease in the northern temperate zone. In the field, it overwinters on crop residue as thickened
88 hyphae and produces asexual conidia that infect germinating seedlings roots or mesocotyls.
89 Depending on the developmental stage and infection site, *F. graminearum* can also cause root
90 rot, stem rot, and ear rot in maize (Munkvold & White, 2016). Previous research on maize-*F.*
91 *graminearum* interactions has primarily focused on ear rot, with results consistently suggesting
92 that resistance against this disease is most likely controlled by numerous small-effect quantitative
93 trait loci (QTL) that are influenced by experimental methods and genetic backgrounds (Ali *et al.*,
94 2005; Kebede *et al.*, 2016; Brauner *et al.*, 2017). Furthermore, transcriptomic studies in maize
95 and wheat show that host-*F. graminearum* interactions are significantly influenced by host tissue

96 types, suggesting that the QTL associated with *F. graminearum* ear rot resistance probably will
97 not confer resistance in seedling roots (Kazan *et al.*, 2012; Zhang *et al.*, 2016).

98 Compared to QTL identified from *F. graminearum* ear rot studies, factors contributing to
99 *F. graminearum* stalk rot resistance may be more relevant to infections of seedling roots. For
100 instance, near-isogenic lines (NILs) selected based on stalk rot resistance phenotypes also
101 showed significant differences in primary root symptoms after controlled inoculation (Ye *et al.*,
102 2013). *Fusarium graminearum* infection in maize stalks induces production of specialized
103 metabolites with antifungal activities (Huffaker *et al.*, 2011; Schmelz *et al.*, 2011). Additionally,
104 comparative and correlative studies have identified constitutive phytoanticipins that were
105 associated with *F. graminearum* resistance. For example, an *F. graminearum*-resistant NIL was
106 found to accumulate significantly higher phenolic acids in its seedling roots compared to
107 susceptible relatives. Interestingly, these differences disappear after *F. graminearum* infection,
108 primarily due to fungus-induced reduction of defenses in the resistant NILs (Ye *et al.*, 2013). The
109 same compounds also have been identified as metabolites related to *F. graminearum* resistance
110 in other crop species, and were shown to inhibit fungal growth *in vitro* (Bollina *et al.*, 2010;
111 Pongs *et al.*, 2011). Taken together, these studies indicate that specialized metabolites in maize
112 seedling roots play a significant role in resistance against *F. graminearum*.

113 Here we describe a comparative metabolomics approach using maize inbred lines B73
114 and Mo17 to identify previously unknown maize antifungal compounds. These experiments led
115 to the identification of two acetylated diferuloylsucroses, one of which demonstrated significant
116 fungal growth inhibition *in vitro* at a physiologically relevant concentration. Genetic mapping,
117 analysis of mutants, and physiological experiments demonstrated that accumulation of acetylated
118 diferuloylsucroses is promoted by ethylene production and fine-tuned by ethylene sensitivity in
119 maize.

120

121 **Materials and Methods**

122 **Plant growth and fungal inoculation.** All maize lines were obtained from the Maize Genetics
123 Cooperation Stock Center (Urbana Champaign, Illinois). Maize seeds were germinated in
124 moistened rolls of germination paper, and seedlings were transplanted to 7.5 cm x 7.5 cm
125 plastic pots with Turface ® MVP ® calcined clay (Profile Products LLC, Buffalo Grove, IL)
126 when their primary roots reached approximately 9 cm. For inoculation experiments, seedling

127 roots were immersed in *F. graminearum* spore suspension or mock solution (0.03% Phytagar)
128 for one hour prior to transplanting. Spore suspensions were freshly prepared by flooding and
129 scraping 7-day-old fungal cultures, maintained on potato dextrose agar plates, with 0.03%
130 Phytagar suspension. The spore concentration was adjusted to be 5×10^5 spores per ml after
131 measurement with a hemocytometer and light microscopy. Hyphal fragments also were observed
132 in the spore suspension. In all seedling inoculation experiments, *F. graminearum* strain ZTE,
133 which was obtained from Dr. Frances Trail (Guenther & Trail, 2005), which was derived from a
134 field-collected strain Z-3639 (Proctor *et al.*, 1995) transformed with the plasmid pTEFEGFP
135 (Vanden Wymelenberg *et al.*, 1997), with permission from Dr. Robert Proctor. Transplanted
136 seedlings were maintained in long day (16 hours) growth condition at 26 °C and 70% relative
137 humidity. Six days after inoculation, the total root length of seedlings was measured with the
138 RootReader 2D system (Famoso *et al.*, 2010). For screening of natural variation in *F.*
139 *graminearum*-induced morphological changes, at least five seedlings of each plant line were
140 mock- or fungus-inoculated in two independent experiments for root length measurement. In two
141 other experiments, seven B73 and Mo17 seedlings were inoculated as described above, root
142 length was measured, and tissue was harvested for further analysis.

143 ***Fusarium graminearum* gene expression measurement, mycotoxin quantification, and**
144 **visual symptom scoring.** The expression of the *F. graminearum* β -tubulin gene in seedling roots
145 was measured using a previously published protocol (Lou *et al.*, 2016). The primers used for
146 qRT-PCR detection of *F. graminearum* are FgTub-qF293 (5'-ATGCTTCCAACAACTATGCT-
147 3') and FgTub-qR411 (5'-AACTAGGAAACCCTGGAGAC-3'), which were designed based on
148 the *F. graminearum* strain PH-1 reference genome sequence (Cuomo *et al.*, 2007). Fungal gene
149 expression in each technical replicate was normalized by measurement of the expression of a
150 constitutive maize actin gene with the following primers ZmActin-qF (5'-
151 CCATGAGGCCACGTACA-3') and ZmActin-qR (5'-GGTAAAACCCCACGTGAGGA-3').

152 Approximately 100 mg of fresh frozen seedling root tissue of each sample was used for
153 extraction of deoxynivalenol, the main *F. graminearum* mycotoxin. Three microliters of
154 50:49.9:0.1 methanol:water:formic acid extraction solvent (Sigma-Aldrich) were added per mg
155 of tissue. Ground tissue and extraction solvent were mixed and incubated at 4 °C for 40 min.
156 Solid debris was separated from the solvent by centrifuging at 10,000 x g for 10 min. For each
157 sample, 200 μ L clear extract were filtered through a 0.45 micron filter plate by. Deoxynivalenol

158 content in the extract was then measured with an Enzyme-Linked Immuno-Sorbent Assay
159 (ELISA) kit following the manufacturer's protocol (Helica Biosystems, Santa Ana, CA). Visual
160 symptoms in seedling roots were scored for in three other comparative experiments with B73 and
161 Mo17 seedlings 3 weeks after *F. graminearum* inoculation. In both experiments, at least 10
162 seedling roots of either genotype were scored on a 0-4 scale (0 = symptom-less; 1 = single
163 restricted necrosis spot; 2 = single extended necrosis or multiple restricted necrosis spots; 3 =
164 widespread necrosis throughout; 4 = seedling dead).

165 **Maize root metabolomics analyses.** The extraction protocol for deoxynivalenol also was used
166 for plant specialized metabolite extraction. Root extracts were analyzed using liquid
167 chromatography-mass spectrometry (LC-MS). Chromatography was performed on a Dionex
168 3000 Ultimate UPLC-diode array detector system coupled to Thermo Q-Exactive mass
169 spectrometer. Root extract samples were separated on a Titan C18 7.5 cm x 2.1 mm x 1.9 μ m,
170 Supelco Analytical Column (Sigma-Aldrich) with a flow rate of 0.5 ml/min, using a gradient
171 flow of 0.1 % formic acid in LC-MS grade water (eluent A) and 0.1 formic acid in acetonitrile
172 (eluent B). Initial metabolite profiling experiments involved an 8-minute linear gradient from
173 95:5 A:B to 0:100 A:B for comparison of *F. graminearum* induced metabolomic changes in B73
174 and Mo17 seedling roots. This method was extended to a 15-minute gradient for better
175 separation in later experiments. Mass spectral parameters were set as follows: Spray voltage
176 3500 V, Capillary temperature 300°C, Sheath Gas 35 units, Auxiliary Gas 10 units, probe heater
177 temp 200°C with a HESI probe. Full scan mass spectra were collected (R:35000 FWHM at m/z
178 200; mass range: m/z 100 to 900) in both positive and negative ion spray modes. For non-
179 targeted metabolomics analyses, metabolite abundance was estimated with signal intensity
180 acquired through the XCMS-CAMERA mass scan data processing pipeline (Tautenhahn *et al.*,
181 2008; Benton *et al.*, 2010; Kuhl *et al.*, 2012). Smilaside A and smiglaside C abundance was
182 estimated using peak areas at the respective m/z channel under negative electron spray ionization
183 mode. Metabolite quantification was normalized by the total ion concentration to account for
184 technical variation between samples. For non-targeted comparative metabolomics analyses,
185 Student's *t*-tests were used to identify mass features that were constitutively different between
186 B73 and Mo17 (p<0.01, and fold change >2 or 0.01<p<0.05 and fold change >4) and
187 significantly changed by *F. graminearum* in B73 (p<0.01, and fold change >1.5 or 0.01<p<0.05
188 and fold change >4).

189 **Structural identification of smiglaside C and smilaside A.** To determine the chemical
190 structures of smiglaside C and smilaside A, the LC-MS method for non-targeted metabolomics
191 analysis was adapted to extract bulk maize seedling roots with 100% methanol at 4 °C overnight.
192 Solid debris was filtered out and the crude extract was concentrated with a Buchi Rotovapor. The
193 concentrated crude extract was fractionated on a normal phase column with a
194 methanol:dichloromethane gradient on a CombiFlash Rf+ (Teledyne Isco, Lincoln, NE), and
195 further purified for the target compounds with a water:acetonitrile gradient on a ZORBAX
196 Eclipse XDB C18 column on an Agilent 1100 HPLC system (Agilent, Santa Clara, CA). Purified
197 compounds were dried, weighed, and re-dissolved in methanol. NMR spectroscopy analyses
198 were carried out on a Unity INOVA 600 instrument (Varian Medical Systems, Palo Alto, CA)
199 with the following conditions: 256 scan for 1H NMR; NT = 16 and NI = 800 for COSY and
200 HSQC; NT = 32 and NI = 1600.

201 **Determination of *in vitro* antifungal activity of smiglaside C and smilaside A.** By running a
202 standard curve with the purified compound using the same LC-MS method with incremental
203 injection volume, the concentrations of smiglaside C and smilaside A were determined to be
204 approximately 0.2 mM and 0.1 mM in *F. graminearum*-induced Mo17 seedling roots,
205 respectively. Purified compounds were re-dissolved in dimethyl sulfoxide (DMSO) to ten-fold of
206 their respective *in vivo* concentrations (*i.e.* 2 mM smiglaside C, and 1 mM smilaside A). An *F.*
207 *graminearum* spore and hyphae suspension was prepared as described above, 80 uL of it was
208 mixed with 100 uL potato dextrose broth and 20 uL of the testing compounds in a 96-well plate.
209 Twenty uL of pure DMSO were included as the negative control for this experiment. Fungal
210 growth was monitored by light absorbance measurement at 405 nanometers at 30-minute
211 intervals for 12 hours at 28 °C. All treatment groups were measured in at least four replicates for
212 statistical comparison.

213 **QTL mapping of the constitutive content of smiglaside C, smilaside A, and their ratio.** For
214 genetic mapping of constitutive metabolite abundance, three seedlings were germinated for each
215 Intermated B73 × Mo17 (IBM) recombinant inbred line (RIL) and five for each of the parental
216 lines, B73 and Mo17. Ten-day-old root tissues from the three seedlings of each RIL were pooled
217 into one sample for LC-MS analysis, whereas the five B73 and Mo17 seedlings were analyzed
218 individually to allow comparison of their constitutive metabolomes. QTL mapping analysis was
219 performed based on published genotype data using the composite interval mapping algorithm

220 implemented in WinQTL Cartographer v2.5 (Wang, 2012). The significance thresholds of these
221 QTL mapping results were determined with five hundred permutations. For the ratio mapping,
222 the smilaside A/smiglaside C ratio was used.

223 **Maize root transcriptome analysis.** To ensure comparability between metabolome and
224 transcriptome datasets, total RNA was extracted with the Promega SV Total RNA Isolation Kit
225 from another aliquot of the same seedling root tissues used for non-targeted metabolite profiling.
226 In total, seedling root RNA samples were obtained for 73 IBM RILs and five replicates each of
227 B73 and Mo17. mRNA sequencing libraries were prepared robotically on a Biomek NXp with
228 manual post-PCR cleanup using the Lexogen QuantSeq 3' mRNA-Seq Library Prep Kits
229 (Kremling *et al.*, 2018). These libraries were pooled into one lane and sequenced with 90 base
230 pairs single end reads on an Illumina NextSeq 500 with v2 chemistry at the Cornell
231 Biotechnological Resource Center. Raw RNAseq read data were converted to SAM format, and
232 aligned to B73 RefGen_v3 5b+ gene models using the STAR v2.5.1 RNAseq-aligner (Dobin *et*
233 *al.*, 2013). The raw transcript counts were calculated for each gene model in each sample using
234 the HTseq 0.6.1p2 python module (Anders *et al.*, 2015). Finally, gene models with fewer than 10
235 raw read counts in any one of the 73 samples were filtered out, and raw transcript count for each
236 gene model was normalized by the total transcript count of each sample.

237 **1-aminocyclopropane-1-carboxylic acid (ACC) and 1-methylcyclopropene (1-MCP)**

238 **Treatment.** *Zmacs2-1 Zmacs6* double mutant seedlings, along with the wildtype B73 progenitor,
239 were grown in Turface (Young *et al.*, 2004). When the seedlings emerged approximately 2 cm
240 above the soil line, they were treated with either 100 uL of 50 mM 1-ACC solution or water
241 control for 5 consecutive days.

242 In a separate set of experiments, *F. graminearum*-inoculated B73 seedlings were
243 transplanted into Turface and kept in 70 L airtight boxes. The bottom of the boxes were filled
244 with water and EthylBloc (0.14% 1-MCP) sachets to reach a final concentration of 5 g/L 1-MCP.
245 Pots containing maize seedlings were elevated from water surface to avoid direct contact with
246 the solution. 1-ACC and water control treatments were conducted using the same setup to ensure
247 comparability with the 1-MCP treated seedlings. The predicted plant growth effects of 1-ACC
248 and 1-MCP treatments were confirmed by measuring seedling heights in each treatment group.

249 To confirm that *F. graminearum* growth was not directly influenced by 1-ACC and 1-
250 MCP treatment, plugs of fungal hyphae were transferred to the center of potato dextrose agar

251 plates placed in the sealed 70 L boxes used for seedling experiments. For 1-MCP treatment,
252 EthylBloc was used at the same concentration as described above. For 1-ACC treatment, 50 mM
253 1-ACC stock solution in DMSO were added to melted and cooled potato dextrose agar to a final
254 concentration of 50 μ M. The same final concentration of DMSO was included in plates used for
255 controls and 1-MCP treatments. Fungus radial growth was measured after four days.

256 For both 1-ACC and 1-MCP experiments, seedling roots were harvested for targeted
257 metabolic analysis with the LC-MS method described above. To confirm that the *Zmacs2-1*
258 *Zmacs6* double mutant seedlings are producing less ethylene in their root tissues, 1 mg samples
259 of ground frozen root tissues were placed in airtight 8 mL glass vials for ethylene collection for
260 29 hours. One mL samples were injected into an Agilent Technologies 6850 Network GC system
261 to estimate ethylene content. The ethylene peak was identified and quantified by comparing to a
262 standard of known concentration, and normalized for tissue weight. Fungus-inoculated seedling
263 roots were examined under an Olympus SZX-12 stereo-microscope with LP Green filter cube to
264 compare fungus spread semi-quantitatively before frozen for LC-MS analysis. Another aliquot of
265 these root tissues was used for q-RT-PCR quantification of *F. graminearum*-specific gene
266 expression to estimate fungal growth, as described above.

267 **Smiglaside C and smilaside A induction by multiple fungal pathogens.** Mo17 stem elicitation
268 assays utilized 35-day-old greenhouse grown plants in 1-L pots. Plants in damage-related
269 treatment groups were slit in the center, spanning both sides of the stem, with a surgical scalpel
270 that was pulled 8 to 10 cm upward to create a parallel longitudinal incision. The damage
271 treatments spanned the upper nodes, internodes, and the most basal portion of unexpanded
272 leaves. *Aspergillus flavus*, *Rhizopus microspores*, *Fusarium verticilloides*, and *Cochliobolus*
273 *heterostrophus* fungal spore inoculations were conducted with 100 μ L of water per plant at a
274 concentration of 1×10^7 spores mL⁻¹ (Ding *et al.*, 2017). Damage plus water alone was used for a
275 mock inoculation. Localized areas of control and treated stem tissues were covered clear plastic
276 packing tape to minimize tissue desiccation, and stem tissues were harvested 4 d later from each
277 individual plant.

