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Abstract

We introduce a microfluidic platform that enables single-cell mass and growth rate measurements
upstream of single-cell RNA-sequencing (scRNA-seq) to generate paired single-cell biophysical and
transcriptional data sets. Biophysical measurements are collected with a serial suspended microchannel
resonator platform (sSMR) that utilizes automated fluidic state switching to load individual cells at fixed
intervals, achieving a throughput of 120 cells per hour. Each single-cell is subsequently captured
downstream for linked molecular analysis using an automated collection system. From linked
measurements of a murine leukemia (L1210) and pro-B cell line (FL5.12), we identify gene expression
signatures that correlate significantly with cell mass and growth rate. In particular, we find that both cell
lines display a cell-cycle signature that correlates with cell mass, with early and late cell-cycle signatures
significantly enriched amongst genes with negative and positive correlations with mass, respectively.
FL5.12 cells also show a significant correlation between single-cell growth efficiency and a G1-S
transition signature, providing additional transcriptional evidence for a phenomenon previously
observed through biophysical measurements alone. Importantly, the throughput and speed of our
platform allows for the characterization of phenotypes in dynamic cellular systems. As a proof-of-
principle, we apply our system to characterize activated murine CD8+ T cells and uncover two unique
features of CD8+ T cells as they become proliferative in response to activation: i) the level of
coordination between cell cycle gene expression and cell mass increases, and ii) translation-related gene
expression increases and shows a correlation with single-cell growth efficiency. Overall, our approach
provides a new means of characterizing the transcriptional mechanisms of normal and dysfunctional
cellular mass and growth rate regulation across a range of biological contexts.

Background

Recent experimental advancements have dramatically improved the throughput and cost-efficiency of
single-cell RNA-sequencing (scRNA-seq) [1-3]. However, gene expression measurements alone only
provide a portion of the information necessary to characterize complex cellular processes [4, 5]. Thus,
parallel efforts have focused on linking gene expression measurements with complementary single-cell
data that can provide further information to help guide analyses and contextualize distinct cellular states.
For instance, various multi-omic methods have been developed to link measurements such as protein
abundance, or DNA sequence or methylation, with gene expression from the same single cell [6-9]. Gene
expression measurements have also been linked to single-cell location within a tissue to enable the study
of cellular development and differentiation at unprecedented detail [10-12]. Additionally, single-cell
functional assays have been coupled with expression data to obtain novel insights into the relationships
among cellular electrophysiology, morphology, and transcription [13]. Taken together, these approaches
demonstrate the value of linked single-cell data sets to afford a deep understanding of various cellular
functions and states that may be difficult to obtain through transcriptomic measurements alone.

Linked gene expression data sets are of particular interest when considering recent technological
developments that have enabled the precise measurement of various single-cell biophysical properties,
such as mass and growth rate [14, 15]. As highly integrative metrics of cellular state, these parameters
offer unique insights into a wide range of biological phenomena, including: i) basic patterns of single-cell
mass and growth regulation; ii) biophysical changes associated with immune cell activation; and, iii)
heterogeneity of single-cell drug response in various cancers [16-18]. However, the approaches previously
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used to collect these biophysical measurements have precluded linking these properties with molecular
information collected from the same cell.

Padovan-Merhar et al. recently reported key progress towards this goal, describing an imaging-based
approach that allows for the enumeration of various transcripts that can be linked with single-cell
volumetric measurements [19]. This work revealed novel insights into the relationship between transcript
abundance and cell volume throughout the cell cycle. However, these imaging-based approaches are
limited to measurements of cell size alone, have a low throughput, and have been coupled primarily with
hybridization-based approaches that are limited in the total number of genes that can be measured in any
given cell. To our knowledge, there have been no methods reported to date that allow for linked
measurements of cellular mass, growth rate, and transcriptome-wide gene expression from the same cell.
It has therefore been challenging to characterize the underlying transcriptional mechanisms responsible
for the cellular mass and growth rate variability observed in a range of normal and dysfunctional biological
contexts.

