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ABSTRACT 17 

 18 

Understanding genomic structural variation such as inversions and translocations is a key 19 

challenge in evolutionary genetics. In this paper, we tackle this challenge by developing a novel 20 

statistical approach to comparative genetic mapping.  The procedure couples a Hidden Markov 21 

Model with a Genetic Algorithm to detect large-scale structural variation using low-level 22 

sequencing data from multiple genetic mapping populations. We demonstrate the method using 23 

five distinct crosses within the flowering plant genus Mimulus.  The synthesis of data from these 24 

experiments is first used to correct numerous errors (misplaced sequences) in the M. guttatus 25 

reference genome.  Second, we confirm and/or detect eight large inversions polymorphic within 26 

the M. guttatus species complex.  Finally, we show how this method can be applied in genomic 27 

scans to improve the accuracy and resolution of Quantitative Trait Locus (QTL) mapping.   28 

 29 

AUTHOR SUMMARY 30 

 31 

Genome sequences have proved to be a critical experimental resource for genetic research in 32 

many species.  However, in some species there is considerable variation in genomic 33 

organization, making a single reference genome sequence inadequate.  This variation can cause 34 

issues in interpreting genomic signals, such as those coming from trait mapping. We introduce a 35 

new statistical method and computational tools that use linkage information to reorganize a 36 

single reference genome to 1) repair genome assembly errors, and 2) identify variation between 37 

individuals or populations of the same species. Using this method we can create a new genome 38 

order that improves upon the reference genome. We apply this method to five crosses among 39 
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plants in the Mimulus guttatus species complex.  In this system we detect eight large 40 

chromosomal inversions and improve the resolution of a trait mapping study.  This work 41 

highlights the utility of our method, and indicates how others studying diverse species might use 42 

them to improve their own research.  43 

  44 
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 INTRODUCTION 45 

 46 

Over the last decade, genetic research has been revolutionized by the availability of whole 47 

genome sequences for many of the world’s medically, ecologically, and agriculturally important 48 

species.  It has become increasingly clear that a single reference genome sequence is an 49 

insufficient description for many species.  For example, a comparison of two maize accessions 50 

found that over 2,500 genes were present in only one of the two genomes [1].  Even in humans, a 51 

species with significantly less genetic diversity than maize, segregating structural and gene 52 

content polymorphisms are abundant [2].  Differences in gene copy number [3-6], variation in 53 

gene order [1, 7, 8] and chromosomal inversions [9-13] are not captured by a single reference 54 

genome, nor can they be annotated succinctly in relation to a single reference as is possible for 55 

Single Nucleotide Polymorphisms (SNPs).  These structural and gene content variants have 56 

important phenotypic consequences in many species, highlighting the need for intensive study 57 

[14-18].   58 

 59 

Recognizing structural variation is important for many of the experimental applications of 60 

genomic science.  Consider trait-mapping analyses in species with segregating chromosomal 61 

variants. Many trait-mapping approaches (e.g. genome-wide association studies or bulked 62 

segregant analyses) rely on the accumulation of signals from adjacent genomic regions 63 

(windows) to establish significance.  If gene order in the population under study differs from the 64 

reference genome, the proximity and presence of genomic windows can be incorrectly inferred.  65 

This, in turn, undermines interpretation of both the location and significance of QTLs [19]. 66 

Similar issues can arise in population genomic inferences, such as scans for selection or 67 
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introgression [20, 21].  One solution is to make reference genomes for every divergent accession 68 

under study [4].  When this is not feasible, an alternative approach is to construct ‘pseudo-69 

chromosome’ assemblies to better match structural variation in the focal accessions.  Regardless, 70 

accounting for structural variation is an important challenge for the continued development of 71 

evolutionary genomics. 72 

 73 

In this paper, we develop a new approach to pseudo-chromosome construction using 74 

comparative genetic mapping as the primary tool. In species with repeat rich genomes, whole 75 

genome shotgun sequencing and assembly typically yields many thousands of scaffolds. These 76 

scaffolds can be stitched together to form pseudo-chromosomes; often a necessary prerequisite to 77 

the trait-mapping and population genomic analyses.  There are various techniques for making 78 

pseudo-chromosomes, such as following a BAC-tiling path [22], optical mapping using 79 

nanochannel arrays [23], or by localizing the scaffolds to markers on a genetic map [24, 25]. 80 

Genetic maps have proved to be invaluable tools for initial genome construction and pseudo-81 

chromosome assembly [26-28].  We extend this approach using comparative genetic maps from 82 

five distinct crosses, allowing us to simultaneously improve the pseudo-chromosome 83 

representation of the reference genome and also identify large-scale variation in gene order, 84 

including chromosomal inversions and translocations.   85 

 86 

Our approach utilizes data from low-coverage sequencing.  RAD-seq [29, 30] and related 87 

reduced-representation methods [31-33] allow cost-effective genotyping of hundreds of 88 

recombinant individuals in species with limited molecular tools or known genetic markers.  89 

While RAD-seq data is often used to create de novo markers [34, 35], sequences can also be 90 
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directly mapped to genomic scaffolds.  Recombinant genotypes located to genomic scaffolds can 91 

then be used to assemble pseudo-chromosomes.  Unfortunately, there are substantial challenges 92 

in constructing genetic maps from low-coverage sequencing data and also in the inference of 93 

map differences (i.e., the evidence for structural variation).  New approaches are needed to 94 

address the following major methodological questions: What is the optimal means to convert 95 

sequence data into markers?  How should we accommodate genotyping error in these markers 96 

given that the error rate is often high and variable among samples?  After locating markers to 97 

genomic scaffolds, how do we obtain the optimal order and orientation of scaffolds into pseudo-98 

chromosomes?  Finally, how do we determine if putative differences between maps are real? 99 

 100 

In this paper we develop a statistical procedure called Genome Order Optimization by Genetic 101 

Algorithm (GOOGA) that detects structural variation using marker data from multiple genetic 102 

mapping populations.  Importantly for error-prone low-coverage genotyping, GOOGA 103 

propagates genotype uncertainty throughout the model, thus accommodating this source of 104 

uncertainty directly into the inference of structural variation. GOOGA couples a Hidden Markov 105 

Model (HMM) with a Genetic Algorithm (GA).  The HMM yields the likelihood of a given 106 

‘map’ (hereafter used to denote the ordering and orientation of scaffolds along a chromosome) 107 

conditional on the genotype data.  The GA searches map space by creating new candidate orders 108 

which are recurrently fed to the HMM to diagnose their likelihood.  Inference of recombination 109 

rate parameters and/or tests for differences in gene order are enabled by the fact that all 110 

calculations are conducted in the currency of likelihood. 111 

 112 
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As proof of concept, we apply GOOGA to RAD-seq data (MSG type [31, 36]) from five 113 

different mapping populations, each synthesized from a cross between lines within the M. 114 

guttatus species complex.  The complex is a highly diverse clade of inter-fertile North American 115 

wildflowers [37-40].  The five mapping populations include both intra- and inter-specific crosses 116 

as well as multiple cross types (F2s, F3s, and RILs).  Recombinant individuals from each 117 

mapping population were scored genome-wide for SNPs and then input to GOOGA.  Starting 118 

from a rough-draft scaffold order [41], GOOGA produces an optimized ordering and orientation 119 

of genomic scaffolds for each population.  From similarities across the assemblies of each 120 

mapping population, we are able to correct many errors (misplaced scaffolds) in the current 121 

reference genome of M. guttatus.  Improved estimates for recombination rates indicate the 122 

effects of gene density and transposable elements on chromosomal variation in recombination.  123 

Comparisons among maps identify eight distinct structural polymorphisms, five of which were 124 

suggested by previous mapping studies [12, 13, 42-45]. Finally, we demonstrate how the 125 

application of GOOGA clarifies the results of a QTL mapping study by correcting errors in the 126 

reference genome.  127 

 128 

RESULTS 129 

 130 

Comparison of the M. guttatus V2 reference to the GOOGA optimized scaffold orders  131 