278 Maize stem tissues were ground to a fine powder in liquid nitrogen and weighed out in 50
279 mg aliquots. Smilaside A and smiglaside C were analyzed as described previously (Ding *et al.*,
280 2017). Negative ionization [M-H]⁻ mode scans (0.1-atomic mass unit steps, 2.25 cycles s⁻¹) from
281 m/z 100 to 1,000 were acquired. Analyses of smilaside A and smiglaside C peak abundance

282 relied on the native parent $[M-H]^-$ ion m/z 777 and m/z 819, and stable average retention times of
283 12.76 min and 13.94 min, respectively. Both analytes displayed split peaks and for consistency
284 both peaks were integrated and combined for the final analyses.

285 **Ergosterol assays.** For ergosterol measurements, *F. graminearum*-treated seedlings were
286 transplanted into pots of twice-autoclaved TX360 Metro Mix and grown for 3 weeks, at which
287 point roots were harvested into liquid nitrogen and stored at -80°C. Ergosterol was analyzed as
288 described previously (Christensen *et al.*, 2014), with the following modifications: roots were
289 crushed and placed in scintillation vials each with 10 ml of chloroform:methanol (2:1 v/v)
290 (99.8%) followed by incubation in darkness overnight at room temperature. One ml of extract
291 from each vial was syringe-filtered through 0.45 μ m cellulose acetate membrane filters, and 50
292 μ l of filtrate was added to 50 μ L of 10 μ M C13-labeled cholesterol (cholesterol-25,26,27-13C;
293 Sigma) in methanol as internal standard. Ergosterol was quantified using an Ascentis Express C-
294 18 column (3 cm \times 2.1 mm, 2.7 μ m) connected to an API 3200 LC/MS/MS with atmospheric
295 photochemical ionization. The injection volume was 5 μ l and the isocratic mobile phase
296 consisted of acetonitrile at a flow rate of 300 μ l/min.

297 **Data analysis.** All *t*-tests were performed with the ttest function implemented in Microsoft
298 Excel. ANOVA and Wilcoxon rank sum tests were performed in R. Linear discriminant analysis
299 was performed with the SAS software.

300

301 Results

302 ***Fusarium graminearum* infection leads to root growth inhibition and metabolic 303 reconfiguration**

304 Inoculation of maize genotype B73 with *F. graminearum* under controlled growth conditions,
305 significantly reduced seedling root growth (Figure S1a,b). Using this assay, we screened the 26
306 parental lines of the maize nested association mapping population (McMullen *et al.*, 2009), as
307 well as inbred lines Mo17 and W22. This showed that B73 was among the most susceptible
308 inbred lines, with root growth being reduced by over 50%. In contrast, Mo17 emerged as a
309 potentially *F. graminearum*-resistant line, showing no significant change in root growth after
310 inoculation (Fig. 1 and Fig. S1c). Further research was focused on the B73 vs. Mo17 comparison,
311 due to the availability of genetic resources that included recombinant inbred lines (RILs) and
312 near-isogenic lines (NILs) (Lee *et al.*, 2002; Eichten *et al.*, 2011). The higher fungal resistance of

313 Mo17 was confirmed by lower expression of *FgTUB*, a *F. graminearum*-specific tubulin gene,
314 lower levels of deoxynivalenol, a mycotoxin produced by *F. graminearum*, and fewer visible
315 necrotic symptoms in the roots (Fig. 2a-c).

316 We hypothesized that the contrasting *F. graminearum* resistance in B73 and Mo17
317 seedling roots could be attributed to differences in their constitutive and/or inducible biochemical
318 defenses. Therefore, we performed a non-targeted comparative metabolomic analysis of B73 and
319 Mo17 seedling roots, with and without *F. graminearum* inoculation. Consistent with the
320 difference in *F. graminearum*-induced root growth reduction between these two inbred lines, we
321 observed that more than three hundred mass features were significantly altered by *F.*
322 *graminearum* infection of B73, but only twenty were altered in Mo17 in this experiment (Fig.
323 2d).

324

325 **Acetylated diferuloylsucroses contribute to *F. graminearum* resistance**

326 To identify specific metabolites that could contribute to the contrasting *F. graminearum*
327 resistance levels in B73 and Mo17, a separate non-targeted metabolomic experiment was
328 performed to compare the constitutive metabolomes of B73 and Mo17 seedling roots, as well as
329 mock- and *F. graminearum*-inoculated B73 seedling roots. This identified forty mass features
330 that were both significantly affected by *F. graminearum* in the susceptible B73 seedling roots
331 and constitutively different between B73 and Mo17 seedling roots (Table S1-3). Among these
332 forty mass features, several represented specialized metabolites with known antifungal activity,
333 including benzoxazinoids and phenylpropanoids (Bollina *et al.*, 2010; Ponts *et al.*, 2011; Kazan
334 *et al.*, 2012).

335 Two mass features with mass-to-charge ratio (*m/z*) of 819.2321 and 777.2221 under
336 negative electron spray ionization (ESI) mode, eluting at 6.11 and 5.61 minutes, respectively,
337 were significantly more abundant after *F. graminearum* infection of both B73 and Mo17
338 seedling roots. In all samples, the *m/z* 819 metabolite was much more abundant than the *m/z* 777
339 metabolite (Fig. 3a,b). B73 contains significantly more of the *m/z* 819 metabolite than Mo17,
340 both constitutively and after *F. graminearum* induction (Fig. 3a). In contrast, the *m/z* 777
341 metabolite was more abundant in Mo17 under both conditions (Fig. 3b).

342 The *m/z* 819 metabolite was identified as 3,6-diferuloyl-2',3',6'-triacetylsucrose (Fig. 3d),
343 based on its phenylpropanoid-like UV absorbance profiles (Fig. S2), tandem mass spectrometry

344 (MS/MS; Fig. S2), and nuclear magnetic resonance (NMR) spectroscopy (HSQC, HMBC, and
345 dqfCOSY spectra; Table S4). Based on the MS/MS data and difference in exact mass, the m/z
346 777 metabolite was predicted to have one fewer acetyl group. This was confirmed by one
347 dimensional proton NMR, which showed that the C2' acetyl group was absent, and the
348 compound was 3,6-diferuloyl-3',6'-diacetylsucrose (Fig. 3e). These two metabolites were
349 previously identified as smilaside A (3,6-diferuloyl-3',6'-diacetylsucrose) in *Smilax china* (Kuo
350 *et al.*, 2005; Cho *et al.*, 2015) and smiglaside C (3,6-diferuloyl-2',3',6'-triacetylsucrose) in *Smilax*
351 *glabra* (Chen *et al.*, 2000).

352 In addition to smilaside A and smiglaside C, other maize compounds co-elute with a UV-
353 absorbance peak at 328 nanometers, characteristic of a phenylpropanoid moiety. These include
354 likely structural isomers of smilaside A and smiglaside C, with identical m/z ratio and different
355 retention times, as well as possible monoacetylated (m/z 735.21) and tetraacetylated (m/z 861.24)
356 diferuloylsucroses (Fig. S3). However, the structures of these other maize metabolites were not
357 confirmed, and their functions have not been investigated in this study. Notably, non-acetylated
358 diferuloylsucrose (expected m/z ratio = 693.21 in negative ESI mode) was not detected.

359 The structural resemblance of smilaside A and smiglaside C suggested that they could be
360 the substrate and product of an acetylation reaction, respectively. This acetylation is actively
361 regulated in response to fungal infection, with *F. graminearum* infection inducing a significant
362 increase in the smilaside A/smiglaside C ratio only in the resistant Mo17 seedlings, but not in the
363 susceptible B73 ones (Fig. 3c). This induced response suggested that smiglaside C and/or
364 smilaside A play a role in maize biochemical defense against *F. graminearum*. *In vitro* fungal
365 growth inhibition assays were conducted in liquid suspension culture using smiglaside C and
366 smilaside A concentrations similar to those found in maize seedlings (Fig. S4). Although it was
367 tested at a lower concentration, smilaside A showed a more significant inhibition of *F.*
368 *graminearum* growth *in vitro* than smiglaside C (Fig. 3f). This was consistent with our earlier
369 observation that the *F. graminearum*-resistant Mo17 seedlings have a higher constitutive
370 smilaside A content, and further accumulated this compound upon fungus attack compared to the
371 susceptible B73 seedlings (Fig. 3a-c).

372

373 **Genetic mapping of smiglaside C and smilaside A abundance identifies ETHYLENE
374 INSENSITIVE 2 as a candidate regulator**

375 The constitutive difference in smilaside A and smiglaside C abundance between B73 and Mo17
376 seedling roots allowed us to investigate the genetic control of this natural variation. Composite
377 interval mapping with seedling roots of 83 recombinant inbred lines (RILs) from the intermated
378 B73 x Mo17 (IBM) population (Lee *et al.*, 2002; Wang, 2012), together with the two parental
379 lines, showed that the most significant QTL for both metabolites is located at the same position
380 on chromosome 3 (Fig. 4a). In version 2 of the B73 reference genome (Refgen v2), this locus
381 covers approximately 2.3 million base pairs, containing 90 annotated gene models (Schnable *et*
382 *al.*, 2009; Anders *et al.*, 2015). Interestingly, the two QTL have opposite effects, with the B73
383 allele promoting constitutive smiglaside C abundance and reducing smilaside A abundance (Fig.
384 4b,c). Since smilaside A and smiglaside C are likely the substrate-product pair of an acetylation
385 reaction, we hypothesize the mapped QTL regulates the efficiency of this reaction. We identified
386 the same locus when mapping the smilaside A/smiglaside C ratio as a quantitative trait, with the
387 B73 allele reducing the smilaside A/smiglaside C ratio (Fig. S5).

388 To further confirm the role of the QTL in regulating the relative abundance of smiglaside
389 C and smilaside A, we quantified the metabolites in B73-Mo17 near-isogenic lines (NILs) with
390 reciprocal introgressions at this locus (Eichten *et al.*, 2011). Consistent with the RIL results, the
391 smilaside A/smiglaside C ratio showed clear co-segregation with the genetic markers at the
392 chromosome 3 QTL, with the NILs carrying the B73 allele having a lower ratio, irrespective of
393 their genetic background (Fig. 4d). A significant difference between NILs carrying either allele
394 was also observed for smilaside A but not smiglaside C ($p = 0.075$; Fig. S6). Furthermore, due to
395 additional recombination breakpoints and denser genetic marker data available for the NILs, we
396 narrowed down the QTL region to about 630 kbp, containing 22 predicted gene models.

397 Natural variation in metabolic traits is often caused by *cis* polymorphisms in metabolic
398 enzyme-encoding genes (Meihls *et al.*, 2013; Yan *et al.*, 2015; Handrick *et al.*, 2016). However,
399 we found no predicted acetyltransferase genes within our QTL interval. Moreover, by plotting
400 the distribution of smiglaside C and smilaside A across the IBM RILs, we found an overall
401 positive correlation between these two metabolites (Fig. 5a), which contradicted the hypothesis
402 of a substrate/product relationship mediated by a polymorphism in a hypothetical
403 acetyltransferase. Closer investigation of the smiglaside C-smilaside A distribution plot revealed
404 that the 83 RILs can be divided by linear discriminant analysis into a B73-like group with lower
405 smilaside A/smiglaside C ratios, and a Mo17-like group with higher ratios (Fig. 5a). We

406 hypothesized that this phenotypic difference could be attributed to transcriptional regulation,
407 which would differ between the IBM RILs belonging to either phenotypic group. We therefore
408 performed whole transcriptome profiling on the seedling root samples that were used for
409 metabolite quantification. This whole-genome analysis showed that the genes with the most
410 significant differential expression between the two phenotypic groups are located in the
411 identified QTL region on chromosome 3 (Fig. 5b,c; Table S5). Specifically, the gene showing
412 the most significantly different expression was a positive regulator of ethylene signaling in
413 maize, *ZmEIN2* (*ETHYLENE INSENSITIVE 2*; GRMZM2G068217), which was expressed at a
414 higher level in the seedling roots of RILs with a B73-like abundance of smiglaside C and
415 smilaside A (Fig. 5d). This leads to the hypothesis that *ZmEIN2*, and hence ethylene signaling, is
416 a negative regulator of smilaside A/smiglaside C ratio.

417

418 **Acetylated feruloylsucroses accumulation and resistance against *F. graminearum* are
419 regulated by ethylene**

420 No *ZmEIN2* mutation is available in public maize transposon insertion collections. Instead, we
421 manipulated ethylene response *in vivo* with a gaseous competitive inhibitor, 1-
422 methylcyclopropene (1-MCP), and a biochemical precursor of ethylene production in plant, 1-
423 aminocyclopropane-1-carboxylic acid (1-ACC). Effects of these treatments were confirmed by
424 contrasting seedling growth rate in these groups (Fig. S7). Consistent with the genetic mapping
425 results, 1-MCP treatment (and hence lower *ZmEIN2* availability) led to hyper-accumulation of
426 smilaside A and an elevated smilaside A/smiglaside C ratio (Fig. 6a,c). Unexpectedly, smiglaside
427 C abundance was also significantly increased by 1-MCP treatment (Fig. 6b). Both smilaside A
428 and smiglaside C were induced by 1-ACC treatment, but their ratio was not significantly affected
429 (Fig. 6a-c).

430 To further investigate how smilaside A and smiglaside C are regulated by ethylene
431 production, we measured their abundance in the seedling roots of the *Zmacs2-1 Zmacs6* ethylene
432 biosynthetic mutant (Young *et al.*, 2004), which has *Mutator* transposon insertions in two 1-ACC
433 synthase genes in the B73 genetic background. Consistent with prior measurement of lower leaf
434 ethylene content (Young *et al.*, 2004), this double mutant had a lower root ethylene
435 concentration than wildtype (Fig. S8). Metabolite abundance was measured with and without
436 exogenous 1-ACC, an ethylene biosynthesis intermediate that is downstream of the two mutated

437 *ZmACS* genes. Constitutively, there were significantly lower amounts of both smilaside A and
438 smiglaside C in the roots of *Zmacs2-1 Zmacs6* compared to wildtype B73. After 1-ACC
439 treatment, both metabolites were increased in wildtype B73, and were restored to wildtype levels
440 in *Zmacs2-1 Zmacs6* (Fig. 7a,b). In *Zmacs2-1 Zmacs6*, the smilaside A/smiglaside C ratio was
441 significantly lower than in wildtype B73. However, consistent with results from the previous
442 experiment, 1-ACC treatment did not affect this ratio in either genetic background (Fig. 7c).

443 To investigate how ethylene production and sensitivity can affect maize seedling defense
444 against *F. graminearum*, we compared *F. graminearum*-inoculated maize seedling roots treated
445 with 1-ACC, 1-MCP, or water control. Although we observed extensive fungal hyphae of GFP-
446 transformed *F. graminearum* on the root surface of both mock and 1-ACC treated seedlings,
447 hyphae were almost completely absent from 1-MCP treated roots (Fig. 6d). In support of the
448 microscopic observations, we found significantly lower *FgTUB* expression in 1-MCP treated
449 seedling roots (Fig. 6e). Neither 1-ACC nor 1-MCP affected growth of *F. graminearum* on agar
450 plates (Fig. S9), indicating that there is not direct toxic effect. Comparing infected seedling roots
451 of *Zmacs2-1 Zmacs6* and wildtype B73, we found significantly higher *F. graminearum* growth
452 on the mutant line (as measured by ergosterol accumulation; Fig. 7d).

453

454 **Maize diferuloylsucroses are induced by multiple fungal pathogens**

455 A mass feature likely representing smiglaside C was identified as a maize acyl sugar that was
456 induced after infection with *Colletotrichum graminicola* (anthracnose leaf blight), though
457 without structural confirmation (Balmer *et al.*, 2013). To determine whether induced production
458 of smilaside A and smiglaside C was a more general maize response to fungal infection, we
459 inoculated seedlings with four additional fungal pathogens, *Aspergillus flavus*, *Rhizopus*
460 *microspores*, *Fusarium verticilloides*, and *Cochliobolus heterostrophus*. Whereas smilaside A
461 was only induced by *F. verticilloides* and *C. heterostrophus*, all four pathogens significantly
462 induced the accumulation of smiglaside C (Fig. 8). As in the case of *F. graminearum* infection
463 (Fig. 3a-c), smiglaside C was induced to a greater extent than smilaside A. Therefore, induced
464 accumulation of smiglaside C may be a general response of maize to infection by fungal
465 pathogens.

466

467 **Discussion**

468 In addition to maize, acetylated feruloysucroses may have defensive properties in other plant
469 species. These compounds were first identified in the rhizomes of *S. china* and *S. glabra*, which
470 are used in traditional Chinese medicine (Chen *et al.*, 2000; Kuo *et al.*, 2005). Similar
471 phenylpropanoid sucrose esters, with different numbers and types of phenylpropanoid groups
472 attached, were later found in various Liliaceae and Polygonaceae species. Crude plant extracts
473 containing these compounds, and in some cases purified compounds, have shown anticancer and
474 antioxidant activities *in vitro* (Zhu *et al.*, 2006; Ono *et al.*, 2007; Yan *et al.*, 2008; Zhang *et al.*,
475 2008; Kim *et al.*, 2010). Building on these promising *in vitro* bioactivities, organic synthesis
476 routes to produce natural phenylpropanoid sucrose esters and structural analogs have been
477 developed with moderate yield and selectivity (Panda *et al.*, 2012a; Panda *et al.*, 2012b). More
478 recently, acetylated feruloysucroses and other phenylpropanoid sucrose esters were found in rice
479 (Chen *et al.*, 2014; Cho *et al.*, 2015).

