

1 **Genetic determinants of resistance and virulence among carbapenemase-producing**

2 ***Klebsiella pneumoniae* from Sri Lanka**

3 Chendi Zhu^{a*}, Veranja Liyanapathirana^{b*}, Carmen Li^a, V. Pinto^c, Mamie Hui^a, Norman Lo^a,
4 Kam-Tak Wong^a, N. Dissanayake^b, Margaret Ip^{a#}

5 ^aDept of Microbiology, Chinese University of Hong Kong, Dept of Microbiology

6 ^bDept of Microbiology, Faculty of Medicine, University of Peradeniya, Sri Lanka.

7 ^cDept of Anesthesiology and Critical Care, Faculty of Medicine, University of Peradeniya, Sri
8 Lanka.

9

10 Running Head: *bla_{OX-181}* in Sri Lanks

11

12 #Corresponding author: Margaret Ip margaretip@cuhk.edu.hk

13 Dept of Microbiology, Chinese University of Hong Kong

14

15 *C.Z and V.L contributed equally to this work

16 **ABSTRACT**

17 Whole genome sequencing of carbapenem-resistant Enterobacteriaceae from the intensive care
18 units of a Sri Lankan teaching hospital revealed the presence of carbapenemase gene, *bla*_{OXA-181}
19 among isolates of carbapenase-producing *Klebsiella pneumoniae* belonging to ST437 (2 strains)
20 and ST147 (8 strains) in 2015. *bla*_{OXA-181} genes were carried in three variants of ColE-type
21 plasmids. Elevated carbapenem resistance were observed in *ompK36* mutant strains. ESBL genes,
22 plasmid-mediated quinolone resistance (PMQR) determinants (*qnr*, *aac(6')*-*Ib-cr*, *oqxAB*) and
23 mutations on chromosomal quinolone resistance-determining regions (QRDRs) with
24 substitutions at ser83→I of *gyrA* and ser80→I of *parC* were observed. All strains possessed
25 yersiniabactin on the mobile element ICEkp and other virulence determinants. Strict infection
26 control and judicious use of antibiotics are warranted to prevent further spread of multidrug-
27 resistant *Klebsiella pneumoniae* in the intensive care units.

28

29 KEYWORDS OXA-181, quinolone, yersiniabactin, *Klebsiella pneumoniae*, Sri Lanka.

30 **INTRODUCTION**

31 Carbapenem-resistant *Enterobacteriaceae* (CRE) is a global threat. Among all the resistant
32 mechanisms, plasmid-mediated horizontal carbapenemase gene transfer is the major acquired
33 mechanism (1). Three types of carbapenemase (class A: *bla*_{KPC}; class B: *bla*_{NDM}, *bla*_{IMP}, *bla*_{VIM};
34 class D: *bla*_{OXA-48-like}) can hydrolyze carbapenems at varying levels (2–4). High risk global
35 clones such as ST258 *Klebsiella pneumoniae* are known to be associated with epidemic plasmids
36 and these interactions are hypothesized to provide a survival advantage for these clones (5).

37 Sri Lanka is part of the Indian subcontinent. Although carbapenemases, like *bla*_{NDM} in nearby
38 countries are well studied and spread worldwide, the single study currently available on CRE
39 from Sri Lanka to date does not contain information on plasmids (6). Here we sequenced 10
40 CRE strains isolated from one Sri Lanka hospital using whole-genome sequencing (WGS) to
41 describe antimicrobial resistant characteristics and the genetic profiles.

42

43 **RESULTS**

44 **Resistant genes and virulence factors**

45 During an eight-month period, all coliforms isolated from respiratory specimens from the
46 intensive care units of a University Teaching Hospital in Sri Lanka were screened for
47 carbapenem resistance using Stokes sensitivity testing method. Of these 64 single-patient isolates,
48 2.6% (10 isolates) were found to be resistant to carbapenems. Three of the strains were from the
49 subsidiary ICU and 7 were from the main ICU. All 10 isolates were *Klebsiella pneumoniae*
50 belonging to ST437 (2 strains) and ST147 (8 strains). Capsule information showed two *wzi*
51 alleles (64 and 109). Their MIC data and antimicrobial resistant genes are listed in TABLE 1 and

