

1 **A genome-scale metabolic model for *Methylococcus***
2 ***capsulatus* predicts reduced efficiency uphill electron**
3 **transfer to pMMO.**

4 Christian Lieven^{*1}, clie@biosustian.dtu.dk

5 Leander A. H. Petersen^{2, 3}, leape@kt.dtu.dk

6 Sten Bay Jørgensen³, sbj@kt.dtu.dk

7 Krist V. Gernaey³, kvg@kt.dtu.dk

8 Markus J. Herrgard¹, herrgard@biosustian.dtu.dk

9 Nikolaus Sonnenschein¹, niso@biosustian.dtu.dk

10

11 ¹The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark

12 ²Unibio A/S,

13 ³Department of Chemical Engineering, Technical University of Denmark

14 * Corresponding Author

15

16

17

18

19

20

21

22

1 **Abstract**

2 **Background:**

3 Genome-scale metabolic models allow researchers to calculate yields,
4 to predict consumption and production rates, and to study the effect of
5 genetic modifications *in silico*, without running resource-intensive
6 experiments. While these models have become an invaluable tool for
7 optimizing industrial production hosts like *E. coli* and *S. cerevisiae*, few
8 such models exist for one-carbon (C1) metabolizers.

9 **Results:**

10 Here we present a genome-scale metabolic model for *Methylococcus*
11 *capsulatus*, a well-studied obligate methanotroph, which has been used
12 as a production strain of single cell protein (SCP). The model was
13 manually curated, and spans a total of 877 metabolites connected via
14 898 reactions. The inclusion of 730 genes and comprehensive
15 annotations, make this model not only a useful tool for modeling
16 metabolic physiology, but also a centralized knowledge base for *M.*
17 *capsulatus*. With it, we determined that oxidation of methane by the
18 particulate methane monooxygenase is most likely driven through uphill
19 electron transfer operating at reduced efficiency as this scenario
20 matches best with experimental data from literature.

1 Conclusions:

2 The metabolic model will serve the ongoing fundamental research of C1
3 metabolism, and pave the way for rational strain design strategies
4 towards improved SCP production processes in *M. capsulatus*.

5 Keywords

6 COBRA, Genome-scale metabolic reconstruction, C1 Metabolism,
7 Single Cell Protein, Methanotrophy

8 Availability of Data and Materials

9 The metabolic model, scripts and corresponding datasets generated
10 and/or analysed during the current study are available in the GitHub
11 repository.

- 12 • Archived: <https://github.com/ChristianLieven/memote-m->
- 13 capsulatus
- 14 • Most Recent: <https://github.com/ChristianLieven/memote-m->
- 15 capsulatus/tree/develop

17 The data that support the biomass equation constructed in this study
18 are available from Unibio at

- <http://www.unibio.dk/end-product/chemical-composition-1>

1 • <http://www.unibio.dk/end-product/chemical-composition-2>
2 Restrictions may apply to the availability of these data. Data are
3 however available from the authors upon reasonable request and with
4 permission of Unibio.

5 **Background**

6 The Gram-negative, obligate-aerobe *Methylococcus capsulatus* is a
7 methane oxidizing, gamma-proteobacterium. Since its initial isolation by
8 Foster and Davis [1], the organism has been subject to a wide array of
9 studies. The global role of *M. capsulatus* as a participant in the carbon
10 cycle has been elucidated [2, 3] as well as its effects on human [4] and
11 animal health and disease [5]. Specifically the latter studies have been
12 triggered by a considerable commercial interest in *M. capsulatus* as the
13 primary microbe used for the production of Single Cell Protein (SCP) as
14 animal feed starting in the 70s [6]. Now that hydraulic fracturing has
15 made natural gas a cheap and abundant feedstock [7], the application
16 of *M. capsulatus* for this purpose is being explored again [8, 9]. Another
17 portion of studies, however, has focused on uncovering the biochemical
18 and genetic basis of the organism's unique metabolism [10]. Yet, the
19 greatest interest has been the role and function of the initial enzyme in
20 methanotrophy, methane monooxygenase [11], responsible for
21 oxidation of methane to methanol.

1 *Methylococcus capsulatus* is able to express two distinct types of
2 methane monooxygenases: a soluble form of methane monooxygenase
3 (sMMO) and a particulate, or membrane-bound form (pMMO). The
4 expression of these enzymes is strongly influenced by the extracellular
5 concentration of copper; when *M. capsulatus* is grown in the presence
6 of low levels of copper the sMMO is active, while the pMMO is
7 predominantly active at high levels. Both enzymes require an external
8 electron donor to break a C-H bond in methane. While the electron
9 donor for the sMMO is NADH [12–15], the native reductant to the
10 pMMO has not yet been elucidated due to difficulties to purify the
11 enzyme and assay its activity *in vitro* [11]. Three hypotheses regarding
12 the mode of electron transfer to the pMMO have been suggested
13 previously: 1) formaldehyde oxidation provides the electrons required to
14 oxidize methane in the form of NADH, while the electrons that are
15 released from the oxidation of methanol are passed via a cytochrome
16 ‘redox arm’ to a terminal oxidase, generating ATP. 2) A direct coupling
17 between the pMMO and the methanol dehydrogenase (MDH) allows an
18 efficient exchange of electrons, leading to the latter reaction driving the
19 former. 3) Finally, it is possible that electrons are transferred to the
20 pMMO from MDH through the ubiquinol pool by the action of a reversely
21 operating ubiquinol-cytochrome-c reductase. This mode is referred to as
22 ‘uphill’ electron transfer [17].

1 **Figure 1. Overview of the respiratory chain in *Methylococcus capsulatus***

2 **as implemented in iMcBath.** Black text in the center of the symbols denotes
3 the common abbreviation, while the faint grey text below denotes the
4 corresponding reaction ID in the metabolic model.

5 A genome-scale metabolic model (GEM) not only represents a
6 knowledge base that combines the available physiological, genetic and
7 biochemical information of a single organism [16], but also provides a
8 testbed for rapid prototyping of a given hypothesis [17]. Hence, we
9 present the first manually curated genome-scale metabolic model for
10 *Methylococcus capsulatus*, with the intent of supplying the basis for
11 hypothesis-driven metabolic discovery and clearing the way for future
12 efforts in metabolic engineering [18]. Using the GEM, we investigate the
13 nature of electron transfer in *M. capsulatus* by comparing the model's
14 predictions against experimental data from Leak and Dalton [19].
15 Furthermore, we compare its predictions to those of the model of *M.*
16 *buryatense* [20] and explain notable differences by considering the
17 proposed electron transfer modes.

1 Results and Discussion

2 Reconstruction

3 The presented genome-scale metabolic reconstruction of *M. capsulatus*
4 termed iMcBath was based on BMID000000141026, an automatic draft
5 published as part of the Path2Models project [21]. The whole genome
6 sequence of *Methyloccoccus capsulatus* (Bath) (GenBank AE017282.2
7 [22]) was used to aid the curation process and to supply annotations
8 (see material & methods). This metabolic reconstruction consists of 840
9 enzymatic reactions that interconvert 783 unique metabolites. The total
10 number of reactions, including exchange, demand and the biomass
11 reactions, is 892. The model attributes reactions and metabolites to
12 three distinct compartments: The cytosol, the periplasm, and the
13 medium that is referred to as extracellular in the model. Gene-Protein-
14 Reaction rules (GPR) associated with 730 unique genes support 85.5%
15 of the included reactions with, leaving 122 reactions without a GPR. The
16 GPRs include representation of 24 enzyme complexes.

17 The model is made available in the community-standard SMBL format
18 (Level 3 Version 2 with FBC).

19 Biomass reaction

20 In stoichiometric models biological growth is represented as the flux
21 through a special demand reaction. The so-called biomass reaction

1 functions as a drain of metabolites, which are either highly reduced non-
2 polymeric macromolecules such as lipids and steroids or precursors to
3 typical biopolymers such as nucleic acids, proteins or long-chain
4 carbohydrates. The stoichiometry of an individual precursor was
5 calculated from the principal composition of *M. capsulatus* as reported
6 by Unibio [23]. The monomer composition of individual macromolecules
7 was calculated from different sources. A detailed account of the
8 resources is provided in the methods section and an overview of the
9 biomass reaction is given in Supplement Table 1.

10 The growth-associated maintenance (GAM) and the non-growth
11 associated maintenance (NGAM) requirements for *M. capsulatus* are
12 yet to be determined experimentally. Therefore, a GAM value of 23.087
13 mmol ATP gDW⁻¹ h⁻¹ was estimated according to Thiele et al. [16]
14 based on the data for *E. coli* published by Neidhardt et al. [24]. The
15 value for GAM is expected to increase with the growth rate of the cells
16 [25]. Like de la Torre et al. had done for *M. buryatense* [20], we
17 assumed the non-growth associated maintenance (NGAM) of *M.*
18 *capsulatus* to be similar to that of *E. coli* thus setting it to 8.39 mmol
19 ATP gDW⁻¹ h⁻¹ [26].

1 Metabolism

2 Much of the focus in curating the initial draft model BMID000000141026
3 was put on the central carbon metabolism and respiration of *M.*
4 *capsulatus*.

5 Three possible modes of electron transfer to the pMMO have been
6 proposed.

7 1) In the *redox-arm* mode [27], the methanol dehydrogenase (MDH)
8 passes electrons via cytochrome c555 (cL) [28] and cytochrome c553
9 (cH) [29] to either a CBD- or AA3-type terminal oxidase [30] and thus
10 contributes to building up a proton motive force (PMF) and the synthesis
11 of ATP (Figure 1). The electrons required for the oxidation of methane
12 are provided through ubiquinone (Q8H2), which in turn received
13 electrons from various dehydrogenases involved in the oxidation of
14 formaldehyde to CO₂. Although no binding site has been identified,
15 there is support for pMMO reduction by endogenous quinols [31].

