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ABSTRACT

Understanding genomic structural variation such asinversions and translocationsis akey
challenge in evolutionary genetics. In this paper, we tackle this challenge by developing a novel
statistical approach to comparative genetic mapping. The procedure couples a Hidden Markov
Model with a Genetic Algorithm to detect large-scale structural variation using low-level
sequencing data from multiple genetic mapping populations. We demonstrate the method using
five distinct crosses within the flowering plant genus Mimulus. The synthesis of data from these
experimentsisfirst used to correct numerous errors (misplaced sequences) in the M. guttatus
reference genome. Second, we confirm and/or detect eight large inversions polymorphic within
the M. guttatus species complex. Finally, we show how this method can be applied in genomic

scans to improve the accuracy and resolution of Quantitative Trait Locus (QTL) mapping.

AUTHOR SUMMARY

Genome sequences have proved to be a critical experimental resource for genetic research in
many species. However, in some species there is considerable variation in genomic
organization, making a single reference genome sequence inadequate. This variation can cause
issuesin interpreting genomic signals, such as those coming from trait mapping. We introduce a
new statistical method and computational tools that use linkage information to reorganize a
single reference genome to 1) repair genome assembly errors, and 2) identify variation between
individuals or populations of the same species. Using this method we can create a new genome

order that improves upon the reference genome. We apply this method to five crosses among
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plantsin the Mimulus guttatus species complex. In this system we detect eight large
chromosomal inversions and improve the resolution of atrait mapping study. Thiswork
highlights the utility of our method, and indicates how others studying diverse species might use

them to improve their own research.
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INTRODUCTION

Over the last decade, genetic research has been revolutionized by the availability of whole
genome sequences for many of the world’s medically, ecologically, and agriculturally important
species. It has become increasingly clear that a single reference genome sequenceis an
insufficient description for many species. For example, a comparison of two maize accessions
found that over 2,500 genes were present in only one of the two genomes[1]. Evenin humans, a
species with significantly less genetic diversity than maize, segregating structural and gene
content polymorphisms are abundant [2]. Differencesin gene copy number [3-6], variation in
geneorder [1, 7, 8] and chromosomal inversions[9-13] are not captured by a single reference
genome, nor can they be annotated succinctly in relation to a single reference as is possible for
Single Nucleotide Polymorphisms (SNPs). These structural and gene content variants have
important phenotypic consequences in many species, highlighting the need for intensive study

[14-18].

Recognizing structural variation isimportant for many of the experimental applications of
genomic science. Consider trait-mapping analyses in species with segregating chromosomal
variants. Many trait-mapping approaches (e.g. genome-wide association studies or bulked
segregant analyses) rely on the accumulation of signals from adjacent genomic regions
(windows) to establish significance. If gene order in the population under study differs from the
reference genome, the proximity and presence of genomic windows can be incorrectly inferred.
This, in turn, undermines interpretation of both the location and significance of QTLs[19].

Similar issues can arise in population genomic inferences, such as scans for selection or
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introgression [20, 21]. One solution is to make reference genomes for every divergent accession
under study [4]. When thisisnot feasible, an alternative approach isto construct ‘ pseudo-
chromosome’ assemblies to better match structural variation in the focal accessions. Regardless,
accounting for structural variation is an important challenge for the continued development of

evolutionary genomics.

In this paper, we develop a new approach to pseudo-chromosome congtruction using
comparative genetic mapping as the primary tool. In species with repeat rich genomes, whole
genome shotgun sequencing and assembly typically yields many thousands of scaffolds. These
scaffolds can be stitched together to form pseudo-chromosomes; often a necessary prerequisite to
the trait-mapping and population genomic analyses. There are various techniques for making
pseudo-chromosomes, such as following a BAC-tiling path [22], optical mapping using
nanochannd arrays [23], or by localizing the scaffolds to markers on a genetic map [24, 25].
Genetic maps have proved to be invaluable tools for initial genome construction and pseudo-
chromosome assembly [26-28]. We extend this approach using comparative genetic maps from
five distinct crosses, allowing usto simultaneously improve the pseudo-chromosome
representation of the reference genome and also identify large-scale variation in gene order,

including chromosomal inversions and translocations.

Our approach utilizes data from low-coverage sequencing. RAD-seq [29, 30] and related
reduced-representation methods [31-33] allow cost-effective genotyping of hundreds of
recombinant individuals in species with limited molecular tools or known genetic markers.

While RAD-seq datais often used to create de novo markers [34, 35], sequences can also be
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directly mapped to genomic scaffolds. Recombinant genotypes located to genomic scaffolds can
then be used to assemble pseudo-chromosomes. Unfortunately, there are substantial challenges
in constructing genetic maps from low-coverage sequencing data and also in the inference of
map differences (i.e., the evidence for structural variation). New approaches are needed to
address the following major methodological questions: What is the optimal means to convert
sequence data into markers? How should we accommodate genotyping error in these markers
given that the error rate is often high and variable among samples? After locating markersto
genomic scaffolds, how do we obtain the optimal order and orientation of scaffolds into pseudo-

chromosomes? Finally, how do we determine if putative differences between maps are real ?

In this paper we develop a statistical procedure called Genome Order Optimization by Genetic
Algorithm (GOOGA) that detects structural variation using marker data from multiple genetic
mapping populations. Importantly for error-prone low-coverage genotyping, GOOGA
propagates genotype uncertainty throughout the model, thus accommodating this source of
uncertainty directly into the inference of structural variation. GOOGA couples a Hidden Markov
Model (HMM) with a Genetic Algorithm (GA). The HMM vyields the likelihood of a given
‘map’ (hereafter used to denote the ordering and orientation of scaffolds along a chromosome)
conditional on the genotype data. The GA searches map space by creating new candidate orders
which are recurrently fed to the HMM to diagnose their likelihood. Inference of recombination
rate parameters and/or tests for differences in gene order are enabled by the fact that all

calculations are conducted in the currency of likelihood.
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113 Asproof of concept, we apply GOOGA to RAD-seq data (M SG type [31, 36]) from five

114  different mapping populations, each synthesized from a cross between lines within the M.

115  guttatus species complex. The complex isahighly diverse clade of inter-fertile North American
116  wildflowers[37-40]. The five mapping populations include both intra- and inter-specific crosses
117  aswell as multiple cross types (F2s, F3s, and RILS). Recombinant individuals from each

118  mapping population were scored genome-wide for SNPs and then input to GOOGA. Starting
119  from arough-draft scaffold order [41], GOOGA produces an optimized ordering and orientation
120  of genomic scaffolds for each population. From similarities across the assemblies of each

121 mapping population, we are able to correct many errors (misplaced scaffolds) in the current

122 reference genome of M. guttatus. Improved estimates for recombination rates indicate the

123 effects of gene density and transposable elements on chromosomal variation in recombination.
124  Comparisons among maps identify eight distinct structural polymorphisms, five of which were
125  suggested by previous mapping studies [12, 13, 42-45]. Finally, we demonstrate how the

126  application of GOOGA clarifies the results of a QTL mapping study by correcting errorsin the
127  reference genome.