52 FIG 2. Only one carbapenemase gene, *bla*_{OXA-181} was found in all isolates. Extended-spectrum β-
53 lactamase (ESBL) genes, including *bla*_{CTX-M-15}, *bla*_{SHV-11}, *bla*_{TEM-1} and *bla*_{OXA-1} were detected.
54 Besides PMQR determinants (*qnr*, *aac(6')*-*Ib-cr*, *oqxAB*), we also found the mutations on
55 chromosomal QRDRs. Substitutions at ser83→I of *gyrA* and ser80→I of *parC* were observed in
56 all strains, which have been frequently reported in quinolone-resistant *Klebsiella pneumoniae*
57 worldwide (7). The virulence profile of 10 strains are the same, they all carry yersiniabactin
58 genes (*ybt*, *irp1*, *irp2*, *fuyA*) and *kfu*, *mrk*. No *rmpA* or *rmpA2* gene were detected. Yersiniabactin
59 genes were found on mobile element ICEkp. 4437 core genomes and 2182 accessory genes were
60 used to establish the pangenome dendrogram (see FIG 2). The accessory gene profile of ST437
61 and ST147 is quite different, making ST437 a distant cluster with others.

62 **Elevated MICs of carbapenem**

63 Carbapenem MICs of different strains varied. All the strains except SL33, SL49 and SL54 were
64 resistant to ertapenem or meropenem at high level according to the CLSI guideline. In prior
65 studies, mutation of *Klebsiella pneumoniae* outer membrane proteins *ompK35* and *ompK36*
66 confer to increased MIC of carbapenems (2, 4, 8). We then aligned *ompK35* with wild-type one
67 (GenBank accession no. AJ011501) and there were neither mutations nor insertions into *ompK35*
68 and its promoter in all strains. *ompK36* was identical in six high resistant strains (*ompK36-sl1*).
69 SL33, SL49 shared the same gene (*ompK36-sl2*), but SL54 owned an unique variation (*ompK36-*
70 *sl3*). The difference of *ompK36-sl1* and *ompK36-sl2* was the insertion of Gly and Asp after
71 PEFXG domain within the L3 loop and one mutation in loop L4 and alpha-helix respectively.
72 PEFXG domain (porin size determinant) insertion was also observed in several studies
73 contributed to the high resistant to carbapenems (2, 6, 8). *ompK36-sl3* was different from others
74 mainly between loop L3 and loop L6, but there was no insertion interruption in PEFXG domain.

75 **Plasmids harbored *bla*_{OXA-181}**

76 Three different ColE-type plasmids were identified (FIG 1). One (PlsmdSL-A) was identical to
77 KP3 (GenBank accession no. JN205800) and was found in the two ST437 strains. PlsmdSL-A
78 was a short plasmid with size of 7,606 bp and well described before (9). Another plasmid
79 (PlsmdSL-B) had one insertion sequence (ISEcp1) deletion compared with PlsmdSL-A. Several
80 studies from USA, Germany , France have reported this plasmid in both *Klebsiella pneumoniae*
81 and *Escherichia coli*. The third plasmid (PlsmdSL-C) had a mobile gene (*mobC*) deletion of
82 PlsmdSL-B, which were not reported before.

83

84 **DISCUSSION**

85 Carbapenemase *bla*_{OXA-181} was first described in India as a Class D *bla*_{OXA-48}-like enzyme from
86 clinical samples in year 2006 and 2007 (10). It is thought to be originated from an environmental
87 strain as a chromosomal gene (11). Although it is detected worldwide, most of patients have a
88 travel history to Indian subcontinent, especially India (3). In 2014, *bla*_{OXA-181} and *bla*_{NDM} was
89 reported in *Klebsiella pneumoniae* in Sri Lanka of different STs, mainly ST14 and ST147 (6).
90 ST437 is a single locus variant of the globally prevalent ST258, carrying *bla*_{KPC} in Brazil and
91 *bla*_{NDM}, *bla*_{OXA-245} (plasmid: IncL/M) in Spain (12). *bla*_{OXA-181} was previously described in ColE,
92 IncT, IncX3 plasmids and chromosome, and all were isolated from patients transferred from
93 India except IncX3 from China (9, 13–17). ColE plasmid encoded various β-lactamase gene and
94 *bla*_{OXA-181} is related to transposon Tn2013. Insertion sequence ISEcp1 was considered related to
95 *bla*_{OXA-181} acquisition, and its deletion may stabilize the resistant gene into plasmid (18). *mobC*
96 gene deletion in current strain may affect the frequency of plasmid conjugal mobilization (19).