480 Our discovery of smilaside A and smiglaside C in maize will facilitate the *in planta*
481 investigation of phenylpropanoid sucrose ester function and metabolism. Due to the lack of
482 suitable maize mutants, we could not experimentally prove a causal relationship between the
483 genetic polymorphism in *ZmEIN2* and natural variation in constitutive smiglaside C and
484 smilaside A abundance. Instead, we demonstrated that ethylene biosynthesis was required for the
485 production of both compounds *in vivo*, whereas ethylene sensitivity fine-tuned their relative
486 abundance (Fig. 6 and 7). Interestingly, fungal load after *F. graminearum* inoculation was
487 negatively correlated with smilaside A/smiglaside C ratio across three natural variation and
488 manipulative experiments in this study (Fig. 3, 6, and 7), suggesting that this ratio, rather than
489 the absolute abundance of these two compounds, may be more important for resistance against *F.*
490 *graminearum*.

491 *Fusarium graminearum* infection is known to induce ethylene biosynthetic and
492 responsive genes in both maize seedling roots and *Brachypodium distachyon* spikes (Pasquet *et*
493 *al.*, 2014). In wheat, different comparative transcriptomic studies have reached opposite
494 conclusions regarding the role of ethylene signaling in responses to *F. graminearum* infection (Li
495 & Yen, 2008; Ding *et al.*, 2011; Xiao *et al.*, 2013). However, *F. graminearum* resistance could
496 be manipulated by manipulating ethylene signaling in both wheat and barley leaves (Chen *et al.*,
497 2009). In the current study, we observed that maize seedlings with lower ethylene sensitivity,
498 either due to genetically-encoded polymorphism in *ZmEIN2* expression or artificial treatment

499 with a competitive inhibitor, are more resistant to *F. graminearum* and accumulated the more
500 bioactive smilaside A (Fig. 3 and 6). However, exogenous ethylene supplementation in the form
501 of 1-ACC did not promote *F. graminearum* susceptibility in maize seedling roots. This
502 inconsistency could arise from differences in tissue type, developmental stage, or the treatment
503 regime. Together, these results indicate that, above a certain minimal ethylene concentration,
504 ethylene sensitivity negatively regulates the efficiency of biochemical defense, leading to
505 contrasting fungal resistance levels.

506 In our *in vitro* assay, we observed that the diacetylated smilaside A caused greater fungal
507 growth inhibition than the triacetylated smiglaside C (Fig. 3f). This is perhaps surprising,
508 because phenylpropanoid sucrose esters with higher degrees of acetylation have generally shown
509 stronger *in vitro* bioactivities, though these two specific compounds have not been compared
510 previously (Panda *et al.*, 2012b; Cho *et al.*, 2015). Our observations may be explained by a non-
511 linear relationship between the degrees of acetylation and bioactivity. Different structural
512 isomers also may be relevant for the structure-activity-relationship. Other than the putative
513 tetraacetylated diferuloylsucrose, all acetylated diferuloylsucroses detected in our LC-MS
514 analyses showed signs of multiple structural isomers, though there was usually a predominant
515 one (Fig. S2). How these different isomers could differ in their bioactivities is another question
516 that requires further investigation.

517 Since acetylated feruloylsucroses can be induced by various fungal pathogens in maize, it
518 would be interesting to assess their crop protection value *in vivo* under more relevant field
519 conditions. Simple phenylpropanoids can contribute to disease resistance not only through their
520 direct antimicrobial activities, but also by playing a critical role in physical fortification of plant
521 cell walls (Nicholson & Hammerschmidt, 1992). The importance of cell walls as a physical
522 barrier against *F. graminearum* and other fungal pathogens is further highlighted by the
523 prevalence of genes that are likely to encode cell-wall-degrading enzymes in the genomes of
524 fungal phytopathogens (Cuomo *et al.*, 2007; Kubicek *et al.*, 2014). Should acetylated
525 feruloylsucroses also contribute to the physical strength of plant cell walls, such effects would
526 not be evident in *in vitro* assays.

527 Although our study has not revealed any enzyme-encoding genes that are directly
528 involved in the biosynthesis of the metabolites of interest, the chemical structures of smilaside A
529 and smiglaside C give us hints about their possible biosynthetic pathway. Specifically, we

530 hypothesize that distinct but related hydroxycinnamoyl transferases are responsible for the
531 esterification of feruloyl-CoA and the free hydroxyl groups on the sucrose molecule, analogous
532 to the phenylpropanoid quinic acid esterification reactions. In the B73 genome, there are 13
533 predicted hydroxycinnamoyl transferase-encoding genes, mostly with unconfirmed activity and
534 substrates (Schnable *et al.*, 2009). These predicted gene models are candidates for elucidation of
535 the biosynthetic pathway of acetylated feruloylsucroses in maize. Compared to the feruloyl
536 esterification enzymes, the identities of the acetyltransferases that catalyze the acetylation on the
537 glucose ring are less clear. We speculate that these enzymes probably belong to the diverse
538 BAHD acyltransferase family, similar to the acylsugar acyltransferases found in tomatoes (Kim
539 *et al.*, 2012; Schilmiller *et al.*, 2012). Our results lead to the prediction that one or more of these
540 acyltransferases would be positively regulated by ethylene signaling in maize seedling roots. The
541 exact order of feruloyl esterification and acetylation on the sucrose molecule also remains
542 unclear. In rice, non-acetylated 3,6 diferuloylsucrose is detected at a very low level in bulk root
543 extract, suggesting that the acetylation occurs after feruloyl esterification (Cho *et al.*, 2015).
544 However, we did not detect the same compound in our microliter-scale LC-MS analyses of
545 maize roots

546 Finally, this study demonstrates the feasibility of combining metabolomics,
547 transcriptomics and quantitative genetics methods to elucidate regulation of previously unknown
548 antifungal metabolites in maize. An expansion of this integrative approach to a larger number of
549 maize inbred lines in a genome-wide association study likely will identify both additional
550 metabolites and genes involved in their metabolism. Such genes will be useful in future breeding
551 efforts to enhance the pathogen resistance during maize seedling establishment.

552

553 **Acknowledgements**

554 This research was funded by US National Science Foundation awards to 1339237 GJ and
555 1139329 to GJ and EAS, and US National Science Foundation Graduate Research Fellowship
556 Program award DGE-1650441 to KAK. We thank Chong Huang for help with the linear
557 discrimination analysis, Eric Craft and Jon Schaff for help with the RootReader 2D platform,
558 Francis Trail and Robert Procter for sharing the *F. graminearum* ZTE strain, Navid Mohaved for
559 assistance with mass spectrometry, Julia Vrebalov for assistance with ethylene measurement, Eli

560 Borrego for his assistance in ergosterol analyses, and Annett Richter and Melkamu
561 Woldemariam for helpful discussions.

562

563 **Author Contributions**

564 S.Z. and G.J. designed experiments, performed or assisted in all experiments, and wrote the
565 manuscript. K.K. and E.B. prepared the QuantSeq 3' mRNA-Seq libraries. K.Y.Z. and F.S.
566 purified metabolites and performed NMR spectroscopy analyses. J.S.Ba. and D.K. assisted in the
567 root imaging experiment and the *Zmacs2-1 Zmacs6* mutant analysis, respectively. E.A.S., Y.D.,
568 M.V.K., and J.S.Ba. conducted fungal infections and *Zmacs2-1 Zmacs6* experiments.

569

570 **List of Supporting Information**

571 **Figure S1.** Natural variation in *F. graminearum*-induced root growth reduction in maize
572 seedlings.

573 **Figure S2.** Predicted feruloylsucrose compounds have characteristic phenylpropanoid-like
574 ultraviolet absorbance profiles.

575 **Figure S3.** Tandem MS spectra of putative acetylated feruloylsucroses.

576 **Figure S4.** Standard curve of smiglaside C

577 **Figure S5.** QTL mapping of the smilaside A/smiglaside C ratio identifies the same locus on
578 Chromosome 3.

579 **Figure S6.** Constitutive abundance of smilaside A and smiglaside C vary across B73-Mo17 near-
580 isogenic lines.

581 **Figure S7.** Endogenous ethylene production in root is depleted in the *Zmacs2-1 Zmacs6* double
582 mutant maize seedlings.

583 **Figure S8.** 1-Aminocyclopropane-1-carboxylic acid and 1-monocyclopropene treatment has
584 opposite effects on maize seedling height.

585 **Figure S9.** 1-Aminocyclopropane-1-carboxylic acid and 1-monocyclopropene are not directly
586 toxic to *F. graminearum*.

587 **Table S1.** List of mass features significantly different between B73 and Mo17 seedling roots
588 constitutively.

589 **Table S2.** List of mass features significantly different between mock- and *F. graminearum*-
590 inoculated B73 seedling roots.

591 **Table S3.** List of mass features both significantly different between B73 and Mo17 seedling
592 roots constitutively, and responsive to *F. graminearum* inoculation in B73.

593 **Table S4.** Chemical shifts and major coupling constants from NMR spectroscopy analysis of
594 smiglaside C.

595 **Table S5.** Normalized and filtered transcript count of gene models located in the QTL interval
596 across intermated B73-Mo17 recombinant inbred lines and the two parental inbred lines.

597

598 **References**

599 **Ali ML, Taylor JH, Jie L, Sun G, William M, Kasha KJ, Reid LM, Pauls KP. 2005.** Molecular mapping of qtls for resistance to gibberella ear rot, in corn, caused by *fusarium*
600 *graminearum*. *Genome* **48**: 521-533.

601
602 **Anders S, Pyl PT, Huber W. 2015.** Htseq: A python framework to work with high-throughput
603 sequencing data. *Bioinformatics* **31**: 166-169.

604 **Balmer D, de Papajewski DV, Planchamp C, Glauser G, Mauch-Mani B. 2013.** Induced
605 resistance in maize is based on organ-specific defence responses. *Plant Journal* **74**: 213-
606 225.

607 **Benson JM, Poland JA, Benson BM, Stromberg EL, Nelson RJ. 2015.** Resistance to gray leaf
608 spot of maize: Genetic architecture and mechanisms elucidated through nested
609 association mapping and near-isogenic line analysis. *PLoS Genet* **11**.

610 **Benton HP, Want EJ, Ebbels TMD. 2010.** Correction of mass calibration gaps in liquid
611 chromatography-mass spectrometry metabolomics data. *Bioinformatics* **26**: 2488-2489.

612 **Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D,**
613 **Hamzehzarghani H. 2010.** Mass spectrometry-based metabolomics application to
614 identify quantitative resistance-related metabolites in barley against fusarium head blight.
615 *Molecular Plant Pathology* **11**: 769-782.

616 **Brauner PC, Melchinger AE, Schrag TA, Utz HF, Schipprack W, Kessel B, Ouzunova M,**
617 **Miedaner T. 2017.** Low validation rate of quantitative trait loci for gibberella ear rot
618 resistance in european maize. *Theor Appl Genet* **130**: 175-186.

619 **Buckler ES, Gaut BS, McMullen MD. 2006.** Molecular and functional diversity of maize. *Curr*
620 *Opin Plant Biol* **9**: 172-176.

621 **Chen T, Li JX, Xu Q. 2000.** Phenylpropanoid glycosides from *smilax glabra*. *Phytochemistry*
622 **53:** 1051-1055.

623 **Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H, et al.**
624 **2014.** Genome-wide association analyses provide genetic and biochemical insights into
625 natural variation in rice metabolism. *Nat Genet* **46:** 714-721.

626 **Chen X, Steed A, Travella S, Keller B, Nicholson P. 2009.** *Fusarium graminearum* exploits
627 ethylene signalling to colonize dicotyledonous and monocotyledonous plants. *New*
628 *Phytologist* **182:** 975-983.

629 **Cho JG, Cha BJ, Seo WD, Jeong RH, Shrestha S, Kim JY, Kang HC, Baek NI. 2015.**
630 Feruloyl sucrose esters from *oryza sativa* roots and their tyrosinase inhibition activity.
631 *Chemistry of Natural Compounds* **51:** 1094-1098.

632 **Christensen SA, Nemchenko A, Park YS, Borrego E, Huang PC, Schmelz EA, Kunze S,**
633 **Feussner I, Yalpani N, Meeley R, et al. 2014.** The novel monocot-specific 9-
634 lipoxygenase zmlox12 is required to mount an effective jasmonate-mediated defense
635 against *fusarium verticillioides* in maize. *Mol Plant Microbe Interact* **27:** 1263-1276.

636 **Cuomo CA, Gueldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ,**
637 **Baker SE, Rep M, et al. 2007.** The *fusarium graminearum* genome reveals a link
638 between localized polymorphism and pathogen specialization. *Science* **317:** 1400-1402.

639 **Ding LN, Xu HB, Yi HY, Yang LM, Kong ZX, Zhang LX, Xue SL, Jia HY, Ma ZQ. 2011.**
640 Resistance to hemi-biotrophic *f. Graminearum* infection is associated with coordinated
641 and ordered expression of diverse defense signaling pathways. *Plos One* **6**.

642 **Ding Y, Huffaker A, Kollner TG, Weckwerth P, Robert CAM, Spencer JL, Lipka AE,**
643 **Schmelz EA. 2017.** Selinene volatiles are essential precursors for maize defense
644 promoting fungal pathogen resistance. *Plant Physiology* doi: **10.1104/pp.17.00879**.
645 [Epub ahead of print].

646 **Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,**
647 **Gingeras TR. 2013.** Star: Ultrafast universal rna-seq aligner. *Bioinformatics* **29:** 15-21.

648 **Eichten SR, Foerster JM, de Leon N, Kai Y, Yeh CT, Liu S, Jeddeloh JA, Schnable PS,**
649 **Kaeppler SM, Springer NM. 2011.** B73-mo17 near-isogenic lines demonstrate
650 dispersed structural variation in maize. *Plant Physiology* **156:** 1679-1690.

651 **Famoso AN, Clark RT, Shaff JE, Craft E, McCouch SR, Kochian LV. 2010.** Development
652 of a novel aluminum tolerance phenotyping platform used for comparisons of cereal
653 aluminum tolerance and investigations into rice aluminum tolerance mechanisms. *Plant*
654 *Physiology* **153**: 1678-1691.

655 **Guenther JC, Trail F. 2005.** The development and differentiation of *Gibberella zaeae*
656 (anamorph : *Fusarium graminearum*) during colonization of wheat. *Mycologia* **97**: 229-
657 237.

658 **Handrick V, Robert CAM, Ahern KR, Zhou SQ, Machado RAR, Maag D, Glauser G,**
659 **Fernandez-Penny FE, Chandran JN, Rodgers-Melnik E, et al. 2016.** Biosynthesis of
660 8-o-methylated benzoxazinoid defense compounds in maize. *Plant Cell* **28**: 1682-1700.

661 **Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni XZ, Rocca JR, Alborn HT, Teal PEA,**
662 **Schmelz EA. 2011.** Novel acidic sesquiterpenoids constitute a dominant class of
663 pathogen-induced phytoalexins in maize. *Plant Physiology* **156**: 2082-2097.

664 **Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X,**
665 **Chin CS, et al. 2017.** Improved maize reference genome with single-molecule
666 technologies. *Nature* **546**: 524-527.

667 **Kazan K, Gardiner DM, Manners JM. 2012.** On the trail of a cereal killer: Recent advances in
668 *fusarium graminearum* pathogenomics and host resistance. *Molecular Plant Pathology*
669 **13**: 399-413.

670 **Kebede AZ, Woldemariam T, Reid LM, Harris LJ. 2016.** Quantitative trait loci mapping for
671 gibberella ear rot resistance and associated agronomic traits using genotyping-by-
672 sequencing in maize. *Theor Appl Genet* **129**: 17-29.

673 **Kim J, Kang K, Gonzales-Vigil E, Shi F, Jones AD, Barry CS, Last RL. 2012.** Striking
674 natural diversity in glandular trichome acylsugar composition is shaped by variation at
675 the acyltransferase2 locus in the wild tomato *solanum habrochaites*. *Plant Physiology*
676 **160**: 1854-1870.

677 **Kim KH, Chang SW, Lee KR. 2010.** Feruloyl sucrose derivatives from *bistorta manshuriensis*.
678 *Canadian Journal of Chemistry-Revue Canadienne De Chimie* **88**: 519-523.

679 **Kremling KAG, Chen SY, Su MH, Lepak NK, Romay MC, Swarts KL, Lu F, Lorant A,**
680 **Bradbury PJ, Buckler ES. 2018.** Dysregulation of expression correlates with rare-allele
681 burden and fitness loss in maize. *Nature* **555**: 520-523.

682 **Kubicek CP, Starr TL, Glass NL. 2014.** Plant cell wall-degrading enzymes and their secretion
683 in plant-pathogenic fungi. *Annual Review of Phytopathology* **52**: 427-451.