128

129 RESULTS

130

131  Comparison of the M. gquttatus V 2 reference to the GOOGA optimized scaffold orders

132 Theoutput of GOOGA is a chromosome-scale genetic map of scaffolds from the M. guttatus
133  genome assembly, wherein we treat 100 kb intervals as distinct genetic markers. Thismap isan
134  optimized pseudo-chromosome construction (all 14 chromosomes for al 5 mapping populations

135  arereported in Supporting Table 1). The overall map lengths for the F2 crosses are 1278 cM for
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136  DUNTIL, 1523 cM for IMNAS, and 1258 cM for IMSWC. The average map length, 1353 cM,
137  isshorter than previous F2 maps generated in Mimulus through PCR-based genotyping methods
138  [12,42,45]. The IMF3 map is=~50% longer than the F2 average (2043 cM), as expected given
139  the extra generation of recombination between F2 and F3 generations. The IMPR map (1489
140  cM) isonly dlightly longer than the F2 average. Thereis additional recombination in the

141 formation of the RILs, but the recombination parameter is specified differently (asrelated to

142  crossover events) inthe RIL HMM (see METHODYS).

143

144  In aggregate, comparison of the GOOGA optimized maps from the five experiments to the M.
145  guttatus V2 reference genome order (hereafter V2 map; [41]) indicates that a large number of
146  updatesto the reference genome are necessary. Although the maps differ importantly from each
147  other, changesin scaffold order and orientation from the V2 map are usually shared among all
148  five mapping populations. These regions likely reflect errors in genome assembly given that the
149  reference genome was sequenced from an inbred line (IM62) used as one of the parentsin two of
150  our crosses (IMF3 and IMSWC). Toillustrate this point, we compare the maximum likelihood
151  of the IMF3 data under from the GOOGA optimized map to the V2 map (Figure 1) for three

152 chromosomes. Thisintra-population crossis likely to be most congruent with the true order of
153  the IM62 reference genome.

154

155  The panels (Figure 1A-C) are ordered from most congruent with the V2 map (chromosome 14)
156  to least congruent (chromosome 10), and the difference in log-likelihood (AInLK) provides a

157  measure of improvement in fit of the GOOGA relative to V2. AlnLk iscomputed by fitting the

158  genotype datato both the GOOGA optimized and V2 maps, and then subtracting the former from
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the latter. In each case, recombination rates are estimated independently, and so AlnLk is
determined entirely by differences in scaffold order and orientation. The maps for chromosome
14 (Figure 1A) are largely similar. However, the few differences, such as the changesin location
and orientation of scaffolds 127, 211, 178, and 140b (inconsistency near the center of Figure 1A,
Supporting Table 1), are sufficient for alarge improvement in likelihood. The AlnLk of 77.1
(Supporting Table 2) corresponds to an improvement in likelihood greater than 10%, suggesting
this new order fits the segregation data in the IMF3 population far better than the V2 map.
Importantly, the updated ordering of scaffolds 127, 211, 178, and 140b is shared by the IMSWC,
DUNTIL, and IMPR maps (Supporting Figure 1 and Supporting Table 1). The IMNAS map
retainsthe [211,127] ordering of the V2 map, albeit with aflip of 127. However, this difference
isnot biologically compelling because there is no evidence of recombination in thisregion
among the 91 F2s genotyped in the IMNAS population. Genome assembly by genetic mapping
will often fail when there is no recombination to provide signal, afactor that must be taken into

account when comparing maps.

Chromosome 2 (Figure 1B) istypical of most IMF3 contrasts. There are numerous
rearrangements (e.g. the IMF3 sequence [44a, 212, 249] isinverted in the V2 map) and several
scaffolds are flipped in place (including scaffold 81 that flanks [44a, 212, 249]). Apart from the
increase in likelihood from the V2 map to the GOOGA optimized order (AlnLk = 255.8), itis
noteworthy that the genetic length of chromosome 2 shrinks by ~15% from V2 to GOOGA.
Thisis because maximum likelihood of the rate parameters will compensate for bad joins by
increasing recombination fraction (r) values. This effect is even more pronounced for

chromosome 10 (Figure 1C), where thereisalarge increase in AlnLk. Among 70 chromosomes


https://doi.org/10.1101/330159
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/330159; this version posted May 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

182 (5 crosses x 14 chromosomes), 23 (33%) chromosomes had AINnLK improvements greater than
183 500, while only 5 (7.1%) improved less than 100 (Supporting Table 2). The most significant
184  dterationsto the V2 map arein genomic regions harboring inversions, particularly on

185  chromosomes 5, 8, and 10 (Figure 1C, Supporting Figure 1, and Supporting Table 2). TheV2
186  map is based partly on genetic mapping data with segregation data from approximately 70

187  recombinant inbred lines from a cross between IM62 and DUN10 (J. Willis pers. comm.).

188  DUNI1Oisaparent in our DUNTIL cross[35] and the aggregate of evidence (see below)

189  suggests that DUN10 has chromosomal inversions (relative to IM62) on each of these

190  chromosomes.

191

192  Comparison of GOOGA maps to one another reveals known and new structural diversity

193  Our five mapping populations contain one intra-population cross (IMF3), two inter-population
194  crosses (IMPR, IMSWC), acloseinterspecific-cross (IMNAS), and a more distant interspecific
195  cross (DUNTIL). We observe structural polymorphisms by aligning the five maps to each other
196 by chromosome. Figure 2 compares the maps for chromosome 10 which had previously been
197  shown to harbor an inversion in IMPR [43]. Asdescribed in METHODS, we broke scaffold 13
198  into 13aand 13b based on apreliminary analysis of the DUNTIL data. GOOGA reassembled
199  13aand 13b into a continuous sequence for the IMF3 cross, but not the other crosses (Figure 2).
200  Thereis minimal recombination between 13aand 13bin IMPR, IMNAS, and IMSWC because
201 13bisflanked by alarge block of markers with nearly complete recombination suppression.

202  Thissuppressed region, which represents at least 4.5 Mb of DNA, isfreely recombining in IMF3
203  and DUNTIL but with a perfect reversal of marker order/orientation between those two crosses.

204  Fromthiswe infer that the IMF3 parents (IM62 and IM767) each have inversion karyotype “A”,
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205 the DUNTIL parents (LVR and DUN) each have karyotype “B”, and the other three crosses are
206  heterokaryotypic (one parent A and one B) for thisinversion. Noting that IM767 is A,

207  recombination suppression in the IMPR suggests the other parent in this cross (Point Reyes) has
208  orientation B. By similar reasoning, we can conclude that SF and SWC aso have orientation B.
209  Theright half of chromosome 10 islargely collinear among al five crosses, indicating the

210  inversion isthe primary influence on chromosome-wide likelihood. The GOOGA InLk of the
211 IMF3 datais-3784. If the IMF3 dataisforced into the optimized DUNTIL order, the InLk drops
212 to-4074 (AlnLk = 290; Supporting Table 3). This gives strong statistical support of the

213 inversion between the A and B homokarytypic crosses. The effect isless pronounced in the

214 heterokaryotypic crosses. For example, the AlnLks of the IMNAS data when forced into the

215 DUNTIL and IMF3 maps are 59 and 124, respectively (Supporting Table 3). Thus, as expected,
216  therecombination suppression in this heterokaryotypic cross results in relatively weak support
217  for either apure A or B inversion orientation.

