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Abstract

1. The animal model is a key tool in quantitative genetics and has been

used extensively to estimate fundamental parameters, such as additive

genetic variance, heritability, or inbreeding effects. An implicit assump-

tion of animal models is that all founder individuals derive from a single

population. This assumption is commonly violated, for instance in cross-

bred livestock breeds, when an observed population receive immigrants,

or when a meta-population is split into genetically differentiated subpop-

ulations. Ignoring genetic differences among different source populations

of founders may lead to biased parameter estimates, in particular for the

additive genetic variance.

2. To avoid such biases, genetic group models, extensions to the ani-

mal model that account for the presence of more than one genetic group,

have been proposed. As a key limitation, the method to date only allows

that the breeding values differ in their means, but not in their variances

among the groups. Methodology previously proposed to account for group-

specific variances included terms for segregation variance, which rendered

the models infeasibly complex for application to most real study systems.

3. Here we explain why segregation variances are often negligible when

analyzing the complex polygenic traits that are frequently the focus of

evolutionary ecologists and animal breeders. Based on this we suggest an

extension of the animal model that permits estimation of group-specific

additive genetic variances. This is achieved by employing group-specific

relatedness matrices for the breeding value components attributable to

different genetic groups. We derive these matrices by decomposing the

full relatedness matrix via the generalized Cholesky decomposition, and

by scaling the respective matrix components for each group. To this end,

we propose a computationally convenient approximation for the matrix

component that encodes for the Mendelian sampling variance. Although

convenient, this approximation is not critical.

4. Simulations and an example from an insular meta-population of house

sparrows in Norway with three genetic groups illustrate that the method is

successful in estimating group-specific additive genetic variances and that

segregation variances are indeed negligible in the empirical example.

5. Quantifying differences in additive genetic variance within and among

populations is of major biological interest in ecology, evolution, and animal

and plant breeding. The proposed method allows to estimate such differ-

ences for subpopulations that form a connected meta-population, which

may also be useful to study temporal or spatial variation of additive ge-

netic variance.
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1 Introduction

Quantifying the (causal) relationships between genes and observed phenotypic traits

is a central task of empirical studies of adaptive evolution (Lynch & Walsh, 1998;

Charmantier et al., 2014) and of plant and animal breeding (Falconer & Mackay,

1996). The animal model (Henderson, 1984; Kruuk, 2004; Wilson et al., 2010) has

become a popular statistical approach to disentangle genetic effects on a phenotype

from other factors that may induce phenotypic similarities among relatives, such as

shared environmental effects (Stopher et al., 2012), inbreeding (Reid & Keller, 2010),

or individual traits such as age or sex (Wilson, 2008; de Villemereuil et al., 2017).

Fundamental to the animal model is information on how animals are related to each

other, information typically obtained from pedigree data (Wright, 1922; Henderson,

1976) or from single-nucleotide polymorphism (SNP) data (e. g . Speed & Balding,

2015). Pedigrees are still the most commonly used source of relatedness information

in animal models (e. g . Bonnet et al., 2017; Wolak & Reid, 2017), in part because

this leads to models that are computationally efficient.

All pedigrees start with a founder generation with unknown parents (Wolak &

Reid, 2017, Appendix S1). The animal model assumes that all founder individuals

stem from a single, genetically homogeneous baseline population. When this assump-

tion is violated, for example in populations that receive immigrants or in crossbred

livestock breeds, estimates of additive genetic variance are biased (Dong et al., 1988;

Cantet et al., 2000). To address this problem, animal breeders developed genetic group

models (e. g . Quaas, 1988), models that are now also receiving attention in evolu-

tionary ecology (Wolak & Reid, 2017). The main idea behind genetic group models is

that estimates of additive genetic variance may be biased if animals of distinct genetic

origin differ in their mean breeding values, and that accounting for such differences

in breeding values may reduce or eliminate the bias (Wolak & Reid, 2017). However,

current genetic group models have an important key limitation: genetic groups are

allowed to differ in mean breeding value but are assumed to have the same additive

genetic variance. This homogeneity assumption is violated in some animal breeding

applications (e. g . Elzo, 1990; Lo et al., 1993; Alfonso & Estany, 1999), and is likely

also violated in many natural populations, where source populations of immigrants

may differ in additive genetic variance due to differences in effective population size,

selection regimes, etc. (e. g . Mackay, 1981; Lande, 1988; Hoffmann et al., 2017).

Aiming for better predictions of breeding values in crossbred populations, animal

breeders have suggested approaches that account for heterogeneous additive genetic

variances across genetic groups (Lo et al., 1993; Cantet & Fernando, 1995; Garćıa-

Cortés & Toro, 2006). One drawback of these models is that they rapidly become

infeasibly complex, mainly due to additional terms that are needed to account for
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segregation variance when breeds are mixed. Segregation variance refers to differences

in variance when the average proportion of genetic origin from the ancestral genetic

groups is the same, as in F1 and F2 generations of line crosses (Wright, 1968; Lande,

1981). Segregation variances can be large in crossbreeding applications (Lynch &

Walsh, 1998, p. 11). However, as we detail below, we expect the segregation variance

from crossing different genetic groups in wild study populations to be small for many

traits of interest, so that omitting it from the animal model does not lead to significant

bias.

Here we use this simplification to derive genetic group models that allow for group-

specific additive genetic variances. Similar to Garćıa-Cortés & Toro (2006), we addi-

tively split the total breeding value of each individual into group-specific components,

which covary according to a group-specific relatedness matrix. The main challenge

is to find these matrices, and we derive them here by decomposing the full related-

ness matrix via a generalized Cholesky decomposition (as described by Henderson,

1976), and by appropriately scaling the respective matrix components for each group.

In the following, we first summarize the current state of the homogeneous genetic

group models and then give a detailed description of our extension to heterogeneous

group-specific additive genetic variances. We illustrate the performance of our method

with a simulation study and an application to a meta-population of house sparrows

(Passer domesticus) in Norway, where genetic groups are determined by geographical

properties of the bird’s natal island population. By also fitting a model that includes

the segregation variance, we use this empirical study system to illustrate that omit-

ting segregation variances is unproblematic in such applications. Finally, we discuss

opportunities and limitations of our extended genetic group model.

2 The animal model for genetic groups with homoge-

neous variances

The basic animal model for a phenotypic measurement yi of an individual i (1 ≤ i ≤ n)

is

yi = µ+ ai + ei , (1)

with population mean µ, environmental component ei ∼ N(0, σ2
E) with environmental

variance σ2
E, and breeding values distributed as a> = (a1, . . . , an)> ∼ N(0, σ2

AA) with

additive genetic variance σ2
A and additive genetic relatedness matrix A that represents

the relatedness among individuals (Henderson, 1976; Kruuk, 2004). In diploid non-

inbred organisms, each element in A is equal to two times the coefficient of coancestry

between a pair of individuals (Lynch and Walsh 1998). Model (1) is often extended
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by fixed effects (such as sex or age) and by additional random effects that account for

permanent environmental conditions (see e. g . Wilson et al., 2010). In all cases, the

underlying assumption is that all animals in the analysis derive from the same genetic

population, and that the breeding values (ai) encode for the deviation from the mean

of this population and thus have a mean of zero.

