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ABSTRACT Understanding the origin of the 20 letter alphabet of proteins is a long-lasting biophysical problem. In particular,
studies focused extensively on the effect of a reduced alphabet size on the folding properties. However, the natural alphabet is
a compromise between versatility and optimisation of the available resources.

Here, for the first time, we include the additional impact of the relative availability of the amino acids. We present a protein
design scheme that involves the competition for resources between a protein and a potential interaction partner that, additionally,
gives us the chance to investigate the effect of the reduced alphabet on protein-protein interactions. We identify the optimal
reduced set of letters for the design of the protein, and we observe that even alphabets reduced down to 4 letters allow for single
protein folding. However, it is only with 6 letters that we achieve optimal folding, thus recovering experimental observations.

Additionally, we notice that the binding between the protein and a potential interaction partner could not be avoided with the
investigated reduced alphabets. Therefore, we suggest that aggregation could have been a driving force for the evolution of the
large protein alphabet.

INTRODUCTION

The amino acid alphabet encoding the protein function is common to all living organisms and is the result of millions of years
of evolution. It is composed of 20 letters, in contrast to the ones of other biopolymers, such as DNA and RNA, which possess
4 letters only. Such a large alphabet gives to proteins the vast variety of configurations and functions that we know so far.

The advent of artificial protein evolution (also known as protein design) (1—16) opens the possibility to address fundamental
questions about the nature of the amino acid alphabet (17-20). One of the questions that mostly attracted the attention of
the scientific community was about the universality of the 20 letters. Why 20 and not less? Could it be possible to design
proteins to fold using a reduced alphabet? The early work on protein design with alphabets of different sizes was carried out
for protein lattice models in which the protein chain is constrained to be on a cubic lattice. With such models it was possible
to design heteropolymers with a large variety of alphabets defined by the amino acid interactions (21-30). It became rapidly
apparent that even in such simplified systems it is necessary to have a minimum number of residue types to encode the target
configurations (3 1). Moreover, such simple models allowed to explore the related question on how the alphabet size influences
protein-protein interactions (32-35). Finally, works done on realistic models, offer substantial evidence that protein design
with a minimalistic alphabet is possible (36—40). In particular, statistical analysis of protein databases demonstrated that a
considerable fraction of the information encoded in natural proteins could be packed into smaller efficient alphabets of just 5
residue types (36, 38, 41-44). However, all the mentioned studies completely neglected the possibility that a competition for
the availability of amino acids may have played a role in the evolution of the protein alphabet size.

In this work, we devised a design strategy which not only include such a competition, but also check the effect of a reduced
alphabet on protein folding and protein-protein interaction. We consider systems composed of the natural protein G (PDB
ID: 1PGB, already successfully redesigned with several protein models (3, 7)) and a potential binding partner (a mould of a
part of protein G, that mimics with a surface-like shape a potential binding site of a larger protein). Both protein and binding
partner are represented with the Caterpillar coarse-grain model, which has been successfully tested to design and refold natural
and artificial proteins (7, 9). We simultaneously design the sequences of the protein-partner system according to different
optimisation pathways, namely optimal folding for the protein G and just optimal interaction with the solvent for the binding
partner.

The adopted design scheme leads to a competition for the available amino acids, since the protein and the surface cannot
use all the 20 amino acids simultaneously for the sequences optimisation. In practice, although the whole alphabet accessible
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by the binary system is still composed of 20 amino acids, the condition that we impose to the design procedure are such that
the protein will have a smaller alphabet available to optimise the folding: the larger the binding surface, the stronger is its
effect on the segregation.

Such a procedure allow us to control the strength of the competition as a function of the size and geometry of the
binding partner. We obtain the optimal protein alphabet with the minimum number of letters, without the need of imposing
the composition of the protein. Additionally, by having a protein surface system, we can explore the effect of the alphabet
segregation on the aggregation in different protein-surface binding scenarios. The results show that for the folding of a
small protein the minimum number of amino acid types needed is just 4. However, such a small alphabet compromises the
heterogeneity of the protein-protein interactions (21, 29, 33—35) and binding cannot be avoided.