218

219  Theinversion on chromosome 10 isthe only case among these crosses where we see free

220  recombination in both homokaryotypes and suppression in the heterokaryotypes. In al other
221  cases, one or more crosses reveal recombination suppression, with at least one homokaryotypic
222 cross aso present among our five populations (Supporting Figure 1 and Supporting Table 1).
223 Lowry and Willis[13] showed that reversal of marker order (asin Figure 2) for the inversion on
224  chromosome 8. Thisfeature isassociated with annual versus perennial life-history within M.
225  guttatus. Here, we see free recombination over the inverted region on chromosome 8 in IMF3,
226 IMSWC, and IMNAS (annual x annual crosses), and suppression in IMPR and DUNTIL (annual

227  x perennial M. guttatus and perennial M. guttatus x perennial M. tilingii, respectively). A similar
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228  patternisnoted for previously hypothesized inversions on chromosomes 5 (suppression in

229 DUNTIL and IMPR) and 13 (suppression in DUNTIL) [44] and for the meiotic drive locus on
230  chromosome 11 (suppression in IMF3) [46]. Given comparable evidence, we also identify three
231 nove putative inversions (Supporting Figure 1 and Supporting Table 4). A region of at least 1.2
232 Mb spanning scaffolds 19, 73 and 65 on chromosome 2 is completely suppressed in the IMPR.
233  Thereissubstantial recombination across this region in other crosses: 8 cM in DUNTIL, 10 cM
234 inIMF3,7cM inIMNAS, and 2cM in IMSWC. A larger physical region (=5 Mb on

235  chromosome 7) isfully suppressed in IMPR but not the other crosses (20-45cM). Finaly, a

236  stretch of =4 Mb on chromosome 14 is suppressed in the IMSWC cross but not in other crosses
237 (about 30 cM).

238

239  To provide amore general comparison of the extent of gene order differences among the crosses,
240  weimposed the optimal map in every cross onto the genotypic data from every other cross and
241 computed the AlnLk. Then we summed these for each chromosome. The larger the value of this
242 sum, the greater degree of structural discrepancy we observe between the optimal fits of each
243  cross (Table1). Asquantified by this metric, chromosome 10 has the greatest degree of

244  structural discrepancy, an unsurprising result given the large polymorphic inversion (Figure 2).
245  Chromosomes 5 and 11, which both show large tracts of reordered scaffolds and shared regions
246 of recombination suppression among several crosses, rank the next highest in the degree of

247  dtructural discrepancy among maps (Table 1). Surprisingly, the lowest value is for chromosome
248 8, which has a pairwise sum of AlnLk of only 75.4. The large inversion on chromosome 8

249  suppresses recombination in annual x perennial mapping populations, and as a consequence, the

250  ordering of scaffolds within the inverted region isfairly arbitrary in those heterotypic crosses.
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251  The pairwise sum of AlnLksis determined by map changes, and these are rather few for

252  chromosome 8. This result arises because the strongly supported, co-linear maps from the

253  homokaryotypic crosses (IMF3, IMSWC, and IMNAS) are also largely reiterated in the

254  suppressed crosses (DUNTIL and IMPR). However, all GOOGA maps of chromosome 8

255  represent avast improvement over the V2 map (mean AlnLk vs V2 = 985, Supporting Table 2),
256  suggesting the shared order that emerges from the inversion region is alarge improvement over
257  thereference genome.

258

259  Corrdation of estimated recombination rates with DNA composition

260

261  We next examined whether variation in the estimated recombination rates between successive
262  markers within scaffolds correlated with aspects of the DNA content. We obtained an averaged
263 recombination rate for each 200 kb window across mapping populations and then tested for

264  association with the proportions of DNA annotated as coding sequence, transposable e ements
265 (TEs), and putative M. guttatus cent728 centromeric repeats [55] (Figure 3). Recombination rate
266  ispositively correlated with coding sequence density (Pearson’sr = 0.218) and is negatively

267  correlated with TE density (Pearson’sr = -0.478). To test the impact of centromeric repeats [46]
268  on recombination rate, we binned our 200 kb windows into those with < 5% centromeric repeat
269  sequence vs. those with > 5%. Centromeres are expected to suppress recombination, and

270  consistent with this prediction, we see a significant drop in recombination in windows with > 5%
271 centromeric repeats (t-test p-value = 0.0003; Figure 3C). These resultsindicate that the

272 recombination rates estimated by GOOGA fit well with biological expectations.

273
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274  DISCUSSION

275

276 There has been aresurgence of interest among evolutionary biologistsin structural variation,
277  particularly in the contribution of chromosomal inversions to phenotypic variation, adaptive

278  divergence among populations, and speciation [15-18, 47-51]. Inversions are routinely

279  discovered from recombination suppression in genetic maps. They can be verified cytologically
280  [11] or by reversal in marker order when comparing different genetic maps (e.g. [13], Figure 3).
281  Our capacity to generate genetic maps has significantly advanced with RAD-seq and related

282 genotyping platforms [29-33], particularly in non-model organisms. We devel oped GOOGA in
283  response to these data, and with an eye toward statistically detecting structural variation.

284  Accommodating error in map construction methodology is particularly important with low-

285  coverage sequencing markers, which are abundant but error-prone. Propagating genotype

286  uncertainty throughout the process to the assignment of map likelihoods provides a means to
287  determine how strongly the underlying genotype data support apparent differences in scaffold
288  order and orientation. The application of GOOGA to detect previously identified structural

289  polymorphism in Mimulusiillustrates how evidence of map differences manifest as differencesin
290 likéihood (Figures1 & 2).

291

292  Andolfatto et al. [31] developed an HMM for use with RAD-Seq like data in genetic mapping.
293  We have adopted the HMM approach here, although with numerous updates to both the model
294  and implementation. First, we define markers within genomic windows, each inclusive of many
295 SNPs, eg. [43]. SNP callsfrom closaly linked sites are aggregated to make a putative call for

296  theancestry of each genomic region (e.g. AA, AB, or BB) of each recombinant individual.
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297  Given that the quality of individual DNA samples can vary greatly, we fit amode with

298 individua specific genotyping error rates. The intervals between markers are treated differently
299  depending on whether markers are within a genomic scaffold or between distinct scaffolds. The
300 former are subject to tests for genotyping consistency given implied close linkage. The latter are
301 explored using a genetic algorithm to order and orientation of scaffolds into chromosomes based
302 onthelikelihood of the data.

303

304  Window-based genotype calling is employed because there is substantial uncertainty associated
305  with SNP genotyping from low-level data, particularly when reads are mapped to an unpolished
306 draft genome. By applying calls to windows instead of individual SNPs, we sacrifice resolution
307 toobtain more robust markers. In thisapplication, we used 100 kb windows, which is about

308  0.3% of the average Mimulus chromosome. The resulting marker dengity is high relative to the
309 number of recombination breakpoints per chromosomein F2, F3, and RIL individuals (typically
310  1-3; Supporting Table 1) and sufficient for testing alternative maps. However, scoring

311 recombination events at the scale of 100-200 kb does limit inference of genomic features that
312  determine recombination. Factors defined effectively at the 100 kb scale, such as the density of
313  genes or transposable e ements exhibit clear correlations with recombination, as expected from
314  studies of other systems[52]. On the other hand, it istoo coarse to evaluate finer scale

315  determinants of recombination events. For example, population LD patterns suggest that

316  recombination is strikingly elevated near the start site of genesin M. guttatus [41]. Figure 3A is
317  fully consistent with this result: Mean recombination rate is correlated with the proportion of

318  coding sequence, which is strongly correlated with number of gene start sites per window.
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319  However, at the resolution we selected, we cannot distinguish the effect of start sites from other
320 features of generich regions.

321

322  Theemission probabilitiesin the HMM portion of GOOGA are based on individualized

323  genotyping error rates. This model feature stems from our observation that the quality of

324  genotyping datavaries quite substantially among samples, even of the same batch. This

325 variability likely reflects stochastic factors, such as variation in the amount/quality of input DNA
326  perindividual. Regardless of cause, we find substantial differencesin error rates among samples
327 inall mapping populations (Supporting Table 6), justifying the need to account for these error
328 ratesexplicitly and individually. While rates are typically low in absolute terms (medians around
329 0.01for ey and ey, much smaller for e;; see METHODYS), they are not negligible relative to

330  actual recombination rates between adjacent markers. Differencesin genotyping error rates

331  provide key weights on the contributions of different individuals to the overall likelihood of a
332  map and its associated collection of recombination rate estimates. A practical example of the
333 utility of genotype filtering and genotyping error estimation is that it enabled the discovery of
334  two novel putative inversionsin the IMPR cross (on chromosomes 2 and 7). These were not

335 identified in the original paper [43] because those authors imposed conservative thresholds both
336  on marker inclusion and on whether individuals were included in the final map construction.