16 2) With the *direct coupling* mode, the MDH is able to directly pass
17 electrons to the pMMO [32–34]. Here, cytochrome c555 is the electron
18 donor to the pMMO instead of ubiquinol. This mode is supported by
19 results from cryoelectron microscopy which indicates that the pMMO
20 and the MDH form a structural enzyme complex [35].

1 3) The *uphill electron transfer* mode supposes that the electrons from
2 cytochrome c553 can reach the ubiquinol-pool facilitated by the PMF at
3 the level of the ubiquinol-cytochrome-c reductase. This mode was
4 proposed by Leak and Dalton [36] as it could explain the observed
5 reduced efficiency.

6 To determine which of these modes is most likely active in *M.*
7 *capsulatus*, Leak and Dalton [36] developed mathematical models for
8 each mode based on previous calculations [37, 38]. However, their
9 models did not reflect the experimental results. De la Torre et al.
10 constructed a genome-scale metabolic model (GEM) for
11 *Methylomicrobium buryatense* to investigate growth yields and energy
12 requirements in different conditions [20]. They found that the *redox-arm*
13 mode correlated least with their experimental data for *M. buryatense*.

14 To study which of the three modes of electron transfer is active in *M.*
15 *capsulatus*, they were each implemented in the model. The
16 implementation is illustrated in Figure 2. To include the *redox-arm* we
17 implemented the reaction representing the particulate methane
18 monooxygenase, in the model termed as PMMOipp, utilizing Q8H2 as a
19 cofactor. Accordingly, a variant of the pMMO reaction was added to
20 account for a possible direct coupling to the MDH. In this variant
21 reaction, termed PMMODCipp, the cofactor is cytochrome c555,
22 represented as the metabolite focytcc555_p in the model. To enable an

1 *uphill electron transfer*, the reaction representing the ubiquinol-
2 cytochrome-c reductase (CYOR_q8ppi in the model), was constrained
3 to be reversible while keeping PMMOipp active.

4 **Figure 2. The three possible modes of electron transfer to the pMMO**
5 **mapped onto an excerpt of the respiratory chain.** 1) Redox-arm: The
6 methanol dehydrogenase transfers electrons to the terminal oxidase, while
7 the pMMO draws electrons from the quinone pool. 2) Direct coupling:
8 Electrons from the oxidation of methanol are transferred directly to the pMMO.
9 3) Uphill electron transfer: Electrons from the methanol dehydrogenase feed
10 back into the ubiquinol-pool. Black text denotes the common name, while faint
11 grey text denotes the reaction ID in the metabolic model.

12 Following the path of carbon through metabolism downstream from the
13 MDH, the model includes both the reaction for a ubiquinone-dependent
14 formaldehyde dehydrogenase [39], termed FALDDHipp, and an NAD-
15 dependent version, termed ALDD1 (Figure 3). Despite of the initial
16 evidence for the latter reaction [40] having been dispelled by Adeosun
17 et al. [41], it was added to allow further investigation into the presence
18 of a putative enzyme of that function. An additional pathway for
19 formaldehyde oxidation represented in both genome and model is the
20 tetrahydromethanopterin(THMPT)-linked pathway [42].

1 **Figure 3. Three different formaldehyde oxidation pathways are**
2 **represented in the model.** Black text denotes the common name, while faint
3 grey text denotes the reaction ID in the metabolic model.

4 Formaldehyde assimilation in *M. capsulatus* occurs primarily through
5 the ribulose monophosphate (RuMP)-pathway. As outlined by Anthony
6 [10], the RuMP-pathway has four hypothetical variants. Based on the
7 annotated genome published by Ward et al. [22], we identified not only
8 both C6 cleavage pathways depending either on the 2-keto, 3-deoxy, 6-
9 phosphogluconate (KDPG) aldolase (EDA) or the fructose bisphosphate
10 aldolase (FBA), but also the transaldolase (TA) involved in the
11 rearrangement phase that regenerates ribulose 5-phosphate. The
12 alternative to a transaldolase-driven rearrangement step is the use of a
13 sedoheptulose bisphosphatase, which was not included in the initial
14 annotation. Strøm et al. could not detect specific activity using cell-free
15 preparations [43]. Yet, we decided to add a corresponding reaction for
16 two reasons. First, the FBA has been characterized to reversibly
17 catalyze sedoheptulose bisphosphate cleavage [44], which is reflected
18 by the reaction FBA3 in the model. Second, the pyrophosphate-
19 dependent 6-phosphofructokinase (PFK_3_ppi) was reported to have
20 higher affinity and activity to the reversible phosphorylation of
21 seduheptulose phosphate than compared to fructose 6-phosphate [45].
22 Thus, all of the resulting four combinations that make up the RuMP-
23 pathway are represented in this metabolic model (Figure 4).

1 **Figure 4. All four variants of the RuMP pathway are represented in the**
2 **metabolic model.** If there is a common enzyme name the black text denotes
3 the common name, while faint grey text denotes the reaction ID in the
4 metabolic model. Otherwise the black text is also the reaction ID in the model.

5 The genome of *Methylococcus capsulatus* encodes genes for a
6 complete Calvin Benson Bassham (CBB) cycle [46–48] and a partial
7 Serine pathway for formaldehyde assimilation [22]. It was argued by
8 Taylor et al. [49] that *M. capsulatus* can metabolize glycolate (a product
9 of the oxygenase activity of the ribulose bisphosphate carboxylase
10 (RBPC)) via this pathway. Both Taylor and Ward, further suggested the
11 presence of unique key enzymes to complete the Serine pathway, such
12 as hydroxymethyl transferase, hydroxypyruvate reductase and malate-
13 CoA lyase. However, since the gene annotation did not reflect this and
14 the RuMP pathway is reportedly the main pathway for formaldehyde
15 assimilation [50], these putative reactions were not included.

16 All genes of the TCA cycle were identified in the genome sequence and
17 all associated reactions were included accordingly [22]. Because no
18 activity of the 2-oxoglutarate dehydrogenase has so far been measured
19 *in vivo* [50, 51], the associated reactions have been constrained to be
20 blocked (both lower and upper bounds were set to zero). This way they
21 can easily be activated if needed. For instance, if a growth condition is
22 discovered where activity for this enzyme can be detected.

1 Based on reactions already present in BMID000000141026, the
2 information in the genome annotation, and the measured biomass
3 composition, we curated the biosynthetic pathways of all proteinogenic
4 amino acids, nucleotides, fatty acids, phospholipids, pantothenate,
5 coenzyme A, NAD, FAD, FMN, riboflavin, thiamine, myo-inositol, heme,
6 folate, cobalamine, glutathione, squalene, lanosterol, peptidoglycan.
7 Since no corresponding genes could be identified, reactions catalyzing
8 the biosynthesis of lipopolysaccharide (LPS) were adopted from
9 iJO1366 [52] under the assumption that the biosynthesis steps among
10 gram-negative bacteria require amounts of ATP comparable to
11 *Escherichia coli*.

12 **Figure 5. Oxidation of ammonia to nitrite.**

13 *Methylococcus capsulatus* is able to metabolize the nitrogen sources
14 ammonium (NH_4) and nitrate (NO_3) in a variety of ways. When the
15 extracellular concentration of NH_4 is high, alanine dehydrogenase
16 (ADH) is the primary pathway for nitrogen assimilation into biomass
17 [53]. In addition, the two monooxygenases are able to oxidize
18 ammonium to hydroxylamine [15, 54], which is then further oxidized by
19 specific enzymes first to nitrite [55] (Figure 5), and even to dinitrogen
20 oxide [56]. NO_3 is reduced to NH_4 via nitrite and ultimately assimilated
21 via the glutamine synthetase/ glutamine synthase (GS/GOGAT)
22 pathway. Furthermore, it has been shown that *M. capsulatus* is able to

1 fix atmospheric nitrogen (N_2) [57]. The nitrogenase gene cluster has
2 been identified [58] and annotated accordingly [22], and the
3 corresponding reactions have been included in the model. As the
4 enzyme has not yet been specifically characterized, the nitrogenase
5 reaction was adapted from iAF987 [59]. A schema showing these
6 reactions side-by-side is displayed in Figure 6.

7 **Figure 6. Nitrogen assimilation and fixation pathways represented in the**
8 **model.** Black text in the centre of the symbols denotes reaction IDs. Common
9 names are used for metabolites.

10 A metabolic map of all the reactions in the model was built using Escher
11 [60] and is available as Supplement Figure 1.

12 Extension and manual curation

13 Starting reconstruction on the basis of an automated draft required
14 additional effort to be able to use it for calculations. The automated draft
15 used two sets of ID namespaces, BiGG [61] and MetaNetX (MNX) [62].
16 Hence, the first step in the curation efforts consisted of unifying the
17 namespace by mapping all metabolite and reaction identifiers from MNX
18 into the human-readable BiGG namespace. Individual metabolites and
19 reactions with unmappable IDs, that could not be identified in the BiGG
20 database and for which there was little evidence in the form of GPR
21 rules, were removed from the model. Several metabolite formulas

1 contained polymer units, and many reactions lacked EC numbers.
2 Using the MNX spreadsheet exports 'chem_prop.tsv' and
3 'reac_prop.tsv' from version 1.0 [63] and 2.0 [64] most of these issues
4 were resolved. Due to said malformed and missing metabolite formulae,
5 many reactions were not mass-charge-balanced. We used the
6 'check_mass_balance` function in cobrapy [65] to identify and balance
7 99.4% of the reactions in the model. The remaining five reactions,
8 belonging to fatty acid biosynthesis, involve a lumped metabolite that
9 represents the average fatty acid content of *M. capsulatus*.