97 In this study, all strains harboured quinolone-resistant determinants with QRDR mutation on the
98 chromosome. Recent epidemiology study has shown the correlation of quinolone consumption
99 and CRE in US military health system, and another case-control study of CRE outbreaks in
100 Netherlands have determined quinolone use as the only risk factor of acquisition of *bla*_{OXA-48-like}
101 producing Enterobacteriaceae compared to other antibiotics use (20, 21). Possible mechanisms
102 are co-transfer of two plasmids or recombination into one plasmid described before(16, 22).

103 Although all strains are nonhypervirulence *Klebsiella pneumoniae* (negative for *rmpA/rmpA2*
104 genes, non K1/K2 capsule serotypes), they all encoded several yersiniabactin genes. These genes
105 are on integrative conjugative elements (ICEKp) can cause spread in *Klebsiella pneumoniae*
106 population and as a predictor of invasive infection (23).

107 In conclusion, we discussed the genetic profile of multidrug resistant CRE in Sri Lanka. *bla*_{OXA-}
108 181 (through ColE-type plasmid) and yersiniabactin has disseminated to different STs of
109 *Klebsiella pneumoniae*. We recommend active surveillance of high risk inpatients and long term
110 studies to determine possible intra-unit transfer, especially as the length of stay in all instances
111 where data was available is >72 hours. Judicious antibiotics use, especially quinolones is also
112 recommended.

113

114 MATERIALS AND METHODS

115 Single patient isolates were obtained from the respiratory specimens received from inpatients
116 admitted to the intensive care units of the teaching hospitals of the University of Peradeniya
117 between February to September 2015, During this period a total of 379 respiratory specimens
118 were processed yielding 64 coliforms. Of these coliforms, 2.6% (10 isolates) were found to be

119 resistant to carbapenems using Stokes sensitivity testing method. All of those isolates were saved
120 for further study. The study was approved by the Institutional Ethical Committee of the Faculty
121 of Medicine, University of Peradeniya.

122 Identification of all strains were confirmed by MALDI-TOF (matrix-assisted laser desorption
123 ionization-time of flight mass spectrometry) at the Department of Microbiology, Chinese
124 University of Hong Kong. The MICs of antimicrobials were determined by broth microdilution
125 method according to Clinical & Laboratory Standards Institute guideline(CLSI) (24). Bacterial
126 DNA was extracted with Wizard genomic DNA purification kit (Promega, Madison, USA).
127 WGS was performed using the Illumina HiSeq 2500 platform, and unique index-tagged libraries
128 were created for each sample to generate 90bp paired-end reads (Global Biologics, LLC).

129 The libraries gave 100x coverage for each strain on average. Quality control of the raw reads was
130 performed by FastQC. Genomes were assembled using the SPAdes assembler (version V3.5.0)
131 (25). Contigs of \geq 500bp from each genome were included in the analyses. The Prokka (version
132 1.9) software was used for genome annotation, including ORF finding and gene function
133 annotation (26). Raw reads and assembled contigs were used for multilocus sequence typing
134 (MLST) analysis. SRST2 (Version 0.1.5) was used to map raw reads to the pubMLST database
135 to infer ST, to the resistance gene database (ARG-ANNOT V3), to all the plasmid replicons in
136 PlasmidFinder database(Updated 20170220) and to *K. pneumoniae* BIGSdb virulence gene
137 database (<http://bigsdb.web.pasteur.fr> Accession date: 20180313) (27). The contig containing
138 carbapenemase for each genome was blasted on NCBI to find the top hit plasmids (at least 95%
139 identity and 95% coverage). Then we blasted the plasmids in our WGS data to extract possible
140 plasmid contigs. Extracted contigs were further aligned to the reference plasmid using Mauve

141 Alignment software to check similarity and coverage (28). Gaps were filled by PCR with primers
142 designed based on sequencing data. Pan-genome dendrogram was created by Roary (29).