337  Twice as many of the RIL plants are included in the present analysis and 25% more DNA is

338 included in the map (1958 100 kb markers here as opposed to 3073 50 kb windows in [43]).

339

340 Admittedly, a considerable diversity of factors may complicate marker construction from low-

341  coverage sequencing data [53-55]. We implement various filtering stepsin GOOGA to mitigate
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342  thesefactorsincluding SNP quality and allele frequency, SNP-level neighbor consistency tests,
343 read-depth thresholds, marker-level (100 kb interval) neighbor consistency and heterozygosity
344 tests, exclusion of individuals based on a high proportion of missing genotype calls, and/or high
345  genotyping error rates. The goal of thisfiltering isto produce a marker set that is consistent with
346  Mendelian segregation, but the filterswill not always succeed. For example, a small region on
347  chromosome 5 of the IMF3 cross involving only 7 markers (corresponding to the small scaffolds
348 226, 252, 94, 368 and 358) contributes 97 cM to the map length (over 40% of the total for this
349  chromosome). It ispossible that thisa high recombination region (an unknown amount of DNA
350  resides between these scaffolds), but it seems more likely a spuriousinflation. These scaffolds
351  map inconsistently in the other crosses —if they appear at al, they are not always adjacent. Of
352  coursg, incorrectly locating good markers can produce the same “map inflation” effect as

353  properly locating misleading markers. Also, even with fully accurate genotyping, recombination
354  based methods cannot resolve non- or low-recombining areas. Sequencing-based methods [56]

355  may berequired to identify structural variantsin these situations.

356

357  Mimulusresults—A tangible product of the application of GOOGA to Mimulus guttatusis that
358  we substantially revise the reference genome of this species. The reference line (IM62) isused
359  intwo of our crosses, most importantly in IMF3 whereit is crossed to another line from the same
360 population (IM767). Excepting the meiotic drive locus on chromosome 11 [46], IM767 appears
361 tobelargey collinear with IM62 (the two lines have the same orientation at other putative

362 inversions). Despite this, the GOOGA realignment of scaffolds yields a dramatic increasein

363 IMR3likelihood over the V2 assembly: AlnLk is 5464 when summed over all chromosomes

364  (Figure 1 and Supporting Table 2). Map revisions are found on each chromosome, and
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365  supported not only by AlnLk within IMF3, but also the maps from the other crosses. Incomplete
366  assembly isacommon and important problem in genomics, particularly in species with complex
367  patterns of repeats. The promising implication of Figure 1 isthat the rough genome assembly of
368  many species can be dramatically improved with alow-coverage sequencing of a mapping

369  population. Moreover, GOOGA quantifiesthe magnitude of improvementsin terms of increase
370 inlikelihood.

371

372 Theaignment of maps for chromosome 10 illustrates the effect of an inversion. A 5 mb region
373 (left portion of Figure 2) was previoudly identified as a putative inversion from recombination
374  suppressioninthe IMPR [43]. Thisisclearly confirmed here by the inclusion of both

375  homokaryotic crosses (AxA and BxB). Theresulting ‘map flip’ (top two panelsin Figure 2)

376  effectively ascertains the scaffolds included within the inversion and their ordering. This

377  example also highlights the importance of marker construction. Whileit is possible to construct
378  markers de novo with RAD-seq data [35], here we delineate markers on a previously assembled
379  set of reference DNA sequences (the genomic scaffolds from the M. guttatus reference genome)
380 obtained from a specific source (sequencing of the IM62 inbred line). There are clear advantages
381 todefining markersin this fashion, but care must be taken with this approach, especially in

382  distantly related populations. For example, weinitially assumed that the IM 62 reference genome
383  scaffolds correctly reflect the gene order for the other mapping populations. However, in our

384  analysisof chromosome 10, we found it necessary to break scaffold 13 into two parts (13a and
385  13b), though it is continuousin IM62. GOOGA reannealed 13a and 13b in the IMF3 cross but

386  inserted other scaffolds between them in other crosses due to a segregating inversion with a
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387  breakpoint contained within the original scaffold 13 (particularly DUNTIL; Figure2). This
388  impliesthat scaffold 13 was correctly assembled for IM62, but not for DUNTIL.

389

390 Inthefive crosses considered here, chromosome 10 is the only of the eight putative inversions
391  where both homokaryotypic crosses areincluded. Reversal of marker ordering between

392  homokaryotypic crosses was previously demonstrated for chromosome 8 [13], and with

393  appropriate selection of parental lines, could likely be shown for others. However, the sort of
394  reversal of genetic maps evident in Figure 2 requires polymorphism within both karyotypes. For
395  several structural polymorphismsin M. guttatus[12, 57], the derived karyotype is essentially
396  homogeneous (few or no SNPs). A cross between lines that share the derived karyotype can
397  only identify recombination events (and thus order scaffolds) when polymorphisms exist in that
398  cross. Although thiswill generally be the case for older inversions that have had time to

399  accumulate mutational variants, this requirement may be limiting for ordering scaffolds within
400 thederived aldic orientation of very young inversions.

401

402  Theinclusion of phenotype data with the IMSWC cross illustrates the importance of scaffold
403  ordering for downstream genetic analyses (Figure 4). Here, each F2 plant was scored for

404  progression to flowering, adichotomoustrait in the experimental photoperiod, which was

405  restrictive to floral induction for one cross parent. Application of the same QTL mapping

406  procedure to the data produces radically different outcomesif markers are placed according to
407  thecurrent M. guttatus reference genome (V2 map isthe top pane of Figure 4) or by the

408  GOOGA optimized map (bottom panel of Figure 4). Using the latter (which has a AlnLk

409  improvement of 1089 vs. V2; Supporting Table 2), the data suggest a single large-effect QTL
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410 localized to a map position 44-45 cM into chromosome 11, clearly upstream of the centromere
411  (at approx. 52 cM). QTL mapping to the V2 orientation yields three distinct peaks, each with a
412 high LOD score. The specific markers near the QTL peak in the GOOGA map are jumbled in
413  the V2 map which splits the signal (the genotype-phenotype association) into three distinct parts.
414 TheV2 mapisalso “stretched” — expanded in recombination length by over 20 cM — likely to
415  compensate for bad scaffold joins. Both of these effects are likely to impede QTL inferencein
416  places where the reference genome is misassembled.