10 Another challenge with extending the automated draft was that many
11 reactions were inverted meaning that reactants and products were
12 switched, and constrained to be irreversible. Consulting the
13 corresponding reactions in MetaCyc [66], these instances were
14 corrected manually. For each precursor in the biomass reaction, the
15 corresponding biosynthetic pathway was gap-filled and manually
16 curated. To identify the appropriate pathways, MetaCyc pathway maps
17 from the *M. capsulatus* Bath specific database were used to compare
18 the reactions that were present in the draft reconstruction
19 (<https://biocyc.org/organism-summary?object=MCAP243233>).

20 In order to enable other researchers to integrate iMcBath into their
21 respective workflows and to simplify model cross-comparisons, we

1 included MIRIAM-compliant annotations for a majority of the model's
2 reactions (96%) and metabolites (98%) [67].

3 As a last step we added transport reactions that were not in the draft
4 reconstruction. Inferring membrane transport reactions from the
5 genome sequence is difficult, as usually the precise 3D structure of
6 transport proteins dictates which metabolite classes can be transported
7 [68]. Even if the substrates are known, the energy requirements of
8 transport are often undefined. Working on protein sequence matches
9 using PsortB 3.0 [69], combined with BLAST [70] matches against
10 TransportDB [71] and the Transporter Classification Database (TCDB)
11 [72], we were able to identify 56 additional transport reactions. We have
12 limited the number of transporters to be added, focusing specifically on
13 transporters with known mechanisms and transport of metabolites
14 already included in the model. A list of putative transport-associated
15 genes that we did not consider is available at
16 <https://github.com/ChristianLieven/memote-m-capsulatus>. Some of
17 these genes were reported by Ward et al. to facilitate the uptake of
18 sugars [22]. Kelly et al. suggest [50] these genes may allow a function
19 similar to *Nitrosomas europaea*, which is able grow on fructose as a
20 carbon-source with energy from ammonia oxidation [73]. This list is a
21 good starting point to study potential alternate carbon source use by *M.*
22 *capsulatus*.

1 Validation of the Model

2 To determine which combination of the three aforementioned electron
3 transfer modes is active in *Methylococcus capsulatus*, we constrained
4 the model based on experiments conducted by Leak and Dalton [19].

5 Since the three modes relate to how the pMMO receives electrons, we
6 focused on the data generated by growing *M. capsulatus* in high-copper
7 medium, which is the condition in which pMMO is predominantly active.

8 We used the average of carbon and oxygen-limited measurements as a
9 reference. Having constrained the model, we compared the Leak and
10 Dalton's measurements for the ratio of oxygen consumption to methane
11 consumption (O_2/CH_4) to the predictions of the model (Figure 7A). We
12 considered the O_2/CH_4 ratio to be a key metric for the respiratory chain
13 in *M. capsulatus*, as it is a function of the mode of electron transfer to
14 the pMMO. The central carbon metabolism was left unconstrained.

15 Under the assumption that the mode of electron transfer to pMMO
16 would be independent of the source of nitrogen, we compared the
17 O_2/CH_4 ratios of the model constrained to employ one of the three
18 modes of electron transfer exclusively to the corresponding reference
19 values of *M. capsulatus* grown on either NO_3^- or NH_4^+ . However, neither
20 of the modes adequately represented the measured O_2/CH_4 ratios of
21 about 1.43 and 1.6, respectively. Although Leak and Dalton had
22 proposed that the *reverse* or *uphill electron transfer* is the most

1 probable mode [36], the model predictions allowing for an unbounded
2 *uphill transfer* did not support this (Figure 7), as the efficiency was
3 almost comparable to predictions using *direct coupling*.

4 We altered the efficiency of the three modes to determine whether the
5 fit could be improved. For the *redox arm*, we gradually decreased the
6 mol protons required for the synthesis of 1 mol ATP, thereby improving
7 the efficiency. This did not change the O₂/CH₄ ratio (See Supplement
8 Table 2). We decreased the efficiency of the *direct coupling* mode
9 (PMMODCipp) by forcing a portion of the flux through the regular
10 pMMO reaction (PMMOipp) using ratio constraints. Although this
11 affected the O₂/CH₄ ratio, to achieve a ratio representing the measured
12 value of 1.43 would require a large decrease in efficiency with almost
13 85% of the incoming carbon to be routed through the regular pMMO
14 reaction (See Supplement Table 2). Because of this, we consider a
15 *direct coupling* to be possible, albeit unlikely. Lastly, we iteratively
16 constrained the lower bound of the reaction associated with the
17 ubiquinol-cytochrome-c reductase (CYOR_q8ppi), to reduce the
18 efficiency of the *uphill-electron transfer*.

19 As Figure 7B shows, by constraining the reverse flux through this
20 reaction, it is possible to modulate the ratio of O₂/CH₄ consumption. We
21 decided to fit the lower bound of ubiquinol-cytochrome-c reductase only
22 to the reference O₂/CH₄ ratio of 1.43 with cells grown on NO₃, in order

1 to avoid an overlap with the effects of NO_2 production. Leak and Dalton
2 pointed out, that the unexpectedly high O_2/CH_4 ratio of 1.6 was the
3 product of latent NH_4 oxidation rather than assimilation [19] leading to
4 elevated levels of NO_2 . They were uncertain whether this increase could
5 be attributed to the energetic burden of reducing NH_4 or the uncoupling
6 effect of NO_2 .

7 To investigate this effect, we introduced a ratio constraint (see Methods)
8 coupling the uptake of NH_4 to the excretion of NO_2 and explored a
9 number of values for this ratio (Figure 7C). According to the simulations,
10 the energy spent on reducing about 50% of incoming NH_4 to NO_2 is
11 sufficient to account for the observed, high O_2/CH_4 ratio of 1.6. Although
12 this shows that the loss of energy could be significant enough to
13 account for the increased ratio, this does not exclude a potential
14 combined effect because of energy decoupling. Regardless it shows
15 that predictions using the metabolic model can accurately reflect the *in*
16 *vivo* behavior of *M. capsulatus*.

17 **Figure 7 Validation of iMcBath. A:** Using each of the three electron transfer
18 modes exclusively (Redox-Arm, Direct Coupling, Uphill Transfer), the ratios of
19 oxygen to methane consumption (O_2/CH_4) predicted by iMcBath were
20 compared to experimental values from Leak and Dalton [19]. Since none of
21 the three modes matched the reference, the efficiency of the Uphill Transfer
22 was reduced by iteratively constraining the flux through the ubiquinol-
23 cytochrome c reductase (CYOR_q8) reaction as shown in **B**. Using a lower

1 bound of -2.8 improved the fit to the reference value for cells grown on NO_3 (**A**
2 – Uphill Transfer Fit) **C:** To account for the energy loss through NH_3 oxidation,
3 several ratios of NH_4 uptake to NO_2 production were considered. The closest
4 fit was achieved with a ratio of around 0.5 (**A** – + $\frac{1}{2}$ NO_2 Production)

5 Comparison with other models

6 We compared iMcBath, the preceding automated draft reconstruction
7 BMID000000141026, and a genome-scale metabolic model of the
8 gram-negative, gamma-proteobacterium *Methylomicrobium buryatense*
9 strain 5G(B1) [20] to illustrate how much the model has progressed
10 from the draft through manual curation and how the mode of electron
11 transfer affects growth parameters within the group of gamma-
12 proteobacteria (See Table 1).

13 Unsurprisingly, the automated draft generally performs quite poorly in
14 comparison with the curated models. It's not possible to produce
15 biomass from methane, even in rich media conditions, which is
16 indicative of gaps in the pathways leading towards individual biomass
17 components. Moreover, ATP can be produced without the consumption
18 of substrate, which in turn means that key energy reactions are not
19 constrained thermodynamically to have the correct reversibility. In the
20 draft, 51% of the reactions are not supported by Gene-Protein-Reaction
21 rules (GPR), while in iMb5G(B1) this percentage is only 32% and in
22 iMcBath the percentage of these reactions is under 20%. GPRs allow

1 modelers to distinguish between isozymes and enzyme complexes by
2 connecting gene IDs either through boolean ‘OR’ or ‘AND’ rules. In
3 iMcBath, 25 complexes in total were curated and formulated as GPR.
4 Neither the draft model nor iMb5G(B1) make this distinction.

5 In the automated draft, the oxidation of methane was only possible
6 through a reaction representing the sMMO (MNXR6057). In iMcBath,
7 this was corrected by also implementing reactions that represent the
8 pMMO, one with ubiquinone as the electron donor (PMMOipp), and
9 another that receives electrons from the MDH (PMMODCipp).
10 *Methylococcus capsulatus*, like *Methylomicrobium buryatense*,
11 expresses both the soluble and the particulate monooxygenase
12 depending on the availability of copper in the medium. In iMb5G(B1)
13 however only the particulate monooxygenase is represented by the
14 reaction “pMMO”. The ability of *M. capsulatus* to grow on ammonia,
15 nitrate and nitrogen has been characterized experimentally [53]. In
16 addition to that, however, iMcBath also predicts growth on nitrite and
17 urea. Nitrite is an intermediate in the assimilation of nitrate, yet also
18 reported to elicit toxic effects [19, 74], hence *in vivo* growth may only be
19 possible on low concentrations. Growth on urea is possible in the model
20 since we identified *MCA1662* as an ATP-driven urea transporter and
21 gap-filled a urease reaction when curating the cobalamine biosynthesis
22 pathway. As a consequence of this, urea can be taken up into the
23 cytosol and broken down into ammonia and carbon dioxide, the former

1 of which is then assimilated. Further experimental work is necessary to
2 verify this *in vivo*. *M. buryatense* 5G(B1) is reported to grow on nitrate,
3 ammonia and urea, yet without adding the respective transport
4 reactions iMb5G(B1) only grows on nitrate. While the draft model for *M.*
5 *capsulatus* contains exchange reactions for all the tested nitrogen
6 sources except for urea, it couldn't grow at all, which again is likely
7 because of gaps in the pathways leading to biomass precursor
8 metabolites.