143

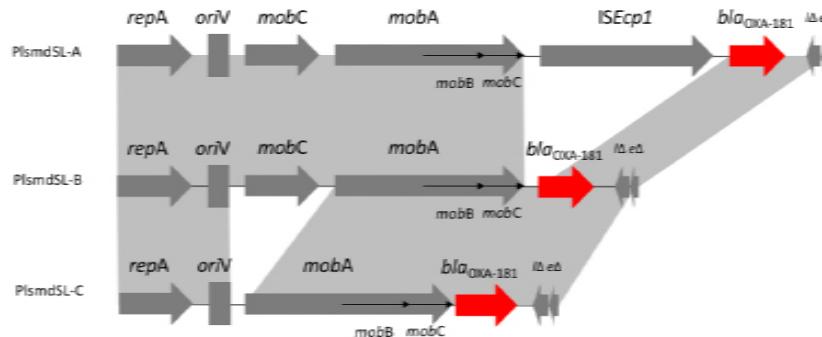
144 **ACKNOWLEDGEMENTS**

145 We thank the Food and Health Bureau of Hong Kong Special Administrative Region for the
146 support from Health and Medical Research Commissioned Fund.

147 **TABLE 1** Characteristics of the *bla*_{OXA-181} producing *K. pneumoniae* isolates

Strain No.	Unit**	Stay length*** ** (days)	Specimen	ST	PlsmSL	Other plasmids replicons	ompK36 PEFXG insertion	MICs(mg/L)*										
								ETP	IPM	MEM	CTX	CAZ	AK	GN	CIP	TG	CT	FOS
								2	0.25	0.25	>128	64	2	64	64	1	0.12	4
SL33	S	-	ET secretion	437	A	IncFIB, IncFII	No	2	0.25	0.25	>128	64	2	64	64	1	0.12	4
SL49	M	7	ET secretion	437	A	IncFIB	No	4	0.5	0.25	128	128	4	0.5	128	1	0.25	4
SL54	S	-	ET secretion	147	C	IncFIB, IncR	No	4	1	0.5	>128	64	4	64	128	2	0.12	8
SL34	M	4	Sputum	147	B	IncFIB, IncA/C2, IncR	Yes	32	4	32	>128	>128	4	64	128	0.5	0.5	8
SL35	M	6	Sputum	147	B	IncFIB, IncR	Yes	32	4	32	>128	>128	4	128	64	0.5	0.25	16
SL36	M	17	Sputum	147	B	IncFIB, IncFII	Yes	32	8	32	>128	32	2	1	8	1	0.12	16
SL46	M	9	ET secretion	147	B	IncFIB, IncFII	Yes	16	1	8	128	16	4	0.5	8	1	0.12	8
SL50	M	13	ET secretion	147	B	IncFIB, IncR	Yes	32	8	16	4	0.5	1	128	32	1	0.25	32
SL52	S	-	ET secretion	147	B	IncFIB, IncR	Yes	32	2	32	>128	>128	4	128	16	1	0.25	64
SL68	M	4	Sputum	147	B	IncFIB, IncR	Yes	32	8	32	>128	>128	16	1	8	1	0.25	64

148 * AK, amikacin; CAZ, ceftazidime; CIP, ciprofloxacin; CN, gentamicin; CT, colistin; CTX, cefotaxime; ETP, ertapenem; FOS,

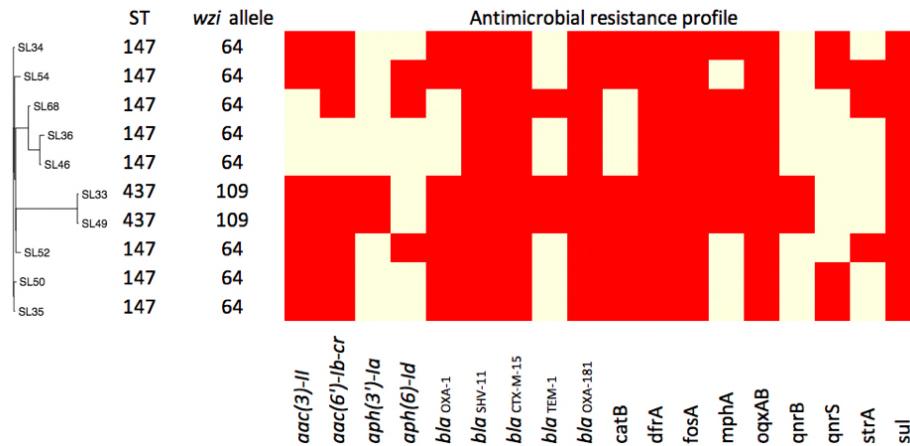

149 fosfomycin; IPM, imipenem; MEM, meropenem; TG, tigecycline; FOS, fosfomycin.