This result has interesting implications towards the understanding of the evolution of protein sequences and structure when
the amino acid availability is taken into account. In fact, living systems are under constant pressure for using the smallest

variety of amino acids as possible, e. g. to limit the resources needed to construct specialised tRNA molecules necessary for

the translation process (45). Hence, it is reasonable to assume that during the early stages of life, the protein capable of being
designed with a smaller alphabet could have been advantageous. If protein aggregation was not crucial at that stage, then
our results demonstrate that protein-based life could have started with alphabets size compatible with the one of DNA and
RNA. On the other hand, the simple condition of avoiding protein aggregation could be a strong driving force against alphabet
segregation.

The structure of the article is the following: firstly we discuss the modelling procedure to construct a test system for
protein-protein interactions that allow us to perform a protein design under competing conditions for amino acid availability.

We then describe the computational method for studying design and folding of such a test system. In the central part of the

article, we show the results regarding the reduced alphabets, the folding properties of the protein alone and in the presence of

a binding partner. In the last part, we highlight the main conclusions of our investigation.

MATERIALS AND METHODS
Protein model

The Caterpillar protein model reduces the amino acid structure and represent it by the backbone atoms: C, O, C,, N, H
(Fig. 1(a)). The intramolecular energy for a protein of length N has the form:

N N N N
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where @ and Egyop are added to balance the relative weight of different energy terms. Epp (601,602, ron) is a 10 — 12 Lennard-

Jones potential commonly used to represent hydrogen bonds (46):

12 10
Enp(01. 02 ron) = —er(cos(61) cos(0,))” [5(i) —6(i) ] ®)
roH TYOH

being ropy the distance between the hydrogen atom of the amide group and the oxygen atom of the carboxyl group of the
main chain; 61, 6, the angles between the atoms COH and OH N respectively (Fig. 1(a)), and account for the hydrogen bonds
directionality; v = 2; 00 = 2 A and ey = 3.1KgT.

Esc(rca;ca j) mimics the side chain-side chain interaction via a smoothed square-well-like isotropic potential:

ESC(rC(l,'CO’j) = €Caq;Caj

1- ! l 3)

1+ eXp2~5(rh*rCaiCaj)

where I'Ca;Ca; 18 the distance between the Ca atoms and rj, = 12 A. Eq. 3 is a sigmoid function with a flex at rj, = rCa;Ca;s
where Esc(l’cmc(yj) = €Ca,Ca; /2. The terms €Ca;Ca; Ar€ the residue-residue interaction parameters of the interaction matrix
and their value is taken from Tab. S1 of Ref. (9).

E01(Q — ;) is an implicit solvent energy term that acts as an energy penalty if a hydrophobic (hydrophilic) amino acid is
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exposed (buried), and has the form:

. N
e [Q-Q;)] Q <Q
Esol(Q - Qz) = {OSOI[ Qi N ]Q ,Qi = 4 ESC(rC(l[Caj)y (4)

where Q = 21 is a threshold for the number of contacts in the native structure above which the amino acid is considered to be
fully buried, and esiol is the Dolittle hydrophobicity index (47).

Epona(rcn) = k(ren — ren,, f)z is a harmonic bonding term with elastic constant k = 20 K BTA’Q, that keeps fixed the
distance rcy, along with the CC,, N backbone angle.
For more details about the model see Ref. (7, 9). For the binding site amino acids, instead, we use a single atom representation
and make use of the E;,; and Es. terms only.

61

Figure 1: a) Caterpillar protein model: the green circle represents the amino acid self-avoidance volume, which has a radius
of 2 A and is centred on the position of the C, atom. Each amino acid is represented through backbone atoms only. Side
chain-side chain interactions are represented via a square-well-like potential (Eq. 3).For the hydrogen bonds, the model include
a 10 — 12 Lennard-Jones potential, that is a function of the distance rp g, and tunes it with a multiplicative factor that involves
the angles 81 and 65, so to account for the directionality of the bond. b) Artificial binding site parameters. Gray dots are
self-avoiding beads; blue spheres are C, atoms of the binding site. The red spot represents the centre of mass (CM) of the
protein, zcyy is its height with respect to the z = 0 plane and rjsax is the maximum CM-C,, distance. u is the minimum C,
protein-C,, surface distance, i.e. the value one has to use to inflate the protein for the binding site shaping. ¢ is the minimum
distance between two activated C,, of the binding site.

Binding site model

The binding site is modelled as a fixed layer of amino acids, idealizing a small pocket on the surface of a much larger globular
protein. To represent the artificial binding site, we generate a mould by pushing the protein on a mesh of self-avoiding beads
initially lying flat on the z = 0 plane, as illustrated in Fig. 1(b). The high density of beads in the mesh prevents the protein
from passing through it. A finite number of C,s, the type of which is assigned during the design procedure, are distributed on
the surface binding site, to model its protein nature. We refer to the latter atoms as Csyyr¢.