9 The difference between *M. capsulatus* and *M. buryatense* becomes
10 apparent when comparing the growth energetics of iMcBath and
11 iMb5G(B1). iMb5G(B1) produces more mmol gDW⁻¹ h⁻¹ ATP than
12 iMcBath. Because of this the hypothetical growth-rates predicted by
13 iMb5G(B1) are higher than those of iMcBath regardless of the
14 respective nitrogen source. This difference is likely a direct
15 consequence of the mode of electron transfer to the monooxygenase
16 and thus the efficiency of the methane oxidation reaction in total. When
17 comparing the ratio of the uptake rate of oxygen and the uptake rate of
18 methane for the two models, we can see that the resulting values in
19 iMb5G(B1) are lower than in iMcBath. It was recently reported, that
20 instead of the reverse-electron transfer and redox-arm mode active in
21 *M. capsulatus*, a mixture of *direct coupling* from pMMO to MDH and
22 *reverse electron transfer* seems to be the most likely mode in *M.*
23 *buryatense* 5G(B1) [20].

1 **Table 1. Model Comparison.** The presented reconstruction iMcBath, the
2 automated draft BMID000000141026 and iMb5G(B1), a genome-scale
3 reconstruction of *Methylomicrobium buryatense* strain 5G(B1).

	iMcBath	BMID000000141026	iMb5G(B1)
Structure			
	SMMOi,		
Methane Oxidation	PMMOipp, PMMODCipp	MNXR6057	pMMO
Growth on N-Sources	Urea, NO ₂ , NO ₃ , NH ₄ , N ₂	No Growth	NO ₃
Performance			
ATP Production Closed Exchanges	False	True	False
ATP Production Rate - NH ₄	0.775	1000	1
ATP Production Rate - NO ₃	0.365	1000	0.519
Growth Rate - pMMO - NH ₄	0.299	No Growth	0.34
Growth Rate - pMMO - NO ₃	0.205	No Growth	0.27
O ₂ /CH ₄ Ratio - pMMO - NH ₄	1.434	No Growth	1.156
O ₂ /CH ₄ Ratio - pMMO - NO ₃	1.415	No Growth	1.116
Specifications			
Reactions without GPR	174	950	129
Enzyme Complexes	43	0	0
Total # Genes	730	589	313
Total # Metabolites	877	935	403
Total # Reactions	898	1858	402

1 Conclusion

2 IMCBATH is the first, manually curated, genome-scale metabolic model
3 for *Methylococcus capsulatus*. With iMcBath, we combine biochemical
4 knowledge of half a century of research on *Methylococcus capsulatus*
5 into a single powerful resource, providing the basis for targeted
6 metabolic engineering, process design and optimization, omic-data
7 contextualization and comparative analyses. We applied the metabolic
8 model to study the complex electron transfer chain of *M. capsulatus*, by
9 analyzing the three modes of electron transfer that had been proposed
10 previously [36]. We did so by corresponding each mode with the flux
11 through a reaction in the model, and consequently comparing the
12 predicted O₂/CH₄ ratios to experimentally measured values by Leak and
13 Dalton [19]. Simulation and experiment agreed either when the model
14 was constrained to employ the *uphill electron transfer* at reduced
15 efficiency or *direct coupling* at strongly reduced efficiency for *M.*
16 *capsulatus* grown *in silico* on NO₃ as the source of nitrogen. Although
17 an *uphill electron-transfer* seems more likely, further experimental
18 validation is required as neither mode can be ruled out exclusively. The
19 experimentally observed effect of NH₄ oxidation to NO₂ could be
20 replicated by considering the energy burden alone.

21 Future applications of the metabolic model could include hypothesis
22 testing of the regulation of the MMO in other growth conditions [50],

1 studying the effects of the predicted hydrogenases on the energy
2 metabolism of *M. capsulatus* [22], and exploring venues of metabolic
3 engineering for an improved production of metabolites [75]. Another

4 **Methods**

5 Model Curation

6 After mapping the reaction and metabolite identifiers from the MetaNetX
7 namespace to the BiGG namespace, we proceeded with the curation
8 efforts as follows: First, we chose a subsystem of interest, then we
9 picked a pathway and using information from either the genome
10 sequence, published articles, the metacyc or uniprot databases, and
11 lastly, we enriched each enzymatic step in said pathway with as much
12 information as possible. Information that was added included for
13 instance: GPR, reaction localization, EC numbers, a confidence score,
14 possible cofactors and inhibitors and cross references to other
15 databases such as KEGG, BiGG and MetaNetX. For each metabolite
16 involved in these reactions, we defined the stoichiometry, charge and
17 elemental formula, either based on the corresponding entries in the
18 BiGG database or on clues from literature.

19 If reactions from a pathway were present in the draft, we checked their
20 constraints and directionality. This was necessary as many of the
21 irreversible reactions in the draft reconstruction seemed to have been

1 'inverted' when compared to the corresponding reactions in the
2 reference databases, which made flux through them impossible in
3 normal growth conditions.

4 The energy metabolism and methane oxidation were curated first.
5 Except for the reaction representing the sMMO, all reactions were newly
6 constructed, as they were absent in the draft. Then, in order to achieve
7 sensible FBA solutions for growth on methane, the central carbon
8 metabolism, amino acid and nucleotide biosynthesis pathways were
9 manually curated. Simultaneous to the manual curation a metabolic
10 pathway map was created in Escher, which helped us to maintain a
11 visual checklist of curated pathways.

12 The automated draft contained a rudimentary, generic biomass
13 reaction, which only accounted for the production of proteins, DNA and
14 RNA, but not for the biosynthesis of a cell wall and cell membrane, the
15 maintenance of a cofactor pool, the turnover of trace elements or the
16 energetic costs associated with growth. After calculating a more specific
17 biomass composition for *M. capsulatus*, further pathway curation was
18 necessary to achieve growth *in silico*. This included the biosynthesis
19 pathways of fatty acids (even, odd and cyclopropane varieties),
20 phospholipids, coenzyme A, Ubiquinol, Lanosterol, FAD, FMN,
21 Riboflavin, NAD and NADP, Heme, Glutathione, Cobalamin, Thiamine,
22 Myo-Inositol, and Lipopolysaccharides.

1 To account for the reported differences in ammonia assimilation of *M.*
2 *capsulatus* when grown in the presence of excess ammonia versus the
3 growth on either atmospheric nitrogen or nitrate, we curated the
4 nitrogen metabolism including the oxidation of ammonia to nitrite via
5 hydroxylamine, the reduction of nitrate and nitrite, the glutamine
6 synthetase/ glutamate synthase reactions and the alanine
7 dehydrogenase. Reversible degradation reactions producing ammonia
8 that would potentially bypass the characterized ammonia assimilation
9 pathways were constrained to be irreversible accordingly.

10 After we had enriched the annotations already in the draft with
11 annotations from the metabolic models iJO1366 [52], iRC1080 [76],
12 iJN678 [77] and iHN637 [78], they were converted into a MIRIAM-
13 compliant format. As a final step, we manually added transport
14 reactions to reflect the uptake energetics of cofactors.

15 Throughout the reconstruction process, we iteratively tested and
16 validated the reconstruction. For instance, we checked the mass and
17 charge balance of each reaction, attempting to manually balance those
18 that weren't balanced. In the majority of cases metabolites were missing
19 formula or charge definitions. In order to remove energy generating
20 cycles, problematic reactions were manually constrained to be
21 irreversible. Validation was carried out against growth data [19], which
22 was also the point of reference for the parameter fitting.

1 Biomass Composition

2 For the principal components of biomass, measurements were made
3 available through the website of our collaborators Unibio [23]. This
4 included specifically the content of RNA (6.7%), DNA (2.3%), crude fat
5 (9.1%), and glucose (4.5%) as a percentage of the cell dry weight. We
6 did not use the percentage values for crude protein (72.9%) and N-free
7 extracts (7.6%) as these measurements are fairly inaccurate relying on
8 very generalized factors. The percentage value of Ash 550 (8.6%)
9 measurements was inconsistent with the sum of its individual
10 components (4.6%) and was hence excluded.

11 On the homepage of UniBio, we were also able to find g/kg
12 measurements of all amino acids except for glutamine and asparagine,
13 trace elements and vitamins, which could directly be converted into
14 mmol/g DW. However, we omitted some of data: The stoichiometries for
15 Selenium, Cadmium, Arsenic, Lead and Mercury were not included in
16 the biomass reaction as their values were negligibly small. Beta-
17 Carotene (Vitamin A) and Gama-Tocopherol (Vitamin E) were omitted
18 because no genes were found supporting their biosynthesis, in addition
19 to both being reportedly below the detection limit [79].

20 For the lack of better measurements, and assuming that *M. buryatense*
21 and *M. capsulatus* are more similar than *M. capsulatus* and *E. coli*, the
22 stoichiometries of glutamine and asparagine, intracellular metabolites

1 such as ribulose-5-phosphate, organic cofactors such as coenzyme A,
2 and cell wall components such as LPS were introduced from de la Torre
3 et al. [20].

4 Using the GC content calculated from the genome sequence [22] and
5 the percentage measurements from Unibio for RNA and DNA, we were
6 able to calculate the stoichiometries of all individual nucleobases.

7 Unibio's measurements that 94% of the crude fat portion were fatty
8 acids conflicted with previously published results, which indicated that in
9 fact phospholipids are likely to be the main lipid component in *M.*
10 *capsulatus* [80, 81]. Thus, we assumed 94% of the crude fat to be
11 phospholipids. This meant that 6% of the crude fat was composed of
12 fatty acids, the distributions of which were again provided by Unibio.
13 However, in order to calculate the stoichiometry of each fatty acid we
14 recalculated the distribution to exclude the unidentified part. Makula had
15 also measured the composition of the phospholipid pool itself [80], from
16 which we calculated the corresponding stoichiometries for
17 phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol
18 and cardiolipin.

