bioRxiv preprint doi: https://doi.org/10.1101/331355; this version posted May 25, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Uy

N

10

11

available under aCC-BY 4.0 International license.

pTSara-NatB, an improved N-terminal acetylation
system for recombinant protein expression in

E. coli

Matteo Rovere, Alex E. Powers, Dushyant S. Patel, Tim Bartels*
Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and
Harvard Medical School, 60 Fenwood Road, 02115-6128 Boston, MA, United

States

*E-mail: tbartels@bwh.harvard.edu (TB)


https://doi.org/10.1101/331355
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/331355; this version posted May 25, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

available under aCC-BY 4.0 International license.

Abstract

N-terminal acetylation is one of the most common post-translational
modifications of the eukaryotic proteome and regulates numerous aspects of
cellular physiology, such as protein folding, localization and turnover. In
particular a-synuclein, whose dyshomeostasis has been tied to the pathogenesis
of several neurodegenerative disorders, is completely N*-acetylated in nervous
tissue. In this work, building on previous reports, we develop and characterize a
bacterial N-terminal acetylation system based on the expression of the yeast N-
terminal acetyltransferase B (NatB) complex under the control of the Pgyp (L-
arabinose-inducible) promoter. We show its functionality and the ability to
completely N%-acetylate our model substrate a-synuclein both upon induction of
the construct with L-arabinose and also by only relying on the constitutive

expression of the NatB genes.

Introduction

Protein N*-acetylation, or N-terminal acetylation, is one of the most common
post-translational modifications (PTMs) of the eukaryotic proteome, with a vast
majority of all N-termini (~80%) bearing this moiety. The reaction is catalyzed
by a class of enzymes, N-terminal acetyltransferases (NATSs), of which six (NatA
to NatF) have to-date been discovered in humans and one (NatG) has been
identified in Arabidopsis thaliana, with no human ortholog [1]. These enzymes
mediate the transfer of an acetyl group from acetyl-CoA to the positively charged
N-terminus of the protein. Their activity often requires the formation of a

complex with the ribosome, mediated by one or two auxiliary, ribosome-
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anchoring, subunits, which provide scaffolding for the catalytic subunit and, in
some cases, also regulate its substrate specificity [2,3]. N®-acetylation thus
occurs usually [1,4] in a co-translational fashion, with the acetyl moiety being
added to the nascent polypeptide chain [5,6]. Different enzymes of the NAT
family will show different specificities for the polypeptidic substrates to be N-
terminally acetylated, based on the first 2-4 amino acids of the nascent chain [1].
The role of N-terminal acetylation varies wildly from protein to protein and
organism to organism, but it has been shown to be central to protein
homeostasis and cellular physiology, regulating protein half-lives, protein-
protein interactions, subcellular localization, folding and aggregation [1].
a-synuclein (aSyn) is one of proteins for which the effects of N-terminal
acetylation have been shown to be central to its physiology and pathology. aSyn
is a small protein (140 aa, 14.6 kDa) ubiquitously and abundantly expressed in
nervous tissue [7,8]. While its exact function is still unclear, it has long been
associated with the regulation of synaptic activity and neurotransmitter release
[7,9]. Most importantly, both genetic and histopathologic evidence have tied it to
the pathogenesis of a class of diseases known as synucleinopathies [10],
including Parkinson’s Disease, the second most common progressive
neurodegenerative disorder [11]. The totality of aSyn in human tissue has been
shown to be N%-acetylated [12,13] and a number of studies have highlighted the
role of this PTM in the modulation of aSyn’s lipid binding, aggregation,
oligomerization and helical propensity [14-17]. This is especially important
given the ongoing discussion on the structure of native aSyn in a cellular
environment, which requires structural studies to be performed on a species as

close as possible to the one present in nervous tissue [18].
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While the expression of recombinant, N®-acetylated proteins is possible in
eukaryotic hosts as yeast and insect cells, a prokaryote-compatible N¢-
acetylation system in bacteria (e.g. E. coli) would provide a cheaper and easier-
to-use alternative. Although NATSs are present in bacteria and archaea the
occurrence of N-terminal acetylation is much lower and the NATSs’ specificity and
regulation are not well-characterized [19]. One approach has been to co-express
yeast NATs along with the target protein in bacteria and it has been applied
successfully to most of the NATs’ substrates [20,21]. While promising, this
method has some shortcomings. The overexpression of both NATs and the target
protein under the same inducible promoter does not ensure the proper folding
and assembly of the NAT complex before the expression of the N*-acetylation
target begins, which, given the co-translational nature of the PTM, can lead to N%-
acetylated/non-N%-acetylated mixtures [21,22]. We have thus developed an
improved N%-acetylation system, pTSara-NatB, under the control of a Pgap

promoter [23] and tested its performance using aSyn as a model substrate.