To address these limitations, we have developed a microfluidic platform that enables the measurement
of single-cell mass and growth rate immediately upstream of scRNA-seq. Here, we describe this platform
and demonstrate the reproducibility of the linked data sets it generates with a sufficient throughput to
be applied to a broad range of dynamic biological contexts.

Results and Discussion
Serial SMR platform with downstream collection for scRNA-seq

Our system relies on a modified version of a serial suspended microchannel resonator (sSMR) device that
has been described previously (Figure 1) [17]. Briefly, the sSMR utilizes an array of high-resolution single-
cell buoyant mass sensors placed periodically along the length of a long microfluidic channel, allowing a
single cell’s mass to be measured periodically as it traverses the channel. In addition to providing mass
information, this series of measurements can also be used to determine the mass accumulation rate
(MAR), or growth rate, of each cell. Real-time access to the data generated by each SMR mass sensor
allows for peak detection in the final cantilever to be used as an indication of a cell exiting the mass sensor
array; these peaks trigger the motion of a three-dimensional motorized stage to position a PCR tube
containing lysis buffer to capture each single cell as it is flushed from the system (Methods).

The total time required to flush the system’s dead volume and release each single cell (20 seconds for the
system implementation described here) sets a theoretical maximum throughput for the platform to avoid
the collection of multiplets. Crucially, to minimize the frequency of failed capture events, we have
implemented a new fluidic scheme whereby single cells are loaded into the array of mass sensors at fixed
intervals (Supplementary Figure 1, Supplementary Note 1) [20]. Ultimately, this fluidic scheme allows us
to achieve a throughput of one cell approximately every thirty seconds (for a throughput of up to 120 cells
per hour) with minimal failed collection events due to co-release. This offers a two-fold throughput
improvement over previous implementations of biophysical measurements alone, while offering the
additional ability to capture each individual cell downstream for scRNA-seq.

Unique gene expression profiles related to biophysical properties in two murine lymphoblast cell lines
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To validate our method for collecting linked single-cell biophysical and gene expression data, we first
measured two murine lymphoblast cell lines (L1210 and FL5.12) that have well-characterized mass and
growth properties (Figure 2) [15-17]. Single cells collected downstream of the sSMR for scRNA-seq
consistently yielded high-quality cDNA libraries, with 85 out of 87 individual L1210 cells and 124 out 144
individual FL5.12 cells with paired biophysical data passing initial quality controls (e.g., number of genes
detected greater than 4,000, Methods, Supplementary Figure 2).

In order to determine the transcriptional profiles associated with various biophysical states in these cells,
we ranked genes by how strongly their expression levels correlated with single-cell biophysical data
(Spearman’s correlation coefficients, Supplementary Table 1). Both Spearman and Pearson correlation
methods yielded similar results for all comparisons considered (Supplementary Figure 3). We then utilized
the GSEA Preranked tool to determine which gene sets showed significant enrichment at either end of
these ranked lists (FDR<0.05, Methods, Supplementary Table 2) [21]. For both cell types, genes ranked
by correlation strength with single-cell mass were highly enriched for functional annotations relating to
cell cycle progression (FDR<0.05, Supplementary Table 2, Figure 2). Specifically, genes related to early cell
cycle events — such as DNA replication initiation — were more highly expressed in cells with lower masses
whereas genes related to late cell cycle events — such as chromosome segregation — were more highly
expressed in larger cells. Interestingly, both cell types revealed a larger number of genes that showed a
significant positive correlation with mass relative to the number of genes with a significant negative
correlation (Supplementary Figure 4).

Genes that showed significant correlation with cell mass in L1210 cells were significantly enriched
amongst those previously shown to correlate with time since division, an alternative proxy for cell cycle
progression, in the same cell line (FDR < 0.05, Supplementary Figure 5, Supplementary Note 2). Similarly,
genes that showed a significant correlation between their expression levels and biophysical properties in
FL5.12 cells were consistent when measured in a second, independent replicate of the linked biophysical
and gene expression experiments (FDR<0.05, Supplementary Figure 5, Supplementary Note 2). These
results demonstrate the quality and reproducibility of transcriptional measurements collected
downstream of the sSSMR.