The output of GOOGA is a chromosome-scale genetic map of scaffolds from the M. guttatus 132 

genome assembly, wherein we treat 100 kb intervals as distinct genetic markers.  This map is an 133 

optimized pseudo-chromosome construction (all 14 chromosomes for all 5 mapping populations 134 

are reported in Supporting Table 1).  The overall map lengths for the F2 crosses are 1278 cM for 135 
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DUNTIL, 1523 cM for IMNAS, and 1258 cM for IMSWC.  The average map length, 1353 cM, 136 

is shorter than previous F2 maps generated in Mimulus through PCR-based genotyping methods 137 

[12, 42, 45].  The IMF3 map is ≈50% longer than the F2 average (2043 cM), as expected given 138 

the extra generation of recombination between F2 and F3 generations.  The IMPR map (1489 139 

cM) is only slightly longer than the F2 average.  There is additional recombination in the 140 

formation of the RILs, but the recombination parameter is specified differently (as related to 141 

crossover events) in the RIL HMM (see METHODS).  142 

 143 

In aggregate, comparison of the GOOGA optimized maps from the five experiments to the M. 144 

guttatus V2 reference genome order (hereafter V2 map; [41]) indicates that a large number of 145 

updates to the reference genome are necessary.  Although the maps differ importantly from each 146 

other, changes in scaffold order and orientation from the V2 map are usually shared among all 147 

five mapping populations.  These regions likely reflect errors in genome assembly given that the 148 

reference genome was sequenced from an inbred line (IM62) used as one of the parents in two of 149 

our crosses (IMF3 and IMSWC).  To illustrate this point, we compare the maximum likelihood 150 

of the IMF3 data under from the GOOGA optimized map to the V2 map (Figure 1) for three 151 

chromosomes.  This intra-population cross is likely to be most congruent with the true order of 152 

the IM62 reference genome.   153 

 154 

The panels (Figure 1A-C) are ordered from most congruent with the V2 map (chromosome 14) 155 

to least congruent (chromosome 10), and the difference in log-likelihood (∆lnLk) provides a 156 

measure of improvement in fit of the GOOGA relative to V2. ∆lnLk is computed by fitting the 157 

genotype data to both the GOOGA optimized and V2 maps, and then subtracting the former from 158 
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the latter.  In each case, recombination rates are estimated independently, and so ∆lnLk is 159 

determined entirely by differences in scaffold order and orientation.  The maps for chromosome 160 

14 (Figure 1A) are largely similar.  However, the few differences, such as the changes in location 161 

and orientation of scaffolds 127, 211, 178, and 140b (inconsistency near the center of Figure 1A, 162 

Supporting Table 1), are sufficient for a large improvement in likelihood.  The ΔlnLk of 77.1 163 

(Supporting Table 2) corresponds to an improvement in likelihood greater than 1033, suggesting 164 

this new order fits the segregation data in the IMF3 population far better than the V2 map.  165 

Importantly, the updated ordering of scaffolds 127, 211, 178, and 140b is shared by the IMSWC, 166 

DUNTIL, and IMPR maps (Supporting Figure 1 and Supporting Table 1).  The IMNAS map 167 

retains the [211,127] ordering of the V2 map, albeit with a flip of 127. However, this difference 168 

is not biologically compelling because there is no evidence of recombination in this region 169 

among the 91 F2s genotyped in the IMNAS population. Genome assembly by genetic mapping 170 

will often fail when there is no recombination to provide signal, a factor that must be taken into 171 

account when comparing maps. 172 

 173 

Chromosome 2 (Figure 1B) is typical of most IMF3 contrasts.  There are numerous 174 

rearrangements (e.g. the IMF3 sequence [44a, 212, 249] is inverted in the V2 map) and several 175 

scaffolds are flipped in place (including scaffold 81 that flanks [44a, 212, 249]).  Apart from the 176 

increase in likelihood from the V2 map to the GOOGA optimized order (ΔlnLk = 255.8), it is 177 

noteworthy that the genetic length of chromosome 2 shrinks by ≈15% from V2 to GOOGA.  178 

This is because maximum likelihood of the rate parameters will compensate for bad joins by 179 

increasing recombination fraction (r) values.  This effect is even more pronounced for 180 

chromosome 10 (Figure 1C), where there is a large increase in ΔlnLk.  Among 70 chromosomes 181 
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(5 crosses x 14 chromosomes), 23 (33%) chromosomes had ΔlnLK improvements greater than 182 

500, while only 5 (7.1%) improved less than 100 (Supporting Table 2).  The most significant 183 

alterations to the V2 map are in genomic regions harboring inversions, particularly on 184 

chromosomes 5, 8, and 10 (Figure 1C, Supporting Figure 1, and Supporting Table 2).  The V2 185 

map is based partly on genetic mapping data with segregation data from approximately 70 186 

recombinant inbred lines from a cross between IM62 and DUN10 (J. Willis pers. comm.). 187 

DUN10 is a parent in our DUNTIL cross [35] and the aggregate of evidence (see below) 188 

suggests that DUN10 has chromosomal inversions (relative to IM62) on each of these 189 

chromosomes. 190 

 191 

Comparison of GOOGA maps to one another reveals known and new structural diversity 192 

Our five mapping populations contain one intra-population cross (IMF3), two inter-population 193 

crosses (IMPR, IMSWC), a close interspecific-cross (IMNAS), and a more distant interspecific 194 

cross (DUNTIL). We observe structural polymorphisms by aligning the five maps to each other 195 

by chromosome.  Figure 2 compares the maps for chromosome 10 which had previously been 196 

shown to harbor an inversion in IMPR [43].  As described in METHODS, we broke scaffold 13 197 

into 13a and 13b based on a preliminary analysis of the DUNTIL data.  GOOGA reassembled 198 

13a and 13b into a continuous sequence for the IMF3 cross, but not the other crosses (Figure 2).  199 

There is minimal recombination between 13a and 13b in IMPR, IMNAS, and IMSWC because 200 

13b is flanked by a large block of markers with nearly complete recombination suppression.  201 

This suppressed region, which represents at least 4.5 Mb of DNA, is freely recombining in IMF3 202 

and DUNTIL but with a perfect reversal of marker order/orientation between those two crosses.  203 

From this we infer that the IMF3 parents (IM62 and IM767) each have inversion karyotype “A”, 204 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 26, 2018. ; https://doi.org/10.1101/330159doi: bioRxiv preprint 

https://doi.org/10.1101/330159
http://creativecommons.org/licenses/by/4.0/


 

 

the DUNTIL parents (LVR and DUN) each have karyotype “B”, and the other three crosses are 205 

heterokaryotypic (one parent A and one B) for this inversion.  Noting that IM767 is A, 206 

recombination suppression in the IMPR suggests the other parent in this cross (Point Reyes) has 207 

orientation B.  By similar reasoning, we can conclude that SF and SWC also have orientation B.  208 

The right half of chromosome 10 is largely collinear among all five crosses, indicating the 209 

inversion is the primary influence on chromosome-wide likelihood.  The GOOGA lnLk of the 210 

IMF3 data is -3784.  If the IMF3 data is forced into the optimized DUNTIL order, the lnLk drops 211 

to -4074 (ΔlnLk = 290; Supporting Table 3).  This gives strong statistical support of the 212 

inversion between the A and B homokarytypic crosses. The effect is less pronounced in the 213 

heterokaryotypic crosses. For example, the ΔlnLks of the IMNAS data when forced into the 214 

DUNTIL and IMF3 maps are 59 and 124, respectively (Supporting Table 3).  Thus, as expected, 215 

the recombination suppression in this heterokaryotypic cross results in relatively weak support 216 

for either a pure A or B inversion orientation.    217 

 218 

The inversion on chromosome 10 is the only case among these crosses where we see free 219 

recombination in both homokaryotypes and suppression in the heterokaryotypes.  In all other 220 

cases, one or more crosses reveal recombination suppression, with at least one homokaryotypic 221 

cross also present among our five populations (Supporting Figure 1 and Supporting Table 1).  222 

Lowry and Willis [13] showed that reversal of marker order (as in Figure 2) for the inversion on 223 

chromosome 8.  This feature is associated with annual versus perennial life-history within M. 224 

guttatus.  Here, we see free recombination over the inverted region on chromosome 8 in IMF3, 225 