Materials and Methods

Materials

All materials were obtained from Sigma-Aldrich (St. Louis, MO), unless otherwise

noted.

Molecular Cloning

pTSara was a gift from Matthew Bennett (Addgene plasmid # 60720) [24]. pNatB

(pACYCduet-naa20-naa25) was a gift from Dan Mulvihill (Addgene plasmid #
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53613) [20]. Mutagenesis of the pNatB construct to correct the A2520G mutation
was performed using the QuikChange II site-directed mutagenesis kit (Agilent
Technologies, Santa Clara, CA) and primers G2520A FWD 5’-
CGTCGTTTGAATGTATGAATCGATCATTCCTTCACCAAC-3’ and G2520A REV 5’-
GTTGGTGAAGGAATGATCGATTCATACATTCAAACGACG-3’; to insert a Pvul
restriction site in pTSara, upstream of the T7Te terminator, the primers Pvul
FWD 5’-TGTGATCCAAGCCAGCTCGATCGCCGTCGGCTTG-3’ and Pvul REV 5’-
CAAGCCGACGGCGATCGAGCTGGCTTGGATCACA-3’ were used. The Naa20 insert
in pNatB_G2520A was PCR-amplified using the primers Naa20 FWD 5’-
TTGGGCTAGCACTAGTTATAAGAAGGAGATATACATATG-3’ and Naa20 REV 5'-
ATGCCTGCAGGTCGACCTAAAATGAAACATCAGCTGG-3’ and inserted into
pTSara_Pvul (linearized with Spel/Sall) using the In-Fusion HD Cloning Kit
(Takara Bio, Mountain View, CA). The Naa25 insert in pNatB_G2520A was PCR-
amplified using the primers Naa25 FWD 5’-
TTTTTTGGGCTAGCGAGCTCTATAAGAAGGAGATATACATATGCGTCGTTCTGGGAG
TAAAGAATC-3’ and Naa25 REV 5'-
ATCCAAGCCAGCTCGATCGCTAAAATTTTACAAATTTTGGAAGCTTGCT-3’ and
inserted into pTSara_Pvul-Naa20 (linearized with Sacl/Pvul) using the In-Fusion
HD Cloning Kit (Takara Bio, Mountain View, CA). Cloning of pTSara_Pvul-Naa20-
Naa25 (pTSara-NatB) and of all of the cloning intermediates was confirmed by
DNA sequencing (Molecular Biology Core Facilities, Dana-Farber Cancer

Institute) and restriction analysis.

aSyn Expression and Purification
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pET21a-alpha-synuclein was a gift from the Michael J. Fox Foundation MJFF
(Addgene plasmid # 51486). BL21(DE3) E. coli (New England Biolabs, Ipswich,
MA) were freshly co-transformed with pET21a-alpha-synuclein and pTSara-
NatB and selected on ampicillin- (amp) and chloramphenicol- (cam)
supplemented LB-agar plates. Cultures were grown in LB+amp+cam and induced
at an ODgg of 0.5-0.6 with 0.2% (m/v) L-arabinose and, after 30 min., with 1 mM
isopropyl-B-D-thiogalactopyranoside (IPTG, or with IPTG alone at an ODgq of
0.5-0.6). Growth was continued for 4 hrs. at 372C under shaking. The cell pellet,
after being harvested and kept frozen at -202C overnight, was resuspended in 20
mM Tris buffer, 25 mM NaCl, pH 8.00, and lysed by boiling for 15 min. The
supernatant of a 20-min., 20,000xg spin of the lysate was then further processed.
The sample was loaded on two 5-mL (tandem) HiTrap Q HP anion exchange
columns (GE Healthcare, Pittsburgh PA), equilibrated with 20 mM Tris buffer, 25
mM NacCl, pH 8.00. aSyn was eluted from the columns with a 25-1000 mM NacCl
gradient in 20 mM Tris buffer, 1 M NaCl, pH 8.00. For hydrophobic interaction
chromatography aSyn peak fractions were pooled and injected on two 5-mL
(tandem) HiTrap Phenyl HP hydrophobic interaction columns (GE Healthcare,
Pittsburgh, PA), equilibrated with 50 mM phosphate buffer, 1 M (NH,4),SO,4, pH
7.40. aSyn was eluted from the columns with a 1000-0 mM (NH,4),S0O,4 gradient in
Milli-Q water. aSyn peak fractions were then pooled and further purified via
size-exclusion chromatography on a HiPrep Sephacryl S-200 HR 26/60 column
(GE Healthcare, Pittsburgh, PA) using 50 mM NH,Ac, pH 7.40 as running buffer.