To account for the linear relationship between mass and MAR in these cell types (p = 0.67 and p = 0.56 for
L1210 and FL5.12, respectively, Figure 2), we focused our analysis on mass-normalized MAR, determined
by dividing each cell’s MAR by its corresponding mass. This parameter describes a single cell’s growth
efficiency, which is decoupled from mass-related confounders [18, 22]. For L1210 cells, genes ranked by
strength of correlation between expression level and growth efficiency did not reveal any statistically
significant enrichment of functional annotations (FDR>0.05). The FL5.12 cells, however, showed
significant positive enrichment for functional annotations related to cell cycle progression amongst genes
ranked by correlation strength with growth efficiency (FDR<0.05, Supplementary Table 2). Specifically,
subsets of genes implicated in the G1-S transition and DNA replication showed a higher level of expression
in cells of intermediate mass with the highest growth efficiencies (Methods, Supplementary Figure 6)
[23]. These results are consistent with previous FL5.12 single-cell growth measurements, which revealed
an increase in growth efficiency approaching the G1-S transition followed by a decrease later in the cell
cycle [15].

Characterizing CD8+ T cell activation with linked biophysical and gene expression measurements
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Both the L1210 and FL5.12 models present stable distributions of biophysical and transcriptional profiles
over the course of long-term propagation in bulk culture [24, 25]. However, one of the benefits of the
sSMR platform is that it offers sufficient throughput to characterize cell populations that may be changing
in their phenotypes over time. Primary CD8+ T lymphocytes are a prime example of this dynamic behavior,
as they are known to drastically change their biophysical properties, transcriptional states, and metabolic
characteristics in response to activation [17, 26, 27].

In order to characterize their response to activation, we collected single-cell biophysical and gene
expression profiles for murine CD8+ T cells stimulated in vitro for either 24 or 48h (Figure 3, Methods).
Although the cells for both time points displayed similar mass distributions, the cells measured after 48h
of activation showed significantly higher growth efficiencies (P<0.001, Mann-Whitney U-test, Figure 3a,b).
These two populations showed differential expression patterns consistent with T cell activation, including
significant upregulation of Granzyme B (Gzmb) and IL-2 receptor (//2ra and I12rb) as well as significant
downregulation of Ccr7 in the 48h population compared to the 24h one (FDR<0.05, Supplementary Table
3). Similarly, gene set enrichment analysis performed on genes ranked by expression fold change between
these time points revealed significant enrichment for gene sets related to immune cell effector function
and glucose metabolism, consistent with functional and metabolic shifts that have been previously
characterized in activated CD8+ T cells (FDR<0.05, Supplementary Tables 4 and 5) [26, 28].

Cells activated for 48h also displayed a higher expression of genes related to protein production, including
those involved in translation initiation and cytosolic ribosome activity (Supplementary Table 5). Araki et
al. recently demonstrated a similar trend, noting an increase in translation activity over of the course of
early T cell activation, as cells become more proliferative [29]. The measurements presented here suggest
that this increase in translation activity is accompanied by, and potentially is tied to, an increased growth
efficiency observed at 48h compared to 24h. This population-level relationship between growth efficiency
and translation-related gene expression was also observable at the single-cell level for cells activated for
48h. Within this time point, genes ranked by correlation strength with single-cell growth efficiency once
again showed significant enrichment for functional annotations relating to translation machinery
(FDR<0.05, Supplementary Table 2). Despite a similar number of genes showing a significant correlation
with growth efficiency in the 24h time point, these genes did not show any significant functional
enrichment when ranked by correlation strength (FDR>0.05, Supplementary Figure 4). This result
suggests that the coordination between single-cell growth efficiency and translation-related gene
expression occurs later in the course of T cell activation.