There are three important parameters in the modelling procedure: £, the reduced centre of mass (CM) height with respect
to the z = 0 plane; g, the minimum C, protein-C, surface distance; and ¢, the gap between two C,s of the binding site. To
define the reduced height £, we first identify rys 4x, i.e. the maximum protein radius with respect to the CM (rprax ~ 16 A for
protein G), and then use it to normalise the height zcps of the CM from the z = 0 plane: { = f}\f MX. Hence, we push the
protein into the z = 0 plane until we reach the desired ¢ value. The mesh is pushed downwards accordingly, keeping every
point at the minimum distance between all atoms of the protein and the binding site at 4 = 13 A (see Fig. 1(b)). The value
u = 13 A ensures a low influence of the binding site on the protein design regarding the protein-binding site energy Ei.
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(Eq. 3). We construct systems with different £ values, and for each one of them, we perform a rotational analysis by keeping
the position of the CM fixed and by shaping the mesh for various orientations of the protein until we reach the maximum
surface area of the binding site. It is important to notice that the surface area decreases with the increase of £.

Having obtained the geometrical shape of the pocket, we proceed to “activate” a subset of its beads by assigning to them
a Cy nature. These beads constitute the Cg,,¢ set. The activated beads are homogeneously distributed in the pocket and are
always separated by a distance of 6 = 5 A from each other. The value of & is derived from the typical nearest distance between
two residues in natural proteins, as explained in Fig. S8 of the Supplementary Information (SI).

Since the amino acids in the Cs,rf set are represented by C, atoms, the protein-binding site interaction energy includes
the Caterpillar E,. and E;,; terms only (see Egs. 3 and 4). Given that our binding site representation is limited to the surface
residues, such an approximation affects the correct evaluation of the binding site solvent exposure term E,;. Since in turns
E,; will influence the protein binding properties, we add an offset to the number of contacts for each amino acid of the binding
site (~ 6), to correctly account for the solvent exposure term Ej,; of the binding site amino acids. The offset was calculated

in such a way that the maximal amino acid exposure is compatible to the one of natural proteins (e.g. the protein G itself

described in Fig. S10 of the SI). Finally, since the binding site conformation is fixed, we neglect all the interactions between
all the pairs of the Cy,,,-r set.

For more information about the algorithms used in the binding site modelling procedure, see the section Binding site
modelling of the SI.

Design

To investigate the sequence space, we perform Virtual Move Parallel Tempering (48) (VMPT) Monte Carlo simulations
with swap and single point amino acid mutation moves along the sequence, a procedure that has been already successfully
employed in protein design (7, 9, 16). We simulate the same system at different temperatures, and swap sequences between

the replicas on the fly, thus enhancing the overcoming of energy barriers and, therefore, improving the sampling. Moreover,

at each temperature, we collect statistics using the information coming from all other replicas, according to the virtual move

scheme described in Ref. (48). In our implementation we simulate 16 replicas with a set of temperatures (10.000; 5.000; 2.000;
1.000; 0.500; 0.333; 0.250; 0.200; 0.167; 0.143; 0.125; 0.111; 0.100; 0.091; 0.083; 0.077) in units of Kg. We also consider

the protein-binding site as a single object, frozen in the target conformation generated via the binding site modelling described
above. The sequences of the protein and the binding site are optimised jointly. The best candidate sequences for the folding
are the ones which minimise the energy of the target structure and maximise the number of permutations N,,, given by:

N!
Ny = ; &)

to increase the composition heterogeneity along the joint protein-binding site sequence. In Eq. (5) ¢ = 18 is the alphabet size
(proline and cysteine are not included in the design, due to their peculiar role in protein structure, which is beyond the scope
of our model); N is the total number of monomers in the protein-binding site system; n; is the number of monomers of type i
in the joint sequence.

We enhance the sampling by introducing an adaptive bias potential W[E, In N,,, T] over two collective variables E and N,,.
WI[E,In Np,,T] is used to bias the acceptance probability of each Monte Carlo mutation move. Therefore, each Monte Carlo
step is accepted with a probability

new
PP = min{1,exp [AW — (AE — E, In #)/KBT]} (6)
p
or
PyY&P = min{1,exp[AW — AE/KgT|}, @)

associated to the amino acid replacement and amino acids swap moves, respectively. In the latter equations AW, AE" and
N"
In Z—+ NgTT refer to the differences of the bias potential, the energy and the number of permutation between the new configuration

and the old one; E, = 20 KT is a scaling factor set to a value high enough to generate highly heterogeneous sequences.