As noted by animal breeders a long time ago, this assumption is frequently violated,

for example in crossbred populations from genetically differentiated breeds. In such

cases it is necessary to allow for differences in mean breeding values among animals

with different genetic origin (Dong et al., 1988; Quaas, 1988). Let us denote by a

founder population a set of animals with unknown (i. e. missing) parents, and assume

that r founder populations exist, where each of them corresponds to a different genetic

group. When animals from different genetic groups mate, their genetic contributions

are propagated through the pedigree following the Mendelian rules of inheritance.

Offspring in later generations may thus inherit different proportions of the genome

from the genetic groups. Denote by qij the expected proportional contribution of

founder population j to the genome of individual i. The respective values are typically

written into a matrix Q with n rows (n=number of animals) and r columns, such that

qij is the value in the ith row and jth column (Wolak & Reid, 2017, Fig. 3). Following

the notation of Wolak & Reid (2017), and denoting by gj the expected average genetic

effect in group j, the basic animal model (1) is then extended to

yi = µ+
r∑

j=1

qijgj + ai + ei , (2)

with total additive genetic effect of individual i given as ui =
∑r

j=1 qijgj + ai, that

is, the weighted sum of genetic group-mean effects, plus the breeding value ai of the

individual that accounts for deviations from the weighted group mean. This model

allows for different mean, but it is actually overparameterized because for each i the

contributions from the r groups sum up to 1, that is,
∑

j qij = 1. Similar to ANOVA

models or when categorical variables are included in regression models, the parameters

become identifiable when one group is set as reference group (e. g . assuming g1 = 0),

or when additional constraints are added, such as
∑

j gj = 0.

Let us illustrate the idea for two genetic groups. When using the convenient

constraint g1 = 0, phenotypes of animals that have ancestors either only from group

1 (i. e. qi1 = 1, qi2 = 0) or only from group 2 (i. e. qi1 = 0, qi2 = 1) can be described

by the following models

yi = µ+ ai + ei for i in group 1 ,

yi = µ+ g2 + ai + ei for i in group 2 .
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Thus, members of genetic group 1 have a total additive genetic effect of ui = ai

and members of genetic group 2 have ui = g2 + ai, where g2 estimates the difference

between the mean breeding values of the groups. Therefore, the respective values

are distributed around an overall mean of 0 and g2, respectively, but with the same

additive genetic variance σ2
A and relatedness matrix A. Note that, while the main

benefit of including group-specific means is that bias in the estimates of σ2
A is reduced,

the estimated values (e. g . of g2) may sometimes be of interest themselves (see the

Conclusions in Wolak & Reid, 2017).

3 Genetic group models with heterogeneous additive

genetic variances

3.1 Segregation variance for polygenic traits

The key limitation of the genetic group model (2) is that all genetic groups are assumed

to have the same additive genetic variance σ2
A, and animal breeders have therefore

suggested extensions that allow σ2
A to differ among groups (e. g . Lo et al., 1993;

Cantet & Fernando, 1995; Garćıa-Cortés & Toro, 2006). However, these methods

quickly become computationally demanding because the respective models include

terms to account for the segregation variance between any two genetic groups, thus

g(g−1)/2 segregation variances in the presence of g genetic groups. The magnitude of

these variances may be considerable in artificial breeding scenarios, e. g . when crossing

genetically differentiated pure-bred lines (see e. g . Lande, 1981, Table 3), and if a trait

is determined by one or only a few loci. To understand why, let us start by looking at

a hypothetical trait that is determined by m loci. Following Lynch & Walsh (1998,

equation 9.15), the segregation variance between two genetic groups (e. g . breeds) can

be computed as

σ2
S =

1

2

m∑
i=1

(αc
i)

2 (3)

where αc
i denotes the mean additive genetic difference between the groups due to

locus i. Let us first look at an extreme example where only one locus determines a

trait value, and where two populations or breeds differ in their mean breeding value

by αc = 1 (which is the range of what we will find in the house sparrows example

of Section 5). The segregation variance expected in a cross between these breeds is

then given as σ2
S = 1/2 · 1 = 0.5. Genome-wide association studies (GWAS) suggest

however that complex (continuous) traits are mostly polygenic, thus the additive

genetic component is not determined by a single locus (e. g . Goddard & Hayes,

2009; Flint & Mackay, 2009; Hill & Kirpatrick, 2010; Yang et al., 2011b; Robinson
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et al., 2013; Santure et al., 2015; Silva et al., 2017; Bouwman et al., 2018). In fact,

it is a fundamental assumption of quantitative genetics that phenotypic traits are

determined by many genes that each contribute a small effect to trait variation, known

as the “infinitesimal model” (Fisher, 1918; Bulmer, 1971). If, for example, 100 loci

each contribute the same proportion of 1/100 to the overall group difference of 1 in

the above example, the segregation variance reduces to

σ2
S =

1

2
· 100 · (1/100)2 = 0.005 ,

which is exactly 1/100 of the segregational variance for a single-locus trait. Thus

for any number of loci m, the segregation variance is 1/m of what it would be for a

single locus, given that each locus contributes the same proportion of the effect. Even

when considering that the locus-specific effect sizes are typically heterogeneous, the

most influential loci often only explain a small proportion of the phenotypic variance

(Yang et al., 2011b; Wood et al., 2014; Husby et al., 2015). Thus, the segregation

variance σ2
S for complex continuous traits is expected to be small compared to the

total phenotypic variance in many study systems. In the following extension of the

animal model we therefore ignore the segregation variance.

3.2 Animal model for heterogeneous additive genetic variances

To allow for heterogeneous additive genetic variances in the animal model, we extend

model (2) by splitting the breeding value ai into group-specific contributions (similar

to Garćıa-Cortés & Toro, 2006), such that

yi = µ+
r∑

j=1

qijgj +
r∑

j=1

aij + ei , (4)

with a>j = (a1j, . . . , anj)
> ∼ N(0, σ2

Aj
Aj) for all groups j = 1, . . . , r, where σ2

Aj
is the

additive genetic variance in group j, and Aj is a group-specific relatedness matrix.

The contribution aij to the breeding value of individual i can be interpreted as the part

that is inherited from group j. We assume that the contributions aij are independent

of each other, because they differ in genetic origin.

We illustrate the idea again for the case of two genetic groups. As above, we

constrain the mean breeding value of group 1 (the reference group) to g1 = 0 for

identifiability reasons. In addition, the model must ensure that a breeding value

component is zero (aij = 0) if the animal’s genome obtains no contribution from the

respective group j (thus if qij = 0), which will be ensured by appropriate choice of the

covariance matrix Aj (details will follow in Section 3.3). Animals in genetic group 1

(i. e. qi1 = 1) then have a genetic effect ui = ai1 and animals in genetic group 2 (i. e.
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qi2 = 1) receive ui = g2 + ai2, and the breeding values are distributed as

(a11, . . . , an1)
> ∼ N(0, σ2

A1
A1) ,

(a12, . . . , an2)
> ∼ N(0, σ2

A2
A2) .