The 48h time point revealed a greater number of genes that showed a significant correlation between
expression level and cell mass relative to the 24h time point (Supplementary Figure 4). When determining
the functional role of genes ranked by expression correlation with single-cell mass, only the 48h time point
demonstrated significant cell cycle functional enrichment (FDR<0.05, Supplementary Table 2).
Furthermore, a previously described set of genes known to correlate with an activated CD8+ T cell’s time
since division — a proxy for cell cycle progression — showed a significantly stronger positive correlation
with cell mass in the 48h population relative to 24h population (P<0.001, Mann-Whitney U-test, Figure 3)
[25]. It is important to note that the 24 and 48h time points primarily capture cells before and after their
first division event, respectively [30]. Although cells are accumulating mass, or “blasting”, in the first 24h,
it is not until roughly 30 hours that cells undergo their first division and begin increasing in number and
cyclingin the traditional sense [30, 31]. Taken together, these results suggest that the level of coordination
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between cell cycle gene expression and cell mass increases later in T cell activation as cells begin actively
dividing.

Conclusion

The platform presented here enables linked measurements of single-cell biophysical properties and gene
expression. We have demonstrated the feasibility of resolving distinct transcriptional signatures
associated with subtle differences in single-cell mass and growth rate for stable L1210 and FL5.12 cell lines
as well as for activated, proliferating CD8+ T cells. While the primary focus of this work was on conducting
scRNA-seq downstream of the sSMR, we also envision this platform being a useful tool for linking
biophysical data with other recently developed approaches that enable DNA sequencing, epigenomic
characterization, or multi-omic measurements of single cells [6, 7, 32].

We believe that these linked measurements will offer a novel means of exploring a range of biological
guestions. For instance, when paired with recently developed computational approaches, these linked
biophysical and transcriptional measurements may offer unprecedented insights into cell cycle regulation
as well as provide an additional approach for addressing the potentially confounding effects of cell cycle
in scRNA-seq analyses [33]. Clinically, mass and MAR have proven to be effective biomarkers for
characterizing cancer cell drug susceptibility at the single-cell level [18, 22]. The ability to link these
biophysical measurements with gene expression profiling offers the opportunity to move beyond the
classification of responding and non-responding cells, and begin to explore the molecular mechanisms for
such behaviors.
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Methods
Cell culture and primary cell preparation

L1210 murine lymphocytic leukemia cells (ECACC) were cultured in RPMI 1640 (Gibco) with 10% fetal
bovine serum and 1% antibiotic-antimycotic (Gibco). FL5.12 murine pre-B cells (Vander Heiden Lab, MIT)
were cultured in the same media with the addition of 10 ng/ml IL-3 (R&D Systems). For all growth and
collection experiments, cells were passaged to a concentration of 5 x 10° cells/ml the night before to
ensure consistent culture confluence at time of measurement. Naive, CD8+ T cells were isolated from a
13 week old, male, C57BL/6J mouse. Splenocytes were subject to red blood cell lysis with ACK buffer
(Gibco) followed by naive CD8+ T cell isolation using a MACS-based isolation kit (Miltenyi Biotec). Purified
cells were cultured in RPMI 1640 (Gibco) with 10% fetal bovine serum, 55 uM 2-mercaptoethanol (Gibco),
1% antibiotic-antimycotic (Gibco) and 100 U/ml IL2 (Peprotech). The naive CD8+ T cells were activated in
vitro with 5 pg/ml plate-bound anti-mouse CD3 (clone: 145-2c11, BioLegend), 0.5 pg/ml plate-bound
ICAM-1/CD54 (R&D Systems), and 2 pug/ml soluble anti-mouse CD28 (clone: 37.51, BioLegend). Cells were
seeded at a concentration of 1 x 10° cells/ml in a 96 well plate and activated for either 24 or 48h prior to
measurement in the sSMR.

Animals were cared for in accordance with federal, state and local guidelines following a protocol
approved by the Department of Comparative Medicine at MIT (protocol number 0317-022-20).