IMSWC, and IMNAS (annual x annual crosses), and suppression in IMPR and DUNTIL (annual 226 

x perennial M. guttatus and perennial M. guttatus x perennial M. tilingii, respectively).  A similar 227 
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pattern is noted for previously hypothesized inversions on chromosomes 5 (suppression in 228 

DUNTIL and IMPR) and 13 (suppression in DUNTIL) [44] and for the meiotic drive locus on 229 

chromosome 11 (suppression in IMF3) [46].  Given comparable evidence, we also identify three 230 

novel putative inversions (Supporting Figure 1 and Supporting Table 4).  A region of at least 1.2 231 

Mb spanning scaffolds 19, 73 and 65 on chromosome 2 is completely suppressed in the IMPR.  232 

There is substantial recombination across this region in other crosses: 8 cM in DUNTIL, 10 cM 233 

in IMF3, 7 cM in IMNAS, and 2 cM in IMSWC. A larger physical region (≈5 Mb on 234 

chromosome 7) is fully suppressed in IMPR but not the other crosses (20-45cM).  Finally, a 235 

stretch of ≈4 Mb on chromosome 14 is suppressed in the IMSWC cross but not in other crosses 236 

(about 30 cM). 237 

 238 

To provide a more general comparison of the extent of gene order differences among the crosses, 239 

we imposed the optimal map in every cross onto the genotypic data from every other cross and 240 

computed the ΔlnLk.  Then we summed these for each chromosome.  The larger the value of this 241 

sum, the greater degree of structural discrepancy we observe between the optimal fits of each 242 

cross (Table 1).  As quantified by this metric, chromosome 10 has the greatest degree of 243 

structural discrepancy, an unsurprising result given the large polymorphic inversion (Figure 2). 244 

Chromosomes 5 and 11, which both show large tracts of reordered scaffolds and shared regions 245 

of recombination suppression among several crosses, rank the next highest in the degree of 246 

structural discrepancy among maps (Table 1). Surprisingly, the lowest value is for chromosome 247 

8, which has a pairwise sum of ΔlnLk of only 75.4.  The large inversion on chromosome 8 248 

suppresses recombination in annual x perennial mapping populations, and as a consequence, the 249 

ordering of scaffolds within the inverted region is fairly arbitrary in those heterotypic crosses.  250 
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The pairwise sum of ΔlnLks is determined by map changes, and these are rather few for 251 

chromosome 8.  This result arises because the strongly supported, co-linear maps from the 252 

homokaryotypic crosses (IMF3, IMSWC, and IMNAS) are also largely reiterated in the 253 

suppressed crosses (DUNTIL and IMPR).  However, all GOOGA maps of chromosome 8 254 

represent a vast improvement over the V2 map (mean ΔlnLk vs V2 = 985, Supporting Table 2), 255 

suggesting the shared order that emerges from the inversion region is a large improvement over 256 

the reference genome.  257 

 258 

Correlation of estimated recombination rates with DNA composition 259 

 260 

We next examined whether variation in the estimated recombination rates between successive 261 

markers within scaffolds correlated with aspects of the DNA content.  We obtained an averaged 262 

recombination rate for each 200 kb window across mapping populations and then tested for 263 

association with the proportions of DNA annotated as coding sequence, transposable elements 264 

(TEs), and putative M. guttatus cent728 centromeric repeats [55] (Figure 3). Recombination rate 265 

is positively correlated with coding sequence density (Pearson’s r = 0.218) and is negatively 266 

correlated with TE density (Pearson’s r = -0.478). To test the impact of centromeric repeats [46] 267 

on recombination rate, we binned our 200 kb windows into those with < 5% centromeric repeat 268 

sequence vs. those with > 5%.  Centromeres are expected to suppress recombination, and 269 

consistent with this prediction, we see a significant drop in recombination in windows with > 5% 270 

centromeric repeats (t-test p-value = 0.0003; Figure 3C).  These results indicate that the 271 

recombination rates estimated by GOOGA fit well with biological expectations.   272 

 273 
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DISCUSSION 274 

 275 

There has been a resurgence of interest among evolutionary biologists in structural variation, 276 

particularly in the contribution of chromosomal inversions to phenotypic variation, adaptive 277 

divergence among populations, and speciation [15-18, 47-51].  Inversions are routinely 278 

discovered from recombination suppression in genetic maps.  They can be verified cytologically 279 

[11] or by reversal in marker order when comparing different genetic maps (e.g. [13], Figure 3). 280 

Our capacity to generate genetic maps has significantly advanced with RAD-seq and related 281 

genotyping platforms [29-33], particularly in non-model organisms.  We developed GOOGA in 282 

response to these data, and with an eye toward statistically detecting structural variation.  283 

Accommodating error in map construction methodology is particularly important with low-284 

coverage sequencing markers, which are abundant but error-prone.  Propagating genotype 285 

uncertainty throughout the process to the assignment of map likelihoods provides a means to 286 

determine how strongly the underlying genotype data support apparent differences in scaffold 287 

order and orientation. The application of GOOGA to detect previously identified structural 288 

polymorphism in Mimulus illustrates how evidence of map differences manifest as differences in 289 

likelihood (Figures 1 & 2).  290 

 291 

Andolfatto et al. [31] developed an HMM for use with RAD-Seq like data in genetic mapping.  292 

We have adopted the HMM approach here, although with numerous updates to both the model 293 

and implementation.  First, we define markers within genomic windows, each inclusive of many 294 

SNPs, e.g. [43].  SNP calls from closely linked sites are aggregated to make a putative call for 295 

the ancestry of each genomic region (e.g. AA, AB, or BB) of each recombinant individual.  296 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 26, 2018. ; https://doi.org/10.1101/330159doi: bioRxiv preprint 

https://doi.org/10.1101/330159
http://creativecommons.org/licenses/by/4.0/


 

 

Given that the quality of individual DNA samples can vary greatly, we fit a model with 297 

individual specific genotyping error rates.  The intervals between markers are treated differently 298 

depending on whether markers are within a genomic scaffold or between distinct scaffolds.  The 299 

former are subject to tests for genotyping consistency given implied close linkage.  The latter are 300 

explored using a genetic algorithm to order and orientation of scaffolds into chromosomes based 301 

on the likelihood of the data.   302 

 303 

Window-based genotype calling is employed because there is substantial uncertainty associated 304 

with SNP genotyping from low-level data, particularly when reads are mapped to an unpolished 305 

draft genome.  By applying calls to windows instead of individual SNPs, we sacrifice resolution 306 

to obtain more robust markers.  In this application, we used 100 kb windows, which is about 307 

0.3% of the average Mimulus chromosome.  The resulting marker density is high relative to the 308 

number of recombination breakpoints per chromosome in F2, F3, and RIL individuals (typically 309 

1-3; Supporting Table 1) and sufficient for testing alternative maps.  However, scoring 310 

recombination events at the scale of 100-200 kb does limit inference of genomic features that 311 

determine recombination.  Factors defined effectively at the 100 kb scale, such as the density of 312 

genes or transposable elements exhibit clear correlations with recombination, as expected from 313 

studies of other systems [52].  On the other hand, it is too coarse to evaluate finer scale 314 

determinants of recombination events.  For example, population LD patterns suggest that 315 

recombination is strikingly elevated near the start site of genes in M. guttatus [41].  Figure 3A is 316 

fully consistent with this result: Mean recombination rate is correlated with the proportion of 317 

coding sequence, which is strongly correlated with number of gene start sites per window.  318 
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However, at the resolution we selected, we cannot distinguish the effect of start sites from other 319 

features of gene rich regions. 320 

  321 

The emission probabilities in the HMM portion of GOOGA are based on individualized 322 

genotyping error rates.  This model feature stems from our observation that the quality of 323 

genotyping data varies quite substantially among samples, even of the same batch.  This 324 

variability likely reflects stochastic factors, such as variation in the amount/quality of input DNA 325 

per individual.  Regardless of cause, we find substantial differences in error rates among samples 326 

in all mapping populations (Supporting Table 6), justifying the need to account for these error 327 

rates explicitly and individually. While rates are typically low in absolute terms (medians around 328 