19 Bird and colleagues had reported the percentage of squalene and
20 sterols of dry weight [82], which we converted into mmol/g DW without
21 further corrections. Since the genes for hopanoid synthesis were
22 identified we included diptopetalol in the biomass reaction [22, 83]. For a

1 lack of more detailed measurements we estimated a similar contribution
2 to the overall composition as squalene. We specifically used lanosterol
3 to represent the general class of sterols in the biomass reaction, since
4 we had only been able to reconstruct the synthesis pathway of
5 lanosterol and since lanosterol is a key precursor metabolite in the
6 biosynthesis of all other sterols.

7 The growth associated maintenance energy requirements were
8 calculated in accordance with protocol procedures [16].

9 Transport Reactions

10 The identification of transport reactions involved the two databases for
11 transport proteins, the Transporter Classification Database (TCDB) [84]
12 and the Transport Database (TransportDB) [71], and two computational
13 tools, PSORTb v3.0 [69] and BLASTp [70]. We employed the following
14 semi-automatic way of inferring the putative function of transport
15 proteins in *M. capsulatus*.

16 Using the protein sequences in AE017282.2_protein.faa [22], we
17 determined the subcellular location of each protein using PSORTb v3.0.
18 We filtered the results and focused only on proteins with a final score
19 larger than 7.5, which the authors of PSORTb consider to be
20 meaningful. We combined this list with the *M. capsulatus* specific
21 entries from the TransportDB, which allowed us to use the PSORT-

1 scores as an additional measure of confidence. At this point, 242
2 putative transport proteins were identified. From this list we then
3 selected all proteins which were predicted to transport metabolites and
4 were already included in the model, which reduced the number to 133.
5 Since for many of the entries, the exact mechanism of transport is
6 unknown, we combined the previously selected transporters with the
7 results from running BLAST against the TCDB. The e-value and
8 bitscore from BLAST provided yet another measure to confidently
9 assess the correctness of the automatic TransportDB predictions, and
10 the Transporter Classification-Numbers (TC-numbers) allowed us to
11 gather information on the mechanism of transport. This led to a list of 97
12 transport proteins with high confidence, which was filtered once more as
13 follows.

14 We checked the general description for a given specific TC-number,
15 and then considered the BLAST result to read about a given transporter
16 in more detail, especially with regards to finding the specific substrates.
17 When we were able to identify the corresponding transport reaction in
18 the BiGG database, we incorporated only the simplest, smallest set of
19 reactions. In cases of conflicts between our own BLAST results and the
20 automatic TransportDB transporter annotation, we preferentially trusted
21 the BLAST results. Thus we ultimately added 75 transporter-encoding
22 genes connected via GPR to 56 distinct transport reactions.

1 Ratio Constraint

2 To identify which mode of electron transfer is active in *M. capsulatus*,
3 we fit the solutions of FBA using iMcBath to measured values [19]. The
4 authors had experimentally determined the O₂/CH₄ ratio and the growth
5 yield of *M. capsulatus* in several conditions. They varied the nitrogen
6 source using KNO₃, NH₄CL, and both simultaneously; the concentration
7 of copper in the medium, which directly affects the activity of either
8 sMMO or pMMO; and whether the culture was oxygen or carbon limited.

9 Since each electron transfer mode respectively is represented by the
10 flux through one specific reaction in the model (PMMOipp,
11 PMMODCipp, CYOR_q8ppi), we were able to investigate each simply
12 by constraining the corresponding reaction.

13 Secondly, we accounted for the differential expression of ADH in the
14 presence of excess NH₄ in the medium versus the GS/GOGAT in the
15 presence of NO₄ or N₂ by blocking the corresponding reactions
16 accordingly [53].

17 Several studies have shown that NH₄ is a co-metabolic substrate to the
18 methane monooxygenases in *M. capsulatus* leading to the production of
19 hydroxylamine first and nitrite later [54, 74, 85]. Hence, when simulating
20 the growth on NH₄ we assumed that varying ratios *r* of the nitrogen
21 taken up would eventually be converted into nitrite (Figure 7).

1 (1) $v_{EX_nh4_e} + r v_{EX_no2_e} = 0$

2 Stoichiometric Modeling

3 The reactome of an organism can be represented mathematically as a
4 stoichiometric matrix S . Each row of S corresponds to a unique
5 compound, while each column corresponds to a metabolic reaction.
6 Hence the structure of the matrix for an organism with m compounds
7 and n reactions equals $m \times n$. The values in each row denote the
8 stoichiometric coefficients of that metabolite in all reactions. The
9 coefficients are either negative for compounds that are educts, positive
10 for those that are products, or zero for those that are not involved in a
11 given metabolic reaction.

12 The vector v of length n contains as values the turnover rates of each
13 reaction. These rates are commonly referred to as fluxes and are given
14 the unit mmol gDW⁻¹ h⁻¹. Vector v is also referred to as the flux vector,

15 **Declarations**

16 Ethics approval and consent to participate:

17 “Not applicable”

1 Consent for publication:

2 “Not applicable”

3 Availability of Data and Materials:

4 The metabolic model, scripts and corresponding datasets generated
5 and/or analysed during the current study are available in the GitHub
6 repository.

7 • Archived:

8 <https://github.com/ChristianLieven/memote-m-capsulatus>

9 • Most Recent:

10

11 The data that support the biomass equation constructed in this study
12 are available from Unibio at

13 • <http://www.unibio.dk/end-product/chemical-composition-1>
14 • <http://www.unibio.dk/end-product/chemical-composition-2>

15 Restrictions may apply to the availability of these data. Data are
16 however available from the authors upon reasonable request and with
17 permission of Unibio.

18 Competing interests:

19 Unibio is a collaborator in the “Environmentally Friendly Protein
20 Production (EFPro2)” project. CL, MJH, and NS are publicly funded

1 through the Novo Nordisk Foundation and the Innovation Fund
2 Denmark and thus declare no financial or commercial conflict of
3 interest.

4 **Funding:**

5 This work has been funded by the Novo Nordisk Foundation and the
6 Innovation Fund Denmark (project “Environmentally Friendly Protein
7 Production (EFPro2)’’)

8 **Authors’ contributions:**

9 CL collected and analysed the data, reconstructed the metabolic model,
10 drafted and revised the manuscript. LP and SBJ provided feedback on
11 the metabolic behaviour of *M. capsulatus*, discussed improvements to
12 the model and revised the manuscript. KVG, MJH and NS conceived
13 and supervised the study and revised the manuscript critically. All
14 authors read and approved the manuscript.

15 **Acknowledgements:**

16 The authors would like to acknowledge Budi Juliman Hidayat, Subir
17 Kumar Nandi, John Villadsen for sharing their experiences with *M.*
18 *capsulatus*; Mitch Pesesky, David Collins, Marina Kalyuzhnaya, Ilya
19 Akberdin, and Sergey Stolyar for insightful discussions at the GRC C1
20 Conference 2016; and Kristian Jensen, Joao Cardoso, and Marta Matos

1 for their help with software problems and feedback on the
2 implementation.

3 **References**

4 1. Foster JW, Davis RH. A methane-dependent coccus, with notes on
5 classification and nomenclature of obligate, methane-utilizing bacteria. *J
6 Bacteriol.* 1966;91:1924–31.
7 <https://www.ncbi.nlm.nih.gov/pubmed/5937247>.

8 2. Hanson RS, Hanson TE. Methanotrophic bacteria. *Microbiol Rev.*
9 1996;60:439–71. doi:<p></p>.

10 3. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, et al.
11 Methanotrophs: Multifunctional bacteria with promising applications in
12 environmental bioengineering. *Biochem Eng J.* 2010;49:277–88.
13 doi:10.1016/j.bej.2010.01.003.

14 4. Indrelid S, Kleiveland C, Holst R, Jacobsen M, Lea T. The Soil
15 Bacterium *Methylococcus capsulatus* Bath Interacts with Human
16 Dendritic Cells to Modulate Immune Function. *Front Microbiol.* 2017;8
17 February:1–13. doi:10.3389/fmicb.2017.00320.

18 5. Kleiveland CR, Hult LTO, Spetalen S, Kaldhusdal M, Christoffersen
19 TE, Bengtsson O, et al. The noncommensal bacterium *Methylococcus*
20 *capsulatus* (Bath) ameliorates dextran sulfate (sodium salt)-induced
21 ulcerative colitis by influencing mechanisms essential for maintenance
22 of the colonic barrier function. *Appl Environ Microbiol.* 2013;79:48–57.

1 doi:10.1128/AEM.02464-12.

2 6. Øverland M, Tauson A-H, Shearer K, Skrede A. Evaluation of
3 methane-utilising bacteria products as feed ingredients for monogastric
4 animals. *Arch Anim Nutr* 2010;64:171–89.

5 doi:10.1080/17450391003691534.

6 7. Ritala A, Häkkinen ST, Toivari M, Wiebe MG. Single Cell Protein—
7 State-of-the-Art, Industrial Landscape and Patents 2001–2016. *Front
8 Microbiol*. 2017;8 October:2009. doi:10.3389/fmich.2017.02009.

9 8. Nunes et al. JJ. ENHANCED PRODUCTION OF SINGLE CELL
10 PROTEIN FROM *M. capsulatus* (BATH) GROWING IN MIXED
11 CULTURE. *J Microbiol Biotechnol Food Sci*. 2016;6:894–9.

12 doi:10.15414/jmbfs.2016/17.6.3.894-899.

13 9. Petersen LAH, Villadsen J, Jørgensen SB, Gernaey K V. Mixing and
14 mass transfer in a pilot scale U-loop bioreactor. *Biotechnol Bioeng*.
15 2017;114:344–54.

16 10. Anthony C. The biochemistry of methylotrophs. 1983.

17 doi:10.1016/0300-9629(83)90116-0.

18 11. Ross MO, Rosenzweig AC. A tale of two methane
19 monooxygenases. *J Biol Inorg Chem*. 2017;22:307–19.

20 doi:10.1007/s00775-016-1419-y.