684 **Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S. 2012.** Camera: An integrated
685 strategy for compound spectra extraction and annotation of liquid chromatography/mass
686 spectrometry data sets. *Analytical Chemistry* **84**: 283-289.

687 **Kuo YH, Hsu YW, Liaw CC, Lee JK, Huang HC, Kuo LMY. 2005.** Cytotoxic
688 phenylpropanoid glycosides from the stems of *smilax china*. *Journal of Natural Products*
689 **68**: 1475-1478.

690 **Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A. 2002.** Expanding
691 the genetic map of maize with the intermated b73 x mo17 (ibm) population. *Plant Mol
692 Biol* **48**: 453-461.

693 **Li GL, Yen Y. 2008.** Jasmonate and ethylene signaling pathway may mediate fusarium head
694 blight resistance in wheat. *Crop Science* **48**: 1888-1896.

695 **Lou YR, Bor M, Yan J, Preuss AS, Jander G. 2016.** Arabidopsis nata1 acetylates putrescine
696 and decreases defense-related hydrogen peroxide accumulation. *Plant Physiology* **171**:
697 1443-1455.

698 **McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S,
699 Thornsberry J, Acharya C, Bottoms C, et al. 2009.** Genetic properties of the maize
700 nested association mapping population. *Science* **325**: 737-740.

701 **Meihls LN, Handrick V, Glauser G, Barbier H, Kaur H, Haribal MM, Lipka AE,
702 Gershenson J, Buckler ES, Erb M, et al. 2013.** Natural variation in maize aphid
703 resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside
704 methyltransferase activity. *Plant Cell* **25**: 2341-2355.

705 **Mideros SX, Windham GL, Williams WP, Nelson RJ. 2012.** Tissue-specific components of
706 resistance to aspergillus ear rot of maize. *Phytopathology* **102**: 787-793.

707 **Mueller D 2016a.** Corn disease loss estimates from the united states and ontario, canada -
708 2013.In: Purdue University Extension.

709 **Mueller D 2016b.** Corn disease loss estimates from the united states and ontario, canada -
710 2014.In: Purdue University Extension.

711 **Mueller D 2017.** Corn disease loss estimates from the united states and ontario, canada -
712 2016.In: Purdue University Extension.

713 **Munkvold GP, White DG. 2016.** *Compendium of corn diseases*: The American
714 Phytopathological Society.

715 **Nicholson RL, Hammerschmidt R. 1992.** Phenolic-compounds and their role in disease
716 resistance. *Annual Review of Phytopathology* **30**: 369-389.

717 **Olukolu BA, Wang GF, Vontimitta V, Venkata BP, Marla S, Ji J, Gachomo E, Chu K,
718 Negeri A, Benson J, et al. 2014.** A genome-wide association study of the maize
719 hypersensitive defense response identifies genes that cluster in related pathways. *PLoS
720 Genet* **10**: e1004562.

721 **Ono M, Takamura C, Sugita F, Masuoka C, Yoshimitsu H, Ikeda T, Nohara T. 2007.** Two
722 new steroid glycosides and a new sesquiterpenoid glycoside from the underground parts
723 of *trillium kamtschaticum*. *Chem Pharm Bull (Tokyo)* **55**: 551-556.

724 **Panda P, Appalashetti M, Natarajan M, Chan-Park MB, Venkatraman SS, Judeh ZM.
725 2012a.** Synthesis and antitumor activity of lapathoside d and its analogs. *Eur J Med
726 Chem* **53**: 1-12.

727 **Panda P, Appalashetti M, Natarajan M, Mary CP, Venkatraman SS, Judeh ZM. 2012b.**
728 Synthesis and antiproliferative activity of helonioside a, 3',4',6'-tri-o-feruloylsucrose,
729 lapathoside c and their analogs. *Eur J Med Chem* **58**: 418-430.

730 **Pasquet JC, Chaouch S, Macadre C, Balzergue S, Huguet S, Martin-Magniette ML,
731 Bellvert F, Deguercy X, Thareau V, Heintz D, et al. 2014.** Differential gene expression
732 and metabolomic analyses of *brachypodium distachyon* infected by deoxynivalenol
733 producing and non-producing strains of *fusarium graminearum*. *Bmc Genomics* **15**.

734 **Ponts N, Pinson-Gadais L, Boutigny AL, Barreau C, Richard-Forget F. 2011.** Cinnamic-
735 derived acids significantly affect *fusarium graminearum* growth and *in vitro* synthesis of
736 type b trichothecenes. *Phytopathology* **101**: 929-934.

737 **Proctor RH, Hohn TM, McCormick SP. 1995.** Reduced virulence of *gibberella zae* caused by
738 disruption of a trichothecene toxin biosynthetic gene. *Molecular Plant-Microbe
739 Interactions* **8**: 593-601.

740 **Schilmiller AL, Charbonneau AL, Last RL. 2012.** Identification of a bahd acetyltransferase
741 that produces protective acyl sugars in tomato trichomes. *PNAS* **109**: 16377-16382.

742 **Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni XZ, Rocca JR, Alborn**
743 **HT, Teal PE. 2011.** Identity, regulation, and activity of inducible diterpenoid
744 phytoalexins in maize. *PNAS* **108**: 5455-5460.

745 **Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton**
746 **L, Graves TA, et al. 2009.** The b73 maize genome: Complexity, diversity, and
747 dynamics. *Science* **326**: 1112-1115.

748 **Tautenhahn R, Bottcher C, Neumann S. 2008.** Highly sensitive feature detection for high
749 resolution lc/ms. *Bmc Bioinformatics* **9**.

750 **Vanden Wymelenberg AJ, Cullen D, Spear RN, Schoenike B, Andrews JH. 1997.**
751 Expression of green fluorescent protein in *aureobasidium pullulans* and quantification of
752 the fungus on leaf surfaces. *Biotechniques* **23**: 686-690.

753 **Wang S, Basten, C.J., Zeng, Z-B. 2012.** *Windows qtl cartographer 2.5*. Raleigh, NC: Dept. of
754 Statistics, North Carolina State University.

755 **Xiao J, Jin XH, Jia XP, Wang HY, Cao AZ, Zhao WP, Pei HY, Xue ZK, He LQ, Chen QG,**
756 **et al. 2013.** Transcriptome-based discovery of pathways and genes related to resistance
757 against fusarium head blight in wheat landrace wangshuibai. *Bmc Genomics* **14**.

758 **Yan J, Aboshi T, Teraishi M, Strickler SR, Spindel JE, Tung CW, Takata R, Matsumoto F,**
759 **Maesaka Y, McCouch SR, et al. 2015.** The tyrosine aminomutase tam1 is required for
760 beta-tyrosine biosynthesis in rice. *Plant Cell* **27**: 1265-1278.

761 **Yan L, Gao W, Zhang Y, Wang Y. 2008.** A new phenylpropanoid glycosides from *paris*
762 *polyphylla* var. Yunnanensis. *Fitoterapia* **79**: 306-307.

763 **Yang Q, He Y, Kabahuma M, Chaya T, Kelly A, Borrego E, Bian Y, El Kasmi F, Yang L,**
764 **Teixeira P, et al. 2017.** A gene encoding maize caffeoyl-coa o-methyltransferase confers
765 quantitative resistance to multiple pathogens. *Nat Genet* **49**: 1364-1372.

766 **Ye JR, Guo YL, Zhang DF, Zhang N, Wang C, Xu ML. 2013.** Cytological and molecular
767 characterization of quantitative trait locus qrfg1, which confers resistance to gibberella
768 stalk rot in maize. *Molecular Plant-Microbe Interactions* **26**: 1417-1428.

769 **Young TE, Meeley RB, Gallie DR. 2004.** Acc synthase expression regulates leaf performance
770 and drought tolerance in maize. *Plant Journal* **40**: 813-825.

771 **Zhang L, Liao CC, Huang HC, Shen YC, Yang LM, Kuo YH. 2008.** Antioxidant
772 phenylpropanoid glycosides from *smilax bracteata*. *Phytochemistry* **69**: 1398-1404.

773 **Zhang Y, He J, Jia LJ, Yuan TL, Zhang D, Guo Y, Wang YF, Tang WH. 2016.** Cellular
774 tracking and gene profiling of *fusarium graminearum* during maize stalk rot disease
775 development elucidates its strategies in confronting phosphorus limitation in the host
776 apoplast. *Plos Pathogens* **12**.

777 **Zhu JJ, Zhang CF, Zhang M, Wang ZT. 2006.** Studies on chemical constituents in roots of
778 *rumex dentatus*. *Zhongguo Zhong Yao Za Zhi* **31**: 1691-1693.

779

780 **Figure Legends**

781 **Figure 1. Natural variation in root growth inhibition by *F. graminearum*.** The ratio of total
782 root length of *F. graminearum*- and mock-inoculated maize seedlings, measured six days after
783 inoculation, is shown. The dotted line denotes the expected ratio when there is no significant
784 effect of *F. graminearum* infection. At least five mock- and fungus-inoculated individuals are
785 measured for each genotype. *P < 0.05, Student's *t*-test for significant difference from 1.

786

787 **Figure 2. Mo17 is more resistant to *F. graminearum* than B73.** Compared to B73, Mo17
788 seedling roots inoculated with *F. graminearum* demonstrate (a) lower expression of an *F.*
789 *graminearum*-specific α -tubulin gene, mean +/- s.e. of N = 5, (b) lower content of
790 deoxynivalenol at six-days-post-inoculation, mean +/- s.e. of N = 5, and (c) reduced symptoms
791 on a 0-4 scale, with 0 = no symptoms and 4 = seedling death, mean +/- s.e. of N = 10. *P < 0.05
792 two-tailed unpaired Student's *t*-tests for A and B, and paired *t*-test for C. (d) Non-targeted
793 metabolomics of *F. graminearum*-inoculated B73 and Mo17 seedling roots. For either genetic
794 background, each mass feature that was significantly different between treatments (control vs.
795 infected, N = 5; p < 0.05; fold change > 1.5) was plotted as a bubble on the total ion current
796 chromatogram, with its size proportional to the fold change, and darker color representing a more
797 significant change. Mass features induced by *F. graminearum* are shown in the upper half of
798 each plot and *F. graminearum*-suppressed mass features are shown in the lower half.

799

800 **Figure 3. Antifungal metabolites smiglaside C and smilaside A are differentially induced by**
801 ***F. graminearum* in B73 and Mo17.** Abundance of metabolites with (a) *m/z* 819 and (b) *m/z* 777
802 was measured in negative electron spray ionization mode. (c) Ratio of the peak areas of the two
803 metabolites. Mean +/- s.e. of N = 4. Different letters indicate significant differences, P < 0.05,

804 ANOVA followed by Tukey's HSD test. Structures of (d) smiglaside C and (e) smilaside A were
805 determined by LC-MS/MS and NMR. (f) Growth of an *F. graminearum* spore/hyphae
806 suspension incubated with smilaside A, smiglaside C, or a dimethylsulfoxide (DMSO) solvent-
807 only control. Fungal growth was monitored by absorbance at 405 nm. Mean +/- s.e. of N = 4, *P
808 < 0.05, Student's *t*-test relative to the DMSO control at the same time point.

809

810 **Figure 4. Smiglaside C and smilaside A share a QTL on chromosome 3 with opposite**
811 **effects.** (a) Composite interval mapping of smiglaside C (blue) and smilaside A (orange) in the
812 seedling roots of B73 × Mo17 recombinant inbred lines (RILs) identified a significant QTL for
813 both traits on chromosome 3 (indicated by an arrow). RILs with the B73 QTL allele on
814 chromosome 3 have more smiglaside C (b) and less smilaside A (c) than those with the Mo17
815 allele. Numbers in bars are sample sizes. P values were determined with two-tailed Student's *t*-
816 tests. (d) The smilaside A/smiglaside C ratio was calculated for B73, Mo17, and near-isogenic
817 lines. The genetic background of the NILs is indicated by the initial letter of the line name, *e.g.*
818 m060 has a Mo17 genetic background and b169 has a B73 genetic background. The smilaside
819 A/smiglaside C ration is higher in Mo17 than in B73, mean +/- s.e. of N = 3, Student's *t*-test.
820 NILs carrying the Mo17 allele at the Chromosome 3 QTL have a higher smilaside A/smiglaside
821 C ratio than those with the B73 allele (Students *t*-test), irrespective of the overall genetic
822 background.

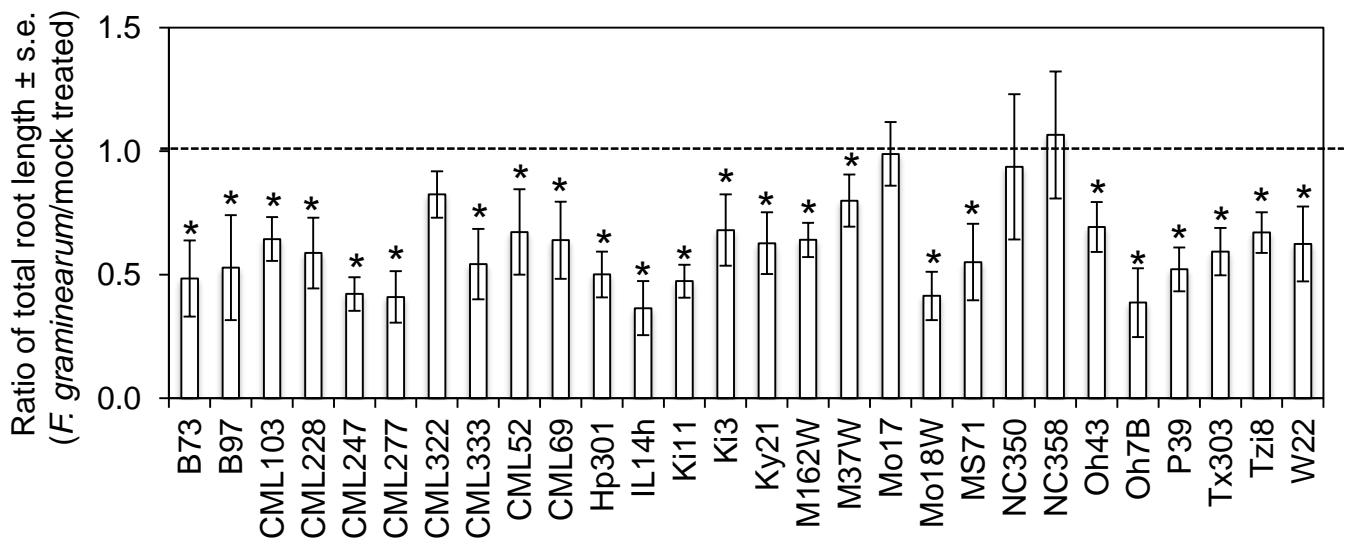
823

824 **Figure 5. ETHYLENE INSENSITIVE 2 is differentially expressed in B73 × Mo17**
825 **recombinant inbred lines (RILs) with contrasting smilaside A/smiglaside C ratios.** (a) B73 ×
826 Mo17 RILs can be divided into two groups based on their constitutive smilaside A and
827 smiglaside C content. One replicate each of 83 B73 × Mo17 RILs and five replicates of the B73
828 and Mo17 parental lines were plotted based on the constitutive content of smilaside A and
829 smiglaside C in their seedling roots. The parental lines are indicated with dark blue (Mo17) and
830 dark red (B73). The RILs were determined to be Mo17-like (light blue) or B73-like (light red) in
831 their smilaside A and smiglaside C content using the linear discriminant analysis. The level of
832 significance in differential expression between Mo17- and B73-like inbred lines, measured by -
833 log(p) from Student's *t*-tests, is plotted for each root-expressed transcript in the chromosomal
834 order across the whole genome (b) and within the QTL region on chromosome 3 (c). (d)

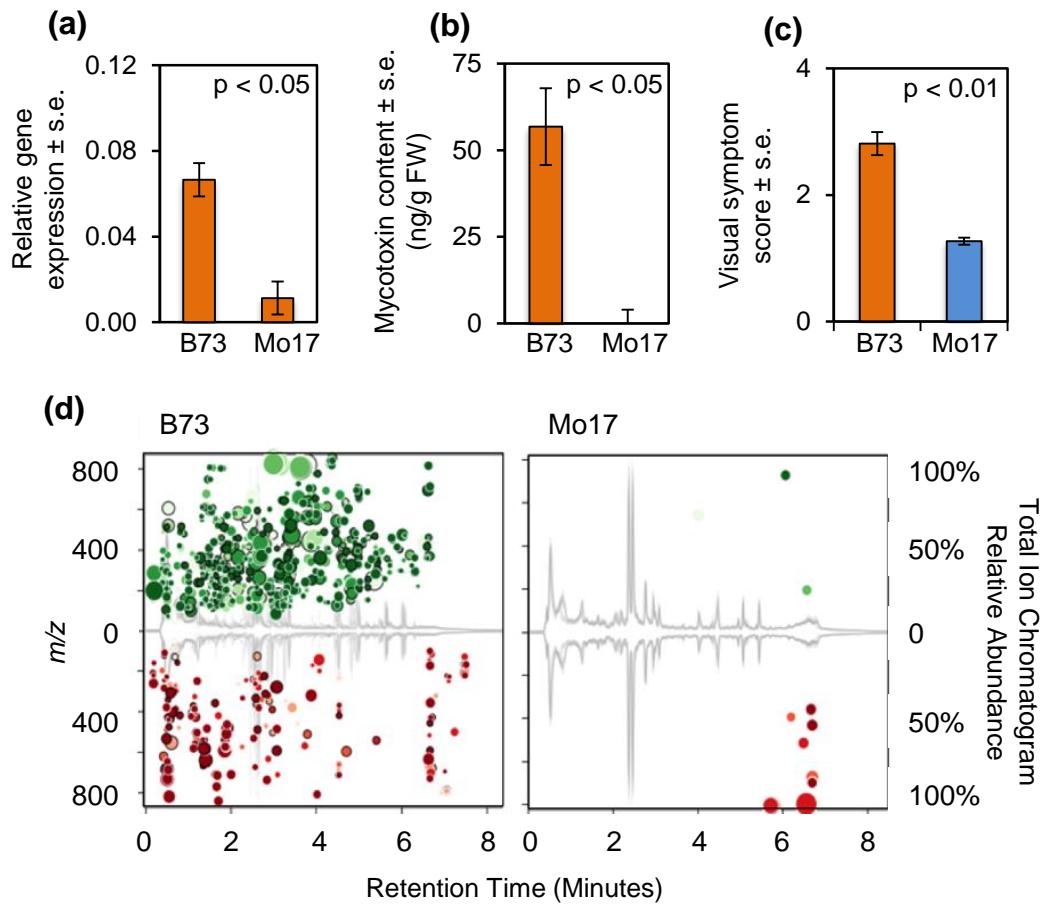
835 Expression of *EIN2* is significantly higher in the seedling roots of RILs with a B73-like
836 smilaside A and smiglaside C content than in ones with a Mo17-like content. Mean +/- s.e., P
837 value is from a two-tailed Student's *t*-test.