While it is relatively straightforward to formulate such a model, it is less obvious what

the group-specific relatedness matrices Aj are. It is, for example, not valid to use A

for Aj, because the within-group relatedness structure is different from the overall

relatedness. In addition, the total breeding value is now split into the sum
∑

j aij,

with aij equal to the total breeding value only if an animal has qij = 1 for group j.

The entries of Aj must therefore be scaled accordingly. We now turn to this issue.

3.3 Group-specific relatedness matrices

3.3.1 Decomposition of the relatedness matrix

To understand how to specify the group-specific relatedness matrices Aj, let us first

recall a result by Henderson (1976) for efficient calculation of inverse relatedness ma-

trices. He suggested to decompose A by a generalized Cholesky decomposition into

A = TDT′ , (5)

where T is lower triangular matrix with transposed T′, and D = Diag(d11, . . . , dnn)

is a diagonal matrix with entries d11, . . . , dnn. This is equivalent to the Cholesky

decomposition A = LL′ for a lower triangular matrix L = T
√
D. A useful property

of the decomposition (5) is that the matrices T and D have elegant interpretations:

T traces the flow of alleles from one generation to the other, and the diagonal entries

of D scale the Mendelian sampling variance (Mrode, 2005, p. 27).

Let us illustrate these properties with an example that we adapted from Mrode

(2005, Table 2.1), without genetic groups. The pedigree is given in Table 1, with a

corresponding graphical representation of parent-offspring relations (Figure 1a) and

matrices A, T and D (Figures 1 b-d), where the generalized Cholesky decomposition

to obtain T and D was calculated with the function gchol() that is available in the

bdsmatrix package (Therneau, 2014) in R (R Core Team, 2017), as pointed out e. g .

by Gorjanc (2011). In this example, animals 1, 2 and 3 have unknown parents and

are denoted as founders of the population. Each off-diagonal entry in T corresponds

to the relatedness coefficient (expected relatedness) of individuals with their direct

descendants (i. e. children, grandchildren etc.), where columns represent ancestors

and rows descendants. For example, individual 1 is the parent of animals 4 and 5,

thus the entries (4,1) and (5,1) in the matrix are 0.5. In addition, animal 6 is the
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offspring of animals 4 and 5, thus the relatedness of 1 with 6 is also 0.5. Finally, the

relatedness of 1 and 7 is 0.25. These considerations can be repeated for each column

in the matrix, where all diagonal elements are 1 and all elements below the diagonal

in the respective column correspond to the expected proportion of the genome that is

transmitted from the respective ancestor to its direct descendants.

On the other hand, the diagonal entry dii for animal i in D is calculated as

dii =


1 , if no parent is known,

1− 0.25− 0.25(Fp) , if one parent p is known,

1− 0.5− 0.25(Fs + Fd) , if both parents s and d are known,

where Fp, Fs and Fd are the pedigree-based inbreeding coefficients of the known par-

ent(s) (Mrode, 2005, p. 28). We do not index the inbreeding coefficients with the

animal identity (i) purely for notational simplicity. For later use we note that, in the

absence of inbreeding, the diagonal entry is (1− 0.5pi), with pi corresponding to the

proportion of i’s ancestral genome that is known. Possible values are pi = 0, 0.5 or 1 if

no, one or two parents are known, respectively. This can be understood as follows: If,

for example, one parent of an animal i is unknown, its predicted breeding value is 0.5

times the breeding value of the known parent, but the other half of its breeding value

is unknown. The deviation from the predicted breeding value that could be obtained

if both parents were known is absorbed by the Mendelian sampling deviation. The re-

spective variance thus contains the Mendelian sampling variance plus a variance that

is due to the unknown parent (Kennedy et al., 1988). The more parents are unknown,

the larger is this variance.

ID Dam Sire
1 (g1) NA NA
2 (g1) NA NA
3 (g2) NA NA
4 1 2
5 1 3
6 5 4
7 6 3

Table 1: Pedigree example, adapted from Mrode (2005, Table 2.1).

3.3.2 T and D for genetic groups

In the presence of genetic groups, each unknown parent of an observed animal is

assigned to one of the groups, and expected proportions of individual’s genomes

that originate from the respective genetic groups can be calculated from the pedigree
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(a)
12 3

4 5

6

7

(b)

A =



1 0 0 0.5 0.5 0.5 0.25
0 1 0 0.5 0 0.25 0.125
0 0 1 0 0.5 0.25 0.625
0.5 0.5 0 1 0.25 0.625 0.3125
0.5 0 0.5 0.25 1 0.625 0.5625
0.5 0.25 0.25 0.625 0.625 1.125 0.6875
0.25 0.125 0.625 0.3125 0.5625 0.6875 1.125



(c)

T =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0.5 0.5 0 1 0 0 0
0.5 0 0.5 0 1 0 0
0.5 0.25 0.25 0.5 0.5 1 0
0.25 0.125 0.625 0.25 0.25 0.5 1



(d)

D =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0.5 0 0 0
0 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0
0 0 0 0 0 0 0.46875


Figure 1: Graphical representation of the pedigree example (a) with the corresponding
relatedness matrix A (b). The matrices from the decomposition A = TDT′ are given
in (c) and (d). In the genetic group example, animals 1 and 2 are founders of genetic
group 1, and animal 3 of genetic group 2.

(Quaas & Pollak, 1981; Wolak & Reid, 2017). For simplicity, we again consider the

case with two groups, g1 and g2, and denote by A1 and A2 the respective relatedness

matrices. These can be decomposed in the same way as A into

A1 = T1D1T1
′ and (6)

A2 = T2D2T2
′ , (7)

with matrices T1 and T2 describing the transmission of alleles through the generations,

and Mendelian sampling variance matrices D1 and D2. The generalization to more

than two groups is straightforward.

Let us assume in the pedigree example of Figure 1 that the parents of founder

animals 1 and 2 belong to genetic group 1, and the parents of animal 3 to genetic

group 2. This leads to proportional contributions of each genetic group to the genomes

of the descending individuals as given by the matrix Q (Figure 2a), with columns q1

and q2 that contain the respective proportions of genetic origin from groups 1 and 2

for each individual. The transmission of alleles within each group is represented by the

matrices Tj (j = 1, 2). They are designed such that animals with a certain proportion

of genetic origin can only pass on the respective fraction of alleles. This means, for

example, that an animal i with qi1 = 0.5 passes only a proportion of 0.25 (and not 0.5)

of alleles to its offspring as part of genetic group 1, while another expected proportion

of 0.25 is passed on to its offspring within group 2. The matrices Tj are thus obtained

by scaling the respective entries in T by the respective group-proportions. This is
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achieved by multiplying each row of T by qj or, equivalently, by

Tj = T ·Diag(qj) , (8)

where Diag(qj) denotes a diagonal matrix with diagonal equal to qj. The matrices

T1 and T2 for our example are given in Figures 2b and c. Note that the diagonal of

Tj corresponds to qj, which is the respective expected fraction of the genome that

belongs to group j, and all entries in the respective column are scaled with that same

value. Animal 3, for example, that belongs exclusively to group 2 (thus q13 = 0), has

only 0 entries in the third column of T1, because it cannot transmit any group-1-alleles

to its descendants. Animal 5, on the other hand, has q15 = 0.5, thus the fifth column

in T is multiplied by 0.5 to obtain the respective column in T1.