417

418  Figure 4 suggests that GOOGA could be applied to test whether the reference genome order is
419  consistent with that of the focal population in a population genetic scan or trait mapping

420 experiment. Like Mimulus, many species and species complexes harbor significant segregating
421  inversions and other gene order polymorphisms (e.g. Drosophila melanogaster, Zea mays, and
422  the Anopheles and Helianthus species complexes [58-61]), but are represented by one or a small
423  number of reference genomes. One could start from predefined genomic scaffolds, as we have
424  done here, or by breaking the genome into small ‘ pseudo-scaffolds’. Then GOOGA could be run
425  on thisreference genome with an appropriate mapping population. Using metrics like AlnLk, one
426  could either confirm that the reference genome order is appropriate, or identify and fix issues as
427  wehavedonein IMSWC for Figure 4. This approach may offer a compelling solution for

428  species with incomplete genome assemblies such as Mimulus. Even in species with high-quality
429 reference assemblies (e.g. D. melanogaster), this method could extend the utility of existing

430  genomic resources in populationsthat are structurally diverged from the reference genome. This
431  application would be particularly convenient in cases where trait mapping is being performed via

432  RAD-Seq genotyping, as no additiona data would need to be generated.
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Application— The GOOGA pipelineisaset of modules including: (A) procedures to make
genetic markers from low-coverage sequencing data in conjunction with a collection of genomic
scaffolds, (B) a method to estimate genotyping error rates specific to each individual, (C) an
application of the HMM to estimate recombination rates and obtain a likelihood for a specific
ordering and orientation of genomic scaffolds, i.e. the map, and (D) a Genetic Algorithm (GA) to
search map space to obtain pseudo-chromosomes that maximize the likelihood of the data.
While GOOGA was developed as an integrated series of steps, the features and requirements of
other datasets will differ from these Mimulus crosses. In these situations, one or more of the
components might be used apart from the rest. We outline afew options below that could be

appropriate for different species or scenarios.

The ssimplest application: Use (A) to create markers and then apply standard map making
software [62, 63] to the resulting genotype matrix. If applied to the Mimulus mapping
populations (or comparable datasets), this matrix directly from (A) contains a great excess of
missing data. Extensive culling, both of individuals scored for too few markers and markers
scored for too few individuals (e.g. [43]), is required to successfully apply standard map making
programs. An aternative isto apply (A)-(B)-(C) to generate genetic markers. Assuming that the
genomic scaffolds are generaly reliable, the HMM will leverage data from neighboring windows
to inform genotype calls. After obtaining the MLE on rates, one can extract posterior
probabilities on genotypes and then impose ‘hard calls', e.g. [36], to create a genotype matrix.
We found this approach to be useful across awide range of RAD-Seq coverages (see

METHODYS), including as little as ~10 informative reads per windows. Another possibility isto
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456  replacethe front end of the pipeline. If one has high certainty in the validity of individual SNPs
457  (their location and scoring), it is natural to replace windows (A) with individual SNPs as the
458  oObserved states of the HMM ([31], Figure 5). Finally, while we found the GA effective for

459  searching map space (D), other map optimization methods exist (e.g., [64, 65]), and these

460  alternative procedures may prove useful in searching order/orientation possibilities given that
461  each can be assigned alikelihood.

462

463
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464 MATERIALSAND METHODS

465

466  Genomic scaffolds—The first iteration of the M. guttatus reference genome (v1, available at
467  https://phytozome.jgi.doe.gov; login required), obtained from sequencing of asingle inbred line
468  (IM62; Iron Mountain, OR, USA), consists of over 2000 scaffolds. The longest are greater than
469 4 Mbinlength (about 15% of an average M. guttatus chromosome) but the great majority of
470  sequenceis contained in scaffolds 10 kb - 1 Mb in size. The current assembly (V2 reference
471  genome: available at https://phytozome.jgi.doe.gov; login required) orients most of the vl

472  scaffoldsinto chromosomal groups based on multiple sources of information [41]. For the

473  present analysis, we revert back to the vl scaffolds as atarget for mapping sequence reads from
474  recombinant individuals. We retain the set of breaks that were made to v1 scaffolds when

475  creating the V2 build given that these breaks were largely corroborated by a subsequent mapping
476  study [43]. We append a letter to names for broken v1 scaffolds, e.g. scaffold 97 is now

477  scaffold_97a, scaffold_97b, and scaffold 97c. Next, we appended the mitochondrial and

478  chloroplast genomic contigs to the scaffold list and masked repetitive regions to produce our read
479  mapping target: Updated v1 hardmasked.fa. The autosomal v1 scaffolds are the basic units for
480  subsequent work. Markers are defined as contiguous stretches of DNA within these scaffolds.
481

482  Creation and Genotyping of Mapping populations—Five crosses are analyzed in this study.
483  Threecrosses are F2s (IMNAS, IMSWC, DUNTIL), oneisan F3 (IMF3), and oneisa

484  Recombinant Inbred Line panel (IMPR). The IMF3 population was founded by crossing two
485  highly homozygous lines (IM62 and IM767) sampled from one population (Iron Mountain, OR,

486 USA). A single F1 plant was selfed to create many F2s. F2 plants were randomly paired and
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487  crossed to produce F3 seed. Over 1000 F3 hybrids were grown to maturity and a random subset
488  of these plants were genotyped for map construction. The IMSWC cross was formed from a
489  cross between IM62 and SWC, an annual plant from a population of M. guttatus from Mapleton,
490 OR, USA. The DUNTIL cross was formed by crossing an inbred line of M. guttatus (DUN10;
491  Florence, OR, USA) to aninbred line of Mimulustilingii (LVR; Inyo, CO, USA) [44]. For both
492 IMSWC and DUNTIL, asingle F1 plant was self-fertilized to create the F2 plants that were

493  subsequently genotyped. IMNAS is atri-parental cross: Two inbred lines from Iron Mountain
494 (OR, USA) M. guttatus were each crossed to the SF5 (Sherars Falls, OR, USA) inbred line from
495  salfing species Mimulus nasutus. The two interspecific F1s were then intercrossed [(SF5xIM 160)
496 X (SF5xIM767)] to produce the F2 plants. Because IM160 (like the reference line IM62) carries
497  thedriving D centromeric variant of LG11, which transmits nearly 100% via female function in
498  heterozygotes with the M. nasutus d variant [46], this F2 segregates as a backcrossin the D

499  region. Finally, the IMPR are aset of highly homozygous lines derived from serially selfing
500 progeny from a cross between IM767 and PR from the Point Reyes, CA, population of M.

501  guttatus (see[66] for a description of RIL line formation).

502

503 The DNA extraction method and procedures for genotyping individuals using the Multiplexed-
504  Shotgun-Genotyping (MSG; [31]) are described in Holeski et al [43]. Briefly, we digested DNA
505 from each sample using arestriction enzyme (Msel or Asel) and then ligated unique Bar-Coded-
506  Adapters (BCAS) to the resultant DNA fragments. After numerous cleaning steps, we size-

507  selected our library for fragments between 250-425 bp. We then performed PCR reactions (14-
508 18 cycles) using Phusion High-Fidelity PCR Master Mix and primers that bind to common

509 regionsinthe BCAs. Thiselongates the moleculesto contain necessary flanking sequence
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510 including the Illumina adaptors as well as additional indices to allow further multiplexing of
511  sampleswithin a single sequencing lane. Subseguent sequencing was performed using the

512 [lluminainstrument. Msel was used for the restriction digest to make alibrary for each the five
513  mapping populations. We made a second library for the IMF3 population with aless frequent
514  cutter, Asel. The genotype calls for IMF3 are synthesized from sequencing on these two

515 libraries (see below). Details regarding the sequencing for DUNTIL [44], IMPR [43], IMNAS
516 (Finseth et al, 2018, in prep) and IMSWC (Kooyers et a, 2018, in prep) are reported elsewhere,
517  though briefly DUNTIL and IMSWC were sequenced at the Duke University Center for

518  Genomic and Computational Biology, IMPR and IM F3 were sequenced at the University of
519  Kansas Genome Sequencing Core, and IMNAS was sequenced at Hudson Alpha Genomic

520  Services Laboratory.

521

522  Following sequencing, we demultiplexed reads into sample specific fastq files and then edited

523  each with Scythe (https://github.com/vsbuffal o/scythe/) to remove adaptor contamination and

524  then with Sickle (https://github.com/najoshi/sickle/) to trim low quality sequence. We used the

525 mem function of BWA [67] to map read (or read pairs), one sample at atime, to

526 Updated v1 hardmasked.fa. Following read mapping, we identified putative SNPs using the
527  UnifiedGenotyper function of the Genome Analysis ToolKit (GATK; [68]).