Single-cell growth measurements and collection

For all experiments, cells were adjusted to a final concentration of 2.5 x 10° cells/ml to load single cells
into the mass sensor array as described in Supplementary Note 1. Single-cell growth measurements were
conducted as described previously [17]. In order to exchange buffer and flush individual cells from the
system, the release side of the device was constantly flushed with PBS at a rate of 15 pL per minute
(Supplementary Figure 1, P2 to P4). Upon detection of a single-cell at the final cantilever of the sSMR, as
indicated by a supra-threshold shift in resonant frequency, a set of three-dimensional motorized stages
(ThorLabs) was triggered to move a custom PCR-tube strip mount from a waste collection position to a
sample collection position. The location of these motors was written to a file for the duration of the
experiment in order to annotate single-cell mass and MAR measurements with well position, and thus
transcriptional profiles, downstream. Each cell was collected in 5 ul of PBS directly in to a PCR tube
containing 5 pl of 2X TCL lysis buffer (Qiagen) with 2% v/v 2-mercaptoethanol (Sigma) for a total final
reaction volume of 10 pl. After each 8-tube PCR strip was filled with cells, the strip was spun down at
1000g for 30 seconds and placed immediately on dry ice. Following collection, samples were stored at
-80 C prior to library preparation and sequencing.

scRNA-Seq

Single-cell RNA isolation, cDNA library synthesis, next generation sequencing, read alignment and gene
expression estimation were performed as described previously [34]. Briefly, Smart-Seq2 whole
transcriptome amplification and library preparation were performed on single-cell lysates collected with
the sSMR [35]. Single-cell libraries were then sequenced on a NextSeq500 using 30-bp paired end reads.
Cells that exceeded a preliminary complexity threshold (4,000 genes for L1210 and FL5.12 cells, 2,000
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genes for CD8+ T cells) and had successfully paired biophysical measurements were selected for further
analysis. Overall, this yielded 85 out of 96 total L1210 cells, 124 out of 192 total FL5.12 cells, and 108 out
of 192 total CD8+ T cells. These cells selected for analysis were sequenced to an average depth of
1,698,879 + 106,027 (s.e.m.), 760,919 + 36,679 (s.e.m.), and 1,333,686 + 90,744 (s.e.m.) reads for the
L1210, FL5.12, and CD8+ T cells respectively. Reads were aligned using TopHat2 and expression estimates
(transcripts per million; TPM) for all UCSC-annotated mouse genes (mm10) were calculated using RNA-
seq by expectation maximization (RSEM) [36, 37]. The average transcriptome alignments were 67.4 + 0.38
% (s.e.m.), 64.8+ 0.51 % (s.e.m.), and 57.3 + 1.36 % (s.e.m.) for the L1210, FL5.12, and CD8+ T cells
respectively. The average number of genes detected was 7,207 + 94 (s.e.m.), 6,891 + 81 (s.e.m.), and 5,149
+ 159 (s.e.m.) for the L1210, FL5.12, and CD8+ T cells respectively (Supplementary Figure 2).

Gene expression analysis

All analysis was performed on log-transformed expression level measurements (In(TPM+1)). Data pre-
processing was conducted with the Seurat package for R [10]. All genes that were detected in >5% of cells
were included in the final analysis for each group of cells (L1210, FL5.12, and CD8+ T cells).

Ranked gene lists were created for each cell population by determining the gene-wise correlation
coefficient (Spearman) between log-transformed gene expression level and either single-cell mass or
growth efficiency (Supplementary Table 1). Spearman and Pearson correlation coefficients yielded similar
results for all conditions measured (Supplementary Figure 3). Gene set enrichment was computed for
these ranked lists using the GSEA Preranked tool, implemented with the fgsea package in R
(Supplementary Table 2) [21, 38].

Differential expression analysis for the 24 versus 48h CD8+ T cell measurements was performed using the
FindMarkers function of Seurat with the Wilcoxon rank sum test (Supplementary Table 3). Genes were
also ranked by log-normalized fold-change expression difference between the 24 and 48h time points and
analyzed with the GSEA Preranked tool (Supplementary Tables 4 and 5).

To define the null distribution of correlation coefficients described in Figure 3, we determined the
Spearman correlation between cell cycle gene expression levels and mass for randomly shuffled data
sampled from the experimental values (i.e. mismatched single-cell mass and gene expression data). After
10,000 iterations of this process, we found the average mean and standard deviation values of these
correlation coefficient distributions which were used to define the null distributions presented.