(a)

Q =



1 0
1 0
0 1
1 0

0.5 0.5
0.75 0.25
0.375 0.625


=
(
q1 q2

)

(b)

T1 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0.5 0.5 0 1 0 0 0
0.5 0 0 0 0.5 0 0
0.5 0.25 0 0.5 0.25 0.75 0
0.25 0.125 0 0.25 0.125 0.375 0.375



(c)

T2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0.5 0 0.5 0 0
0 0 0.25 0 0.25 0.25 0
0 0 0.625 0 0.125 0.125 0.625


Figure 2: Genetic group matrix Q and Tj matrices for the pedigree example. Group-
specific proportions of the genome are stored in the Q matrix (a). Its columns can be
used to derive the group-wise matrices T1 (b) and T2 (c) in our example.

Next, we need to find appropriate versions of D1 and D2. We noted in Section 3.3.1

that, in the absence of inbreeding, dii = 1− 0.5pi with pi representing the proportion

of the ancestral genome that is known. To calculate the respective entries d
(1)
ii and d

(2)
ii

in the group-specific matrices, we have to multiply pi by the proportions of genetic

origin qi1 and qi2, because the respective product then corresponds to the ancestral

proportions that are known within the respective group. In the case where only one

parent is known, multiplication must be with the genetic proportion of the known

parent, denoted here as q
(p)
ij , because only this respective part of the ancestral genome

within group j is then known. This leads to

d
(j)
ii =


1 , if no parent is known,

1− 0.25 · q(p)ij , if one parent is known,

1− 0.5 · qij , if both parents are known.
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Let us now also account for inbreeding, which may influence d
(j)
ii for individuals with

at least one parent known. Starting with animals that have both parents known, and

rearranging the entries dii = 1− 0.5− 0.25(Fs +Fd) in the original matrix D, leads to

(Fs + Fd) = 2− 4dii .

The knowledge of (Fs + Fd) for each animal is useful to derive the entries d
(j)
ii for

group j in the presence of inbreeding: By scaling the effect of inbreeding with the

group-specific proportions qij of an animal’s genome, the entries are given as

d
(j)
ii = 1− 0.5 · qij − 0.25 · qij(Fs + Fd) (9)

= 1− 0.5 · qij − 0.25 · qij(2− 4dii)

= 1− qij(1− dii) , (10)

where the third line is an algebraic simplification of the second line. The same calcu-

lation for animals with only one parent known, using dii = 1 − 0.25 − 0.25(Fp) and

solving for Fp, leads to the same formula with qij replaced by q
(p)
ij from the known

parent. Finally, if both parents are unknown (i. e. for dii = 1), the formula also leads

to the correct value of d
(j)
ii = 1. Applying formula (10) to the above pedigree example

leads to D1 and D2 (Figures 3a and b).

Formula (10) is simple and convenient. However, it provides only an approximation

of the correct matrix entries, because in (9) we assumed that parental inbreeding can

simply be scaled by the genetic group proportions qij (for two known parents) or q
(p)
ij

(for one known parent). Instead, the theoretically correct way to deal with parental

inbreeding coefficients to derive d
(j)
ii would be to use the actual partial (i. e. group-

specific) parental inbreeding coefficients, denoted e. g . as F
(j)
s or F

(j)
d for parents s

and d. These group-specific inbreeding coefficients contain only the inbreeding that

emerge due to inbreeding within genetic group j, that is, they measure the probability

that an individual is identical by descent for an allele that descended from founders

within group j (Lacy et al., 1996). The correct way to calculate d
(j)
ii is thus given by

d
(j)
ii =


1 , if no parent is known,

1− 0.25 · q(p)ij − 0.25(F
(j)
p ) , if one parent p is known,

1− 0.5 · qij − 0.25(F
(j)
s + F

(j)
d ) , if both parents s and d are known.

(11)

Obviously, this formula requires the calculation of group-specific inbreeding coeffi-

cients, which is computationally cumbersome. One way to obtain these coefficients is

by first calculating founder -specific inbreeding coefficients that partition the total in-

breeding coefficient Fi into the additive components Fik from each founder animal k, as

proposed by Lacy et al. (1996). Because partial contributions for all founders sum up
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to Fi (e. g . Lacy et al., 1996; Gulisija et al., 2006), we can sum only over founders from

genetic group j to obtain group-specific inbreeding coefficients F
(j)
i =

∑
k∈group j Fik.

Let us illustrate the difference between the approximate method suggested in equa-

tion (10) and the correct formula for d
(j)
ii given in (11) for our example from Figure

1. Animal 6 is the only parent in the pedigree with a non-zero inbreeding coefficient,

which is F6 = 0.125. However, because animals 1 and 2 are founders of group 1 and

animal 3 is a founder of group 2, the pedigree reveals that inbreeding originates only

from matings within group 1. Therefore, F6 is split into group-specific inbreeding

coefficients as F
(1)
6 = 0.125 and F

(2)
6 = 0. By plugging these values into (11) to es-

timate the respective values for animal 7 (which is the only animal that is affected

by this change), we obtain d
(1)
7,7 = 0.812 and d

(2)
7,7 = 0.656, which are quite close to

the approximate values d
(1)
7,7 = 0.801 and d

(2)
7,7 = 0.668 from Figures 3a and b. Note

that in this paper we will continue to use the convenient and computationally efficient

approximation (10) to scale the entries in Dj, but we will illustrate the consequences

of this approximation with simulations and for our application to the house sparrow

example below and in Appendix 1.

(a)

D1 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0.5 0 0 0
0 0 0 0 0.75 0 0
0 0 0 0 0 0.625 0
0 0 0 0 0 0 0.801



(b)

D2 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0.75 0 0
0 0 0 0 0 0.875 0
0 0 0 0 0 0 0.668


Figure 3: Group-specific matrices D1 and D2 for the example pedigree.

3.3.3 Properties of group-specific relatedness matrices

Once the components Tj and Dj for each group j are known, a simple matrix multipli-

cation yields the group-specific relatedness matrices Aj = TjDjT
′
j. These are given

in Figure 4 for the two groups considered in our example. An important aspect is that

both A1 and A2 contain columns and rows with all variances and covariances equal

to zero, namely for animals i without a contribution from group j (qij = 0). While

this is theoretically correct, because the respective breeding value is then aij = 0, the

resulting matrices are singular. When it comes to implementation, the problem can

be solved by replacing zeros on the diagonal by very small values, for example 10−6

or even 10−12. The choice is not critical in our experience, but it would be prudent to

check the robustness of the results to different values.