528

529  For each mapping population, the input data to create markersis a vcf file with all recombinant
530 individuals scored for SNPs within individual reads or read pairs (RADtags) along with whole-
531  genome sequencing data from one or both parental lines. We eliminated SNPs with a mapping

532  quality scorelessthan 30 or aminor allele frequency less than 0.1. We further thinned the data to
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asingle SNP per RADtag, sdlecting the one with the most scored individuals. We then examined
the relationship between read depth and apparent genotype for each SNP. There should be no
relationship between the actual genotype and read depth, but M SG data exhibits two depth-
related difficulties that require attention. First, thereistypically under-calling of heterozygotes
(relative to the binomial expectation) with low read depths [31]. Thisdifficulty is addressed by
the window based genotyping method (see below). Second, high read depth SNPs routinely
deviate from Mendelian expectations, both in terms of allele frequency in the mapping
population and in level of heterozygosity. After inspecting the distribution of reads called to
each parent per individual for each possible read depth, we set a maximum median depth (across
individuals scored for a SNP) specific to each mapping population: 10 for IMPR, 3 for IMSWC,
4 for DUNTIL, 10 for IMNAS, 5 for Msel libraries of IMF3, 20 for Asel libraries of IMF3.

SNPs with excessive depth were suppressed.

Denoting the two parents of a mapping population as A or B, alleles were scored by assigning
the reference base at each SNP to a specific parent (A or B). This was possible because one or
both the parentsin each crosses was M SG genotyped and/or fully genome sequenced. For the
IMF3 population, one parent (IM62) is the reference genome sequence and the other (IM767)
has been fully sequenced [37]. IM62 was also a parent in the IMSWC cross and the alternative
base at a SNP is necessarily from the second parent (SWC). We used the IM767 genome
sequenceto polarize basesin the IMPR. For DUNTIL, we used genome sequences from both
parents (LVR and DUN10) to specify base ancestry in the F2s[44]. For the IMNAS cross, we
limited consideration to SNPs where an F1 hybrid between the IM767 and IM 160 parents was

homozygous for one base and the SF5 parent was homozygous for the alternative. After
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556  establishing callsto parent A/B for each SNP along each v1 scaffold, we imposed another layer
557  of filtering based on consistency of the inferred parent within a recombinant individual along v1
558  scaffolds. We expect the same parentage of closely linked SNPs: If an individual isAA at a

559  SNP, it should usually be AA at neighboring SNPs (excepting occasional recombination). SNPs
560  exhibiting excessive disagreement were eliminated (details below).

561

562  Window based genotype calling: We delineated markers as genomic windows of 100 kb in

563  length within each v1 scaffold. The last marker on each scaffold included all remaining

564  sequence beyond the last complete 100 kb segment, and was typically shorter. Within each

565  window, we counted the number of reads scored as A and as B (across SNPs) within each

566  recombinant individual. If the fraction of reads from parent A exceeded 95%, the individual was
567 caled AA for the marker; less than 5%, the genotype call was BB. If the fraction was between
568  25% and 75%, the individual was called AB. This method to assign putative genotypes (Figure
569 5) wasdesigned to aggregate signal from closely linked SNPs that exhibit low average coverage
570 and high variance in coverage among individuals. It compensates for heterozygote under-

571  caling, whereindividual that are genuinely heterozygous appear homozygous at SNPs where the
572  few reads present are all from one parent. Across a series of closely linked SNPs apparent

573  homozygosity at individual sites may be high, but because alterative alleles (A or B) dropout at
574  different SNPs, the smilar overall frequencies of aternative bases within awindow (summing
575  across sites) indicated heterozygosity.

576

577  The genotype calling procedure defaults to ignorance (NN = No Call) if it cannot assign the

578 marker to AA, AB, or BB following the rules above, or if fewer than 5 reads are mapped to the
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window. These cases of ambiguity can result either from mis-mapping of reads (in which case
the read counts are misleading) or if recombination ‘splits' the marker in an individual (in which
case the true genotype is actually a combination of two different genotypes, e.g. AA-AB).
Scoring elther scenario as NN is suitable for downstream analysis by the HMM — data from
neighboring markers will strongly inform inference of the underlying genotype at the NN

marker.

The resulting genotype file for each individual is AA/AB/BB/NN at each marker. We imposed a
third layer quality filtering at the scale of window-based genotypes. Each marker was scored for
genotype frequencies and agreement of markers within 1 mb windows. We eliminated markers
that were excessively heterozygous across mapping populations and/or exhibited high
disagreement with neighboring markers. Within each mapping population, we suppressed loci
that were excessively heterozygous in that population and/or had low numbers of called
individuals. Finally, we imposed a cross-specific minimum number of called loci for aplant to
be included in subsequent mapping. The programs used in the pipeline described above, as well
asthe likelihood algorithms described below, are available at

(https://github.com/flag0010/GOOGA).

Likelihood calculations—We treat recombination along each chromosome as a Markov Process
with the true genotypes of each recombinant at each marker as the states of a Markov Chain.
The likelihood takes the form of an HMM because the putative genotype calls (AA, AB, BB, or
NN at each marker as obtained by methods described above) are treated as observed states[31,

69, 70] (Figure 5). The hidden states are the true underlying genotypes (AA, AB, or BB). The
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602  trangtion probabilities are contingent on recombination rates and the experimental design, the
603  resulting HMM is thus non-homogeneous [71]. In an F2 population, the probabilities are (1-r)?,
604  2r(1-r), and r* for AA transitioning to AA, AB, and BB, respectively [72]. The recombination
605 rate, r, is specific to the flanking markers and we assume symmetry in transitions from BB to
606  alternative genotypes. The transition probability of AB to AB is (1-r)? + r? and the probability
607  AB to either homozygoteis 2r(1-r). An additional round of recombination occursin an F3

608  population in gamete formation by F2s. However, the probabilities have the same form except
609  with an expected 50% increase in recombination rate values (assuming no change in crossover
610  rates between Flsand F2s). Inthe RILS, heterozygosity has largely been eliminated by

611  inbreeding. We suppress the remaining heterozygous regions by calling N at those loci. For the
612  resultant genotypes, we stipulate the transitions probabilities as (1-r) and r for AA transitioning
613  to AA and BB, respectively. For both RILs and F3s, ther parameter is actually a composite
614  from multiple meioses. These apparent recombination rates are distinct from r of the F2

615  populations (the expected proportion of recombinant gametes from one round of meiosis) [73].
616  Thus, while the same markers are present across the different types of mapping populations, the
617  absolute value of r will vary according to crosstype. The emission probabilities are determined
618 by individual-specific genotyping error rates (Figure 5). Three distinct error rates are estimated
619  for eachindividual (i): the probability that a true homozygote yields a putative call to

620  heterozygote (ey) or to the opposite homozygote (ey), and the probability that a heterozygote
621 yieldsacall to one of the two homozygotes (). Regarding the last rate, we assume that errors
622  toether of the alternative homozygotes are equally likely (last emission in Figure 5).