838

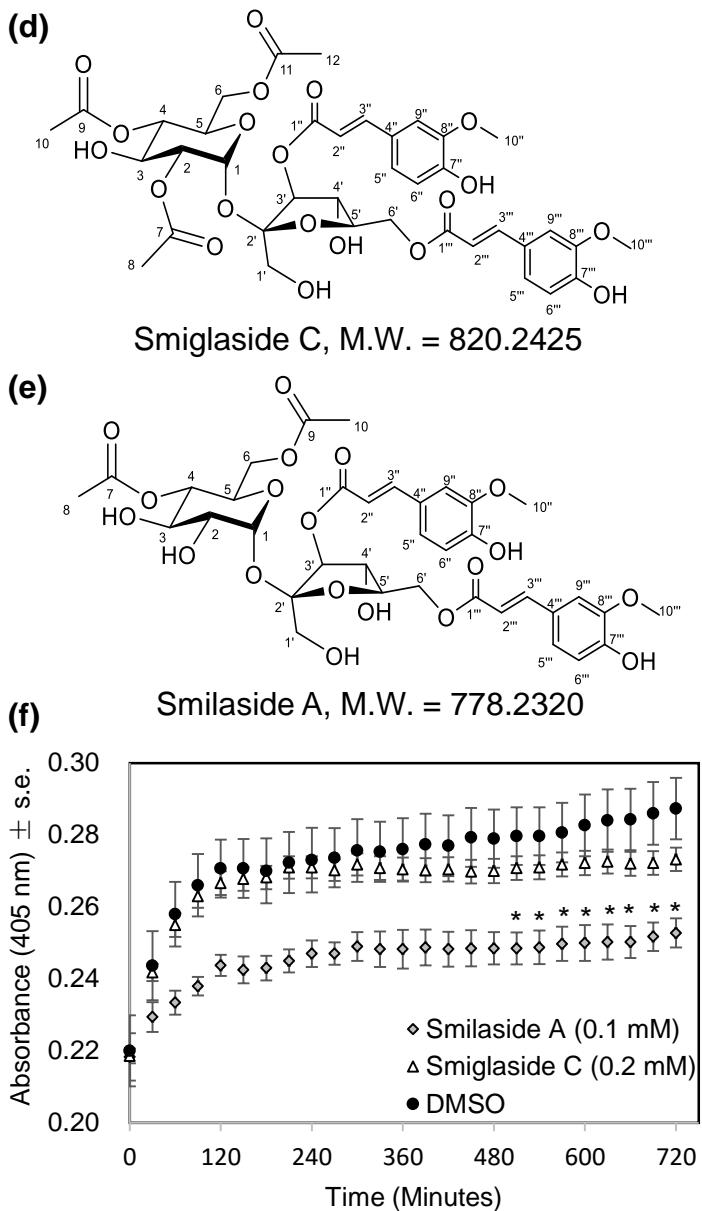
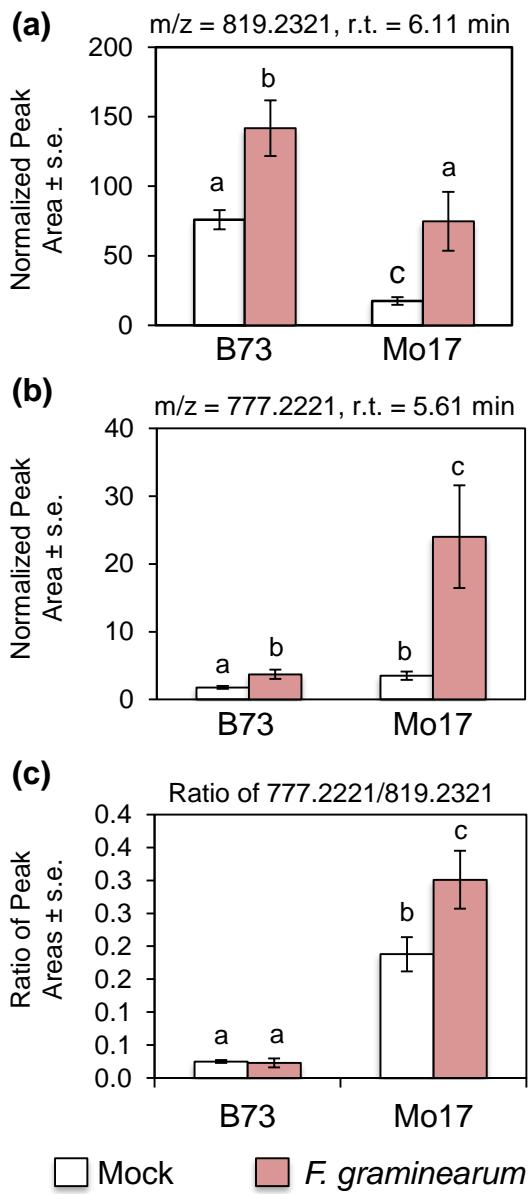
839 **Figure 6. Exogenous 1-methylcyclopropane (1-MCP) treatment promotes maize seedling**
840 **root resistance against *F. graminearum*.** B73 maize seedling roots inoculated with *F.*
841 *graminearum* were treated with 1-aminocyclopropane-1-carboxylate (1-ACC), 1-MCP, or water
842 as a control. The abundance of (a) smiglaside C, (b) smilaside A , and (c) the ratio of the two
843 metabolites was calculated from peak area under negative electron spray ionization mode. Mean
844 +/- s.e. of N = 5, different letters indicate significant difference, P < 0.05, ANOVA followed by
845 Tukey's HSD test. (d) B73 maize seedling roots inoculated with *F. graminearum*-GFP and
846 treated with 1-ACC, 1-MCP, or mock treatment for ten days were examined with white light and
847 fluorescence microscopy. More GFP marker expression from *F. graminearum* was observed on
848 root surface of mock- and 1-ACC treated seedling roots than on 1-MCP-treated roots. (e) Fungal
849 growth was quantified by qRT-PCR using *F. graminearum*-specific primers, relative to
850 expression measurement of a maize housekeeping gene. Mean +/- s.e. of N = 8, different letters
851 indicate significant differences, P < 0.05, ANOVA followed by Tukey's HSD test.

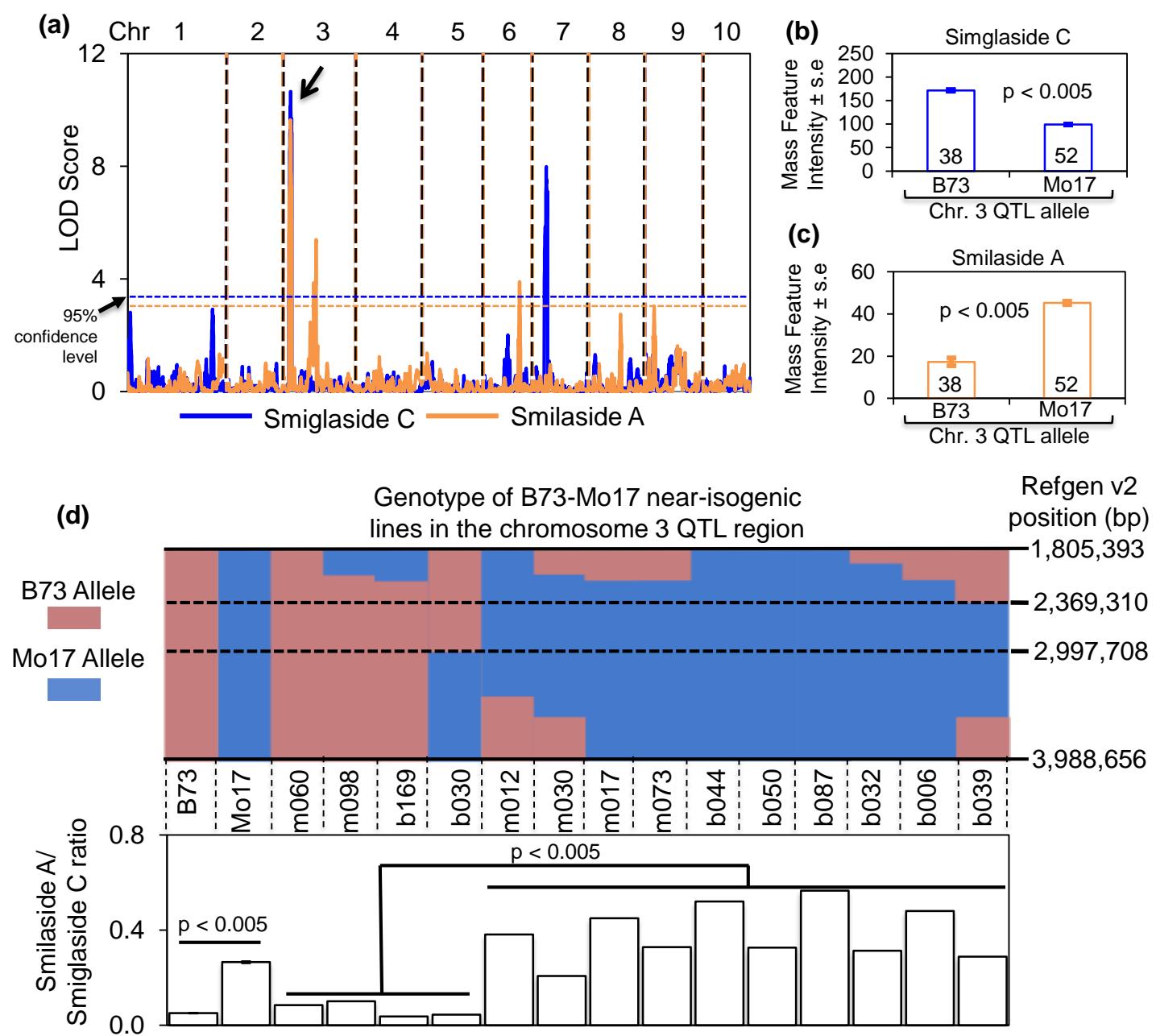

852

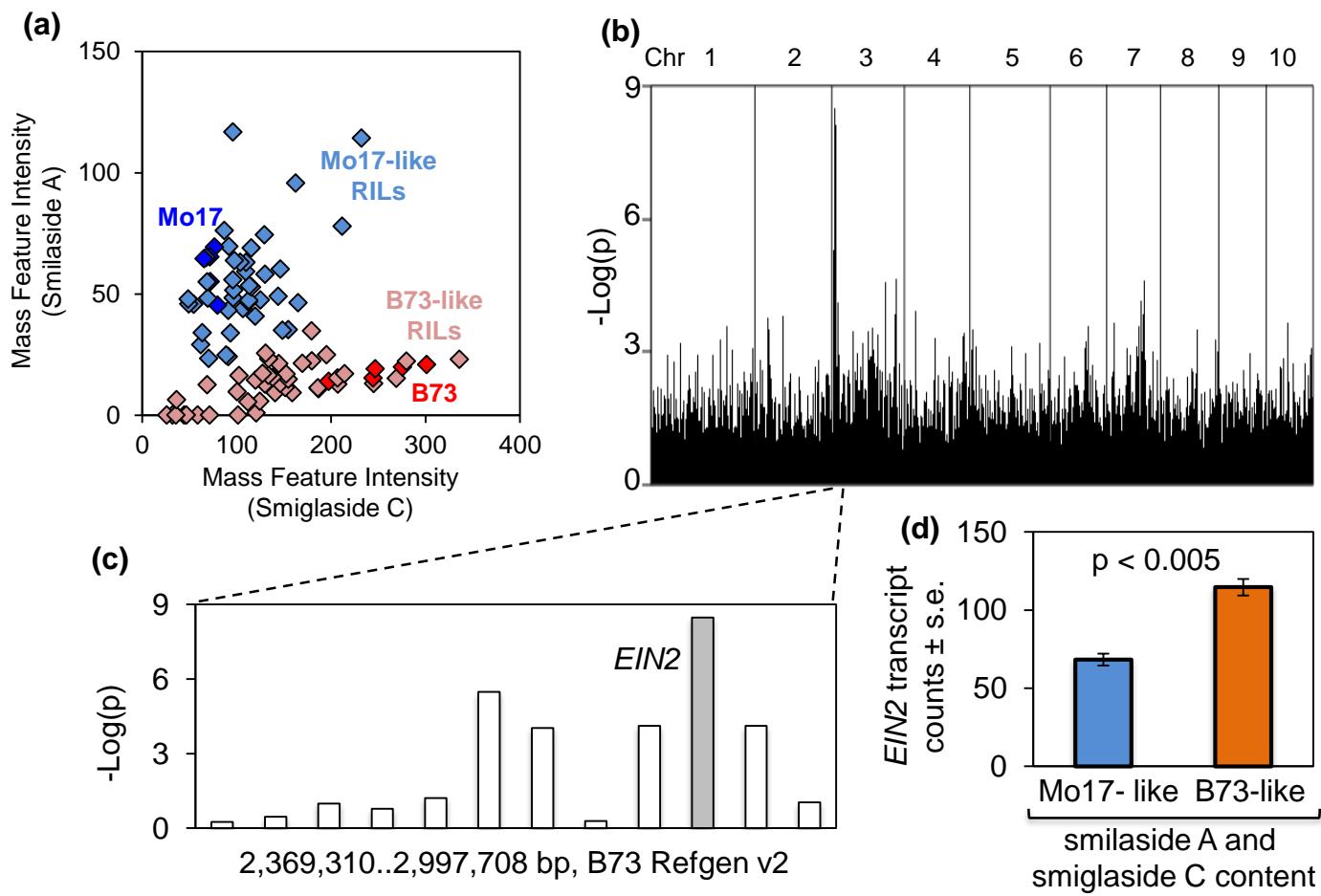
853 **Figure 7. Ethylene biosynthesis is required for acetylated feruloylsucrose accumulation and**
854 **resistance against *F. graminearum* .** The abundance of (a) smiglaside C and (b) smilaside A
855 was estimated by peak area at their respective *m/z* ratio under negative electron spray ionization
856 mode. (c) The ratio of smilaside A and smiglaside C peak areas. Mean +/- s.e., different letters
857 indicate significant differences, P < 0.05, Two-way ANOVA followed by Tukey's HSD test. (d)
858 Fungal load was estimated by ergosterol content, normalized by root tissue fresh weight. Mean
859 +/- s.e., different letters indicate significant differences, P < 0.05, One-way ANOVA.