Figure captions

Figure 1 | Serial SMR platform with downstream collection for scRNA-seq

Schematic representation of the serial SMR platform, which includes an array of SMR mass sensors,
separated by a serpentine delay channel to periodically measure the buoyant mass of a single cell.
Independent control of the upstream and downstream pressures applied to two bypass channels allows
for single-cell spacing at the loading entrance of the array (top left of SSMR image) and single-cell isolation
at the unloading exit (bottom right of sSSMR image) (Supplementary Figure 1, Supplementary Note 1).
Using real-time peak detection at the final mass sensor, a three-dimensional motorized stage is triggered
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to capture each individual cell directly in to lysis buffer for downstream single-cell RNA-sequencing. Based
on well location, each cell is subsequently matched to its corresponding biophysical data collected from
the sSMR including mass and MAR, as schematized in the top-right panel. These linked single-cell data
sets can then be used to determine gene expression signatures associated with mass and growth rate
variability, as schematized in the bottom-right panel.

Figure 2 | Linked biophysical and gene expression measurements of single L1210 and FL5.12 cells

(a) Plot of mass accumulation rate versus buoyant mass for single L1210 cells (top, n = 234) and single
FL5.12 cells (bottom, n=296) measured in the sSMR. (b) Heat maps showing the relative expression of
various cell cycle-related genes for subsets of the L1210 (top, n=85) and FL5.12 (bottom, n=124) cells
depicted in (a) that were captured downstream for scRNA-seq. Cells are ordered by buoyant mass (bar
plots above heat maps). Entries are colored by row-wise expression level rank where the cell with the
highest expression level for a particular gene corresponds to yellow and the cell with the lowest
expression level corresponds to magenta. As a demonstration, the heat map includes genes with
expression levels that showed a significant correlation with buoyant mass from the chromosome
segregation (black bar, n=66 and n=50 for the L1210 and FL5.12, respectively) and DNA replication (gray
bar, n=11 and n=14 for the L1210 and FL5.12, respectively) gene ontology subsets (FDR<0.05,
Supplementary Figure 4, Supplementary Table 1, Methods).

Figure 3 | Linked biophysical and gene expression measurements of activated murine CD8+ T cells

(a) Plot of mass accumulation rate versus buoyant mass for murine CD8+ T cells after 24 h (blue points,
n=59) or 48 h (red triangles, n=49) of activation in vitro. Kernel density plots, using the same color scheme,
are included on the margins for both populations. (b) Plot of mass-normalized single-cell growth rates
(growth efficiency) for the same murine CD8+ T cells activated for 24 or 48 hours in vitro. Groups were
compared with a Mann-Whitney U-test (*** P < 0.001). (c) Box charts showing the Spearman correlation
coefficients between single-cell mass measurements and the expression of a subset of genes previously
found to be related to cell cycle in activated CD8+ T cells (300 genes) for cells activated for 24 or 48 hours.
For comparison, the distribution of Spearman correlation coefficients for the same subset of cells after
randomly assigning single-cell mass measurements is shown for each time point (Methods). Groups were
compared with a Mann-Whitney U-test (*** P<0.001, ** P<0.01).
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Supplementary Figure Captions

Supplementary Figure 1 | Fluidic regimes for maintaining cell spacing in the sSSMR

(a) Schematic of sSSMR presented in Figure 1 denoting the array entrance region used for fluidic simulation
presented in (b) (dashed box outline). (b) COMSOL fluidic simulations demonstrating the loading (left) and
flushing (right) fluidic regimes described in Supplementary Note 1. The imaging region used to trigger
between each fluidic state is outlined (solid box).

Supplementary Figure 2 | Quality metrics for scRNA-seq libraries

Violin plots and overlaid points showing the number of genes detected (left), sequencing depth (center),
and transcriptome alignment (right) for each scRNA-seq library prepared for (a) L1210 cells, (b) FL5.12
cells and (c) CD8+ T cells activated for either 24 or 48h (blue and red outlines, respectively) that passed
initial quality thresholds and were used for further analysis (Methods).

Supplementary Figure 3 | Comparison of Pearson and Spearman coefficients for correlations between
gene expression and biophysical parameters

Plots of the Pearson coefficient versus Spearman coefficient for expression level correlations with either
mass (left column) or mass-normalized MAR (right column) for L1210, FL5.12, and CD8+ T cells (24 and 4h
time points). Each cell type lists the total number of genes being compared and each plot indicates the
Spearman coefficient between the Spearman and Pearson coefficients across all genes. Each
measurement set reveals similar gene-level rankings for both Spearman and Pearson coefficients.