3.3.4 Scaling the inverse relatedness matrix

In practice it is usually the inverse relatedness matrix A−1, not A, that is calcu-

lated and stored directly from the pedigree. Consequently, it is computationally more
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(a)

A1 =



1 0 0 0.5 0.5 0.5 0.25
0 1 0 0.5 0 0.25 0.12
0 0 0 0 0 0 0
0.5 0.5 0 1 0.25 0.62 0.31
0.5 0 0 0.25 0.44 0.34 0.17
0.5 0.25 0 0.62 0.34 0.84 0.42
0.25 0.12 0 0.31 0.17 0.42 0.32



(b)

A2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0.5 0.25 0.62
0 0 0 0 0 0 0
0 0 0.5 0 0.44 0.22 0.36
0 0 0.25 0 0.22 0.16 0.21
0 0 0.62 0 0.36 0.21 0.68


Figure 4: Group-specific relatedness matrices for the example pedigree with entries
rounded to two digits.

convenient, and in most cases much more efficient, to apply the appropriate scaling

and transformation operations directly to A−1 to obtain group-specific inverses A−1j .

From (5) it follows that the inverse of A can be decomposed into

A−1 = (T−1)′D−1T−1 , (12)

where D−1 = Diag(1/d11, . . . , 1/dnn). Using that Tj = T · Diag(qj), and the decom-

position of Aj as given e. g . in equation (6), some matrix algebra shows that

A−1j = (T−1j )′D−1j T−1j

= (T−1)′ Diag(1/qj)Diag(1/dj)Diag(1/qj)︸ ︷︷ ︸
D̃−1

j

T−1 , (13)

where dj = (d
(j)
11 , . . . , d

(j)
nn) are the diagonal entries of Dj as derived from equation

(10), and qj is again the vector of genetic proportions inherited from group j. This

illustrates that it is sufficient to calculate the (computationally relatively expensive)

generalized Cholesky decomposition A−1 into T−1 and D−1 only once, and to derive

D̃−1j with diagonal entries 1/(d
(j)
ii · q2ij) to obtain A−1j = (T−1)′D̃−1j (T)−1 as in (13) for

each group. Again, entries with qij = 0 are replaced by very small values, e. g . 10−12,

to avoid singularities.

4 Simulation

4.1 Generating data

To illustrate the performance of genetic group models with group-specific additive

genetic variances we simulated data using the simGG() function from the R package

nadiv (Wolak, 2012). The function allows generating pedigrees and phenotypes for

a focal population (group 1) that receives a specified number of immigrants from an-

other population in each generation (group 2). Group-specific mean breeding values

and additive genetic variances can be determined by the user, and breeding values

for the founder animals of both genetic groups are sampled from the respective dis-
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tributions. Offspring breeding values are calculated from the parental mean, plus a

Mendelian sampling deviation that depends on the additive genetic variance of the

resident population, but there is no additional term that introduces a segregation

variance (for more details, see Wolak, 2012). The simulation assumes random mat-

ing among individuals that currently live in the same population, thus offspring may

inherit genetic components from both genetic groups due to immigration. The contri-

butions qij from group j for animal i were calculated with the ggcontrib() function

from the nadiv package. For data generated with group-specific mean breeding values

and additive genetic variances, the appropriate underlying model for the analysis is

yi = µ+ qi2g2 + ai1 + ai2 + ei , (14)

a>1 ∼ N(0, σ2
A1
A1) , a>2 ∼ N(0, σ2

A2
A2) ,

ei ∼ N(0, σ2
E) ,

where we used the same notation as in Section 3, and fixed the focal group mean

g1 = 0 for identifiability reasons (thus the term qi1g1 is omitted from equation (14)).

We simulated data according to three different scenarios, but always setting the popu-

lation mean µ = 10, group means g1 = 0, g2 = 2, group-specific variances σ2
A1

= 2 and

σ2
A2

= 3 and residual variance σ2
E = 1. Each scenario encompassed 10 non-overlapping

generations.

Scenario 1 The carrying capacity of the population was set to 300 individuals. In

each generation, 100 mating pairs were created by random sampling with replacement

from the adults, and each pair contributed 4 offspring to the next generation. In addi-

tion, 30 immigrants were added to the population in each (except the first) generation.

Finally, a subset of the offspring was randomly selected such that the population size

always corresponded exactly to its carrying capacity.

Scenario 2 This scenario was the same as scenario 1, except that only 5 (instead

of 30) immigrants were allowed in each of the non-overlapping generations, so that

animals of the immigrant group were rare.

Scenario 3 In this scenario we used the same carrying capacity as above, 20 immi-

grants per generation, but we only allowed for 5 breeding pairs per generation that

produced 60 offspring each. While this scenario has an immigration rate that lies

between scenarios 1 and 2, the low number of breeding pairs induces higher inbreed-

ing levels. This scenario is therefore suitable to illustrate the consequence of using

approximation (10) to scale the group-specific Mendelian sampling variance matri-

ces Dj, which is only (potentially) critical in the presence of inbreeding, because the

approximation affects only the scaling of parental inbreeding coefficients.
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For each scenario, we generated 100 datasets, and each of them was analyzed with

the genetic group animal model that accounted for heterogeneous additive genetic

variances σ2
A1

and σ2
A2

, as given in (14), and compared to the outcome of the standard

genetic groups model that allowed for different mean breeding values, but only a single

(homogeneous) variance in both groups, given as

yi = µ+ qi2g2 + ai + ei , (15)

a> ∼ N(0, σ2
AA) , ei ∼ N(0, σ2

E) .

For scenario 3 we also investigated how close the group-specific Mendelian sampling

variance approximations for d
(j)
ii from equation (10) are in comparison to the correct

version given in (11). The group-specific inbreeding coefficients present in the correct

formula were calculated with the software GRain (Baumung et al., 2015, details are

given in Appendix 1). Correlation coefficients ρ between the (correct) d
(j)
ii values

from (11) and the approximated values from formula (10) were calculated, and all

simulations were analyzed with both versions for comparison.

Following the recommendation by He & Hodges (2008), we stored posterior modes

(and not posterior means) of the variance components in each iteration. All models

were fitted with integrated nested Laplace approximations (INLA, version from June

20, 2017), which provides a fast and accurate alternative to MCMC (Rue et al.,

2009), although it has so far only rarely been used for animals models (but see e. g .

Holand et al., 2013; Steinsland et al., 2014; Roulin & Jensen, 2015). All variance

components were given penalized complexity (PC) priors, which were suggested as

valid alternatives to the (less recommended) gamma priors (Simpson et al., 2017).

The PC(u, α) prior has an intuitive parameterization: The prior probability for the

standard deviation σ is given as Pr(σ > u) = α (with 0 < α < 1). Here we used

PC(1, 0.05) priors for all variances (thus Pr(σ > 1) = 0.05 a priori), but results

were insensitive to this choice. All fixed effect parameters were assigned independent

N(0, 104) priors. A short tutorial including R code to generate and analyze data for

the models used here can be found in Appendix 4.