0.01 for e0i and e2i, much smaller for e1i; see METHODS), they are not negligible relative to 329 

actual recombination rates between adjacent markers.  Differences in genotyping error rates 330 

provide key weights on the contributions of different individuals to the overall likelihood of a 331 

map and its associated collection of recombination rate estimates.  A practical example of the 332 

utility of genotype filtering and genotyping error estimation is that it enabled the discovery of 333 

two novel putative inversions in the IMPR cross (on chromosomes 2 and 7).  These were not 334 

identified in the original paper [43] because those authors imposed conservative thresholds both 335 

on marker inclusion and on whether individuals were included in the final map construction. 336 

Twice as many of the RIL plants are included in the present analysis and 25% more DNA is 337 

included in the map (1958 100 kb markers here as opposed to 3073 50 kb windows in [43]). 338 

 339 

Admittedly, a considerable diversity of factors may complicate marker construction from low-340 

coverage sequencing data [53-55].  We implement various filtering steps in GOOGA to mitigate 341 
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these factors including SNP quality and allele frequency, SNP-level neighbor consistency tests, 342 

read-depth thresholds, marker-level (100 kb interval) neighbor consistency and heterozygosity 343 

tests, exclusion of individuals based on a high proportion of missing genotype calls, and/or high 344 

genotyping error rates.  The goal of this filtering is to produce a marker set that is consistent with 345 

Mendelian segregation, but the filters will not always succeed.  For example, a small region on 346 

chromosome 5 of the IMF3 cross involving only 7 markers (corresponding to the small scaffolds 347 

226, 252, 94, 368 and 358) contributes 97 cM to the map length (over 40% of the total for this 348 

chromosome).  It is possible that this a high recombination region (an unknown amount of DNA 349 

resides between these scaffolds), but it seems more likely a spurious inflation.  These scaffolds 350 

map inconsistently in the other crosses – if they appear at all, they are not always adjacent.  Of 351 

course, incorrectly locating good markers can produce the same “map inflation” effect as 352 

properly locating misleading markers.  Also, even with fully accurate genotyping, recombination 353 

based methods cannot resolve non- or low-recombining areas.  Sequencing-based methods [56] 354 

may be required to identify structural variants in these situations. 355 

 356 

Mimulus results—A tangible product of the application of GOOGA to Mimulus guttatus is that 357 

we substantially revise the reference genome of this species.  The reference line (IM62) is used 358 

in two of our crosses, most importantly in IMF3 where it is crossed to another line from the same 359 

population (IM767).  Excepting the meiotic drive locus on chromosome 11 [46], IM767 appears 360 

to be largely collinear with IM62 (the two lines have the same orientation at other putative 361 

inversions).  Despite this, the GOOGA realignment of scaffolds yields a dramatic increase in 362 

IMF3 likelihood over the V2 assembly: ΔlnLk is 5464 when summed over all chromosomes 363 

(Figure 1 and Supporting Table 2).  Map revisions are found on each chromosome, and 364 
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supported not only by ΔlnLk within IMF3, but also the maps from the other crosses.  Incomplete 365 

assembly is a common and important problem in genomics, particularly in species with complex 366 

patterns of repeats. The promising implication of Figure 1 is that the rough genome assembly of 367 

many species can be dramatically improved with a low-coverage sequencing of a mapping 368 

population.  Moreover, GOOGA quantifies the magnitude of improvements in terms of increase 369 

in likelihood. 370 

 371 

The alignment of maps for chromosome 10 illustrates the effect of an inversion.  A 5 mb region 372 

(left portion of Figure 2) was previously identified as a putative inversion from recombination 373 

suppression in the IMPR [43].  This is clearly confirmed here by the inclusion of both 374 

homokaryotic crosses (AxA and BxB).  The resulting ‘map flip’ (top two panels in Figure 2) 375 

effectively ascertains the scaffolds included within the inversion and their ordering.  This 376 

example also highlights the importance of marker construction.  While it is possible to construct 377 

markers de novo with RAD-seq data [35], here we delineate markers on a previously assembled 378 

set of reference DNA sequences (the genomic scaffolds from the M. guttatus reference genome) 379 

obtained from a specific source (sequencing of the IM62 inbred line).  There are clear advantages 380 

to defining markers in this fashion, but care must be taken with this approach, especially in 381 

distantly related populations.  For example, we initially assumed that the IM62 reference genome 382 

scaffolds correctly reflect the gene order for the other mapping populations. However, in our 383 

analysis of chromosome 10, we found it necessary to break scaffold 13 into two parts (13a and 384 

13b), though it is continuous in IM62.  GOOGA reannealed 13a and 13b in the IMF3 cross but 385 

inserted other scaffolds between them in other crosses due to a segregating inversion with a 386 
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breakpoint contained within the original scaffold 13 (particularly DUNTIL; Figure 2).  This 387 

implies that scaffold 13 was correctly assembled for IM62, but not for DUNTIL. 388 

 389 

In the five crosses considered here, chromosome 10 is the only of the eight putative inversions 390 

where both homokaryotypic crosses are included.  Reversal of marker ordering between 391 

homokaryotypic crosses was previously demonstrated for chromosome 8 [13], and with 392 

appropriate selection of parental lines, could likely be shown for others.  However, the sort of 393 

reversal of genetic maps evident in Figure 2 requires polymorphism within both karyotypes.  For 394 

several structural polymorphisms in M. guttatus [12, 57], the derived karyotype is essentially 395 

homogeneous (few or no SNPs).  A cross between lines that share the derived karyotype can 396 

only identify recombination events (and thus order scaffolds) when polymorphisms exist in that 397 

cross. Although this will generally be the case for older inversions that have had time to 398 

accumulate mutational variants, this requirement may be limiting for ordering scaffolds within 399 

the derived allelic orientation of very young inversions. 400 

 401 

The inclusion of phenotype data with the IMSWC cross illustrates the importance of scaffold 402 

ordering for downstream genetic analyses (Figure 4).  Here, each F2 plant was scored for 403 

progression to flowering, a dichotomous trait in the experimental photoperiod, which was 404 

restrictive to floral induction for one cross parent.  Application of the same QTL mapping 405 

procedure to the data produces radically different outcomes if markers are placed according to 406 

the current M. guttatus reference genome (V2 map is the top panel of Figure 4) or by the 407 

GOOGA optimized map (bottom panel of Figure 4).  Using the latter (which has a ΔlnLk 408 

improvement of 1089 vs. V2; Supporting Table 2), the data suggest a single large-effect QTL 409 
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localized to a map position 44-45 cM into chromosome 11, clearly upstream of the centromere 410 

(at approx. 52 cM).  QTL mapping to the V2 orientation yields three distinct peaks, each with a 411 

high LOD score.  The specific markers near the QTL peak in the GOOGA map are jumbled in 412 

the V2 map which splits the signal (the genotype-phenotype association) into three distinct parts.  413 

The V2 map is also “stretched” – expanded in recombination length by over 20 cM – likely to 414 

compensate for bad scaffold joins.  Both of these effects are likely to impede QTL inference in 415 

places where the reference genome is misassembled. 416 

   417 

Figure 4 suggests that GOOGA could be applied to test whether the reference genome order is 418 

consistent with that of the focal population in a population genetic scan or trait mapping 419 

experiment.  Like Mimulus, many species and species complexes harbor significant segregating 420 

inversions and other gene order polymorphisms (e.g. Drosophila melanogaster, Zea mays, and 421 

the Anopheles and Helianthus species complexes [58-61]), but are represented by one or a small 422 

number of reference genomes. One could start from predefined genomic scaffolds, as we have 423 

done here, or by breaking the genome into small ‘pseudo-scaffolds’.  Then GOOGA could be run 424 

on this reference genome with an appropriate mapping population. Using metrics like ΔlnLk, one 425 

could either confirm that the reference genome order is appropriate, or identify and fix issues as 426 

we have done in IMSWC for Figure 4.  This approach may offer a compelling solution for 427 

species with incomplete genome assemblies such as Mimulus. Even in species with high-quality 428 

reference assemblies (e.g. D. melanogaster), this method could extend the utility of existing 429 

genomic resources in populations that are structurally diverged from the reference genome.  This 430 

application would be particularly convenient in cases where trait mapping is being performed via 431 