Folding

We adapted the Monte Carlo folding procedure for a single protein, described in Ref. (7, 9), to handle a system composed of

interacting partners. The simulation is performed in a cubic box (as shown in Fig. S11) containing two replicas of the binding
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site (box side ~ 360 A), that are the mirror image of the other with respect to the xy plane passing through the centre of the
box.

The binding sites are frozen in the box, and the protein starts the folding from a fully stretched conformation. An
impenetrable slab region is defined between the binding sites to prevent the protein to approach them from the convex side
instead of the concave one generated with the moulding procedure.

We sample the protein conformations using crankshaft, pivot, rotation, translation and mirroring moves, to let the protein
reorient, diffuse in the box and switch from right to left handed conformations. The simulation is performed in parallel at
32 different temperatures and the replicas exchange information through the VMPT bias scheme (48). The set of reduced
temperatures (8.5; 7.8; 7.2; 6.6; 6.0; 5.4; 4.9; 4.6; 4.3; 3.9; 3.5; 3.1; 2.8; 2.55; 2.35; 2.2; 2.05; 1.9; 1.75; 1.6; 1.45; 1.3; 1.1; 1.0;
0.98; 0.95; 0.92; 0.88; 0.85; 0.82; 0.79; 0.76) is chosen so to observe the protein repeatedly detaching from the binding site.
Each replica sampling is enhanced by a bias potential depending on two collective variables, namely the distance root mean
square displacement within the protein DRM SD;,;,, and between protein and binding site, DRM SD;pser. The DRMSD is
a measure of the distance of a configuration from a target structure:

1 5 o
DRMSD = \/E izj(mriﬂ — a2, ®)

where the sum runs over the ij pairs in contact in the target structure (namely the native contacts, identified using a cut
off of 17 A according to previous studies (7, 9)), Arij is the distance between the residues i and j belonging to the same
(DRMSDjysrq) or different (DRMSDp;.,) proteins, and ArYjT is the same distance calculated over the target structures.
Accordingly, the DRM SD;srq is computed adopting the native and isolated protein conformation as a target structure, while
the DRM SD;,;., is computed using as a target structure the native protein bound to the binding site. The normalisation factor
C is the number of native contacts for DRMSD;,.;., and twice the number of native contacts for DRMSD;ntra. Ar}'j for
DRMSD;y,;er is evaluated with respect to the binding site closest to the protein for each ij pair.

RESULTS AND DISCUSSION

The purpose of the present work is to design proteins with the optimum reduced amino acid alphabet, to check both their
folding abilities and their aggregation behaviour in the presence of a possible binding site. To this aim, we chose a value of
u =13 A that minimises the optimisation of the protein-binding site interaction (see section Binding site model), thus leading
to the design problem described in the following.

The globular structure of the protein leads to a complex design optimisation problem since every residue is in contact with
many others and the water exposure profile varies from the surface to the buried residues. On the other hand, the residues of
the binding site possess few contacts; these weakly interacting residues are mainly optimised for the exposure to the solvent.
Since the coupling between these two optimisation procedures is only through Eq. (5), i.e. the condition of maximizing the
composition heterogeneity, the design leads to the spontaneous segregation of a reduced alphabet on the protein sequence,
keeping the variability high on the one of the binding site.

We investigate four systems differing in terms of {=(0.20, 0.40, 0.60, 0.80), thus leading to a surface area=(4717.5, 3842.2,
3051.5, 2320.5) A% and Csurs=(158, 127, 100, 78) residues respectively. For all scenarios, we generated a large number of
sequences that we group in solution basins. In Fig. 2 we plot the distribution of the Hamming distances calculated for all
the possible pairs between the basins. The latter is measured using the Hamming distance that determines the difference
between two sequences of equal length by counting the number of substitutions needed to make them coincide. It is often more
convenient to normalise the Hamming distance by dividing by the protein length N. For all scenario we observe large number
of solutions that differ for more than 50% of the residues. However, = 0.60 and 0.80 have also a significant number of related
solutions with sequences differing for 20% only (see Fig. 2(f)). To check that nevertheless the {= 0.60 and {= 0.80 basins
are distinct, we also calculated the self-overlap distributions for {= 0.60 and = 0.80 (see Fig. SO in the SI) and we obtained
profiles that are different from each other. More importantly, they differ from the one plotted in Fig. 2(f), demonstrating that
although there are similarities, the two basins are distinct.