21 12. Blazyk JL, Lippard SJ. Expression and characterization of ferredoxin
22 and flavin adenine dinucleotide binding domains of the reductase
23 component of soluble methane monooxygenase from *Methylococcus*

1 capsulatus (Bath). Biochemistry. 2002;41:15780–94.
2 <https://www.ncbi.nlm.nih.gov/pubmed/12501207>.
3 13. Lund J, Woodland MP, Dalton H. Electron transfer reactions in the
4 soluble methane monooxygenase of *Methylococcus capsulatus* (Bath).
5 Eur J Biochem. 1985;147:297–305.
6 <https://www.ncbi.nlm.nih.gov/pubmed/3918864>.
7 14. Colby J, Dalton H. Characterization of the second prosthetic group
8 of the flavoenzyme NADH–acceptor reductase (component C) of the
9 methane mono-oxygenase from *Methylococcus capsulatus* (Bath).
10 Biochem J. 1979;177:903–8. doi:10.1042/bj1770903.
11 15. Colby J, Dalton H. Resolution of the methane mono-oxygenase of
12 *Methylococcus capsulatus* (Bath) into three components. Purification
13 and properties of component C, a flavoprotein. Biochem J.
14 1978;171:461–8. <https://www.ncbi.nlm.nih.gov/pubmed/418777>.
15 16. Thiele I, Palsson BØ. A protocol for generating a high-quality
16 genome-scale metabolic reconstruction. Nature protocols. 2010;5:93–
17 121. doi:10.1038/nprot.2009.203.
18 17. Benedict MN, Gonnerman MC, Metcalf WW, Price ND. Genome-
19 scale metabolic reconstruction and hypothesis testing in the
20 methanogenic archaeon *Methanosarcina acetivorans* C2A. J Bacteriol.
21 2012;194:855–65. doi:10.1128/JB.06040-11.
22 18. Kim B, Kim WJ, Kim DI, Lee SY. Applications of genome-scale
23 metabolic network model in metabolic engineering. J Ind Microbiol

- 1 Biotechnol. 2015;42:339–48. doi:10.1007/s10295-014-1554-9.
- 2 19. Leak DJ, Dalton H. Growth yields of methanotrophs - 1. Effect of
- 3 copper on the energetics of methane oxidation. Appl Microbiol
- 4 Biotechnol. 1986;23:470–6. doi:10.1007/BF02346062.
- 5 20. de la Torre A, Metivier A, Chu F, Laurens LML, Beck DACC,
- 6 Pienkos PT, et al. Genome-scale metabolic reconstructions and
- 7 theoretical investigation of methane conversion in *Methylomicrobium*
- 8 *buryatense* strain 5G(B1). Microb Cell Fact. 2015;14:188.
- 9 doi:10.1186/s12934-015-0377-3.
- 10 21. Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T,
- 11 Keller R, et al. Path2Models: large-scale generation of computational
- 12 models from biochemical pathway maps. BMC Syst Biol. 2013;7:116.
- 13 doi:10.1186/1752-0509-7-116.
- 14 22. Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin a. S, et al.
- 15 Genomic insights into methanotrophy: The complete genome sequence
- 16 of *Methylococcus capsulatus* (Bath). PLoS Biol. 2004;2.
- 17 doi:10.1371/journal.pbio.0020303.
- 18 23. Unibio. Unibio Homepage. www.unibio.dk. Accessed 18 Apr 2018.
- 19 24. Neidhardt FC, Ingraham JL, Schaechter M. Physiology of the
- 20 bacterial cell: a molecular approach. Sinauer Sunderland; 1990.
- 21 [http://www.cell.com/trends/genetics/pdf/0168-9525\(91\)90427-R.pdf](http://www.cell.com/trends/genetics/pdf/0168-9525(91)90427-R.pdf) LB
- 22 - fFAa.
- 23 25. Varma A, Boesch BW, Palsson BO. Stoichiometric interpretation of

1 Escherichia coli glucose catabolism under various oxygenation rates.

2 Appl Environ Microbiol. 1993;59:2465–73.

3 <https://www.ncbi.nlm.nih.gov/pubmed/8368835>.

4 26. Feist AM, Zielinski DC, Orth JD, Schellenberger J, Herrgard MJ,

5 Palsson BO. Model-driven evaluation of the production potential for

6 growth-coupled products of Escherichia coli. Metab Eng. 2010;12:173–

7 86.

8 27. Dawson MJ, Jones CW. Energy conservation in the terminal region

9 of the respiratory chain of the methylotrophic bacterium *Methylophilus*

10 *methylotrophus*. Eur J Biochem. 1981;118:113–8.

11 <https://www.ncbi.nlm.nih.gov/pubmed/7285910>.

12 28. Anthony C. The c-type cytochromes of methylotrophic bacteria.

13 Biochim Biophys Acta. 1992;1099:1–15. doi:10.1016/0005-

14 2728(92)90181-Z.

15 29. DiSpirito AA, Kunz RC, Choi D-W, Zahn JA. Respiration in

16 methanotrophs. In: Respiration in archaea and bacteria. Springer; 2004.

17 p. 149–68. http://link.springer.com/chapter/10.1007/978-1-4020-3163-2_7 LB - 7CV6.

19 30. Larsen Ø, Karlsen OA. Transcriptomic profiling of *Methylococcus*

20 *capsulatus* (Bath) during growth with two different methane

21 monooxygenases. Microbiologyopen. 2016;5:254–67.

22 doi:10.1002/mbo3.324.

23 31. Shiemke AK, Arp DJ, Sayavedra-Soto LA. Inhibition of membrane-

1 bound methane monooxygenase and ammonia monooxygenase by
2 diphenyliodonium: implications for electron transfer. *J Bacteriol.*
3 2004;186:928–37. <https://www.ncbi.nlm.nih.gov/pubmed/14761987>.

4 32. Culpepper MA, Rosenzweig AC. Structure and Protein–Protein
5 Interactions of Methanol Dehydrogenase from *Methylococcus*
6 *capsulatus* (Bath). *Biochemistry.* 2014;53:6211–9.
7 doi:10.1021/bi500850j.

8 33. Leak DJ, Dalton H. In vivo Studies of Primary Alcohols, Aldehydes
9 and Carboxylic Acids as Electron Donors for the Methane Mono-
10 oxygenase in a Variety of Methanotrophs. *Microbiology.*
11 1983;129:3487–97. doi:10.1099/00221287-129-11-3487.

12 34. Wolfe RS, Higgins IJ. Microbial biochemistry of methane-a study in
13 contrasts. *Int Rev Biochem.* 1979;21:267–353.

14 35. Myronova N, Kitmitto A, Collins RF, Miyaji A, Dalton H. Three-
15 dimensional structure determination of a protein supercomplex that
16 oxidizes methane to formaldehyde in *Methylococcus capsulatus* (Bath).
17 *Biochemistry.* 2006;45:11905–14. doi:10.1021/bi061294p.

18 36. Leak DJ, Dalton H. Growth yields of methanotrophs 2. A theoretical
19 analysis. *Appl Microbiol Biotechnol.* 1986;23:477–81.
20 doi:10.1007/BF02346063.

21 37. Harder W, Van Dijken JP. Theoretical considerations on the relation
22 between energy production and growth of methane-utilizing bacteria.
23 *Symposium on microbial production and utilization of atmospheric trace*

1 gases. Goltze, Göttingen, Germany. 1976;:403–18.

2 38. Anthony C. The prediction of growth yields in methylotrophs.

3 Microbiology. 1978;104:91–104.

4 <http://mic.sgmjournals.org/content/104/1/91.short>.

5 39. Zahn J a., Bergmann DJ, Boyd JM, Kunz RC, DiSpirito a. a.

6 Membrane-associated quinoprotein formaldehyde dehydrogenase from

7 *Methylococcus capsulatus* Bath. J Bacteriol. 2001;183:6832–40.

8 doi:10.1128/JB.183.23.6832-6840.2001.

9 40. Tate S, Dalton H. A low-molecular-mass protein from

10 *Methylococcus capsulatus* (Bath) is responsible for the regulation of

11 formaldehyde dehydrogenase activity in vitro. Microbiology. 1999;145 (

12 Pt 1):159–67. doi:10.1099/13500872-145-1-159.

13 41. Adeosun EK, Smith TJ, Hoberg AM, Velarde G, Ford R, Dalton H.

14 Formaldehyde dehydrogenase preparations from *Methylococcus*

15 *capsulatus* (Bath) comprise methanol dehydrogenase and methylene

16 tetrahydromethanopterin dehydrogenase. Microbiology. 2004;150:707–

17 13. doi:10.1099/mic.0.26707-0.

18 42. Vorholt JA. Cofactor-dependent pathways of formaldehyde oxidation

19 in methylotrophic bacteria. Arch Microbiol. 2002;178:239–49.

20 doi:10.1007/s00203-002-0450-2.

21 43. Strøm T, Ferenci T, Quayle JR. The carbon assimilation pathways

22 of *Methylococcus capsulatus*, *Pseudomonas methanica* and

23 *Methylosinus trichosporium* (OB3B) during growth on methane.

1 Biochem J. 1974;144:465–76. doi:10.1042/bj1440465.

2 44. Rozova ON, Khmelenina VN, Mustakhimov II, Reshetnikov AS,

3 Trotsenko YA. Characterization of Recombinant Fructose 1, 6

4 Bisphosphate Aldolase from *Methylococcus capsulatus* Bath.

5 2010;75:892–8.

6 45. Reshetnikov AS, Rozova ON, Khmelenina VN, Mustakhimov II,

7 Beschastny AP, Murrell JC, et al. Characterization of the

8 pyrophosphate-dependent 6-phosphofructokinase from *Methylococcus*

9 *capsulatus* Bath. FEMS Microbiol Lett. 2008;288:202–10.

10 doi:10.1111/j.1574-6968.2008.01366.x.