RAD-Seq genotyping, as no additional data would need to be generated.    432 
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 433 

Application— The GOOGA pipeline is a set of modules including: (A) procedures to make 434 

genetic markers from low-coverage sequencing data in conjunction with a collection of genomic 435 

scaffolds, (B) a method to estimate genotyping error rates specific to each individual, (C) an 436 

application of the HMM to estimate recombination rates and obtain a likelihood for a specific 437 

ordering and orientation of genomic scaffolds, i.e. the map, and (D) a Genetic Algorithm (GA) to 438 

search map space to obtain pseudo-chromosomes that maximize the likelihood of the data.  439 

While GOOGA was developed as an integrated series of steps, the features and requirements of 440 

other datasets will differ from these Mimulus crosses.  In these situations, one or more of the 441 

components might be used apart from the rest.  We outline a few options below that could be 442 

appropriate for different species or scenarios. 443 

 444 

The simplest application: Use (A) to create markers and then apply standard map making 445 

software [62, 63] to the resulting genotype matrix.  If applied to the Mimulus mapping 446 

populations (or comparable datasets), this matrix directly from (A) contains a great excess of 447 

missing data.  Extensive culling, both of individuals scored for too few markers and markers 448 

scored for too few individuals (e.g. [43]), is required to successfully apply standard map making 449 

programs.  An alternative is to apply (A)-(B)-(C) to generate genetic markers.  Assuming that the 450 

genomic scaffolds are generally reliable, the HMM will leverage data from neighboring windows 451 

to inform genotype calls. After obtaining the MLE on rates, one can extract posterior 452 

probabilities on genotypes and then impose ‘hard calls’, e.g. [36], to create a genotype matrix. 453 

We found this approach to be useful across a wide range of RAD-Seq coverages (see 454 

METHODS), including as little as ≈10 informative reads per windows. Another possibility is to 455 
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replace the front end of the pipeline.  If one has high certainty in the validity of individual SNPs 456 

(their location and scoring), it is natural to replace windows (A) with individual SNPs as the 457 

observed states of the HMM ([31], Figure 5).  Finally, while we found the GA effective for 458 

searching map space (D), other map optimization methods exist (e.g., [64, 65]), and these 459 

alternative procedures may prove useful in searching order/orientation possibilities given that 460 

each can be assigned a likelihood. 461 

 462 

  463 
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MATERIALS AND METHODS 464 

 465 

Genomic scaffolds—The first iteration of the M. guttatus reference genome (v1, available at 466 

https://phytozome.jgi.doe.gov; login required), obtained from sequencing of a single inbred line 467 

(IM62; Iron Mountain, OR, USA), consists of over 2000 scaffolds.  The longest are greater than 468 

4 Mb in length (about 15% of an average M. guttatus chromosome) but the great majority of 469 

sequence is contained in scaffolds 10 kb - 1 Mb in size.  The current assembly (V2 reference 470 

genome: available at https://phytozome.jgi.doe.gov; login required) orients most of the v1 471 

scaffolds into chromosomal groups based on multiple sources of information [41].  For the 472 

present analysis, we revert back to the v1 scaffolds as a target for mapping sequence reads from 473 

recombinant individuals.  We retain the set of breaks that were made to v1 scaffolds when 474 

creating the V2 build given that these breaks were largely corroborated by a subsequent mapping 475 

study [43].  We append a letter to names for broken v1 scaffolds, e.g. scaffold_97 is now 476 

scaffold_97a, scaffold_97b, and scaffold_97c.  Next, we appended the mitochondrial and 477 

chloroplast genomic contigs to the scaffold list and masked repetitive regions to produce our read 478 

mapping target: Updated_v1_hardmasked.fa.  The autosomal v1 scaffolds are the basic units for 479 

subsequent work.  Markers are defined as contiguous stretches of DNA within these scaffolds.  480 

 481 

Creation and Genotyping of Mapping populations—Five crosses are analyzed in this study.  482 

Three crosses are F2s (IMNAS, IMSWC, DUNTIL), one is an F3 (IMF3), and one is a 483 

Recombinant Inbred Line panel (IMPR).  The IMF3 population was founded by crossing two 484 

highly homozygous lines (IM62 and IM767) sampled from one population (Iron Mountain, OR, 485 

USA).  A single F1 plant was selfed to create many F2s.  F2 plants were randomly paired and 486 
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crossed to produce F3 seed.  Over 1000 F3 hybrids were grown to maturity and a random subset 487 

of these plants were genotyped for map construction.  The IMSWC cross was formed from a 488 

cross between IM62 and SWC, an annual plant from a population of M. guttatus from Mapleton, 489 

OR, USA.  The DUNTIL cross was formed by crossing an inbred line of M. guttatus (DUN10; 490 

Florence, OR, USA) to an inbred line of Mimulus tilingii (LVR; Inyo, CO, USA) [44].  For both 491 

IMSWC and DUNTIL, a single F1 plant was self-fertilized to create the F2 plants that were 492 

subsequently genotyped. IMNAS is a tri-parental cross: Two inbred lines from Iron Mountain 493 

(OR, USA) M. guttatus were each crossed to the SF5 (Sherars Falls, OR, USA) inbred line from 494 

selfing species Mimulus nasutus. The two interspecific F1s were then intercrossed [(SF5xIM160) 495 

x (SF5xIM767)] to produce the F2 plants. Because IM160 (like the reference line IM62) carries 496 

the driving D centromeric variant of LG11, which transmits nearly 100% via female function in 497 

heterozygotes with the M. nasutus d variant [46], this F2 segregates as a backcross in the D 498 

region.  Finally, the IMPR are a set of highly homozygous lines derived from serially selfing 499 

progeny from a cross between IM767 and PR from the Point Reyes, CA, population of M. 500 

guttatus (see [66] for a description of RIL line formation). 501 

 502 

The DNA extraction method and procedures for genotyping individuals using the Multiplexed-503 

Shotgun-Genotyping (MSG; [31]) are described in Holeski et al [43].  Briefly, we digested DNA 504 

from each sample using a restriction enzyme (MseI or AseI) and then ligated unique Bar-Coded-505 

Adapters (BCAs) to the resultant DNA fragments.  After numerous cleaning steps, we size-506 

selected our library for fragments between 250-425 bp.  We then performed PCR reactions (14-507 

18 cycles) using Phusion High-Fidelity PCR Master Mix and primers that bind to common 508 

regions in the BCAs.  This elongates the molecules to contain necessary flanking sequence 509 
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including the Illumina adaptors as well as additional indices to allow further multiplexing of 510 

samples within a single sequencing lane.  Subsequent sequencing was performed using the 511 

Illumina instrument.  MseI was used for the restriction digest to make a library for each the five 512 

mapping populations.  We made a second library for the IMF3 population with a less frequent 513 

cutter, AseI.  The genotype calls for IMF3 are synthesized from sequencing on these two 514 

libraries (see below).  Details regarding the sequencing for DUNTIL [44], IMPR [43], IMNAS 515 

(Finseth et al, 2018, in prep) and IMSWC (Kooyers et al, 2018, in prep) are reported elsewhere, 516 

though briefly DUNTIL and IMSWC were sequenced at the Duke University Center for 517 

Genomic and Computational Biology, IMPR and IMF3 were sequenced at the University of 518 

Kansas Genome Sequencing Core, and IMNAS was sequenced at Hudson Alpha Genomic 519 

Services Laboratory.   520 

 521 

Following sequencing, we demultiplexed reads into sample specific fastq files and then edited 522 

each with Scythe (https://github.com/vsbuffalo/scythe/) to remove adaptor contamination and 523 

then with Sickle (https://github.com/najoshi/sickle/) to trim low quality sequence.  We used the 524 

mem function of BWA [67] to map read (or read pairs), one sample at a time, to 525 

Updated_v1_hardmasked.fa.  Following read mapping, we identified putative SNPs using the 526 