4.2 Simulation results

Using the appropriate model (14) with heterogeneous group variances resulted in es-

timates that were close to the variances used to generate the data in scenarios 1 and

3, while the model estimates in scenario 2 suffer from large uncertainty (Figure 5,

left). In particular the variance σ2
A2

of the underrepresented immigrant population

in scenario 2 was difficult to identify and biased towards σ2
A1

(Figure 5c). The re-

sults thus indicate that the genetic group model (14) is able to isolate approximately

correct group-specific additive genetic variances, but that some caution is required if
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representatives of a genetic group are rare in the data set: Group-specific additive

genetic variances are then not completely identifiable.

When the simulated data were fitted using the genetic group model with a single,

homoscedastic variance σ2
A (equation (15)), the resulting estimates were generally be-

tween the two simulated group-specific variances (Figure 5, right). In the presence

of only few immigrants, the estimate tended to be close to σ2
A1

(scenario 2), while

it tended towards σ2
A2

when there was more immigration (scenarios 1 and 3). This

is as expected, and illustrates that genetic group models with a single, homogeneous

variance will estimate a value in between the true group-specific additive genetic vari-

ances, with a tendency towards the variance of the more numerous group. These

patterns were qualitatively similar when the additive genetic variances of the immi-

grant and resident population were switched, such that residents had larger additive

genetic variance than immigrants (results not shown).

Simulation scenario 3 led to datasets with a mean inbreeding coefficient of F =

0.10. Interestingly, the comparison between the approximate versus the correct values

in the D1 and D2 matrices shows that the approximation suggested in equation (10)

leads to d
(j)
ii values that are highly correlated with the correct values from equation

(11). As an example, we found correlation coefficients ρ ≥ 0.988 in three randomly

selected simulation runs. In addition, using the correct Dj matrices led to distri-

butions of estimated variances that are indistinguishable from the results when the

approximations were used (see Figures S1 and S2 in Appendix 1).

5 Application to house sparrow data

5.1 Study population

As a proof of concept, we applied our method to empirical data from a long-term

study of an insular house sparrow meta-population off the Helgeland coast in northern

Norway. The study has been running continuously since 1993, and is used as a model

system to examine ecological and evolutionary processes in fragmented vertebrate

populations (e. g . Ringsby et al., 2002; Jensen et al., 2008; Pärn et al., 2012; Baalsrud

et al., 2014). The islands in the meta-population differ in characteristics related to

environmental conditions, habitat type and population size, with considerably larger

and more stable populations on the five islands that are located closer to the mainland

(denoted as inner islands) compared to the three islands located further away (denoted

as outer islands). The ten remaining islands are summarized as other islands (see

Figure S4 in Appendix 2 for an overview of the island system).

Small blood samples were collected from all captured birds on the eight inner and

outer islands to provide DNA for Single Nucleotide Polymorphism (SNP) genotyping
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on a 200K SNP array (see Lundregan et al., 2018). Only successfully genotyped

birds that were also measured for body mass and/or wing length were included in our

animal model analyses. For inner and other islands, the dataset included phenotypic

measurements taken during the breeding seasons since 1993 and 1995, respectively.

Due to strong population bottlenecks on the outer islands in 2000 (Baalsrud et al.,

2014), only measurements taken since 2002 were used for the populations in the outer

group. Details on how morphological measurements of wing length and body mass

were taken on adult birds are given by e. g . Jensen et al. (2004, 2008).

Parentage analyses for the eight island populations in this study were carried out

with the R package SEQUOIA (Huisman, 2017). Briefly, SNP genotype data of all

adults recorded as present on any of the eight inner or outer islands during the years

1998-2013 (the inner group) or 2003-2013 (the outer group) were used in the parentage

analyses. This resulted in a “meta-population pedigree” (N = 3116) spanning up to

14 generations, where both parents were known for 52.7%, one parent was known

for 25.0%, and no parents were known for 22.3% of the individuals. Since SEQUOIA

introduces dummy parents to preserve known relationships, e. g . sibling relationships,

even when parents are not genotyped, a higher percentage of individuals had “known”

parentages (81.0%, 5.5% and 13.5% with two, one or no parents known, respectively).

The genetic group analysis that we carry out here requires that each unknown

parent (i. e. each founder) must be assigned to one of the genetic groups. That

is, we must attribute unknown parents to the inner, outer or other island group to

determine their genetic origin. This was done here by first identifying the natal (hatch)

island of all individuals, either from ecological data or, if unavailable, by using genetic

assignment procedures based on the SNP genotype data (see Saatoglu et al., 2018). Of

all individuals in our dataset, 1436, 481, and 64 individuals were assigned to a natal

island in the inner, outer and other group, respectively (Saatoglu et al., 2018). This

information was then used to assign missing parents to the genetic group to which the

hatch island of the respective individual belonged. As an example, if an individual

with missing parents is known to be born on one of the inner islands, the respective

missing parents were assumed to be founder individuals of the inner island group, and

so on. Finally, because inbreeding depression is known to occur in our study system

(Jensen et al., 2007; Billing et al., 2012), we accounted for any inbreeding effects on

body mass and wing length (Reid et al., 2006; Reid & Keller, 2010) by including each

individual’s genomic inbreeding coefficient FGRM (Yang et al., 2011a) as a covariate

in all models fitted here, where FGRM was estimated as described by Niskanen et al.

(2018).
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5.2 Analysis of wing length and body mass

With all unknown parents assigned to one of the genetic groups (inner, outer, other),

each individual i obtained expected proportions of genetic origin qij from the three

groups j by propagating the founder individual’s genome through the pedigree using

the ggcontrib() function. Note that the different groups are very unequal in sam-

pling size, which can be seen from summation of genetic proportions over all animals

within a group j, that is, nj =
∑

i qij, which corresponds to equivalents of full animal

genomes (Table 2). This is not surprising given the smaller population sizes (Baalsrud

et al., 2014), lower recapture rates (Holand et al., 2016), and shorter time-series for

populations in the outer islands group, and considering that there were no genotyping

efforts on the other islands, thus we only see genome from the other islands if it was

introduced via an immigration event to one of the inner or outer islands.