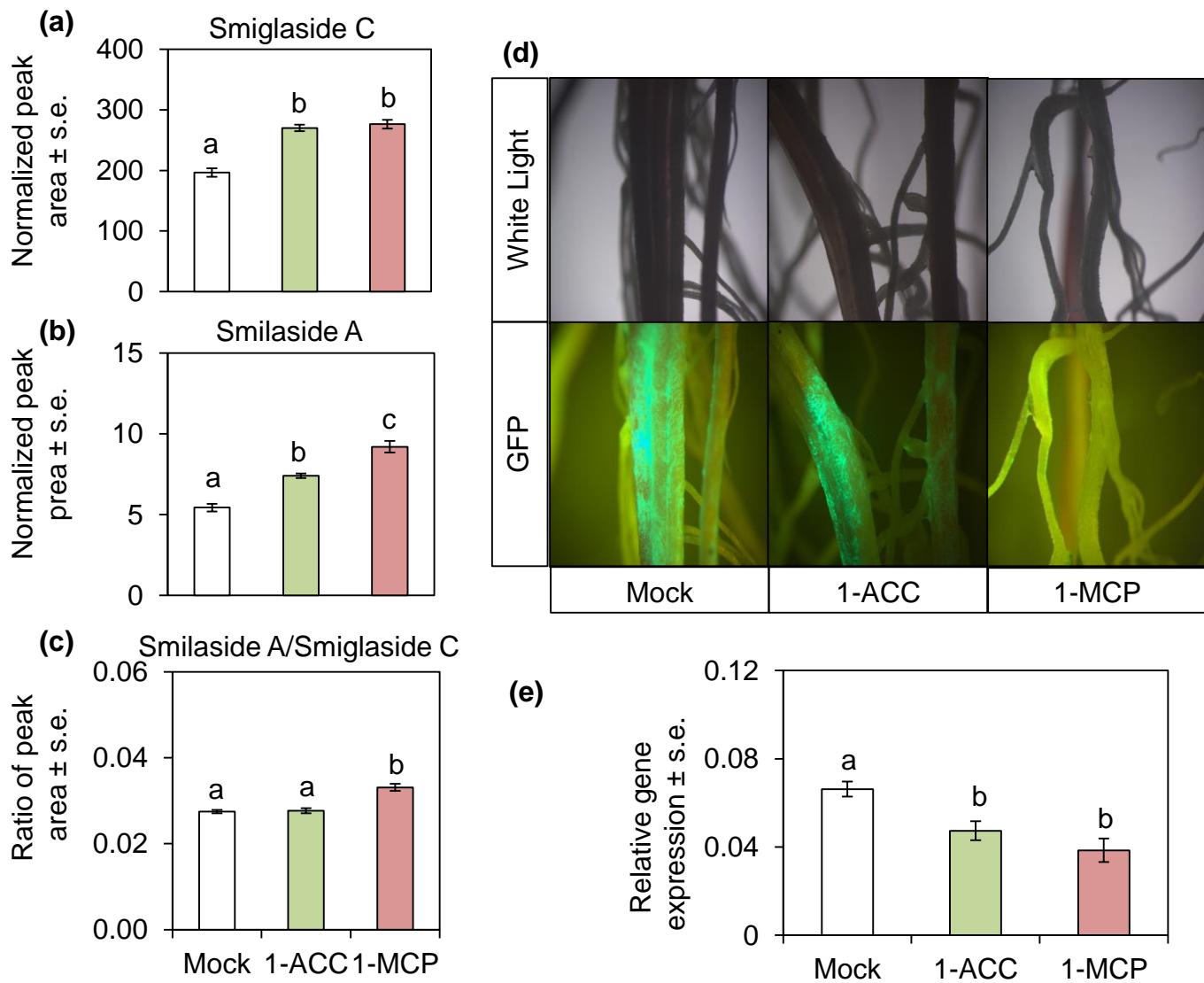

860

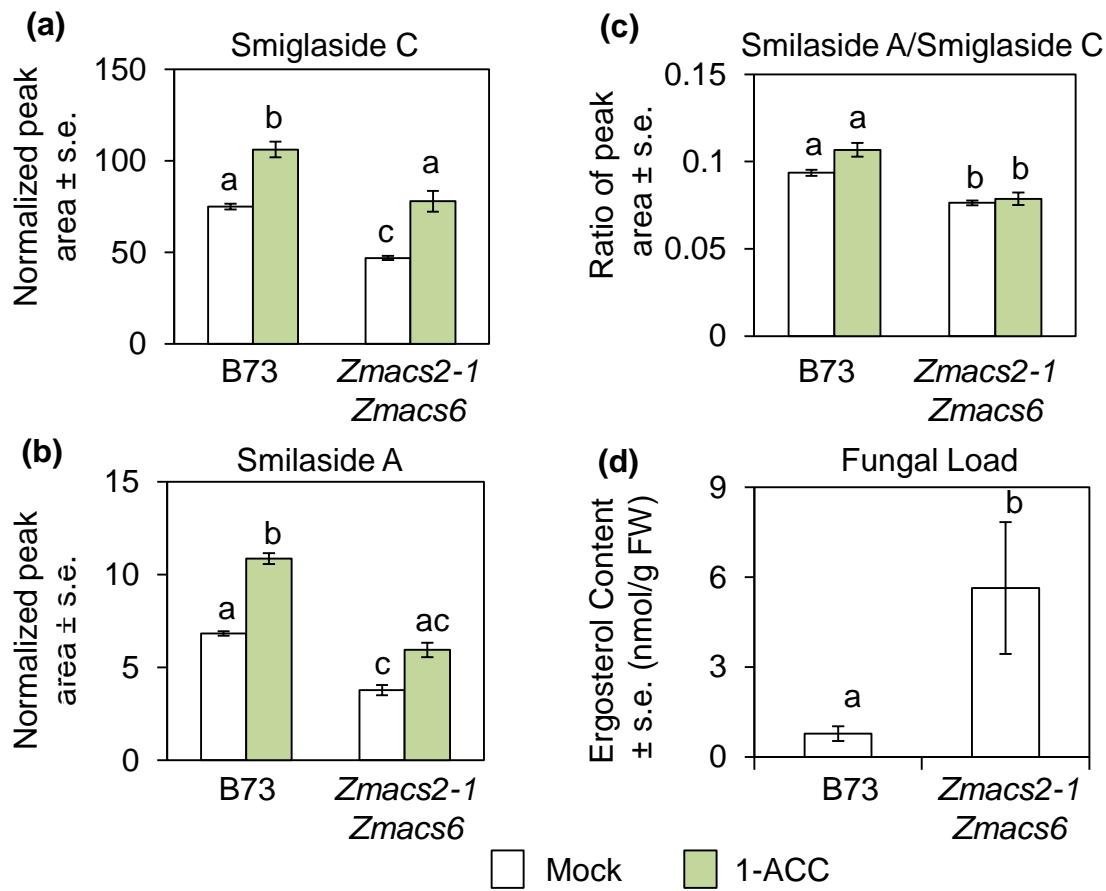
861 **Figure 8. Smilaside A and smiglaside C are induced by fungal pathogen infection.** Smilaside
862 A and smiglaside C content were measured in 35-day-old Mo17 stem tissues four days after
863 physical wounding or inoculation with *Aspergillus flavus*, *Rhizopus microspores*, *Fusarium*
864 *verticilloides*, or *Cochliobolus heterostrophus*. Mean +/- s.e. of N = 4. *P < 0.05 relative to the

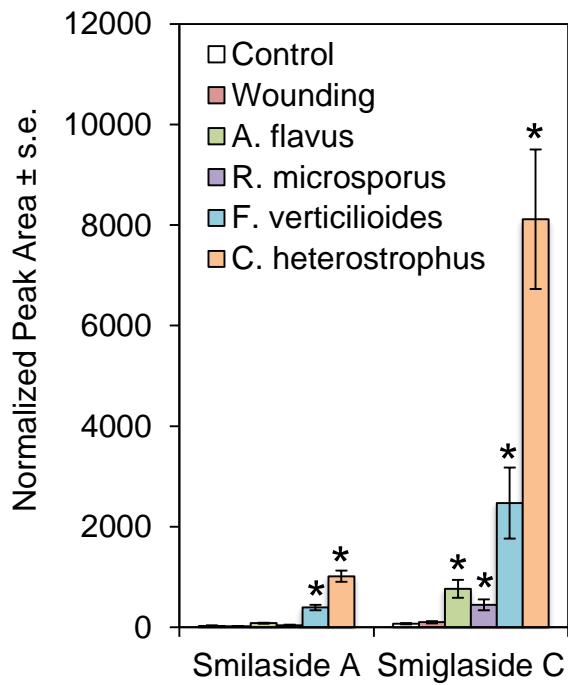


865 uninfected control, pairwise Wilcoxon rank sum tests with Benjamini and Hochberg correction
866 for multiple comparisons.
867

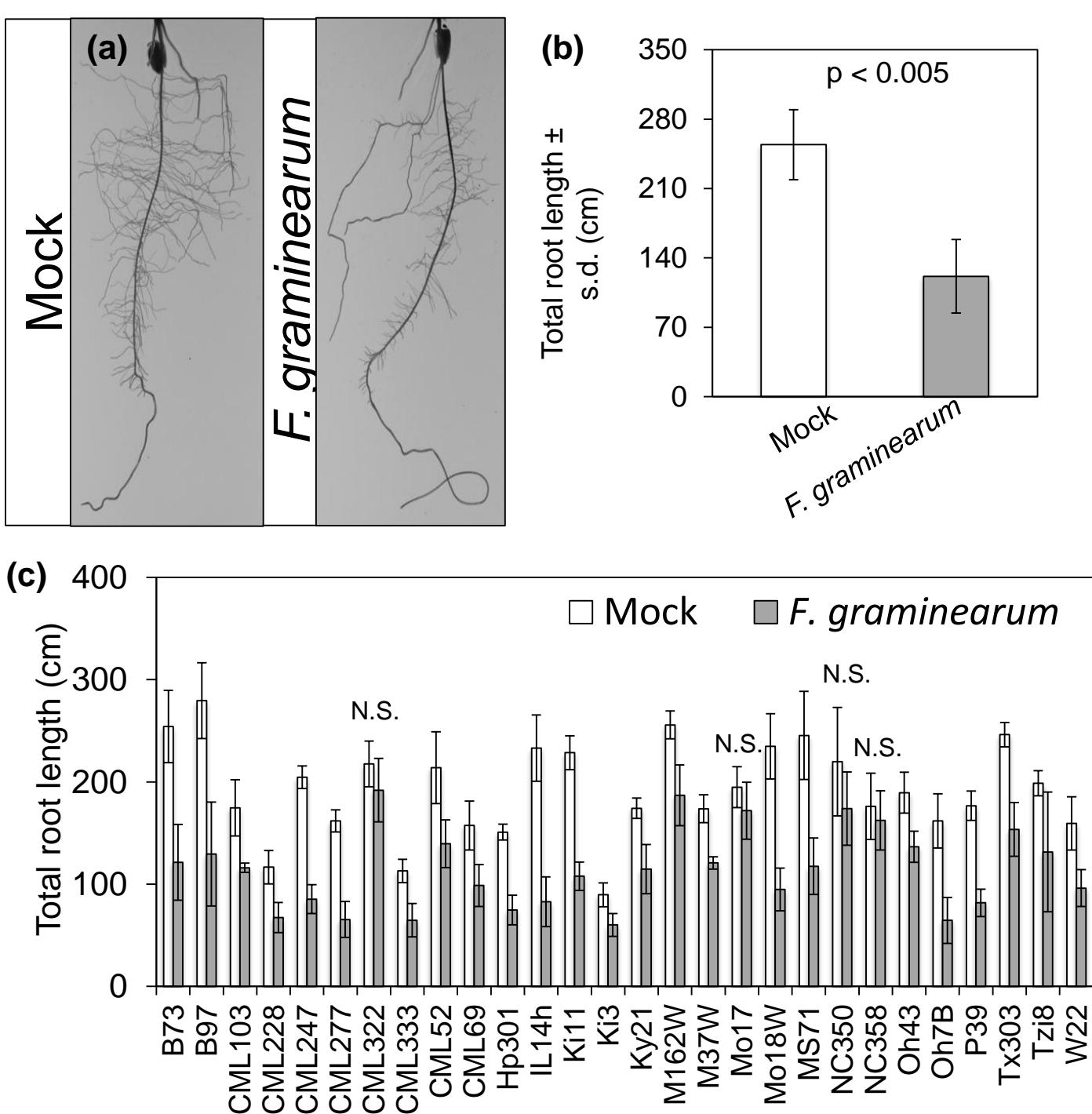

Figure 1. Natural variation in root growth inhibition by *F. graminearum*. The ratio of total root length of *F. graminearum*- and mock-inoculated maize seedlings, measured six days after inoculation, is shown. The dotted line denotes the expected ratio when there is no significant effect of *F. graminearum* infection. At least five mock- and fungus-inoculated individuals are measured for each genotype. *P < 0.05, Student's *t*-test for significant difference from 1.

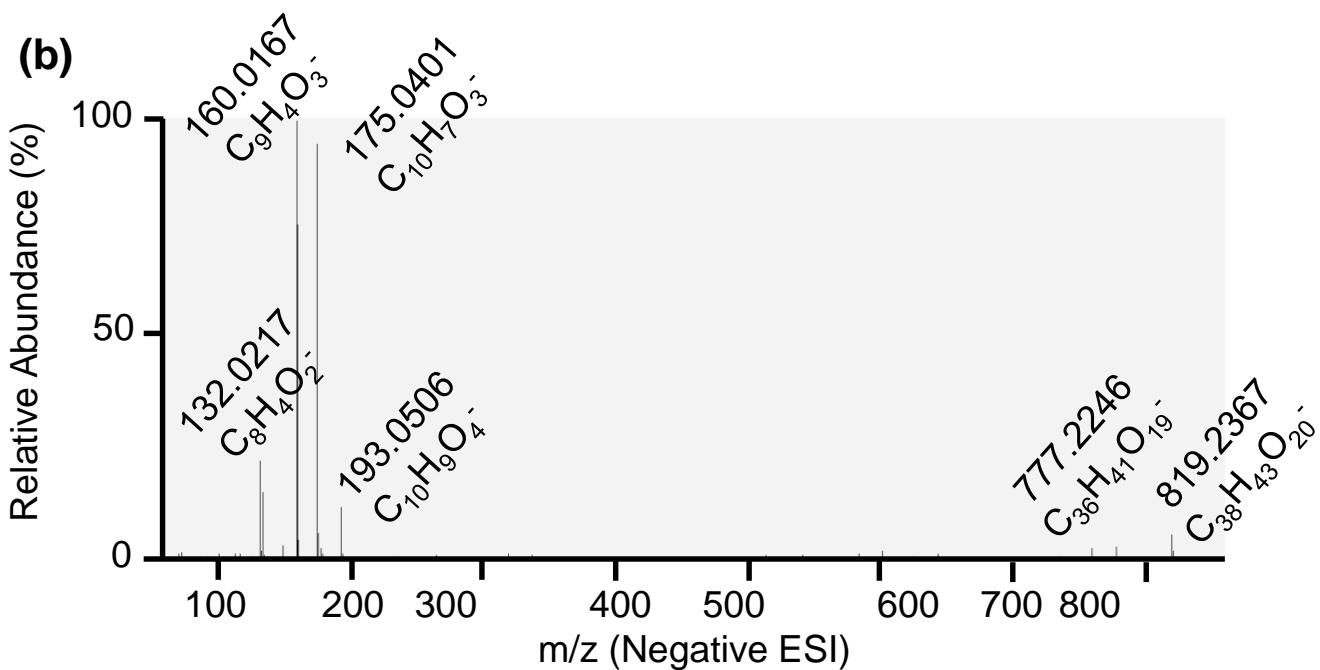
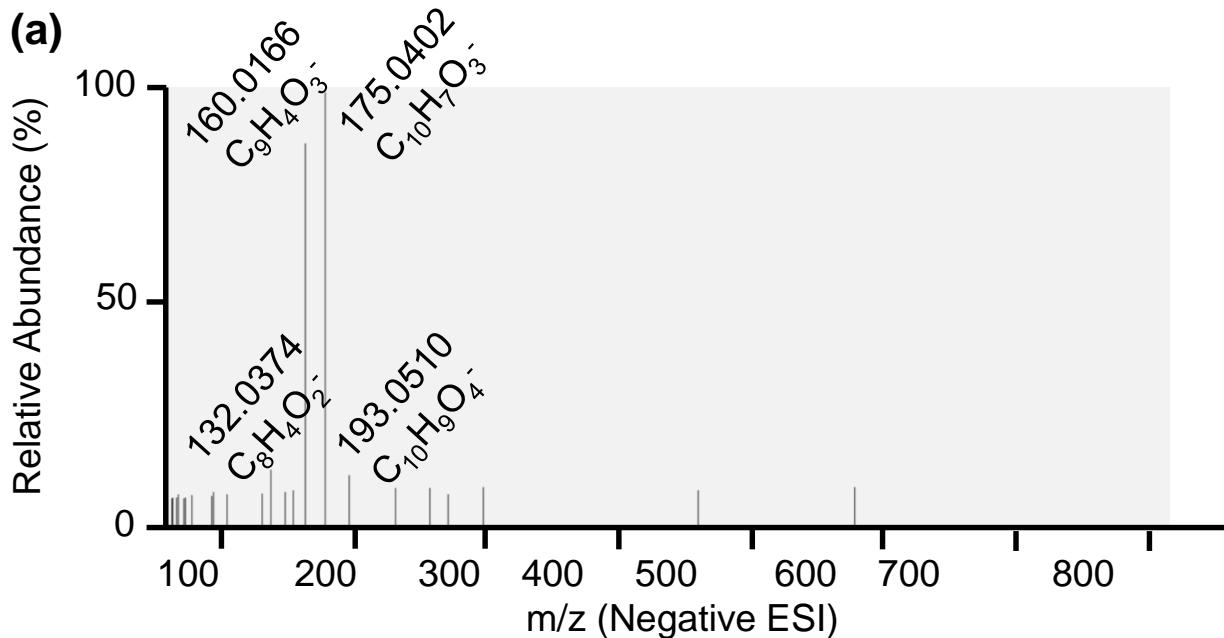

Figure 2. Mo17 is more resistant to *F. graminearum* than B73. Compared to B73, Mo17 seedling roots inoculated with *F. graminearum* demonstrate (a) lower expression of an *F. graminearum*-specific α -tubulin gene, mean \pm s.e. of $N = 5$, (b) lower content of deoxynivalenol at six-days-post-inoculation, mean \pm s.e. of $N = 5$, and (c) reduced symptoms on a 0-4 scale, with 0 = no symptoms and 4 = seedling death, mean \pm s.e. of $N = 10$. * $P < 0.05$ two-tailed unpaired Student's *t*-tests for A and B, and paired *t*-test for C. (d) Non-targeted metabolomics of *F. graminearum*-inoculated B73 and Mo17 seedling roots. For either genetic background, each mass feature that was significantly different between treatments (control vs. infected, $N = 5$; $p < 0.05$; fold change > 1.5) was plotted as a bubble on the total ion current chromatogram, with its size proportional to the fold change, and darker color representing a more significant change. Mass features induced by *F. graminearum* are shown in the upper half of each plot and *F. graminearum*-suppressed mass features are shown in the lower half.