11 46. Taylor S, Dalton H, Dow C. Purification and initial characterisation of

12 ribulose 1,5-bisphosphate carboxylase from *Methylococcus capsulatus*

13 (Bath). FEMS Microbiol Lett. 1980;8:157–60. doi:10.1016/0378-

14 1097(80)90021-x.

15 47. Taylor S. Evidence for the presence of ribulose 1,5-bisphosphate

16 carboxylase and phosphoribonuclease in *Methylococcus capsulatus*

17 (bath). FEMS Microbiol Lett. 1977;2:305–7. doi:10.1016/0378-

18 1097(77)90057-x.

19 48. Baxter NJ, Hirt RP, Bodrossy L, Kovacs KL, Embley TM, Prosser JI,

20 et al. The ribulose-1,5-bisphosphate carboxylase/oxygenase gene

21 cluster of *Methylococcus capsulatus* (Bath). Arch Microbiol.

22 2002;177:279–89. doi:10.1007/s00203-001-0387-x.

23 49. Taylor SC, Dalton H, Dow CS. Ribulose- 1,5-bisphosphate

1 Carboxylase/Oxygenase and Carbon Assimilation in *Methylococcus*
2 *capsulatus* (Bath). *Microbiology*. 1981;122:89–94.
3 doi:10.1099/00221287-122-1-89.

4 50. Kelly DP, Anthony C, Murrell JC. Insights into the obligate
5 methanotroph *Methylococcus capsulatus*. *Trends Microbiol*.
6 2005;13:195–8. doi:10.1016/j.tim.2005.03.002.

7 51. Wood AP, Aurikko JP, Kelly DP. A challenge for 21st century
8 molecular biology and biochemistry: What are the causes of obligate
9 autotrophy and methanotrophy? *FEMS Microbiol Rev*. 2004;28:335–52.
10 doi:10.1016/j.femsre.2003.12.001.

11 52. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A
12 comprehensive genome-scale reconstruction of *Escherichia coli*
13 metabolism--2011. *Mol Syst Biol*. 2011;7:535.
14 doi:10.1038/msb.2011.65.

15 53. Murrell JC, Dalton H. Ammonia Assimilation in *Methylococcus*-
16 *Capsulatus* (Bath) and Other Obligate Methanotrophs. *Journal of*
17 *General Microbiology*. 1983;129 1 983:1197–206.
18 doi:10.1099/00221287-129-4-1197.

19 54. Bédard C, Knowles R. Physiology, biochemistry, and specific
20 inhibitors of CH₄, NH₄⁺, and CO oxidation by methanotrophs and
21 nitrifiers. *Microbiol Rev*. 1989;53:68–84. doi:0146-0749/89/010068-17.

22 55. Bergmann DJ, Zahn J a., Hooper AB, DiSpirito A a. Cytochrome
23 P450 genes from the methanotroph *Methylococcus capsulatus* bath. *J*

1 Bacteriol. 1998;180:6440–5.

2 <https://www.ncbi.nlm.nih.gov/pubmed/9851984>.

3 56. Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein

4 LY, Klotz MG. Model of the molecular basis for hydroxylamine oxidation

5 and nitrous oxide production in methanotrophic bacteria. FEMS

6 Microbiol Lett. 2011;322:82–9. doi:10.1111/j.1574-6968.2011.02340.x.

7 57. Murrell JC, Dalton H, Murrell, J. Colin, Dalton H, Colin Murrell J,

8 Dalton H, Murrell JC, et al. Nitrogen Fixation in Obligate Methanotrophs.

9 Microbiology. 1983;129:3481–6. doi:10.1099/00221287-129-11-3481.

10 58. Oakley CJ, Murrell JC. Cloning of nitrogenase structural genes from

11 the obligate methanotroph *Methylococcus capsulatus* (Bath). FEMS

12 Microbiol Lett. 1991;62:121–5. doi:<http://dx.doi.org/>.

13 59. Feist AM, Nagarajan H, Rotaru A-EE, Tremblay P-LL, Zhang T,

14 Nevin KP, et al. Constraint-based modeling of carbon fixation and the

15 energetics of electron transfer in *Geobacter metallireducens*. PLoS

16 Comput Biol. 2014;10:e1003575. doi:10.1371/journal.pcbi.1003575.

17 60. King ZA, Dr??ger A, Ebrahim A, Sonnenschein N, Lewis NE,

18 Palsson BO. Escher: A Web Application for Building, Sharing, and

19 Embedding Data-Rich Visualizations of Biological Pathways. PLoS

20 Comput Biol. 2015;11.

21 61. King ZA, Lu J, Dr??ger A, Miller P, Federowicz S, Lerman JA, et al.

22 BiGG Models: A platform for integrating, standardizing and sharing

23 genome-scale models. Nucleic Acids Res. 2016;44:D515–22.

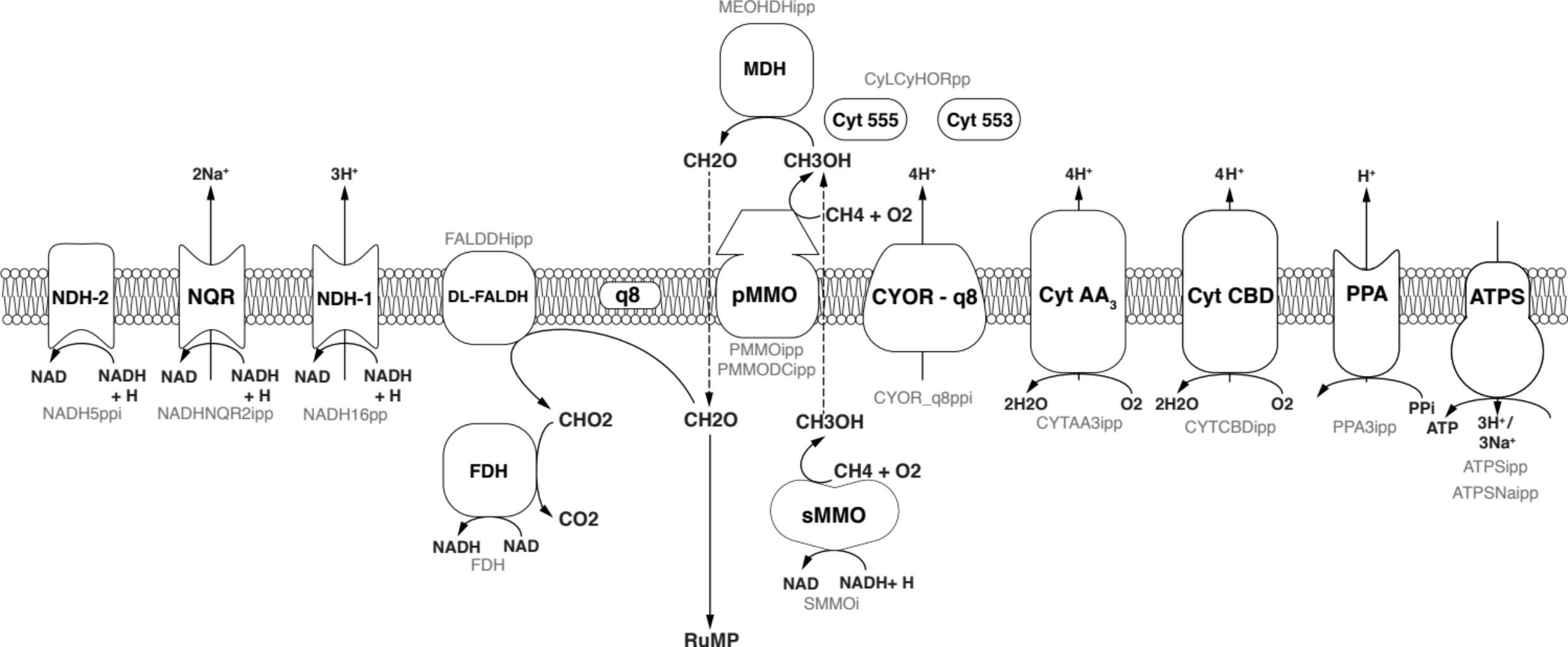
- 1 62. Ganter M, Bernard T, Moretti S, Stelling J, Pagni M. MetaNetX.org:
2 a website and repository for accessing, analysing and manipulating
3 metabolic networks. *Bioinformatics*. 2013;29:815–6.
4 doi:10.1093/bioinformatics/btt036.
- 5 63. Bernard T, Bridge A, Morgat A, Moretti S, Xenarios I, Pagni M.
6 Reconciliation of metabolites and biochemical reactions for metabolic
7 networks. *Brief Bioinform*. 2014;15:123–35. doi:10.1093/bib/bbs058.
- 8 64. Moretti S, Martin O, Van Du Tran T, Bridge A, Morgat A, Pagni M.
9 MetaNetX/MNXref--reconciliation of metabolites and biochemical
10 reactions to bring together genome-scale metabolic networks. *Nucleic
Acids Res.* 2016;44:D523–6. <https://academic.oup.com/nar/article-abstract/44/D1/D523/2502621>.
- 13 65. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy:
14 COnstraints-Based Reconstruction and Analysis for Python. *BMC Syst
Biol.* 2013;7:74. doi:10.1186/1752-0509-7-74.
- 16 66. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA,
17 et al. The MetaCyc database of metabolic pathways and enzymes and
18 the BioCyc collection of Pathway/Genome Databases. *Nucleic Acids
Res.* 2014;42. doi:10.1093/nar/gkt1103.
- 20 67. Novère N Le, Finney A, Hucka M, Bhalla US, Campagne F, Collado-
21 Vides J, et al. Minimum information requested in the annotation of
22 biochemical models (MIRIAM). *Nat Biotechnol*. 2005;23:1509–15.
23 doi:10.1038/nbt1156.