150 ** M – Main study unit; S – Subsidiary units

151 *** Length of stay from date of specimen collection

152

153


154

155

FIG 1 ColE-type plasmid

156

*PlsmdSL-B had ISEcpl deletion; PlsmdSL-C had ISEcpl and mobC deletion

157

158

FIG 2 Pan-genome dendrogram of 10 Sri Lanka strains with annotation

159

160 **REFERENCE**

161

162 1. Nordmann P, Dortet L, Poirel L. 2012. Carbapenem resistance in Enterobacteriaceae: here is the storm! *Trends Mol Med*
163 18:263–272.

164 2. Zhang Y, Jiang X, Wang Y, Li G, Tian Y, Liu H, Ai F, Ma Y, Wang B, Ruan F, Rajakumar K. 2014. Contribution of β -
165 lactamases and porin proteins OmpK35 and OmpK36 to carbapenem resistance in clinical isolates of KPC-2-producing
166 *Klebsiella pneumoniae*. *Antimicrob Agents Chemother* 58:1214–7.

167 3. Poirel L, Potron A, Nordmann P. 2012. OXA-48-like carbapenemases: The phantom menace. *J Antimicrob Chemother*
168 67:1597–1606.

169 4. Lunha K, Chanawong A, Lulitanond A, Wilailuckana C, Charoensri N, Wonglakorn L, Saenjamla P, Chaimanee P,
170 Angkititrakul S, Chetchotisakd P. 2016. High-level carbapenem-resistant OXA-48-producing *Klebsiella pneumoniae* with a
171 novel OmpK36 variant and low-level, carbapenem-resistant, non-porin-deficient, OXA-181-producing *Escherichia coli* from
172 Thailand. *Diagn Microbiol Infect Dis* 85:221–226.

173 5. Mathers AJ, Peirano G, Pitout JDD. 2015. The role of epidemic resistance plasmids and international high- risk clones in the

174 spread of multidrug-resistant Enterobacteriaceae. *Clin Microbiol Rev* 28:565–591.

175 6. Hall JM, Corea E, Anusha Sanjeeewani HD, Inglis TJ. 2014. Molecular mechanisms of β -lactam resistance in carbapenemase-
176 producing *Klebsiella pneumonia* from Sri Lanka. *J Med Microbiol* 63:1087–1092.

177 7. Aldred KJ, Kerns RJ, Osheroff N. 2014. Mechanism of quinolone action and resistance. *Biochemistry*.

178 8. Garcia-Fernandez A, Miriagou V, Papagiannitsis CC, Giordano A, Venditti M, Mancini C, Carattoli A. 2010. An Ertapenem-
179 Resistant Extended-Spectrum- β -Lactamase-Producing *Klebsiella pneumoniae* Clone Carries a Novel OmpK36 Porin Variant.
180 *Antimicrob Agents Chemother* 54:4178–4184.

181 9. Potron A, Nordmann P, Lafeuille E, Al Maskari Z, Al Rashdi F, Poirel L. 2011. Characterization of OXA-181, a Carbapenem-
182 Hydrolyzing Class D β -Lactamase from *Klebsiella pneumoniae*. *Antimicrob Agents Chemother* 55:4896–4899.

183 10. Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE. 2011. Early dissemination of NDM-1- and OXA-
184 181-producing Enterobacteriaceae in Indian hospitals: Report from the SENTRY Antimicrobial Surveillance Program, 2006-
185 2007. *Antimicrob Agents Chemother* 55:1274–1278.

186 11. Potron A, Poirel L, Nordmann P. 2011. Origin of OXA-181, an emerging carbapenem-hydrolyzing oxacillinase, as a
187 chromosomal gene in *Shewanella xiamenensis*. *Antimicrob Agents Chemother* 55:4405–4407.

188 12. Oteo J, Hernandez JM, Espasa M, Fleites A, Saez D, Bautista V, Perez-Vazquez M, Fernandez-Garcia MD, Delgado-Iribarren

189 A, Sanchez-Romero I, Garcia-Picazo L, Miguel MD, Solis S, Aznar E, Trujillo G, Mediavilla C, Fontanals D, Rojo S, Vindel A,
190 Campos J. 2013. Emergence of OXA-48-producing *Klebsiella pneumoniae* and the novel carbapenemases OXA-244 and OXA-
191 245 in Spain. *J Antimicrob Chemother* 68:317–321.