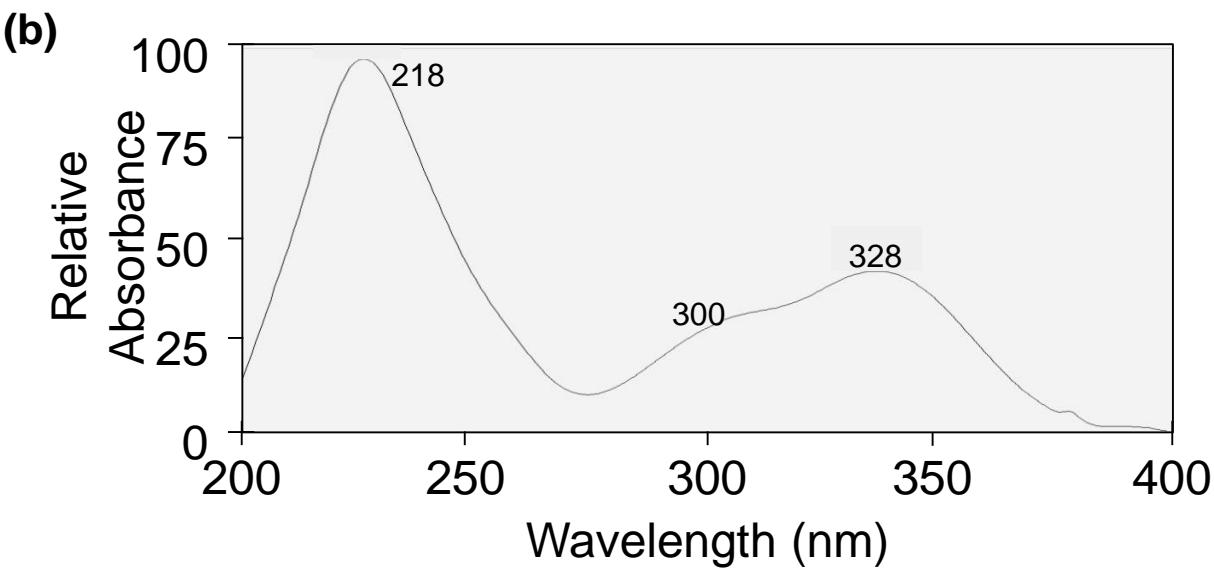
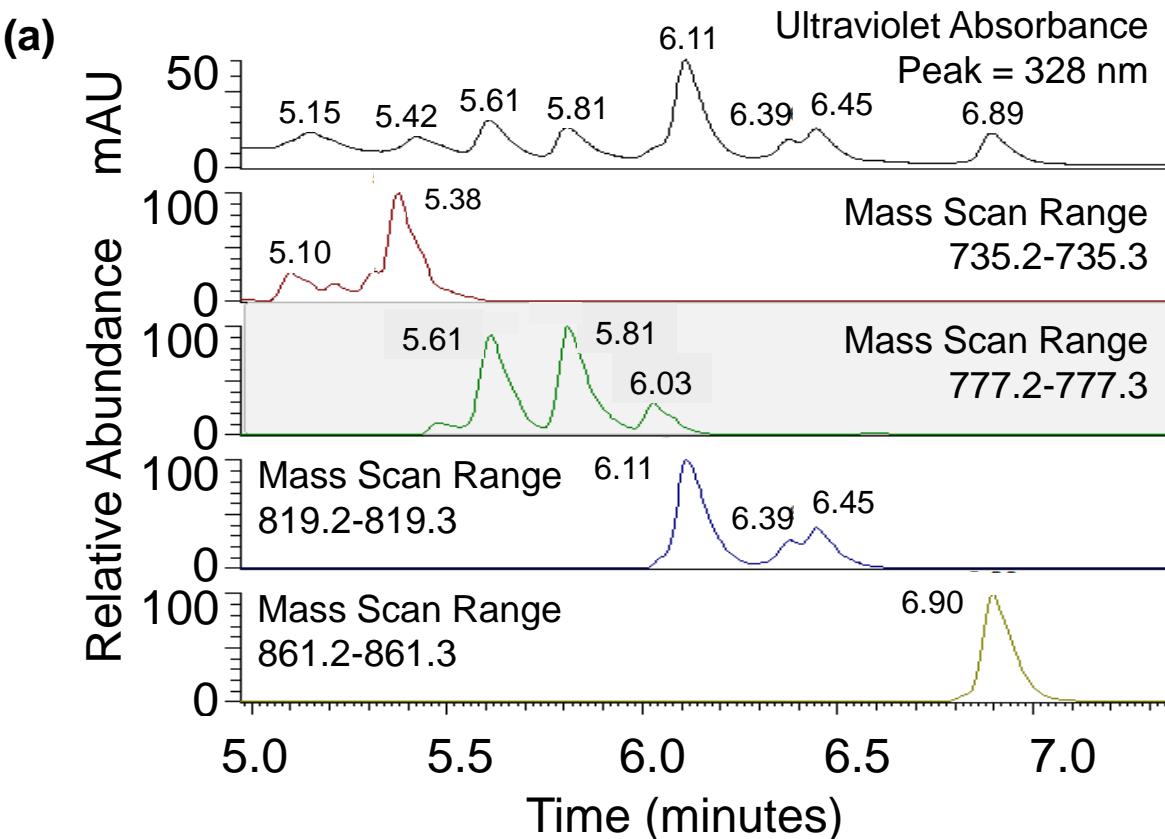

Figure 3. Antifungal metabolites smiglaside C and smilaside A are differentially induced by *F. graminearum* in B73 and Mo17. Abundance of metabolites with (a) m/z 819 and (b) m/z 777 was measured in negative electron spray ionization mode. (c) Ratio of the peak areas of the two metabolites. Mean \pm s.e. of $N = 4$. Different letters indicate significant differences, $P < 0.05$, ANOVA followed by Tukey's HSD test. Structures of (d) smiglaside C and (e) smilaside A were determined by LC-MS/MS and NMR. (f) Growth of an *F. graminearum* spore/hyphae suspension incubated with smilaside A, smiglaside C, or a dimethylsulfoxide (DMSO) solvent-only control. Fungal growth was monitored by absorbance at 405 nm. Mean \pm s.e. of $N = 4$, $^*P < 0.05$, Student's *t*-test relative to the DMSO control at the same time point.

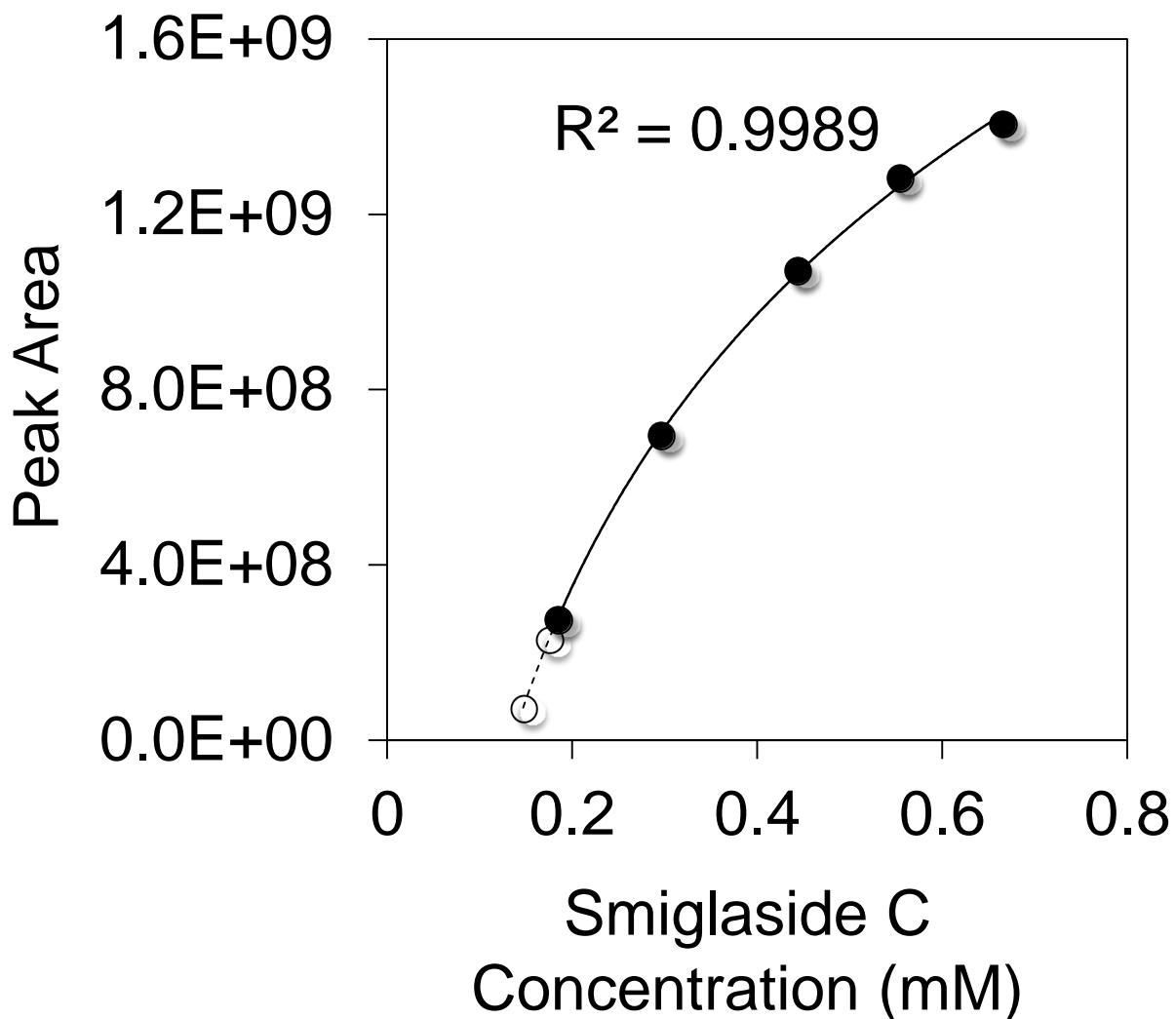

Figure 4. Smiglaside C and smilaside A share a QTL on chromosome 3 with opposite effects. (a) Composite interval mapping of smiglaside C (blue) and smilaside A (orange) in the seedling roots of B73 × Mo17 recombinant inbred lines (RILs) identified a significant QTL for both traits on chromosome 3 (indicated by an arrow). RILs with the B73 QTL allele on chromosome 3 have more smiglaside C (b) and less smilaside A (c) than those with the Mo17 allele. Numbers in bars are sample sizes. P values were determined with two-tailed Student's *t*-tests. (d) The smilaside A/smiglaside C ratio was calculated for B73, Mo17, and near-isogenic lines. The genetic background of the NILs is indicated by the initial letter of the line name, *e.g.* m060 has a Mo17 genetic background and b169 has a B73 genetic background. The smilaside A/smiglaside C ration is higher in Mo17 than in B73, mean \pm s.e. of $N = 3$, Student's *t*-test. NILs carrying the Mo17 allele at the Chromosome 3 QTL have a higher smilaside A/smiglaside C ratio than those with the B73 allele (Students *t*-test), irrespective of the overall genetic background.

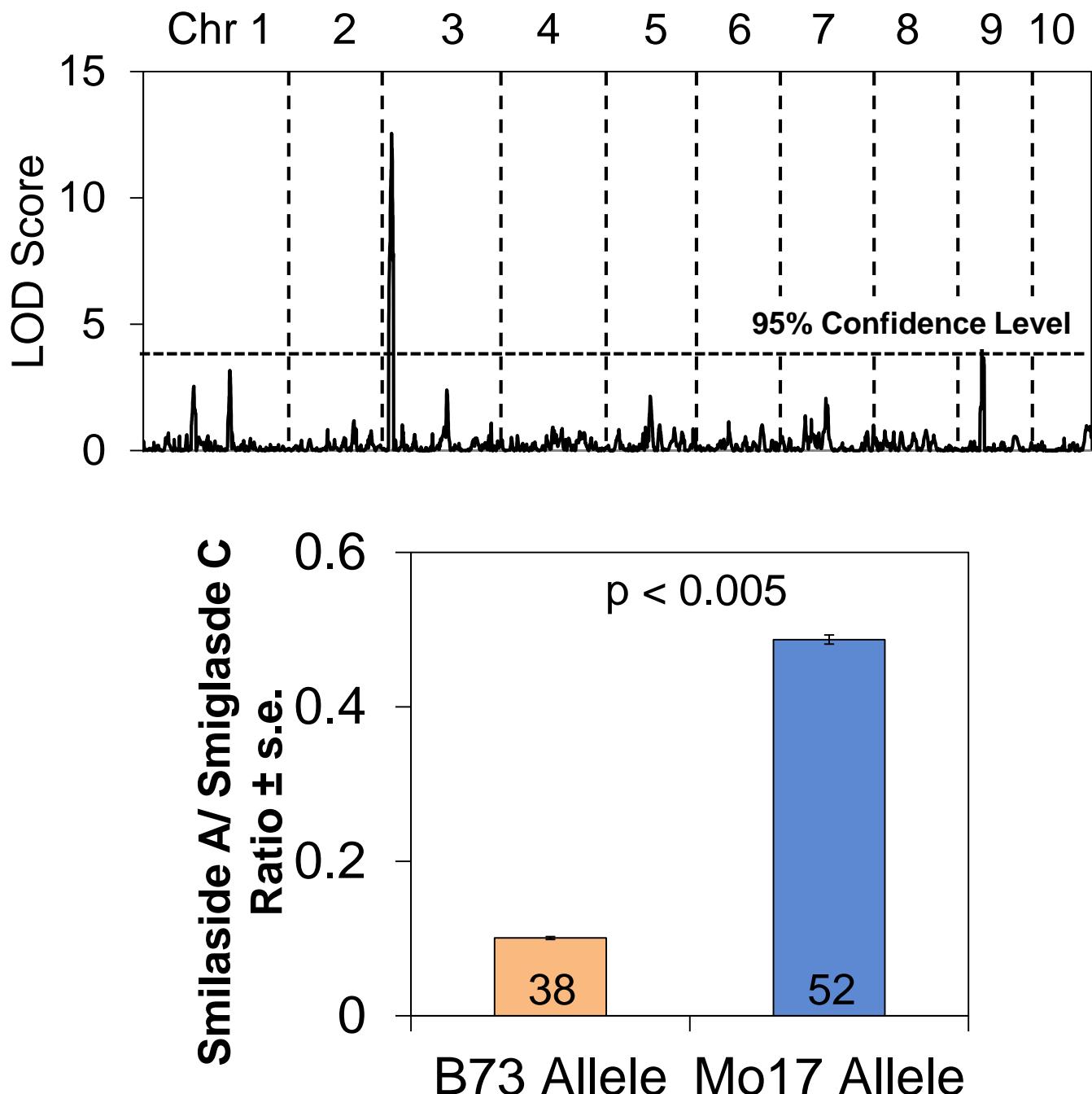

Figure 5. ETHYLENE INSENSITIVE 2 is differentially expressed in B73 × Mo17 recombinant inbred lines (RILs) with contrasting smilaside A/smiglaside C ratios. (a) B73 × Mo17 RILs can be divided into two groups based on their constitutive smilaside A and smiglaside C content. One replicate each of 83 B73 × Mo17 RILs and five replicates of the B73 and Mo17 parental lines were plotted based on the constitutive content of smilaside A and smiglaside C in their seedling roots. The parental lines are indicated with dark blue (Mo17) and dark red (B73). The RILs were determined to be Mo17-like (light blue) or B73-like (light red) in their smilaside A and smiglaside C content using the linear discriminant analysis. The level of significance in differential expression between Mo17- and B73-like inbred lines, measured by $-\log(p)$ from Student's t -tests, is plotted for each root-expressed transcript in the chromosomal order across the whole genome (b) and within the QTL region on chromosome 3 (c). (d) Expression of *EIN2* is significantly higher in the seedling roots of RILs with a B73-like smilaside A and smiglaside C content than in ones with a Mo17-like content. Mean \pm s.e., P value is from a two-tailed Student's t -test.