For the two traits investigated here, mass (in g) and wing length (in mm), we

fitted separate models that accounted for sex (0=males, 1=females), inbreeding FGRM,

month of measurement (numeric with values 5, 6, 7, and 8) and age as fixed effects

that were stored in matrix X, and current island of residence where the measurement

was taken (island), hatchyear (year), animal (id) and an independent residual term

(e) as random factors. An individual i was included in the model if it had at least one

recorded observation k of the respective trait. The model with group-specific mean

and variances of the breeding values is thus given as

yik = µ+Xiβ +
3∑

j=2

qijgj +
3∑

j=1

aij︸ ︷︷ ︸
ui

+islandik + yeari + idi + eik , (16)

where the total genetic contribution ui is the sum of the weighted means gj and the

variability from the different genetic groups, as introduced in equation (4). The three

genetic groups inner, outer and other are encoded as groups 1, 2 and 3, respectively,

where the mean of the inner group was set to g1 = 0 for identifiability reasons. The

estimates g2 and g3 thus reflect differences in group means with respect to the in-

ner population. The components ai1, ai2 and ai3 are distributed with mean zero and

heterogeneous additive genetic variances σ2
Ainner

, σ2
Aouter

and σ2
Aother

, with dependency

structures given by the group-specific relatedness matrices Ainner, Aouter and Aother

that were calculated as explained in Section 3. The results from fitting model (16)

were compared to the standard genetic group model that only accounts for differences

in group means, but with homogeneous additive genetic variance σ2
A and dependency

structure defined through the relatedness matrix A. Both models were fitted to the

data using INLA. All variances were given PC(1, 0.05) priors, and fixed effects param-

eters were assigned independent N(0, 104) priors.
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Interestingly, the results indicate that the outer group has a somewhat smaller es-

timated additive genetic variance than the inner and other groups in the case of body

mass (Table 2, left), while the estimated additive genetic variance is larger for the

outer group for wing length (Table 2, right), although for both traits the respective

95% credible intervals (CI) are relatively large and overlap. The differences in addi-

tive genetic variance estimates could indicate that animals living on the three island

groups show different levels of variation in the genes that affect the phenotypic traits,

e. g . due to different allele frequencies, although we cannot rule out that additional

shared environmental effects are confounded with additive genetic variances (Stopher

et al., 2012). In both cases, the variance estimate σ̂2
A from the homogeneous model

lies between the group-specific variance estimates, with a tendency towards the esti-

mates for the inner population, which is by far the largest group. These results were

also compared to the observed phenotypic variance σ̂2
P of the two traits, where the re-

spective group-specific phenotypic variances were only calculated using the pure-bred

animals (i. e. those with qij = 1) in each group (Table 2). It is also interesting to note

that the estimates for g2 indicate that animals on the outer islands are lighter and

have somewhat shorter wings than animals on the inner islands (Table 3), which is in

agreement with earlier findings (Jensen et al., 2004, 2008; Holand et al., 2011). The

remaining variance estimates of the model are not of primary interest and are thus

given in Table S3 of Appendix 2.

All results presented here involved the approximate approach from formula (10) to

scale the group-specific Dj matrices. To illustrate that this approximation is unprob-

lematic, we repeated all calculations with the correct versions as given in equation

(11), which again involved the gene dropping method provided in GRain. Details are

given in Appendix 1, and all results remain essentially unchanged (see Figure S3 and

Tables S1 and S2 in Appendix 1). Finally, it is worth reiterating that model (16)

does not account for the three segregation variances that would occur between any

two groups, because these are expected to be negligibly small. In addition, estimating

these three additional variances would impose unrealistic requirements on these data.

To illustrate that ignoring these variances is not critical, we also fitted a model with

a segregation term for the sparrow example with only two genetic groups (inner and

outer). Details on how to estimate segregation variances are given in Appendix 3.

Importantly, the results in Table S4 confirm that segregation terms are indeed very

small, and that their inclusion only leads to irrelevant changes in the results.

6 Discussion

We have introduced an extension of the animal model that allows for unequal additive

genetic variances in the presence of multiple interbreeding genetic groups. Our method
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Body mass Wing length
σ̂2
A nj or n σ̂2

P σ̂2
A nj or n σ̂2

P

inner 1.56 (1.15, 2.06) 1572.5 5.72 1.77 (1.53, 2.13) 1571.0 5.34
outer 0.93 (0.42, 2.24) 267.3 5.65 2.29 (1.78, 3.44) 262.6 6.48
other 0.70 (0.26, 2.85) 131.3 4.87 1.00 (0.59, 2.69) 129.4 6.02

total 1.54 (1.19, 2.02) 1971 5.53 1.79 (1.60, 2.21) 1963 5.41

Table 2: Estimates (posterior modes) and 95% CIs (in brackets) of the three group-
specific additive genetic variances (σ̂2

A) for inner, outer and other genetic groups, as
well as for a single homogeneous variance across groups for the two traits body mass
and wing length. The sample sizes denote the equivalent of full animal genomes
that are present in the three genetic groups (nj, for the model with heterogeneous
variances) or in the total dataset for the respective trait (n, for the homogeneous
model). For comparison, the phenotypic variances (σ̂2

P ) in the three groups and for
the total population, calculated only from the 1113, 148 and 33 pure-bred animals for
mass and from the 1117, 146 and 33 pure-bred animals for wing length in the inner,
outer and other groups.

Body mass Wing length
heterogeneous homogeneous heterogeneous homogeneous

sex 0.46 0.48 −2.76 −2.77
(0.29, 0.64) (0.30, 0.65) (−2.89, −2.63) (−2.90, −2.64)

FGRM −1.23 −1.24 −1.32 −1.36
(−3.09, 0.63) (−3.09, 0.61) (−2.69, 0.06) (−2.74, 0.01)

month −0.29 −0.30 −0.18 −0.19
(−0.35, −0.24) (−0.36, −0.24) (−0.22, −0.15) (−0.22, −0.15)

age 0.08 0.08 0.47 0.47
(0.02, 0.14) (0.02, 0.14) (0.43, 0.50) (0.43, 0.50)

g2 (outer) −0.83 −0.84 −0.44 −0.62
(−1.29, −0.39) (−1.38, −0.29) (−0.82, −0.01) (−1.09, −0.12)

g3 (other) −0.28 −0.18 0.08 −0.07
(−0.84, 0.27) (−0.85, 0.50) (−0.34, 0.49) (−0.64, 0.51)

Table 3: Posterior means and 95% CIs of the fixed effects for the animal models used
for body mass and wing length. The estimates were extracted from models with either
group-specific (heterogeneous) additive genetic variances, or a single (homogeneous)
additive genetic variance.

requires that group-specific relatedness matrices Aj are derived. To this end, the full

relatedness matrix A is decomposed into matrices T and D, and simple algebraic scal-

ing operations are used to derive the group-specific versions Tj and Dj that are then

again multiplied to obtain Aj. The method is computationally efficient, in particular

when an (accurate) approximation for the group-specific Mendelian sampling variance
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matrices Dj is used. Although genetic group animal models have been used before, in

particular in animal and plant breeding setups, modeling heterogeneous additive ge-

netic variances has so far been considered unfeasible (Wolak & Reid, 2017). Therefore,

natural populations have only been analyzed with genetic group models that account

for mean differences in additive genetic effects, but not for heterogeneous variances.