A crucial feature of the distributions in Fig. 2, are the peaks at high Hamming distances. They demonstrate that the
protein-binding site coupling induces the design process to explore distinct solution basins. Given that protein and binding
site are energetically very weakly coupled (evident from the low value of E,.-inter that ranges from —1.4 to —2.7 KgT),
the influence of the binding site can be attributed to the maximisation of the letter permutations expressed by Eq. (5). Such
coupling enforces an increasing competition between binding site and protein for the alphabet available while increasing the
binding site size.
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4 0.20 | 0.40 | 0.60 | 0.80
0.20 0 61 87 86

0.40 0 84 86
0.60 0 27
0.80 0

Table 1: Hamming distance [%] between designed protein sequences.

£0.20 SGGGGGGRKKKKKYYYVVVVVVGSSGGVKKKKKGGNYYYYYYYYVYVVKKKKGGGR
{040 FGGGGGGKKRRKVYYVKKKRRRGFFYYYYKKRRWRNFYYYYVVKKKKVYYGGGGGG
£0.60 FFFFGDGGYYYYYKKKKHHHHIRRRRRRFYYYYGGGRKKKKKKKYHHHRFFFGGGG

£ 0.80 FFFFFGGGYYYYVKKKHHHHHKIRRRRRFYYYGGGTKKLKKKYHHHRRRFFGGGG

Table 2: Protein G designed sequences for the investigated systems.

In Fig.3 we plot the occurrence frequency of each amino acid type in four sequences selected with highest permutation
number and lowest energy among the ones in the solution basins (shown in Tab. 2 and Tab. 1).

Given that the Caterpillar alphabet is composed by 18 letters, the frequency of each amino acid in a maximally heterogeneous
sequence would be 1/18 ~ 6%. Therefore, we set a threshold at a slightly higher value=10%, to safely discern the contribution
of dominating amino acids from the random occurrences. From the plot it becomes apparent that the protein designed sequence
has a restricted composition of amino acids leading to a segregated effective protein alphabet. We observe that the effective
alphabet grows from 4 to 6 letters going from larger ({=0.20 and 0.40) to reduced binding sites ({=0.60 and 0.80) respectively.
It is interesting to notice that the alphabets are made of amino acids with an average attractive pair-interaction energy and
high variability in terms of the residue-solvent interactions (see Table S1 in Ref (9)). Moreover, the alphabets differ from each
other, and for each scenario, the protein amino acids are not present in the corresponding binding sites sequence (see Fig. 3).
The latter finding shows that the design process indeed mimics a process under competition for available amino acids.

To test the selected sequences, we first examine the folding stability of the protein itself, therefore performing a folding
simulation in an empty box starting from a fully stretched configuration. The set of reduced temperatures for these simulations
(2.0; 1.8; 1.6; 1.4; 1.3; 1.2; 1.1; 1.0; 0.9; 0.8; 0.7; 0.65; 0.6; 0.55; 0.5; 0.45) is chosen in order to observe repeatedly folding
events. Fig. 4 shows the free energy profiles as a function of DRM SD. From previous works (7, 9), the criterion for assessing
a stable fold is to observe a funnel shape of the free energy profile and a global free energy minimum for DRMSD < 2
A. Using this criterion, we can say that all protein sequences fold back into the target configuration, although with different
precision. Sequences with a larger effective alphabet fold with higher precision, as can be seen from the DRM SD value of the
configurations corresponding to the global free energy minimum for each system (right hand side of Fig. 4): DRMSD = 2.1
A for ¢ = 0.20; DRMSD = 1.9 A for £ = 0.40; DRMSD = 1.3 A for = 0.60 and DRMSD = 1.5 A £ = 0.80. ! The
sequence optimised for the binding site { = 0.40 shows a secondary minimum in the free energy, corresponding to misfolded
compact structures, therefore being the system less stable for the folding in the bulk.

From the described scenario, we can draw two important conclusions: firstly, design with a limited alphabet of 4 letters
can produce a funnel-like folding free energy landscape; secondly, with 6 letters we recover the folding precision of previous
Caterpillar designs made with 20 letters (9). Our results are consistent with the experimental observation that 6 letters are a
minimal set necessary to maintain protein structure and function (36, 38, 41-44).