623
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624 The HMM isapplied in three stages, first to estimate individual-specific error rates, then to

625  obtain preliminary recombination estimates between markers within scaffolds, and finally to

626  search for the optimal order and orientation of scaffolds within chromosomes (and also estimate
627  recombination rates between scaffold ends within chromosomes). Genotyping error rates are
628  estimated from transitions between genotypes within v1 scaffolds; we assume marker order in
629 thescaffold is contiguous and correct. The transition probabilities depend on the true

630  recombination rate per base pair, which is unknown and can vary across the genome. However,
631  to estimate error rates, we fit a simple ‘homogeneous model assuming that recombination rateis
632  proportional to physical distance between markers within scaffolds. We set rates to the genomic
633  average of 5.0 cM/Mb for F2 populations and 10.0 cM/Mb for F3 and RIL populations. These
634  point estimates are based on map lengths from numerous prior Mimulus studies[42, 45]. The
635 likelihood of data from each scaffold of an individual plant isthen afunction of ey, e, and e,
636  andthelikelihood for the entire plant is a product across scaffolds. For each plant we obtain the
637 MLE of ey, e, and ey via application of the forward-backward algorithm [74] coupled with the
638  bfgsbounded optimization routine [75] of scipy.optimize

639  (https://docs.scipy.org/doc/scipy/reference/optimize.html). We also used the bfgs optimizer to

640  obtain MLE for recombination rates as described below.

641

642  Theindividual-specific error rates (reported as Supporting Table 6) are used in two ways. First,
643  we used the estimates to cull plants with high error rates from subsequent analyses. For

644  example, there were 130 F2sin the IMNAS population that passed preceding filters and fit for
645  genotyping error rates. After excluding all plantswhere (ey + € + &) > 0.1, we obtained the set

646  of 91 plants used for al downstream analyses. The post-error rates estimation sample sizes are
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647 181 for IMF3, 872 for IMSWC, 205 for DUNTIL, and 260 for IMPR. Second, the genotyping
648  eror rates are treated as individual-specific constants in subsequent modd fitting where marker-
649  to-marker recombination rates (Figure 5) are free parameters. To obtain the MLE for

650  recombination rates, we set the lower and upper bounds on rates as 0.0 and 0.2, respectively. A
651  preliminary set of recombination estimates between markers within scaffolds was obtained by
652  maximizing the likelihood with respect to r values for each scaffold across all plantswithin a
653  mapping population. This collection of estimatesisused in the GA search for optimal scaffold
654  orders and orientations within linkage groups (described below), but not in the final maps. With
655  one exception, the intra-scaffold r estimates are small, consistent with close linkage. We noticed
656  avery high rate between two adjacent markers on scaffold 13 of the DUNTIL cross. The same
657  interval exhibits normal (r < 0.01) recombination ratesin other crosses. Given evidence for an
658  inversion breakpoint (further evidence below), we split scaffold 13 into 13aand 13b 700 kb into
659  the scaffold.

660

661  Thethird HMM application isto an entire linkage group for all individualsin a mapping

662  population. Thisrequires assignment of scaffoldsto linkage groups. We tested assignments
663  from the V2 build and found them consistent with our genotyping data (markers on the same
664  linkage group exhibit positive association of genotypes). We were able to tie an additional 26 v1
665  scaffoldsto linkage groups which were unassigned in the V2 build (Supporting Table 5). In the
666  fully general model, thereare L — 1 + K recombination ratesto be estimated, where L isthe

667  number of scaffolds on the chromosome and K is the number of intra-scaffold rates within these
668  scaffolds. Thelikelihood of aparticular “map” (a specific ordering of scaffolds, each with a

669  positive or negative orientation) is determined mainly by the data at the “joins’ (where two
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670  scaffolds meet). Inthe GA runsthat search map space (described below), we held intra-scaffold
671 ratesat their estimates from the stage 2 HMM. Thus, each evaluation was based on the

672  likelihood of the map after optimizing relative to inter-scaffold rates. However, we apply the full
673  model (all intra- and inter-scaffold recombination rates re-estimated) to our final map for each
674  chromosome of each mapping population. In either case, we abtain the maximum likelihood via
675  application of the forward-backward algorithm.

676

677 Thegenetic algorithm—GOOGA maximizes the likelihood of the HMM using a genetic

678  agorithm (GA) on aper chromosome, per mapping population basis. A GA isan algorithmic
679  optimization scheme inspired by sexual reproduction and natural selection [76]. Below we use
680 termssuch as“individua”, “mutation”, “recombination”, and “selection” asthey are frequently
681  usedinthe GA literature, however, be aware we are not referring to biological entities or

682  processes. To build the GA we first coded unique scaffold orders, including scaffold orientations
683  (i.e. forward strand vs. reverse complement), to make an "individual”. Each individual

684  represents a candidate solution among a population of individuals (N=19) competing against one
685  another in agiven generation. For each generation we used the HMM described above to

686  calculatethelikelihood of each individual. To preserve the best scaffold orders, we used

687  astrategy called ditism (E), which allows a predetermined number (E=3 in our case) of the

688  best individuals (i.e., highest likelihood scaffold orders) to go on to the next generation

689  unchanged. To fill the remaining N-E spots in the next generation, we applied rank-based

690  selection to select pairs of individualsto “mutate’” and “recombine”’ into new individuals before
691  adding to the next generation. To accomplish this, all N individuals were sorted in ascending

692  order by likelihood and each individual (i) was assigned arank (R) of 1 to N. The probability of
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693  selecting anindividual on the basis of itsrank was P(i) = R;/Y. k-1 Ry. 16 pairsof unique

694  individuals were randomly selected based on these probabilities, and subjected to mutation and
695  recombination operations. We used a mutation scheme called “ swap mutation”, where

696  oneindividual was randomly selected from the pair, and then the location of up to four pairs of
697  scaffolds within that individual were randomly swapped (while also flipping the orientation 50%
698  of thetime), thus creating a new “mutant” scaffold order. The mutated individual was then

699  recombined with the other member of the pair. Recombination was performed using a scheme
700 called the“order crossover”. Thisinvolvesfirst choosing arandom length segment of scaffolds
701 from the donor individual and randomly inserting it into the scaffold order of the recipient

702 individual to make anew individual. Each scaffold contributed by the donor is, now duplicated
703  intherecipient individual. To fix thiswe deleted all the recipient individual’ s copies of the

704  duplicated scaffolds, while preserving the relative order of the non-duplicates. The swap

705  mutation and ordered crossover do not mimic the mechanics of biological mutation or meictic
706  recombination. However both create diverse new individuals (i.e. scaffold orders) while

707  preserving partial solutions from both the donor and recipient individuals. This allowsthe GA to
708  build on past successes while exploring new scaffold orders.

709

710  The calculations were parallelized so that the HMM could be run simultaneously on each

711 individual in the population. To further speed up the HMM, we implemented a memoization
712  strategy that stored past recombination fraction (RF) results between scaffolds and injected those
713 precomputed results into the future HMM calculations to avoid recalculation. To understand the
714  mechanism of the memoization strategy, as atoy example and for the moment ignoring scaffold

715  orientation, imagine a chromosome with four scaffolds A, B, C, and D and an initial individual
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716  ordered ABCD with RF rates computed between A-B, B-C, and C-D. After calculating the RF
717  ratesfor thisindividual, we store the RF rate for the entire length (ABCD) and RF rates of all

718  suborders of at least two scaffolds (ABC, BCD, AB, BC, CD), to create a catalog of previously
719  computed rates. Then, when afuture individual is produced, say DABC, we would search the
720  catalog for matches starting with the longest members (ABCD) and then the next longest (ABC,
721 BCD), and so on until the catalog is exhausted. For DABC, the first match would be the suborder
722 ABC, which would supply RF rates for A-B and B-C, leaving D-A as the only missing RF rate to
723  becalculated. After HMM calculation, all new suborders (DABC, DAB, and DA) would be

724  added to the catalog for future use. This approach greatly speeds up calculation, especialy at the
725  later stages of optimization when many individuals tend to have large tracts of identical scaffold
726  orders. We found that this approach reliably underestimates the likelihood value by a small

727  amount when compared to the much slower processes of calculating all RF rates de novo for

728  every new individual (among 750 random test samples all memoization estimates had a lower
729  natural log-likelihood, with a median underestimate of 0.02%). This means the memoization

730  method is consistently slightly conservative. For this reason, when a new individual was found
731  to beamong the elites (i.e. apromising new scaffold order), the program paused and recomputed
732 thisindividual’s exact likelihood without precomputed RF rates and used this more precise

733 likelihood for future ranking. The GA procedureisimplemented in Python (version 2.7),

734  utilizing functions from the scipy library (http://www.scipy.org/). The code is open source and

735  available online (https://github.com/flag0010/GOOGA). All GA runswere initiated with amap

736  based on the V2 genome order. The program was configured to terminate after 1000 generations
737  with no change to the highest likelihood map or after running for 96 hrs.