aSyn peak fractions were pooled, aliquoted, lyophilized and stored at -202C.

Antibodies
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2F12 mouse mAb against human aSyn and Anti-NAT5 mouse mAb against
human Naa20 (clone 2C6) were obtained from Sigma-Aldrich (St. Louis, MO) and
used, respectively, at 1:10,000 and 1:1000 dilution. Anti-C120rf30 rabbit pAb
against human Naa25 was obtained from Abgent (San Diego, CA) and used at a

1:1000 dilution.

SDS-PAGE and Immunoblotting

Electrophoresis and blotting reagents were obtained from Thermo Fisher
Scientific (Waltham, MA), unless otherwise noted. Samples were prepared for
electrophoresis by the addition of 4x NuPAGE LDS sample buffer supplemented
with 2.5% B-mercaptoethanol and denatured at 859C for 10 min. Samples were
electrophoresed on NuPAGE Novex 4-12% Bis-Tris gels with NuPAGE MES-SDS
running buffer and using the SeeBlue Plus2 MW marker. Gels were

Coomassie Brilliant Blue- (CBB) stained using GelCode Blue Safe Protein Stain,
according to the manufacturers’ protocol, and imaged using a LI-COR Odyssey
Classic scanner (LI-COR Biosciences, Lincoln, NE). After the electrophoresis, for
immunoblotting, gels were electroblotted onto Immobilon-PSQ 0.2 um PVDF
membrane (Millipore, Billerica, MA) for 1 hr. at 400 mA constant current at 42C
in 25 mM Tris, 192 mM glycine, 20% (v/v) methanol transfer buffer. After
transfer, the membranes of gels run with lysate samples were incubated in 4%
(m/v) paraformaldehyde in phosphate buffered saline (PBS) for 30 min. at RT,
rinsed (3x) 5 min. with PBS and blocked with a 5% milk solution (PBS containing
0.1% (v/v) Tween 20 (PBS-T) and 5% (m/v) powdered milk) for either 1 hr. at

RT or overnight at 42C. After blocking, membranes were incubated in primary
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antibody in 5% milk solution for either 1 hr. at RT or overnight at 4°C.
Membranes were washed (3x) 5 min. in PBS-T at RT and incubated (30 min. at
RT) in horseradish peroxidase-conjugated secondary antibody (GE Healthcare,
Pittsburgh, PA) diluted 1:10,000 in 5% milk solution. Membranes were then
washed (3x) 5 min. in PBS-T and developed with SuperSignal West Dura

according to manufacturers’ instructions.

Mass Spectrometry

Samples were analyzed on an ABI 4800 TOF/TOF Matrix-Assisted Laser
Desorption Ionization (MALDI) mass spectrometer (Applied Biosystems, Foster
City, CA). Samples undergoing trypsin digestion were incubated overnight in 50
mM NH4HCO3, 5 mM CaCl,, and 12.5 ng-uL! of trypsin, then desalted and
concentrated using Millipore C18 ZipTips before spotting. Both trypsin-digested
samples and samples for intact mass analysis were prepared for spotting by
mixing 0.5 pL of sample with 0.5 pL of a-cyano-4-hydroxy-trans-cinnamic acid
(10 mg-ml! in 70% acetonitrile, 0.1% TFA). After drying, samples were rinsed
with 0.1% TFA. In addition to external calibration, when measuring intact

masses insulin was added as an internal standard, for higher accuracy.