192 13. Dimou V, Dhanji H, Pike R, Livermore DM, Woodford N. 2012. Characterization of Enterobacteriaceae producing OXA-48-
193 like carbapenemases in the UK. *J Antimicrob Chemother* 67:1660–1665.

194 14. Kayama S, Koba Y, Shigemoto N, Kuwahara R, Kakuhama T, Kimura K, Hisatsune J, Onodera M, Yokozaki M, Ohge H,
195 Sugaia M. 2015. Imipenem-susceptible, meropenem-resistant *Klebsiella pneumoniae* producing OXA-181 in Japan. *Antimicrob
196 Agents Chemother* 59:1379–1380.

197 15. Villa L, Carattoli A, Nordmann P, Carta C, Poirel L. 2013. Complete sequence of the IncT-type plasmid pT-OXA-181 carrying
198 the bla OXA-181 carbapenemase gene from *Citrobacter freundii*. *Antimicrob Agents Chemother* 57:1965–1967.

199 16. Liu Y, Feng Y, Wu W, Xie Y, Wang X, Zhang X, Chen X, Zong Z. 2015. First Report of OXA-181-Producing *Escherichia coli*
200 in China and Characterization of the Isolate Using Whole-Genome Sequencing. *Antimicrob Agents Chemother* 59:5022–5.

201 17. Partridge SR, Ginn AN, Wiklendt AM, Ellem J, Wong JSJ, Ingram P, Guy S, Garner S, Iredell JR. 2015. Emergence of blaKPC
202 carbapenemase genes in Australia. *Int J Antimicrob Agents* 45:130–136.

203 18. Potron A, Rondinaud E, Poirel L, Belmonte O, Boyer S, Camiade S, Nordmann P. 2013. Genetic and biochemical

204 characterisation of OXA-232, a carbapenem- hydrolysing class D β -lactamase from Enterobacteriaceae. *Int J Antimicrob*
205 *Agents* 41:325–329.

206 19. Zhang S, Meyer R. 1997. The relaxosome protein MobC promotes conjugal plasmid mobilization by extending DNA strand
207 separation to the nick site at the origin of transfer. *Mol Microbiol* 25:509–516.

208 20. Dautzenberg MJD, Ossewaarde JM, de Greeff SC, Troelstra A, Bonten MJM. 2016. Risk factors for the acquisition of OXA-
209 48-producing Enterobacteriaceae in a hospital outbreak setting: A matched case-control study. *J Antimicrob Chemother*
210 71:2273–2279.

211 21. Lesho EP, Clifford RJ, Chukwuma U, Kwak YI, Maneval M, Neumann C, Xie S, Nielsen LE, Julius MD, McGann P,
212 Waterman PE. 2015. Carbapenem-resistant Enterobacteriaceae and the correlation between carbapenem and fluoroquinolone
213 usage and resistance in the US military health system. *Diagn Microbiol Infect Dis* 81:119–125.

214 22. Rodríguez Martínez JM, Díaz-De Alba P, Cerero L, Ruiz-Carrascoso G, Gomez-Gil R, Pascual A. 2014. Presence of quinolone
215 resistance to qnrB1 genes and blaOXA-48 carbapenemase in clinical isolates of *Klebsiella pneumoniae* in Spain. *Enferm Infect*
216 *Microbiol Clin* 32:441–442.

217 23. Lam MMC, Wick RR, Wyres KL, Gorrie C, Judd LM, Jenney A, Brisse S, Holt KE. 2018. Genetic diversity, mobilisation and
218 spread of the yersiniabactin-encoding mobile element ICEKp in *Klebsiella pneumoniae* populations. *bioRxiv* 098178.

219 24. 2017. CLSI (2017) Performance standards for antimicrobial susceptibility testing; twenty-seventh informational supplement.
220 Clinical and Laboratory Standards Institute, Wayne, PA.

221 25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD,
222 Pyshkin A V., Sirotkin A V., Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: A New Genome Assembly
223 Algorithm and Its Applications to Single-Cell Sequencing. *J Comput Biol* 19:455–477.

224 26. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30:2068–9.

225 27. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. *In*
226 *Silico* Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. *Antimicrob Agents*
227 *Chemother* 58:3895–3903.

228 28. Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with
229 rearrangements. *Genome Res* 14:1394–403.

230 29. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary:
231 rapid large-scale prokaryote pan genome analysis. *Bioinformatics* 31:3691–3.

232