From the Random Energy Model (49-51) we know that for a heteropolymer to be designable it has to satisfy the relation
q > exp(w), where q is the alphabet size and w the conformational entropy per residue. Hence, a 4 letters alphabet gives an
upper bound to the conformational entropy w of the Caterpillar backbone and therefore of the more restricted natural protein
backbones. Such a result is compatible with the recent observations of Cardelli ez al. (52) who mapped the designability phase
space for a general heteropolymer decorated with directional interactions similar to the hydrogen bonds present along the
protein backbone. For polymers with two directional interactions per particle the minimum alphabet measured was three, i.e.
close to the one presented here.

To test the effect of the alphabet restriction on protein-protein interactions, we perform folding simulations in the presence
of the binding site. In Fig. 5 we plot the free energy landscape as a function of DRM SD;,;,, using the native protein G as
target configuration, and DRM SD;,;., using the folded bound configuration as a target. This choice allows us to monitor the
folding and binding properties of the system independently. Conformations that are folded and bound can be found in the

1The DRMSD values correspond to 4.9; 5.5; 2.4 and 2.7 A in RM SD respectively.

6 Manuscript submitted to Biophysical Journal


https://doi.org/10.1101/331736
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/331736; this version posted May 25, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Protein design under competing conditions for availability of amino acids

Figure 2: Histograms obtained by evaluating the Hamming distance (% relative to the chain length) between all possible pairs
of sequences chosen selecting 200000 solutions around the design free energy minimum of systems A and B, corresponding
to the ¢ values specified in the following. a) A: = 0.20; B: {=0.40b) A: {=0.20; B: {=0.60 c) A: {=0.20; B: {=0.80 d) A:
{=0.40; B: {=0.60 e) A: {=0.40; B: £=0.80 f) A: {=0.60; B: {=0.80

Figure 3: Frequency of amino acids in the designed sequences. The grey dotted line is the value used to consider one amino
acid in the effective alphabet. Purple bars refer to the sequence of protein G, while green bars to the sequences of the binding
site. Cysteine (C) and Proline (P) are not included in the design alphabet.
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Figure 4: Folding free energy profiles F'/kpT of single protein (no binding site) at reduced temperature 0.55 as a function of

DRMSD from the native target structure (Protein G, PDB ID: 1PGB). Different colours represent the folding free energy of the
protein sequence obtained via the design procedure in the presence of the binding site characterised by the ¢ value specified
in the key. Configurations corresponding to the free energy minimum for each system are represented in red, compared to the
native protein G (in green).

bottom left corner, while folded unbound ones in the top left one.

Additionally, we also check the free energy profiles as a function of DRM SD;y;, for bound conformations (see Fig. 6)

and in bulk solution where no protein-site contacts are possible (see Fig. 7. For a sketch of the definition of interacting and
bulk solution configurations see Fig. S11 in the SI. We have also verified that the free energy profiles of configurations in the
latter region correctly fold into the target structure (Fig. 7), consistently to what we observe in the isolated protein folding
simulations.

For all the scenarios, upon binding to the site, we observe a significant enhancement of the stability of the misfolded
configurations with respect to the bulk solution (compare Fig.s 5,6(a) and 7). In particular, there is a considerable shift in the
equilibrium towards states at DRMSD ~ 3 A that are now comparable in free energy to the target configurations. This effect
is due to the small protein alphabet that cannot now encode heterogeneous patterns to reduce the binding interaction with the

large binding sites. It should be noted that natural binding sites expose much smaller surface areas then the one modelled here.

Hence, it might be that the effect is mitigated when real protein binding sited are considered.
Analysing the behaviour of the binding process as a function of temperature we find that the random binding is so strong

that the van’t Hoff curve (53, 54) shows an exothermic process above the folding temperature with positive binding affinity

(Supplementary Fig. S12; for details about the evaluation of the association constant see Fig. S11). At the same time the
equilibrium shifts from partially-misfolded to fully-misfolded, indicating that the unfolding process takes place at the surface
while the protein remains bound (see Fig. 6(b)). Considering the large surface area and the small alphabet employed it is not
surprising that specificity of the protein-protein interactions could not be achieved. This is an essential factor that could explain
the size of natural alphabets, i.e. the 20 amino acids. The study of the effect of the size of the binding site on the specificity is
the object of upcoming work.