UnifiedGenotyper function of the Genome Analysis ToolKit (GATK; [68]). 527 

 528 

For each mapping population, the input data to create markers is a vcf file with all recombinant 529 

individuals scored for SNPs within individual reads or read pairs (RADtags) along with whole-530 

genome sequencing data from one or both parental lines.  We eliminated SNPs with a mapping 531 

quality score less than 30 or a minor allele frequency less than 0.1. We further thinned the data to 532 
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a single SNP per RADtag, selecting the one with the most scored individuals. We then examined 533 

the relationship between read depth and apparent genotype for each SNP.  There should be no 534 

relationship between the actual genotype and read depth, but MSG data exhibits two depth-535 

related difficulties that require attention.  First, there is typically under-calling of heterozygotes 536 

(relative to the binomial expectation) with low read depths [31].  This difficulty is addressed by 537 

the window based genotyping method (see below).  Second, high read depth SNPs routinely 538 

deviate from Mendelian expectations, both in terms of allele frequency in the mapping 539 

population and in level of heterozygosity.  After inspecting the distribution of reads called to 540 

each parent per individual for each possible read depth, we set a maximum median depth (across 541 

individuals scored for a SNP) specific to each mapping population: 10 for IMPR, 3 for IMSWC, 542 

4 for DUNTIL, 10 for IMNAS, 5 for MseI libraries of IMF3, 20 for AseI libraries of IMF3.  543 

SNPs with excessive depth were suppressed.  544 

 545 

Denoting the two parents of a mapping population as A or B, alleles were scored by assigning 546 

the reference base at each SNP to a specific parent (A or B).  This was possible because one or 547 

both the parents in each crosses was MSG genotyped and/or fully genome sequenced.  For the 548 

IMF3 population, one parent (IM62) is the reference genome sequence and the other (IM767) 549 

has been fully sequenced [37].  IM62 was also a parent in the IMSWC cross and the alternative 550 

base at a SNP is necessarily from the second parent (SWC).  We used the IM767 genome 551 

sequence to polarize bases in the IMPR.  For DUNTIL, we used genome sequences from both 552 

parents (LVR and DUN10) to specify base ancestry in the F2s [44].  For the IMNAS cross, we 553 

limited consideration to SNPs where an F1 hybrid between the IM767 and IM160 parents was 554 

homozygous for one base and the SF5 parent was homozygous for the alternative.  After 555 
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establishing calls to parent A/B for each SNP along each v1 scaffold, we imposed another layer 556 

of filtering based on consistency of the inferred parent within a recombinant individual along v1 557 

scaffolds.  We expect the same parentage of closely linked SNPs: If an individual is AA at a 558 

SNP, it should usually be AA at neighboring SNPs (excepting occasional recombination).  SNPs 559 

exhibiting excessive disagreement were eliminated (details below).     560 

 561 

Window based genotype calling: We delineated markers as genomic windows of 100 kb in 562 

length within each v1 scaffold.  The last marker on each scaffold included all remaining 563 

sequence beyond the last complete 100 kb segment, and was typically shorter.  Within each 564 

window, we counted the number of reads scored as A and as B (across SNPs) within each 565 

recombinant individual.  If the fraction of reads from parent A exceeded 95%, the individual was 566 

called AA for the marker; less than 5%, the genotype call was BB.  If the fraction was between 567 

25% and 75%, the individual was called AB. This method to assign putative genotypes (Figure 568 

5) was designed to aggregate signal from closely linked SNPs that exhibit low average coverage 569 

and high variance in coverage among individuals.  It compensates for heterozygote under-570 

calling, where individual that are genuinely heterozygous appear homozygous at SNPs where the 571 

few reads present are all from one parent.  Across a series of closely linked SNPs apparent 572 

homozygosity at individual sites may be high, but because alterative alleles (A or B) dropout at 573 

different SNPs, the similar overall frequencies of alternative bases within a window (summing 574 

across sites) indicated heterozygosity.  575 

 576 

The genotype calling procedure defaults to ignorance (NN = No Call) if it cannot assign the 577 

marker to AA, AB, or BB following the rules above, or if fewer than 5 reads are mapped to the 578 
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window.  These cases of ambiguity can result either from mis-mapping of reads (in which case 579 

the read counts are misleading) or if recombination ‘splits’ the marker in an individual (in which 580 

case the true genotype is actually a combination of two different genotypes, e.g. AA-AB).  581 

Scoring either scenario as NN is suitable for downstream analysis by the HMM – data from 582 

neighboring markers will strongly inform inference of the underlying genotype at the NN 583 

marker. 584 

 585 

The resulting genotype file for each individual is AA/AB/BB/NN at each marker.  We imposed a 586 

third layer quality filtering at the scale of window-based genotypes.  Each marker was scored for 587 

genotype frequencies and agreement of markers within 1 mb windows. We eliminated markers 588 

that were excessively heterozygous across mapping populations and/or exhibited high 589 

disagreement with neighboring markers.  Within each mapping population, we suppressed loci 590 

that were excessively heterozygous in that population and/or had low numbers of called 591 

individuals.  Finally, we imposed a cross-specific minimum number of called loci for a plant to 592 

be included in subsequent mapping.  The programs used in the pipeline described above, as well 593 

as the likelihood algorithms described below, are available at 594 

(https://github.com/flag0010/GOOGA).   595 

 596 

Likelihood calculations—We treat recombination along each chromosome as a Markov Process 597 

with the true genotypes of each recombinant at each marker as the states of a Markov Chain.   598 

The likelihood takes the form of an HMM because the putative genotype calls (AA, AB, BB, or 599 

NN at each marker as obtained by methods described above) are treated as observed states [31, 600 

69, 70] (Figure 5).  The hidden states are the true underlying genotypes (AA, AB, or BB).  The 601 
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transition probabilities are contingent on recombination rates and the experimental design, the 602 

resulting HMM is thus non-homogeneous [71].  In an F2 population, the probabilities are (1-r)2, 603 

2r(1-r), and r2 for AA transitioning to AA, AB, and BB, respectively [72].  The recombination 604 

rate, r, is specific to the flanking markers and we assume symmetry in transitions from BB to 605 

alternative genotypes.  The transition probability of AB to AB is (1-r)2 + r2 and the probability 606 

AB to either homozygote is 2r(1-r).  An additional round of recombination occurs in an F3 607 

population in gamete formation by F2s.  However, the probabilities have the same form except 608 

with an expected 50% increase in recombination rate values (assuming no change in crossover 609 

rates between F1s and F2s).  In the RILs, heterozygosity has largely been eliminated by 610 

inbreeding.  We suppress the remaining heterozygous regions by calling N at those loci.  For the 611 

resultant genotypes, we stipulate the transitions probabilities as (1-r) and r for AA transitioning 612 

to AA and BB, respectively.  For both RILs and F3s, the r parameter is actually a composite 613 

from multiple meioses.  These apparent recombination rates are distinct from r of the F2 614 

populations (the expected proportion of recombinant gametes from one round of meiosis) [73].  615 

Thus, while the same markers are present across the different types of mapping populations, the 616 

absolute value of r will vary according to cross type.  The emission probabilities are determined 617 

by individual-specific genotyping error rates (Figure 5). Three distinct error rates are estimated 618 

for each individual (i): the probability that a true homozygote yields a putative call to 619 

heterozygote (e0i) or to the opposite homozygote (e1i), and the probability that a heterozygote 620 

yields a call to one of the two homozygotes (e2i).  Regarding the last rate, we assume that errors 621 

to either of the alternative homozygotes are equally likely (last emission in Figure 5).   622 