Growth Curves

Colonies of either singly transformed (pET21a-alpha-synuclein) or co-
transformed (pET21a-alpha-synuclein+pTSara-NatB) BL21(DE3) E. coli (New
England Biolabs, Ipswich, MA) were picked from fresh (<2 weeks) agar-LB+amp

or agar-LB+amp+cam plates and inoculated in LB+amp or LB+amp+cam. After 8-
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10 hrs. of growth, at 372C under shaking, the cultures, then in their stationary
phase, were diluted 1:30 in fresh medium+antibiotic (and 0.2% L-arabinose in
one case), aliquoted in 96-well clear sterile plastic plates, sealed with gas-
permeable sealing membranes and grown at 372C under shaking overnight.
Absorbance (optical density) at 600 nm (ODgg) was measured every 15 min.
with a Synergy H1 microplate reader (BioTek, Winooski, VT). Data were

analyzed with GraphPad Prism 7 (GraphPad Software, La Jolla, CA).

Results

In uncoupling the induction of the NatB complex and aSyn (or any of NatB’s
substrates) two courses of action are possible: either changing the operon
regulating the transcription of the NatB genes or the one acting on the SNCA
(aSyn) gene. While the authors of the original NatB work suggest [22] and
recently implemented [21] an N-terminal acetylation system where the target
protein is under a rhamnose-inducible promoter, we decided to redesign pNatB
into an arabinose-inducible system. This approach provides two clear
advantages. First, using a promoter weaker than the T7/lac of the pET system
will dramatically decrease the protein yield (one of the reasons for employing a
bacterial expression system in the first place). In addition, the function of the N-
terminal acetylation complex can be performed by catalytic amounts of enzyme
and, as such, low expression levels should be more than sufficient for the
complete modification of the target and, at the same time, pose less of a
metabolic burden to the cells. Following the original approach used for pNatB

and starting from the bicistronic construct pTSara [24], we cloned both the
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catalytic, Naa20, and regulatory, Naa25, subunit into pTSara, maintaining the
ribosome-binding region of pACYC-Duet-1 (a previously reported missense A-to-
G mutation in the Naa25 gene [25] was also corrected), (Fig 1A) and called the
construct pTSara-NatB. We then verified the success of the expression by CBB-
stained SDS-PAGE and immunoblotting of Naa20 and Naa25 (Fig 1B and C). In
addition, we tested the compatibility of pTSara-NatB with the SNCA expression
vector (pET21a-alpha-synuclein) by co-transforming and inducing doubly-
selected cells containing both plasmids. 0.2% of L-arabinose, which has been
shown to promote a robust expression of Pgap-regulated genes [23], was used for
the induction of the ara operon. L-arabinose was added upon reach of a culture
density (ODggo) of about 0.5, 30 min. before the addition of IPTG for pET
induction. Both the expression of the NatB subunits and that of the target protein
appear to be unaffected by the co-expression and there is no evidence of cross-
talk (e.g. aSyn expression upon arabinose addition) between the operons (Fig

1D).

Fig 1. Molecular cloning and characterization of pTSara-NatB. (A) Cloning
strategy and plasmid map of pTSara-NatB (B) CBB-stained SDS-PAGE of pTSara-
NatB-transformed E. coli (PBS-soluble) lysates before and after (2, 4 hrs.)
induction with 0.2% L-arabinose. Bands corresponding to the regulatory
(Naa25) and catalytic (Naa20) subunits of the NatB complex are marked. (C)
Western blots of pTSara-NatB-transformed E. coli lysates before and after (2, 4
hrs.) induction with 0.2% L-arabinose. Antibodies to the human homologs of the
yeast NatB components were used for detection (top Naa25, Anti-C120rf30

1:1000; bottom Naa20, Anti-NAT5 1:1000). Non-marked bands are cross-

10
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reactive E. coli proteins. (D, top) CBB-stained SDS-PAGE of pET-alpha-
synuclein+pTSara-NatB co-transformed E. coli lysates before 0.2% L-arabinose
induction (before ara) or 1 mM IPTG induction (before IPTG, added 30 min. after
L-arabinose) and 2 hrs. after IPTG induction. Both subunits of the NatB complex
and aSyn are marked. (D, bottom) aSyn Western blot of co-transformed E. coli
lysates, in order to confirm the absence of any cross-reactivity between L-

arabinose and IPTG induction, 2F12 (1:10,000) was used for aSyn detection.