Supplementary Figure 4 | Expression level correlation with biophysical parameters for L1210, FL5.12, and
CD8+ T cells

Bar plots denoting the correlation strength of individual gene’s expression levels with either mass (left) or
mass-normalized MAR (right) for (a) L1210 cells (n = 11,469 genes), (b) FL5.12 cells (n = 11,040 genes), (c)
CD8+ T cells after 24h of activation (n = 9,015 genes), and (d) CD8+ T cells after 48h of activations (n =
9,015 genes). Genes are plotted in rank order where genes with highest positive and negative correlations
with biophysical parameters are found at the left-most and right-most portion of the x axis, respectively.
For each data set, a null distribution of correlation coefficients was determined by finding the correlation
between gene expression and mass for randomly permuted data. After 10 iterations, we determined the
average standard deviation of these distributions of correlation coefficients. Any individual gene that had
a correlation coefficient with an absolute value greater than twice the standard deviation (P<0.05,
denoted by the dashed lines in the plots) was considered significant (red bars), all genes presented as blue
bars fell below this threshold. The number of genes showing a significant positive or negative correlation
with the biophysical parameter of interest are shown in each plot.

Supplementary Figure 5 | Reproducibility of linked measurements for L1210 and FL5.12 cells

(a) Enrichment plots for genes with significant positive (left, n = 1,166) or negative (right, n = 134)
correlations with single-cell mass amongst genes ranked by expression level correlation with time since
division in L1210 cells — determined by Kimmerling et al. (Supplementary Note 2) [25]. Significant
enrichment (FDR = 0.0009 and 0.0003 for positive and negative sets, respectively) suggests that a
consistent cell cycle gene expression signature correlates with both cell mass and time since division in
L1210 cells. (b) Enrichment plots for genes with significant positive (left, n = 874) and negative (right, n =
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191) correlations with FL5.12 cell mass amongst a full gene list ranked by expression level correlation with
FL5.12 cell mass from a second, independent experiment. The significant enrichment here (FDR = 0.0004
and 0.0016 for positive and negative sets, respectively) demonstrates a reproducible gene expression
signature corresponding to FL5.12 mass. (c) Same analysis as in (b) for genes that correlated significantly
with mass-normalized growth rate (growth efficiency, n = 309 and 621 genes for positive and negative
correlations, respectively) as opposed to mass, demonstrating reproducible growth-related gene
expression signatures as well (FDR = 0.0002 and 0.0205 for positive and negative sets, respectively).

Supplementary Figure 6 | Cell cycle gene expression versus growth rate in FL5.12 cells

Plot of mass versus mass-normalized growth rate (growth efficiency) for a subset of the FL5.12 cells
depicted in Figure 2 that were captured downstream for scRNA-seq (n = 124). Points are colored by G1/S
score rank with highest expression score corresponding to red and lowest expression score corresponding
to blue. The “cell cycle G1/S phase transition” gene ontology term was found to be significantly enriched
amongst genes ranked by correlation with growth efficiency. To determine the G1/S transition scores for
single FL5.12 cells we found the average of mean-centered, z-score scaled expression values for the
leading-edge genes of the “cell cycle G1/S phase transition” gene ontology term — these are the genes
that, when included, give rise to the highest enrichment score for this term (n = 40 genes) [21].

Supplementary Notes
Supplementary Note 1 | Maintaining minimum cell spacing in mass sensor array