 623 
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The HMM is applied in three stages, first to estimate individual-specific error rates, then to 624 

obtain preliminary recombination estimates between markers within scaffolds, and finally to 625 

search for the optimal order and orientation of scaffolds within chromosomes (and also estimate 626 

recombination rates between scaffold ends within chromosomes).  Genotyping error rates are 627 

estimated from transitions between genotypes within v1 scaffolds; we assume marker order in 628 

the scaffold is contiguous and correct.  The transition probabilities depend on the true 629 

recombination rate per base pair, which is unknown and can vary across the genome.  However, 630 

to estimate error rates, we fit a simple ‘homogeneous’ model assuming that recombination rate is 631 

proportional to physical distance between markers within scaffolds.  We set rates to the genomic 632 

average of 5.0 cM/Mb for F2 populations and 10.0 cM/Mb for F3 and RIL populations.  These 633 

point estimates are based on map lengths from numerous prior Mimulus studies [42, 45].  The 634 

likelihood of data from each scaffold of an individual plant is then a function of e0i, e1i, and e2i, 635 

and the likelihood for the entire plant is a product across scaffolds.  For each plant we obtain the 636 

MLE of e0i, e1i, and e2i via application of the forward-backward algorithm [74] coupled with the 637 

bfgs bounded optimization routine [75] of scipy.optimize 638 

(https://docs.scipy.org/doc/scipy/reference/optimize.html).  We also used the bfgs optimizer to 639 

obtain MLE for recombination rates as described below.   640 

 641 

The individual-specific error rates (reported as Supporting Table 6) are used in two ways.  First, 642 

we used the estimates to cull plants with high error rates from subsequent analyses.  For 643 

example, there were 130 F2s in the IMNAS population that passed preceding filters and fit for 644 

genotyping error rates.  After excluding all plants where (e0i + e1i + e2i) ≥ 0.1, we obtained the set 645 

of 91 plants used for all downstream analyses.   The post-error rates estimation sample sizes are 646 
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181 for IMF3, 872 for IMSWC, 205 for DUNTIL, and 260 for IMPR.  Second, the genotyping 647 

error rates are treated as individual-specific constants in subsequent model fitting where marker-648 

to-marker recombination rates (Figure 5) are free parameters.  To obtain the MLE for 649 

recombination rates, we set the lower and upper bounds on rates as 0.0 and 0.2, respectively.  A 650 

preliminary set of recombination estimates between markers within scaffolds was obtained by 651 

maximizing the likelihood with respect to r values for each scaffold across all plants within a 652 

mapping population.  This collection of estimates is used in the GA search for optimal scaffold 653 

orders and orientations within linkage groups (described below), but not in the final maps.  With 654 

one exception, the intra-scaffold r estimates are small, consistent with close linkage.  We noticed 655 

a very high rate between two adjacent markers on scaffold 13 of the DUNTIL cross.  The same 656 

interval exhibits normal (r < 0.01) recombination rates in other crosses.  Given evidence for an 657 

inversion breakpoint (further evidence below), we split scaffold 13 into 13a and 13b 700 kb into 658 

the scaffold. 659 

 660 

The third HMM application is to an entire linkage group for all individuals in a mapping 661 

population.  This requires assignment of scaffolds to linkage groups.  We tested assignments 662 

from the V2 build and found them consistent with our genotyping data (markers on the same 663 

linkage group exhibit positive association of genotypes).  We were able to tie an additional 26 v1 664 

scaffolds to linkage groups which were unassigned in the V2 build (Supporting Table 5).  In the 665 

fully general model, there are L – 1 + K recombination rates to be estimated, where L is the 666 

number of scaffolds on the chromosome and K is the number of intra-scaffold rates within these 667 

scaffolds.  The likelihood of a particular “map” (a specific ordering of scaffolds, each with a 668 

positive or negative orientation) is determined mainly by the data at the “joins” (where two 669 
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scaffolds meet).  In the GA runs that search map space (described below), we held intra-scaffold 670 

rates at their estimates from the stage 2 HMM.  Thus, each evaluation was based on the 671 

likelihood of the map after optimizing relative to inter-scaffold rates.  However, we apply the full 672 

model (all intra- and inter-scaffold recombination rates re-estimated) to our final map for each 673 

chromosome of each mapping population.   In either case, we obtain the maximum likelihood via 674 

application of the forward-backward algorithm.   675 

 676 

The genetic algorithm—GOOGA maximizes the likelihood of the HMM using a genetic 677 

algorithm (GA) on a per chromosome, per mapping population basis.  A GA is an algorithmic 678 

optimization scheme inspired by sexual reproduction and natural selection [76].  Below we use 679 

terms such as “individual”, “mutation”, “recombination”, and “selection” as they are frequently 680 

used in the GA literature, however, be aware we are not referring to biological entities or 681 

processes. To build the GA we first coded unique scaffold orders, including scaffold orientations 682 

(i.e. forward strand vs. reverse complement), to make an "individual".  Each individual 683 

represents a candidate solution among a population of individuals (N=19) competing against one 684 

another in a given generation.  For each generation we used the HMM described above to 685 

calculate the likelihood of each individual.  To preserve the best scaffold orders, we used 686 

a strategy called elitism (E), which allows a predetermined number (E=3 in our case) of the 687 

best individuals (i.e., highest likelihood scaffold orders) to go on to the next generation 688 

unchanged. To fill the remaining N-E spots in the next generation, we applied rank-based 689 

selection to select pairs of individuals to “mutate” and “recombine” into new individuals before 690 

adding to the next generation.  To accomplish this, all N individuals were sorted in ascending 691 

order by likelihood and each individual (i) was assigned a rank (Ri) of 1 to N.  The probability of 692 
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selecting an individual on the basis of its rank was ���� � �� ∑ ��
�

���
⁄ .  16 pairs of unique 693 

individuals were randomly selected based on these probabilities, and subjected to mutation and 694 

recombination operations. We used a mutation scheme called “swap mutation”, where 695 

one individual was randomly selected from the pair, and then the location of up to four pairs of 696 

scaffolds within that individual were randomly swapped (while also flipping the orientation 50% 697 

of the time), thus creating a new “mutant” scaffold order. The mutated individual was then 698 

recombined with the other member of the pair.  Recombination was performed using a scheme 699 

called the “order crossover”.  This involves first choosing a random length segment of scaffolds 700 

from the donor individual and randomly inserting it into the scaffold order of the recipient 701 

individual to make a new individual.  Each scaffold contributed by the donor is, now duplicated 702 

in the recipient individual.  To fix this we deleted all the recipient individual’s copies of the 703 

duplicated scaffolds, while preserving the relative order of the non-duplicates. The swap 704 

mutation and ordered crossover do not mimic the mechanics of biological mutation or meiotic 705 

recombination.  However both create diverse new individuals (i.e. scaffold orders) while 706 

preserving partial solutions from both the donor and recipient individuals.  This allows the GA to 707 

build on past successes while exploring new scaffold orders. 708 

 709 

The calculations were parallelized so that the HMM could be run simultaneously on each 710 

individual in the population.  To further speed up the HMM, we implemented a memoization 711 

strategy that stored past recombination fraction (RF) results between scaffolds and injected those 712 

precomputed results into the future HMM calculations to avoid recalculation.  To understand the 713 

mechanism of the memoization strategy, as a toy example and for the moment ignoring scaffold 714 

orientation, imagine a chromosome with four scaffolds A, B, C, and D and an initial individual 715 
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ordered ABCD with RF rates computed between A-B, B-C, and C-D.  After calculating the RF 716 

rates for this individual, we store the RF rate for the entire length (ABCD) and RF rates of all 717 

suborders of at least two scaffolds (ABC, BCD, AB, BC, CD), to create a catalog of previously 718 

computed rates. Then, when a future individual is produced, say DABC, we would search the 719 

catalog for matches starting with the longest members (ABCD) and then the next longest (ABC, 720 

BCD), and so on until the catalog is exhausted. For DABC, the first match would be the suborder 721 