The N-terminal acetylation efficiency of pTSara-NatB was then tested, using aSyn
as a substrate, with the same protocol described before for double
transformation and sequential induction. Matrix-Assisted Laser Desorption
Ionization-Time Of Flight (MALDI-TOF) Mass Spectrometry (MS) of the purified
protein from BL21(DE3) E. coli co-transformed with pTSara-NatB and pET21a-
alpha-synuclein, either induced or non-induced with L-arabinose, shows,
somewhat surprisingly, complete substrate N*-acetylation in both cases (Fig 2).
However, these results can be easily explained by the fact that complete silencing
of the ara operon is not attainable by simple absence of the inducer. The catalytic
nature of the NatB complex ensures that even small amounts, constitutively
expressed, can acetylate efficiently the totality of the target protein. Confirming
this mechanistic explanation, addition of D-glucose (0.2%) to the bacterial
cultures, which has been shown to reduce the level of non-induced expression of
Pgap-regulated genes through catabolite repression [23,26], reduced the fraction
of N*-acetylated aSyn to about 50% (S1 Fig). We also found that such mixtures of
N<-acetylated and non-N%-acetylated aSyn can be resolved by hydrophobic

interaction chromatography (S2 Fig). pTSara-NatB thus works as a low-level

11
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256  constitutive expression vector and can potentially be L-arabinose-regulated in
257  the case of difficult substrates (see, e.g., [20]).

258

259  Fig 2. MALDI-TOF MS analysis of the N-terminal acetylation efficiency of
260 pTSara-NatB. MALDI-TOF mass spectra of aSyn purified from E. coli

261 transformed with pET21a-alpha-synuclein alone (A) or pET21a-alpha-

262  synuclein+pTSara-NatB (B, C) and induced either only with 1 mM IPTG at ODg
263  ~0.6 (A, C) or with 0.2% L-arabinose at ODgyo ~0.6, 30 min. before I[PTG

264  induction (B). The ~42 Da shift in the intact mass of aSyn purified from co-

265  transformed E. coli (predicted MW of N*-acetylated aSyn 14502.20 Da) shows
266  how the basal constitutive expression of NatB (C) is sufficient to completely
267  acetylate its overexpressed substrate.

268

269  Since MALDI-TOF MS could mask the presence of a small population of non-N¢-
270  acetylated substrate, trypsin digestion followed by MALDI-TOF MS was also
271  performed on a control (non-N%-acetylated) sample and one of purified aSyn
272  from non-L-arabinose-induced co-transformed E. coli (100% N*-acetylated

273  according to MALDI-TOF MS). The mass spectrum of the fragments (Fig 3 and
274  Table 1) confirms the N-terminal +42 Da mass shift that corresponds to N-

275  terminal acetylation and the efficiency of the PTM (>97%).

276

277  Fig 3. MALDI-TOF MS of trypsin-digested aSyn. MALDI-TOF mass spectra of
278  trypsin-digested samples of aSyn purified from E. coli transformed with pET21a-
279  alpha-synuclein alone (A) or pET21a-alpha-synuclein+pTSara-NatB (B) and only

280 induced with 1 mM IPTG at ODggg ~0.6. The ~42 Da shift in the N-terminal

12
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fragment (770.43 Da — 812.45 Da, see Table 1) confirms the successful and

complete N-terminal acetylation of aSyn upon NatB co-expression.

Table 1. Identity of the most abundant peptide fragments identified in the

MALDI-TOF mass spectra of trypsin-digested aSyn [27].

Mass Position #MC2 Peptide Sequence
2157.1873 59-80 1 TKEQVTNVGGAVVTGVTAVAQK
1928.0447 61-80 0 EQVTNVGGAVVTGVTAVAQK
1606.8798 81-97 1 TVEGAGSIAAATGFVKK
1524.8380 44-58 1 TKEGVVHGVATVAEK
1524.8380 46-60 1 EGVVHGVATVAEKTK
1478.7849 81-96 0 TVEGAGSIAAATGFVK
1295.6953 46-58 0 EGVVHGVATVAEK
1180.6572 33-43 1 TKEGVLYVGSK
1180.6572 35-45 1 EGVLYVGSKTK
1072.5996 11-21 1 AKEGVVAAAEK
951.5145 35-43 0 EGVLYVGSK
812.3948 1-6 0 Ac-MDVFMK
770.3575 1-6 0 MDVFMK

aMissed Cleavages.