738
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After obtaining an optimal map for each cross considered in isolation, we contrasted the
likelihood to that obtained under the V2 orientation. AInLk isthe difference in the natural log
likelihood between two maps, each consisting of the same markers and their self-optimized
recombination rates. We use this statistic as a measure of goodness of fit of data to alternative
orderg/orientations of scaffolds (e.g. Figure 1). We extracted MLE recombination rates from
each mapping population to be compared to DNA level features such as amount of coding DNA,
number of transposable elements, and the presence of centromeric DNA. For these analyses, we
defined a 200 kb interval around each 100 kb-long marker, starting at the midpoint of the
preceding marker and ending at the mid-point of the next marker. The analysisis defined at this
scale to absorb recombination events that occur mid-marker (thusyielding NN at the focal site as
described above). Consider the first three markers on a scaffold defined on the position ranges

0-100 kb, 100 kb-200 kb, and 200 kb-300 kb, respectively. We related the sequence interval
from 50 kb-250 kb to the sum of the two rates (I, + 1, 30f Figure5). Thisanalysis neglected

very small scaffolds, the sequence at the ends of longer scaffolds, and the estimated rates
between scaffolds (the amount and the features of the interceding DNA are unknown anyway).
In this analysis, we also excluded regions where recombination is suppressed due to inversions
(Supporting Table 4). We obtained asingle rate for each interval by first standardizing map
specific rates by thetotal length of each map and then calculated a weighted mean across
populations. The weight given to estimates from each crossis proportional to the reciprocal of
the genome-wide recombination rate variance: IMPR =1, IMSWC = .899, IMNAS = 0.790, and

DUNTIL =0.677, and IMF3 = 0.380.
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QTL mapping in IMSWC population: As atest case to demonstrate the value of applying
GOOGA for genetic map construction prior to downstream applications, we compared
guantitative trait locus (QTL) mapping results for the IMSWC cross using ether the optimized
scaffold order generated by our pipeline vs. the scaffold order of the M. guttatus v2 reference
genome. For each of the 873 F2s used for genetic map construction, genotype

posterior probabilities were emitted for each of the 111 markers defined for chromosome 11.
This chromosome harbors a major QTL that contributesto variation in the ability to flower under
13 hour light : 11 hour dark conditionsin this cross (Kooyers et a. 2018, in prep.). Genotypes
were then assigned at each marker for each individual based on the genotype with a posterior
probability > 0.95; otherwise, the genotype was called as missing. For each marker order,

we calculated recombination frequencies (map function = haldane), imputed

genotype probabilitiesat 1 cM steps (error probability = 0.001), and performed interval mapping

using the binary model in R/QTL [48].
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Table 1. Summed pairwise changes in log-likelihood values by chromosome given in
descending order. For each chromosome we imposed the final scaffold order from every cross
onto every other cross and calculated the difference in the natural log likelihoods (AINLK)

between the crosses own order versus thisimposed order. Sums are given on the set of AlnLks
for each chromosome. A large positive AlnLk indicates a pair of crosses with highly
incompatible orders.
Chromosome Sum of Pairwise
AlnLk
10 5581.1
5 5330.1
11 3503.0
3 2263.3
12 1449.2
13 1301.0
1 1203.7
7 845.8
6 828.2
2 782.0
4 610.8
14 551.0
9 442.1
8 75.4
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Figure 1. Theimprovement of the chromosome map between the M. guttatus V2 reference
genome and the GOOGA optimized order for three chromosomes (IMF3 cross). Within each
panel, the V2 order is shown above the IMF3 optimized order. Each genomic scaffold isdrawn
to its genetic map length (in Morgans) and denoted in green if it maps on the forward strand or
red for the reverse strand. Grey lines connect the same scaffold in the V2 and optimized order.

Figure 2. A reversal of genomic scaffolds dueto aninversion isillustrated by the comparison of
chromosome 10 maps for all five crosses. Each genomic scaffold is drawn to its genetic map
length and denoted in green if it maps on the forward strand or red for the reverse strand. Grey
lines connect the same scaffold between maps.

Figure 3. The effect of genomic features on recombination rate isillustrated. Panel A shows the
positive correlation between the proportion of coding sequence and recombination rate. Panel B
shows the negative correlation between the proportion annotated as a transposable element (TE)
and recombination rate. For both panel A and B the red line markers the least squares best fit.
Panel C shows the recombination rate distributions for 100 kb regions with >5% centromeric
repeat content, or <5% centromeric repeat content.

Figure4. Theresults of QTL estimation using the V2 map (top panel) versusthe IMSWC
optimized map from GOOGA (bottom panel). The maps are aligned in middle panel.

Figure 5. The structure of the Hidden Markov Model isillustrated for F2 individuals.
Transitions between genotype states (AA, AB, or BB) for markers m; through m, in the latent
state layer are determined by recombination fractions (r) between pairs of markers. The
probabilities of each latent state estimate are then propagated into the emitted state layer with a
genotyping error rate term that is specific to each individual (subscript i).
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1104 SUPPORTING INFORMATION LEGENDS

1105

1106  Supporting Figure 1: Comparative genetic maps for each of the five populations used in this
1107  study. For each chromosome the maps from each of the five populations are given. Each

1108  genomic scaffold is given in a separate color.

1109

1110  Supporting Table 1: Spreadsheet with marker orders. This spreadsheet includes the maps of
1111 every chromosome for each cross, and physical and genetic location of each marker. The last
1112 marker of each chromosome gives the map InLk.

1113

1114  Supporting Table 2: Delta natural log likelihood (AlnLk) between GOOGA and V2 marker
1115  order. For each chromosome and each population the AlnLk is given. Large positive values
1116  indicate that the mapping data fits the GOOGA optimized order much better than the V2 genome
1117  order.

1118

1119  Supporting Table 3: Likelihood differences from imposing each GOOGA optimized map order
1120  onto every other population. All pairwise contrasts between population are given for each

1121 chromosome. “Home” isthe focal data set, and “away” indicates the imposed map order. llI1is
1122 thelikelihood of “home” init’s own map order, and |12 is“home” in the “away” order. “Diff” is
1123 thedifference between |11 and I12.

1124

1125  Supporting Table 4: All putative chromosomal inversions identified by GOOGA among the
1126  five mapping populations.

1127

1128  Supporting Table 5: Unplaced V2 genome scaffolds which were given aphysical location from
1129 GOOGA. Thetable givesthe vl scaffold name and intervals for scaffolds that we were able to
1130  assign to one of the 14 Mimulus chromosomes. Their specific locations can be found in

1131 Supporting Table 1.

1132

1133  Supporting Table 6: Estimated genotype error rates for every individual from every population
1134  used inthisstudy.
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