CONCLUSION

The design procedure employed in our work has a significant segregation effect on the alphabet letters used in the protein
sequence. The larger the number of residues on the binding site, the smaller is the effective alphabet available for the protein
sequence. On the one side, the design is capable of selecting a subset of letters that still allows the folding of the protein in
the bulk solution even for the smallest effective alphabet (4 letters). The precision of the folding increases with the effective
alphabet size. Interestingly, the experimentally determined alphabet size of 6 letters is also what we observed recovering the

design accuracy commonly obtained with a 20 letter alphabet. Finally, the identified alphabets in this work are automatically

optimised by the design and are composed of the most attractive residues while maintaining the broadest heterogeneity of the
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Figure 5: Folding free energy landscapes F/kgT at reduced temperature 0.76 as a function of DRM SD;,;,, protein from
the native protein G as target and DRM SDjy;., protein-binding site from the folded protein bound to the binding site
(configurations depicted in the panels). The binding affinity decreases along with the binding site size, as shown by the value
of the association constants K, in the plot key.
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(@ (b)

Figure 6: Folding free energy profiles F'/kpT at reduced temperature 0.76 (left panel) and 1.00 (right panel) as a function
of DRMSD intra protein from the native target structure. Simulations of protein G in presence of binding site at { =
(0.20, 0.40, 0.60, 0.80). The curves have been evaluated on bound configurations, i.e. where the protein is directly interacting
with the binding site. Left panel: The presence of two equivalent minima suggests that the protein binds in the target
configuration as well as in a misfolded state with the same probability. Right panel: upon increasing the temperature, the
correctly folded state is destabilised for large binding sites.

Figure 7: Folding free energy profiles F/kpT at reduced temperature 0.76 as a function of DRMSD;;,, protein from the
native target structure. Simulations of protein G in presence of binding site at £ = (0.20, 0.40, 0.60, 0.80). The curves have
been evaluated on configurations in the bulk solution, where the protein-binding site distance is larger than the interaction one.
The presence of a minimum below DRMSD =2 A shows that the protein is folded when bound.

solvent interactions.

Our results have far-reaching implications both in the field of protein design and for the understanding of protein evolution.
In protein design, the possibility of using a reduced alphabet would considerably accelerate the search of the sequence space
for good folders. In the field of protein evolution instead, the understanding of the smallest alphabet necessary for accurate
proteins design is still an open question. To the best of our knowledge, this study represents the first successful design of a full
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natural protein structure with a reduced alphabet of just 4 letters.
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SUPPLEMENTARY INFORMATIONS
Binding site modelling

The artificial binding site is a mould obtained by pushing the folded protein conformation on a planar mesh of self avoiding
beads (self avoiding radius = 2 A).

To obtain the mould, we initially generate a dense mesh in the z = 0 plane by placing the beads on a 2D square lattice with
step 0.5 A.

We then identify the centre of mass of the protein and use it to measure the height of the protein with respect to the plane,

which is one of our main control parameters. Specifically, we consider the CM height zcps normalised over the maximum
distance,rps ax, of a C, from the CM of the protein, so that = f}; rX ranges between O (when the CM lies on the z = 0 plane)
and 1.

We consider several values of ¢ and for each of them we identify a protein orientation which maximise the contact surface
with the binding site according to the following procedure. We begin by aligning the minor inertia axis of the protein with
the z axis and then perform a discrete set of rotations around the x and y axes. For each of these rotations, we recompute the
mould, map it to a triangular mesh, and calculate the surface of the latter. The area of the surface is obtained by summing the
area of each triangle formed by all the triplets of the mesh points at z # 0.

The binding site is obtained by setting a minimum protein-mesh bead distance u = 13 A and using it to inflate the radius of
the protein C,s, thus generating a mould by pushing downwards all mesh beads within the inflated radius. To avoid large gaps
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within the binding site, we perform an iterative smoothing procedure. For each bead of the pocket we compute its distance to
all its neighbouring beads on the square lattice, and if this is larger than the self-avoiding radius, we shift the vertical position
of the bead so to fill the gap.

In order to confer a protein nature to the artificial binding site, a homogeneously distributed set of mesh points are
“activated”, i.e. switched from pure self avoiding beads to Ca atoms. In order to do so, we firstly switch all the beads of the
mesh to C,,, then we set a minimum binding site C, — C,, distance 6 = 5 A and loop over all bead points starting from a corner
of the mesh. For each activated atom in the loop we deactivate all points within a sphere of radius ¢. Clearly, after the first
atom the loop will incur both in activated and de-activated beads. The latter are simply skipped by the procedure. Finally, we
deactivate all the beads at z = 0, so that only the pocket contains C, beads.