Here we overcome this limitation by assuming that segregation variances are often

negligible for polygenic traits. How often will this assumption hold? The segregation

variance from formula (3) approximates zero whenever the infinitesimal model, which

underlies the animal model and which posits that traits are determined by a large

number of genes with small effects, holds approximately. This is likely the case for

many polygenic, complex traits (Barton et al., 2017). Our estimates of the segregation

variance in the empirical house sparrow data set support the view that segregation

variance may often be negligible. This result is mirrored in GWAS of the genetic

architectures of body mass and wing length in house sparrows and other passerines,

which revealed a polygenic basis for these traits, where any significant genomic region

explains only a very small proportion of the phenotypic variance (Santure et al., 2015;

Silva et al., 2017). Taken together, these results suggest that segregation variances

can often be neglected in genetic group models, provided the traits of interest are truly

very polygenic. When focal traits have a genetic architecture with only few causal

genes with a large effect, omitting the segregational variance may however introduce a

non-negligible bias in the estimated additive genetic variances. In such a case it is still

possible to formulate a model that accounts for segregation variances, as explained in

Appendix 3, although such models may quickly impose unrealistic demands on the

data.

Estimating and disentangling variance components is generally known to be dif-

ficult, and it is particularly challenging for genetic group models with group-specific

additive genetic variances. The problem is that the group-specific covariance matrices

Aj are the sole sources of information that allow to discriminate the variance compo-

nents, yet these matrices may be similar in the presence of many multi-bred animals.

The results from the house sparrow example in Table 2 illustrate that group-specific

variance estimates may suffer from larger uncertainty than a single homogeneous vari-

ance, especially when group sizes are small, as it is the case for the outer and other

groups. Allowing for heterogeneous variances is therefore only advocated if there is an

actual need for them. While this is often not evident in advance, the user may want to

fit the homogeneous and the heterogeneous models to determine if the more complex

model is needed. A possible “objective” way to find this out might be via the use of

information criteria, such as the deviance information criterion (DIC) for Bayesian

models (Spiegelhalter et al., 2002), although we do not generally recommend to rely

on it (for some DIC criticism see e. g . Plummer, 2008; Hodges, 2014). Interestingly,
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in the sparrow example the DIC for the heterogeneous model for mass was 4 units

larger than for the model with a single variance, while it was −15 units smaller for

wing length. Thus there is some weak indication that the more complex model is not

needed when body mass is analyzed, while there appears to be some improvement

for wing length, which is consistent with the observation that the estimated variances

show less overall differences for body mass than for wing length (Table 2). In principle,

the variance estimates can also be used to assess group-specific versions of heritability

(Falconer & Mackay, 1996) or evolvability (Houle, 1992), where the additive genetic

variance is replaced by the group-specific version σ2
Aj

.

A general limitation of genetic group models is that parent-offspring relations are

needed to propagate genetic contributions from founder individuals through the pedi-

gree to determine Q. Genomic relatedness matrices alone are therefore not sufficient

to fit genetic group models, but a combination of genomic and pedigree information,

the latter possibly inferred from genetic data (Ko & Nielsen, 2017), may provide a

powerful basis for genetic group models.

The proposed extension of genetic group models will be useful for any study pop-

ulation that is structured into subpopulations, given that sufficient information on

migration or crossbreeding events is available. In particular, the fact that group-

specific additive genetic variances can be estimated for subpopulations that are not

completely isolated might also be useful when interest centers around the dependency

of additive genetic variance on the effective population size, a relation that is of pivotal

interest in evolutionary and conservation biology. Finally, the method may provide a

starting point for the estimation of temporal or spatial variation of additive genetic

variance.
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Figure 5: Results from 100 iterations for simulation scenarios 1–3. The boxplots
represent the distributions of estimated variances (posterior modes) from a model with
genetic groups and heteroscedastic additive genetic variances σ2

A1
and σ2

A2
(left panel),

compared to the results from a model that only allowed for a single homogeneous
variance σ2

A (right panel). Dashed lines indicate the references that were used to
generate the data (black: σ2

A1
, red: σ2

A2
, green: σ2

E).
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GRAIN: a computer program to calculate ancestral and partial inbreeding coeffi-

cients using a gene dropping approach. Journal of Animal Breeding and Genetics,

132, 100–108. https://doi.org/10.1111/jbg.12145.

Billing, A.M., Lee, A.M., Skjelseth, S., Borg, A.A., Hale, M.C., Slate, J., Pärn, H.,

Ringsby, T.H., Sæther, B.E. & Jensen, H. (2012) Evidence of inbreeding depression

but not inbreeding avoidance in a natural house sparrow population. Molecular

Ecology, 21, 1487–1499. https://doi.org/10.1111/j.1365-294X.2012.05490.x.

Bonnet, T., Wandeler, P., Camenisch, G. & Postma, E. (2017) Bigger is fitter?

Quantitative genetic decomposition of selection reveals an adaptive evolution de-

cline of body mass in a wild rodent population. PLOS Biology, 15, e1002592.

https://doi.org/10.1371/journal.pbio.1002592.

Bouwman, A.C., Daetwyler, H.D., Chamberlain, A.J. & et al. (2018) Meta-

analysis of genome-wide association studies for cattle stature identifies common

genes that regulate body size in mammals. Nature Genetics, 50, 362–367.

https://doi.org/10.1038/s41588-018-0056-5.

Bulmer, M.G. (1971) The effect of selection on genetic variability. American Natural-

ist, 105, 201–211.

Cantet, R.J.C., Birchmeier, A.N., Santos-Cristal, M.G. & de Avila, V.S. (2000) Com-

parison of restricted maximum likelihood and method R for estimating heritability

and predicting breeding value under selection. Journal of Animal Science, 78, 2554

– 2560.

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 30, 2018. ; https://doi.org/10.1101/331157doi: bioRxiv preprint 

https://doi.org/10.1101/331157
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cantet, R.J.C. & Fernando, R.L. (1995) Prediction of breeding values with additive

animal models for crosses from 2 populations. Geneticis Selection Evolution, 17,

323 – 334.

Charmantier, A., Kruuk, L.E.B. & Garant, D. (2014) Quantitative Genetics in the

Wild. Oxford University Press, Oxford.

de Villemereuil, P., Morrissey, M.B., Nakagawa, S. & Schielzeth, H. (2017) Fixed

effect variance and the estimation of the heritability: Issues and solutions. Journal

of Evolutionary Biology. In press. https://doi.org/10.1111/jeb.13232.

Dong, M.C., Van Vleck, L.D. & Wiggans, G.R. (1988) Effect of relation-

ships on estimation of variance components with an animal model and re-

stricted maximum likelihood. Journal of Dairy Science, 71, 3047 – 3052.

https://doi.org/10.1111/jeb.13232.

Elzo, M.A. (1990) Recursive procedures to compute the inverse of multiple trait ad-

ditive genetic covariance matrix in inbred and non inbred multibreed populations.

Journal of Animal Science, 68, 1215–1228.

Falconer, D.S. & Mackay, T.F.C. (1996) Introduction to Quantitative Genetics. Long-

man Group Ltd, Harlow, 4 edition.

Fisher, R.A. (1918) The correlation between relatives on the supposition of Mendelian

inheritance. Transactions of The Royal Society of Edinburgh, 52, 399–433.

https://doi.org/10.1017/S0080456800012163.

Flint, J. & Mackay, T.F. (2009) Genetic architecture of quantitative

traits in mice, flies, and humans. Genome Research, 19, 723–733.

https://doi.org/10.1101/gr.086660.108.
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