ABC, which would supply RF rates for A-B and B-C, leaving D-A as the only missing RF rate to 722 

be calculated.  After HMM calculation, all new suborders (DABC, DAB, and DA) would be 723 

added to the catalog for future use.  This approach greatly speeds up calculation, especially at the 724 

later stages of optimization when many individuals tend to have large tracts of identical scaffold 725 

orders. We found that this approach reliably underestimates the likelihood value by a small 726 

amount when compared to the much slower processes of calculating all RF rates de novo for 727 

every new individual (among 750 random test samples all memoization estimates had a lower 728 

natural log-likelihood, with a median underestimate of 0.02%).  This means the memoization 729 

method is consistently slightly conservative.  For this reason, when a new individual was found 730 

to be among the elites (i.e. a promising new scaffold order), the program paused and recomputed 731 

this individual’s exact likelihood without precomputed RF rates and used this more precise 732 

likelihood for future ranking.  The GA procedure is implemented in Python (version 2.7), 733 

utilizing functions from the scipy library (http://www.scipy.org/). The code is open source and 734 

available online (https://github.com/flag0010/GOOGA).  All GA runs were initiated with a map 735 

based on the V2 genome order. The program was configured to terminate after 1000 generations 736 

with no change to the highest likelihood map or after running for 96 hrs. 737 

 738 
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After obtaining an optimal map for each cross considered in isolation, we contrasted the 739 

likelihood to that obtained under the V2 orientation. ΔlnLk is the difference in the natural log 740 

likelihood between two maps, each consisting of the same markers and their self-optimized 741 

recombination rates.  We use this statistic as a measure of goodness of fit of data to alternative 742 

orders/orientations of scaffolds (e.g. Figure 1).  We extracted MLE recombination rates from 743 

each mapping population to be compared to DNA level features such as amount of coding DNA, 744 

number of transposable elements, and the presence of centromeric DNA.  For these analyses, we 745 

defined a 200 kb interval around each 100 kb-long marker, starting at the midpoint of the 746 

preceding marker and ending at the mid-point of the next marker.  The analysis is defined at this 747 

scale to absorb recombination events that occur mid-marker (thus yielding NN at the focal site as 748 

described above).  Consider the first three markers on a scaffold defined on the position ranges 749 

0-100 kb, 100 kb-200 kb, and 200 kb-300 kb, respectively.  We related the sequence interval 750 

from 50 kb-250 kb to the sum of the two rates ( of Figure 5).  This analysis neglected 751 

very small scaffolds, the sequence at the ends of longer scaffolds, and the estimated rates 752 

between scaffolds (the amount and the features of the interceding DNA are unknown anyway).  753 

In this analysis, we also excluded regions where recombination is suppressed due to inversions 754 

(Supporting Table 4).  We obtained a single rate for each interval by first standardizing map 755 

specific rates by the total length of each map and then calculated a weighted mean across 756 

populations.  The weight given to estimates from each cross is proportional to the reciprocal of 757 

the genome-wide recombination rate variance: IMPR = 1, IMSWC = .899, IMNAS = 0.790, and 758 

DUNTIL = 0.677, and IMF3 = 0.380. 759 

 760 
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QTL mapping in IMSWC population: As a test case to demonstrate the value of applying 761 

GOOGA for genetic map construction prior to downstream applications, we compared 762 

quantitative trait locus (QTL) mapping results for the IMSWC cross using either the optimized 763 

scaffold order generated by our pipeline vs. the scaffold order of the M. guttatus v2 reference 764 

genome. For each of the 873 F2s used for genetic map construction, genotype 765 

posterior probabilities were emitted for each of the 111 markers defined for chromosome 11. 766 

This chromosome harbors a major QTL that contributes to variation in the ability to flower under 767 

13 hour light : 11 hour dark conditions in this cross (Kooyers et al. 2018, in prep.). Genotypes 768 

were then assigned at each marker for each individual based on the genotype with a posterior 769 

probability > 0.95; otherwise, the genotype was called as missing. For each marker order, 770 

we calculated recombination frequencies (map function = haldane), imputed 771 

genotype probabilities at 1 cM steps (error probability = 0.001), and performed interval mapping 772 

using the binary model in R/QTL [48]. 773 

 774 
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Table 1: Summed pairwise changes in log-likelihood values by chromosome given in 1068 

descending order.  For each chromosome we imposed the final scaffold order from every cross 1069 

onto every other cross and calculated the difference in the natural log likelihoods (ΔlnLk) 1070 

between the crosses own order versus this imposed order. Sums are given on the set of ΔlnLks 1071 

for each chromosome. A large positive ΔlnLk indicates a pair of crosses with highly 1072 

incompatible orders.   1073 

 1074 

Chromosome Sum of Pairwise 
ΔlnLk 

10 5581.1 
5 5330.1 

11 3503.0 
3 2263.3 

12 1449.2 
13 1301.0 
1 1203.7 
7 845.8 
6 828.2 
2 782.0 
4 610.8 

14 551.0 
9 442.1 
8 75.4 

 1075 
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Figure 1.  The improvement of the chromosome map between the M. guttatus V2 reference 1077 

genome and the GOOGA optimized order for three chromosomes (IMF3 cross). Within each 1078 

panel, the V2 order is shown above the IMF3 optimized order.  Each genomic scaffold is drawn 1079 

to its genetic map length (in Morgans) and denoted in green if it maps on the forward strand or 1080 

red for the reverse strand. Grey lines connect the same scaffold in the V2 and optimized order.   1081 

 1082 

Figure 2.  A reversal of genomic scaffolds due to an inversion is illustrated by the comparison of 1083 

chromosome 10 maps for all five crosses. Each genomic scaffold is drawn to its genetic map 1084 

length and denoted in green if it maps on the forward strand or red for the reverse strand. Grey 1085 

lines connect the same scaffold between maps.  1086 

 1087 

Figure 3.  The effect of genomic features on recombination rate is illustrated. Panel A shows the 1088 

positive correlation between the proportion of coding sequence and recombination rate. Panel B 1089 

shows the negative correlation between the proportion annotated as a transposable element (TE) 1090 

and recombination rate.  For both panel A and B the red line markers the least squares best fit.  1091 

Panel C shows the recombination rate distributions for 100 kb regions with >5% centromeric 1092 

repeat content, or <5% centromeric repeat content. 1093 

 1094 

Figure 4.  The results of QTL estimation using the V2 map (top panel) versus the IMSWC 1095 

optimized map from GOOGA (bottom panel).  The maps are aligned in middle panel. 1096 

 1097 

Figure 5. The structure of the Hidden Markov Model is illustrated for F2 individuals.  1098 

Transitions between genotype states (AA, AB, or BB) for markers m1 through m4 in the latent 1099 

state layer are determined by recombination fractions (r) between pairs of markers.  The 1100 

probabilities of each latent state estimate are then propagated into the emitted state layer with a 1101 

genotyping error rate term that is specific to each individual (subscript i). 1102 
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SUPPORTING INFORMATION LEGENDS 1104 

 1105 

Supporting Figure 1:  Comparative genetic maps for each of the five populations used in this 1106 

study.  For each chromosome the maps from each of the five populations are given.  Each 1107 

genomic scaffold is given in a separate color. 1108 

 1109 

Supporting Table 1:  Spreadsheet with marker orders.  This spreadsheet includes the maps of 1110 

every chromosome for each cross, and physical and genetic location of each marker.  The last 1111 

marker of each chromosome gives the map lnLk. 1112 

 1113 

Supporting Table 2: Delta natural log likelihood (ΔlnLk) between GOOGA and V2 marker 1114 

order.  For each chromosome and each population the ΔlnLk is given.  Large positive values 1115 

indicate that the mapping data fits the GOOGA optimized order much better than the V2 genome 1116 

order. 1117 

 1118 

Supporting Table 3: Likelihood differences from imposing each GOOGA optimized map order 1119 

onto every other population.  All pairwise contrasts between population are given for each 1120 

chromosome.  “Home” is the focal data set, and “away” indicates the imposed map order.  ll1 is 1121 

the likelihood of “home” in it’s own map order, and ll2 is “home” in the “away” order.  “Diff” is 1122 

the difference between ll1 and ll2. 1123 

 1124 

Supporting Table 4: All putative chromosomal inversions identified by GOOGA among the 1125 

five mapping populations. 1126 

 1127 

Supporting Table 5: Unplaced V2 genome scaffolds which were given a physical location from 1128 

GOOGA.  The table gives the v1 scaffold name and intervals for scaffolds that we were able to 1129 

assign to one of the 14 Mimulus chromosomes.  Their specific locations can be found in 1130 

Supporting Table 1. 1131 

 1132 

Supporting Table 6: Estimated genotype error rates for every individual from every population 1133 

used in this study.  1134 
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