Figure 6. Exogenous 1-methylcyclopropane (1-MCP) treatment promotes maize seedling root resistance against *F. graminearum*. B73 maize seedling roots inoculated with *F. graminearum* were treated with 1-aminocyclopropane-1-carboxylate (1-ACC), 1-MCP, or water as a control. The abundance of (a) smiglaside C, (b) smilaside A, and (c) the ratio of the two metabolites was calculated from peak area under negative electron spray ionization mode. Mean \pm s.e. of $N = 5$, different letters indicate significant difference, $P < 0.05$, ANOVA followed by Tukey's HSD test. (d) B73 maize seedling roots inoculated with *F. graminearum*-GFP and treated with 1-ACC, 1-MCP, or mock treatment for ten days were examined with white light and fluorescence microscopy. More GFP marker expression from *F. graminearum* was observed on root surface of mock- and 1-ACC treated seedling roots than on 1-MCP-treated roots. (e) Fungal growth was quantified by qRT-PCR using *F. graminearum*-specific primers, relative to expression measurement of a maize housekeeping gene. Mean \pm s.e. of $N = 8$, different letters indicate significant differences, $P < 0.05$, ANOVA followed by Tukey's HSD test.



Figure 7. Ethylene biosynthesis is required for acetylated feruloylsucrose accumulation and resistance against *F. graminearum*. The abundance of (a) smiglaside C and (b) smilaside A was estimated by peak area at their respective m/z ratio under negative electron spray ionization mode. (c) The ratio of smilaside A and smiglaside C peak areas. Mean \pm s.e., different letters indicate significant differences, $P < 0.05$, Two-way ANOVA followed by Tukey's HSD test. (d) Fungal load was estimated by ergosterol content, normalized by root tissue fresh weight. Mean \pm s.e., different letters indicate significant differences, $P < 0.05$, One-way ANOVA.



Figure 8. Smilaside A and smiglaside C are induced by fungal pathogen infection. Smilaside A and smiglaside C content were measured in 35-day-old Mo17 stem tissues four days after physical wounding or inoculation with *Aspergillus flavus*, *Rhizopus microspores*, *Fusarium verticilloides*, or *Cochliobolus heterostrophus*. Mean +/- s.e. of N = 4. *P < 0.05 relative to the uninfected control, pairwise Wilcoxon rank sum tests with Benjamini and Hochberg correction for multiple comparisons.


Figure S1. Natural variation in *F. graminearum*-induced root growth inhibition. (A) Representative photos of ten-day-old B73 maize seedling roots mock-inoculated or inoculated with a *F. graminearum* spore suspension. Photos were taken at six days post-inoculation. Similar photos were used for total root length measurement. (B) Eight replicates of either mock- or *F. graminearum*-inoculated B73 seedlings were measured to identify differences between the treatment groups, $P < 0.05$, Student's *t*-test. (C) The same assay was expanded to include the 26 parental lines of the nested association mapping population, along with inbred lines Mo17 and W22, to identify natural variation in *F. graminearum*-induced maize seedling root growth reduction. All but four lines (marked by N.S.) showed significant reduction in root growth six days after *F. graminearum* inoculation ($P < 0.05$, two-tailed Student's *t*-test). Root growth ratios based on these data are shown in Figure 1.


Figure S2. Tandem MS spectra of predicted acetylated feruloylsucroses. The tandem MS spectra of the two putative acetylated feruloylsucroses were generated from mock-inoculated Mo17 and B73 seedling root extracts. Scan filters were set to an m/z ratio range around their expected parental ion. Major daughter ions are labeled with their exact m/z value and most probable predicted molecular formula.

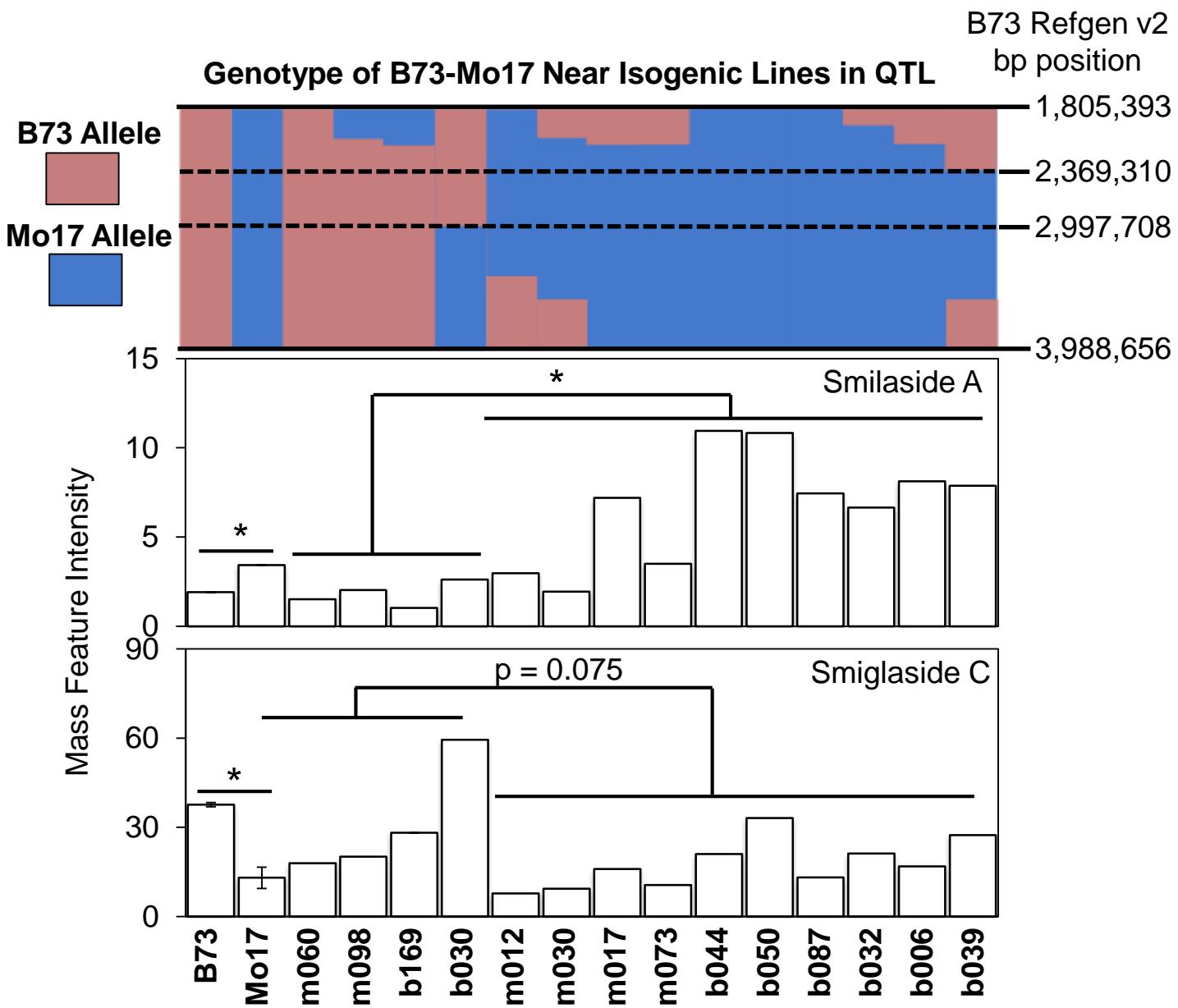
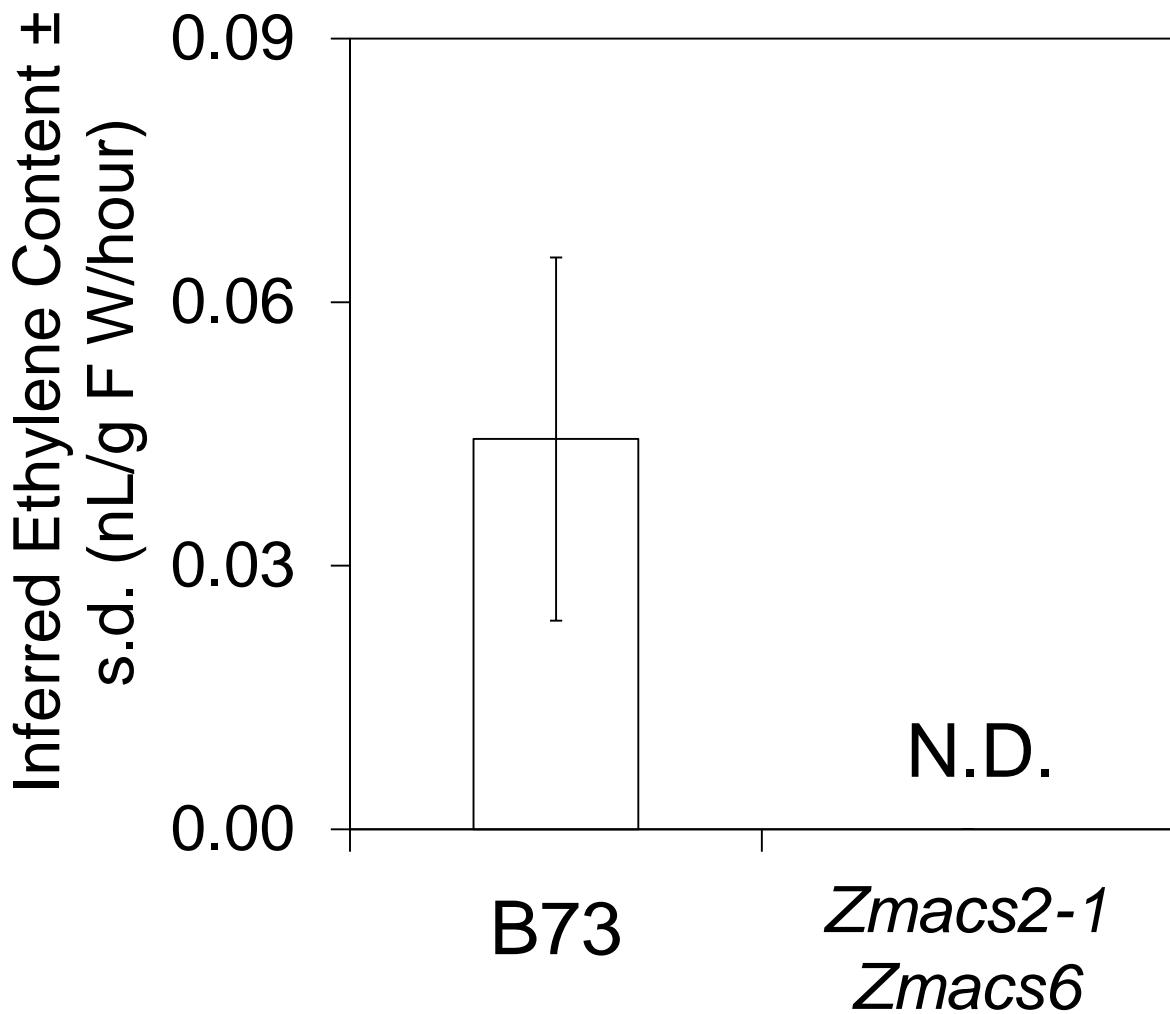

Figure S3. Predicted feruloysucrose compounds have characteristic phenylpropanoid-like ultraviolet absorbance profiles. Feruloysucrose compounds, as predicted by their exact molecular mass, co-elute with UV absorbance peaks with characteristic phenylpropanoid-like absorbance profiles. UV absorbance data collected from a photo diode array detector are filtered to show only peak absorbance at 328 nm, and mass spectrometry data are filtered for the expected molecular masses of predicted feruloyl acetylsucroses (a). Each peak is labeled with its retention time. A characteristic phenylpropanoid-like UV absorbance profile is shown, with peaks at 218 nm and 328 nm, and a shoulder at 300 nm (b).

Figure S4. Standard curve of smiglaside C. Calculated smiglaside C concentrations from five different injection volumes of the same purified compound solution are plotted with their corresponding mass feature peak areas in filled marks. A logarithmic curve was fitted to these data points with a calculated regression co-efficient (R^2). The same curve is extended to calculate the *in vivo* concentrations of smiglaside C (0.1750 mM) and smilaside A (0.1470 mM) based on MS peak areas in an *F. graminearum*-induced Mo17 seedling root extract. These two peak areas from biological samples and their inferred concentrations are shown in empty circles.


Figure S5. QTL mapping of the smilaside A/smiglaside C ratio identifies a locus on Chromosome 3. The smilaside A/smiglaside C ratio in the seedling roots of 83 B73 × Mo17 recombinant inbred lines (RILs) was used for composite interval mapping. The calculated log of odds (LOD) score (top panel) of each locus is plotted across the ten maize chromosomes. The 95% confidence interval of the LOD scores was calculated with 500 permutations. RILs and parental lines carrying the Mo17 allele at the most significant QTL on chromosome 3 have a significantly higher smilaside A/smiglaside C ratio than those carrying the B73 allele (lower panel). P-values were calculated using Student's t-test, and the number of RILs in either group is indicated each column.

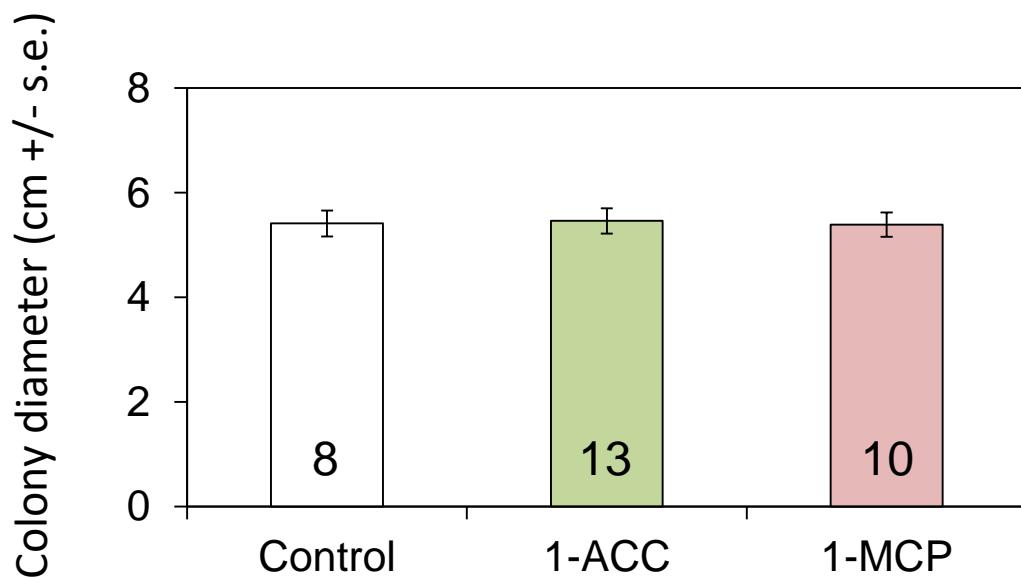

Figure S6. Constitutive abundance of smilaside A and smiglaside C varies across B73 × Mo17 near isogenic lines (NILs). The genetic region mapped in the top panel is determined by the 95% confidence interval of a chromosome 3 QTL for smilaside A and smiglaside C abundance. The genetic map of this region and the allelic state of each near isogenic line are reproduced based on data published in Eichten et al., 2011. The genetic background of the NILs is indicated by the initial letter of the line name, *e.g.* m060 has a Mo17 genetic background and b169 has a B73 genetic background. Constitutive abundance of smilaside A and smiglaside C were estimated from the mass feature intensity measured in roots of B73, Mo17, and NILs. Mean \pm s.e. of $N = 5$, * $P < 0.05$, Student's *t*-test.

Figure S7. 1-Aminocyclopropane-1-carboxylic acid and 1-monocyclopropene treatments have opposite effects on maize seedling height. Seedling heights between each pair of treatment groups are compared to control with one-way ANOVA and Tukey's HSD test, and significant differences ($P < 0.05$) are indicated by different letters. The number of biological replicates is denoted by numbers in each bar.

Figure S8. Endogenous ethylene production in root is depleted in the *Zmacs2-1* *Zmacs6* double mutant maize seedlings. Ethylene produced by root tissues was collected in sealed glass vials for 29 hours and analyzed by gas chromatography. Absolute ethylene content is inferred from peak area measurement from a flame ionization detector. Peaks corresponding to ethylene were not detected (N.D.) in the *Zmacs2-1* *Zmacs6* samples. Mean \pm s.e. of N = 6.

Figure S9. 1-Aminocyclopropane-1-carboxylic acid and 1-monocyclopropene are not directly toxic to *F. graminearum*. Fungi were inoculated into the center of potato dextrose agar plates, enclosed in airtight boxes, and colony diameter was measured after five days. 1-ACC was added to the agar at 50 μ M concentration. 1-MCP was released as a volatile using EthylBloc at 5 g/L. Mean +/- s.e., numbers in bars indicate sample sizes, no significant differences $P > 0.05$, two-tailed Student's t -tests.