Finally, especially given the constitutive expression of our construct, the effects
of widespread N-terminal acetylation on the bacterial proteome (and in
particular its potential toxicity or metabolic modulation) were tested comparing
the growth curves of BL21(DE3) transformed with either pET21a-alpha-
synuclein alone or pET21a-alpha-synuclein+pTSara-NatB (with or without L-
arabinose induction) (Fig 4). Both in non-L-arabinose-induced (pET+pTSara)
and induced (pET+p TSara+0.2% ara) co-transformed E. coli there is an increase
in the ODgqg of the cultures, when compared to those of singly transformed

bacteria (pET). No toxicity is thus observed, rather an increased bacterial
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proliferation (although the kinetics of the growth do not appear to be changed by
the introduction of N-terminal acetylation), the reason of which has not been yet
investigated. It must be noted how such increased culture density does not
reflect in increased yields of N*-acetylated aSyn (in contrast with what

previously reported for other NatB susbstrates [20]).

Fig 4. Impact of proteome-wide N-terminal acetylation on E. coli growth.
Growth curves of E. coli transformed with pET21a-alpha-synuclein (pET) and
grown in LB+amp or co-transformed with pET21a-alpha-synuclein+pTSara-NatB
in the presence (pET+pTSara+0.2% ara) or absence (pET+pTSara) of 0.2% L-
arabinose in LB+amp+cam. The absorbance (optical density) at 600 nm (ODgqg)
is employed as a readout of their growth and the SDs obtained from 8 technical

replicates are plotted.

Discussion

In this work we developed and characterized pTSara-NatB, an improved N-
terminal acetylation construct for recombinant protein expression in E. coli. We
tested its ability to completely N*-acetylate our (model) target protein aSyn both
upon L-arabinose induction and by relying only on the uninduced constitutive
expression of the NatB complex subunits.

A clear advantage of the pTSara-NatB-mediated N-terminal acetylation is the
ease which the uninduced, constitutive expression of NatB ensures. Viable
substrates can be completely acetylated merely by the presence of the construct

in co-transformed bacteria. In addition, the L-arabinose-inducible system

14


https://doi.org/10.1101/331355
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/331355; this version posted May 25, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

available under aCC-BY 4.0 International license.

(possibly in combination with a rhamnose-controlled expression vector in the
case of problematic targets [21]) provides a flexibility that should secure the
complete N-terminal acetylation of even intractable substrates. In addition, all
our testing was done in LB medium and showed excellent N*-acetylation
efficiency (pNatB has been reported to perform best in rich culture media, such
as NZY [22]), which could possibly extend its use to minimal medium, as in the
expression of isotopically-labeled recombinant proteins. We also observed, as
previously reported [22], how N-terminal acetylation is complete only in freshly
transformed E. coli.

Future developments should be the cloning of similar constructs for the other
members of the NAT family [21], so to allow the recombinant expression of the
whole N-terminal acetylome in bacteria, and extensive testing on a variety of

substrates and culture conditions.
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S2 Fig. Hydrophobic interaction chromatography (HIC) can resolve N¢-
acetylated and non-N%-acetylated aSyn mixtures. (A) MALDI-TOF mass
spectrum of aSyn purified from E. coli transformed with pET21a-alpha-
synuclein+pNatB and induced with 1 mM IPTG at ODgyo ~0.6, showing a mixture
of N*-acetylated and non-N%*-acetylated aSyn. (B) Chromatogram of the HIC
elution step of an aliquot from the same expression batch (in blue the 280-nm
UV absorbance, in red the conductivity). HIC resolves N%-acetylated and non-N¢-
acetylated mixtures of aSyn (N*-acetylated aSyn has a slightly higher retention
volume), as confirmed by MALDI-TOF MS on the two aSyn peaks, after size-

exclusion chromatography (non-N%-acetylated aSyn, C; N¢-acetylated aSyn, D).

S3 Fig. Uncropped Western blots.
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