Loading single cells into the mass sensor array at a fixed, minimum spacing requires the implementation
of active switching between two distinct fluidic states. Initially, equivalent pressures are applied to the
upstream and downstream ports on the bypass channel leading in to the array (Supplementary Figure 1,
ports P1 and P3). In this “loading” configuration, all streamlines are directed into the array and therefore
cells in the bypass channel will enter the array. An imaging region at the entrance to the mass sensor array
(outlined in Supplementary Figure 1) is used as an indication of when a cell has been successfully loaded.
Real-time optical peak detection within this region is used to switch from this loading fluidic state to a
“flushing” regime wherein the upstream pressures (P1) is increased and the downstream pressure (P3) is
decreased such that a vast majority of streamlines continue along the bypass channel with a small fraction
entering the array. Because cells are of finite size and occupy several streamlines, they are directed along
the bypass channel and not drawn in to the array. Importantly, during this process the pressure at the
entrance to the mass sensor array is maintained at a fixed value, therefore any cells that have entered the
array continue to flow at a constant speed. Therefore, although the volumetric flow rate is maintained
across the array while flushing, no additional cells are loaded. After a desired amount of time has elapsed
the system is automatically returned to the loading configuration to obtain the next cell for measurement.

Supplementary Note 2 | Determining reproducibility of gene signatures related to mass and MAR

In order to determine the reliability and reproducibility of the linked biophysical and gene expression
profiles, it was important to compare these signatures with additional results collected from independent
experiments. For L1210 cells, single-cell gene expression profiles had previously been collected for cells
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with known times since division (TSD), a proxy for cell cycle progression [25]. We therefore hypothesized
that the list of genes with expression levels that correlated significantly with single-cell mass (an
alternative proxy for cell cycle progression) would show significant overlap with genes that correlated
strongly with TSD. To determine the extent of this similarity, we constructed two test gene sets for gene
set enrichment analyses: one which included genes with a significant positive correlation with cell mass
and another which included genes with a significant negative correlation with cell mass (Supplementary
Figure 5a, Supplementary Table 2). These gene subsets were compared to the full L1210 gene list
measured previously, with genes ranked by how strongly their expression levels correlated with TSD.
Genes with a significant positive correlation with mass were significantly over-represented amongst genes
that showed a positive correlation with TSD in prior measurements (FDR<0.05). Similarly, genes with a
significant negative correlation with mass were significantly over-represented amongst genes that
showed a negative correlation with TSD (FDR<0.05). These results indicate that similar sets of genes are
correlated with both TSD and single-cell mass, suggesting consistency between the measurements
collected here and those collected previously.

Next, we sought to perform a similar comparison for FL5.12 cells. However, in contrast to L1210 cells, no
single-cell gene expression measurements had been collected for these cells previously. We therefore
conducted a second, independent experiment where single-cell mass and MAR measurements were
collected upstream of scRNA-seq for FL5.12 cells (Supplementary Figure 5b,c). Using this independent
data set, we generated full gene lists that were ranked by correlation strength with either mass or mass-
normalized MAR. Then we once again constructed test gene sets, this time containing genes from the
original FL5.12 data set with significant correlations (both positive and negative) with either mass or mass-
normalized MAR (P<0.05). Following the same analysis described above, we found that gene sets
correlating with both mass and mass-normalized MAR showed significant overlap between both replicate
experiments (FDR<0.05). This once again demonstrates the reproducibility of the gene expression
signatures that correlate with single-cell biophysical properties.

Supplementary Material

Supplementary Table 1 | Gene lists ranked by correlation with either mass or mass-normalized MAR for
L1210, FL5.12, and CD8+ T cells (24 and 48h activations) with corresponding Spearman correlation
coefficients. Genes that are either significantly positively or negatively correlated with the biophysical
measurement of interest are highlighted in red.

Supplementary Table 2 | Gene set enrichment reports for all the ranked gene lists presented in
Supplementary Table 1. Enrichments were generated using the fgsea tool in R. Only gene sets with a false
discovery rate (FDR) value less than 0.05 are included.

Supplementary Table 3 | List of significantly differentially expressed genes between the 24 and 48h time
points for the activated CD8+ T cells with corresponding FDR values and log-normalized fold change
values. Negative values indicate genes expressed at a higher level in the 48h time point.
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Supplementary Table 4 | CD8+ T cell gene list ranked by log-normalized fold change in gene expression
between the 24 and 48h activation time points. Negative values indicate genes expressed at a higher level
in the 48h time point.

Supplementary Table 5 | Gene set enrichment report for the ranked gene list presented in
Supplementary Table 4. Enrichments were generated using the fgsea tool in R. Only gene sets with a false
discovery rate (FDR) value less than 0.05 are included.
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