Figure S8: Radial distribution function g(r) calculated over the active residues Csyr£ of the binding site placed at the minimum
distance 6 = 5 A from each other. The latter was determined by identifying the value of & that yields the mean nearest distance
f07'5 pAnr?g(r)r dr closest to 5.7 A obtained by averaging over 145 protein structures taken from the PDB (black line in the
inset). The integral interval was chosen visually taking a region large enough to fully contain the first peak in the g(r). It
is important to stress that in the protein g(r) the selected distribution includes the contribution from all secondary structure
elements (52).
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Figure S9: Histograms obtained by evaluating the Hamming distance (% relative to the chain length) between all possible pairs
of sequences chosen selecting 200000 solutions around the design free energy minimum of systems A and B, corresponding
to the £ values specified in the following. All panels refer to self comparison of sequences belonging to the same basin. a) A:
{=0.20; B: {=0.20b) A: {=0.40; B: {=0.40 c) A: {=0.60; B: {=0.60 d) A: {=0.80; B: {=0.80
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Figure S10: Water exposure profiles of protein G in presence of binding sites constructed with different ¢ values. The colour
scheme of the protein is related to the number of total contacts: solvent exposed regions in red, buried in blue. The plot
shows the number of contacts for each protein residue. The grey dashed line defines the threshold O = 21 on the number
of neighbours above which an amino acid is considered buried in the protein core. We used the information relative to the
exposure of protein G to set the radius of the probe sphere used in the evaluation of the number of contacts for each active C,
of the binding site (the blue spheres in the figure). We counted the offset for the number of neighbours for each of the binding
site C, by multiplying the fraction of the volume of a sphere of radius 6 A that lies under the mesh surface by the average
amino acid density in globular proteins (p = 0.011687 aa/A3, evaluated over a set of 145 globular proteins). The radius of the
sphere was optimized to reach an average exposure of each residue similar to the one of the most exposed residues of protein
G (corresponding to the minima in the plot).
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Simulation Box
Bulk Solution

Contact Volume

HARD WALL

Figure S11: Simulation box for protein folding in presence of two copies of a potential partner. The partner is depicted as
a binding site surface decorated with Ca atoms, i.e. the coloured spheres in the image. Each colour, both on the protein
backbone and on the Ca of the binding sites, represents a different amino acid type. The protein sequence and the identity of
the binding site amino acids are designed simultaneously with the procedure described in the Design sub-section. The protein
is a flexible polymer diffusing in the box under Periodic Boundary Conditions. A mirroring move provides a swap between
opposite chiralities, since the Caterpillar model does not take into account the amino acid chirality. The cubic box contains
two binding sites, one the mirror image of the other, the position of which is fixed during the simulation. The binding sites are
far apart enough to prevent the protein to interact with both at the same time. A hard wall between the binding sites prevents

the protein to approach the surfaces from the convex side. For the evaluation of the association constant K, = % %, we

need to assess the number of binding sites in the box n = 2, define the accessible simulation volume Vj,,, and discern bulk
solution configurations (contributing to Qy, the partition function of the free protein) from the ones where the protein is
directly in contact with the binding site (contributing to Qp, the partition function of the bound configurations). The accessible
volume is easily obtained by subtracting the hard wall contribution to the box volume. The bound configurations are the ones
characterised by a protein-binding site interaction energy E;nser # 0. The configurations contributing to Qy, instead, are the
ones for which the central amino acid of the protein is at a distance r > Hjengns + Rins with respect to all the amino acids of
the surface (being Hjepgp, half of the stretched protein length; R;,,, the interaction radius) and, therefore, where the interaction
with the binding site is not possible. We refer to the latter region as the bulk solution.
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Figure S12: Van’t Hoff plot of In K, as a function of the inverse reduced temperature 1/7 for the investigated systems.
The association constant [//mol] is computed as K, = exp(—AF /kgT)Vpox/n, where Vp, is the accessible volume of our
simulation box, n = 2 is the number of binding sites and AF = —kgT In(Q;,/Qy) is the binding free energy (29). The partition
functions Qp and Qy refer to all protein conformations bound to the binding site and free in the bulk solution, respectively.
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