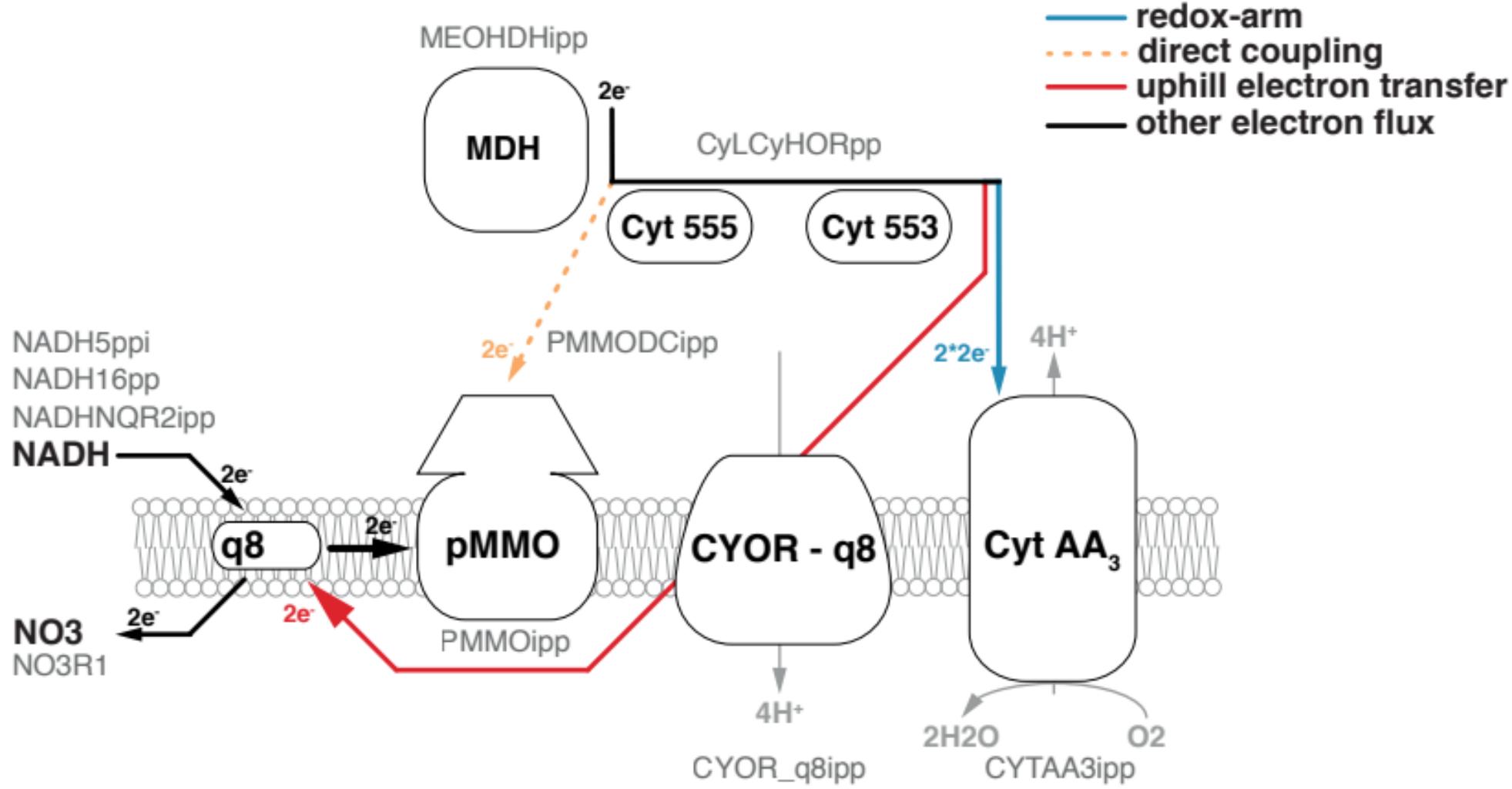
- 1 68. Mishra NK, Chang J, Zhao PX. Prediction of membrane transport
- 2 proteins and their substrate specificities using primary sequence
- 3 information. *PLoS One*. 2014;9.
- 4 69. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb
- 5 3.0: Improved protein subcellular localization prediction with refined
- 6 localization subcategories and predictive capabilities for all prokaryotes.
- 7 *Bioinformatics*. 2010;26:1608–15.
- 8 70. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
- 9 alignment search tool. *J Mol Biol*. 1990;215:403–10.
- 10 doi:10.1016/S0022-2836(05)80360-2.
- 11 71. Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0:
- 12 a database for exploring membrane transporters in sequenced
- 13 genomes from all domains of life. *Nucleic Acids Res*. 2017;45:D320–4.
- 14 doi:10.1093/nar/gkw1068.
- 15 72. Saier Jr MH, Tran C V, Barabote RD. TCDB: the Transporter
- 16 Classification Database for membrane transport protein analyses and
- 17 information. *Nucleic Acids Res*. 2006;34 Database issue:D181-6.
- 18 doi:10.1093/nar/gkj001.
- 19 73. Hommes NG, Sayavedra-Soto LA, Arp DJ.
- 20 Chemolithoorganotrophic growth of *Nitrosomonas europaea* on
- 21 fructose. *J Bacteriol*. 2003;185:6809–14.
- 22 <https://www.ncbi.nlm.nih.gov/pubmed/14617645>.
- 23 74. Nyerges G, Stein LY. Ammonia cometabolism and product inhibition

1 vary considerably among species of methanotrophic bacteria. FEMS
2 Microbiol Lett. 2009;297:131–6. doi:10.1111/j.1574-6968.2009.01674.x.

3 75. Kalyuzhnaya MG. Methane Biocatalysis: Selecting the Right
4 Microbe. Elsevier B.V.; 2016. doi:10.1016/B978-0-444-63475-7.00013-
5 3.

6 76. Chang RL, Ghamsari L, Manichaikul A, Hom EFY, Balaji S, Fu W, et
7 al. Metabolic network reconstruction of Chlamydomonas offers insight
8 into light-driven algal metabolism. Mol Syst Biol. 2011;7:518.
9 doi:10.1038/msb.2011.52.

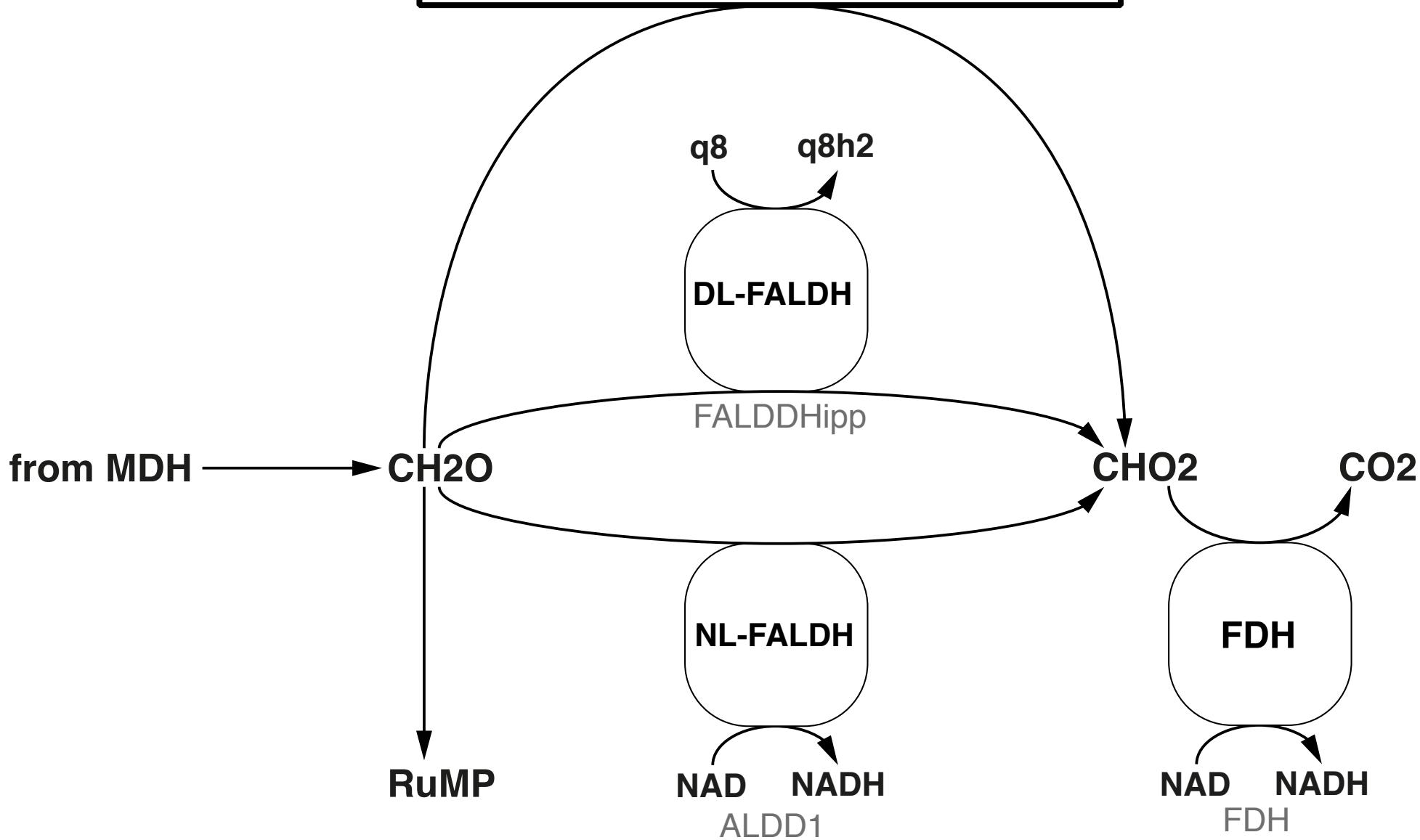

10 77. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I.
11 Detailing the optimality of photosynthesis in cyanobacteria through
12 systems biology analysis. Proc Natl Acad Sci U S A. 2012;109:2678–
13 83. doi:10.1073/pnas.1117907109.

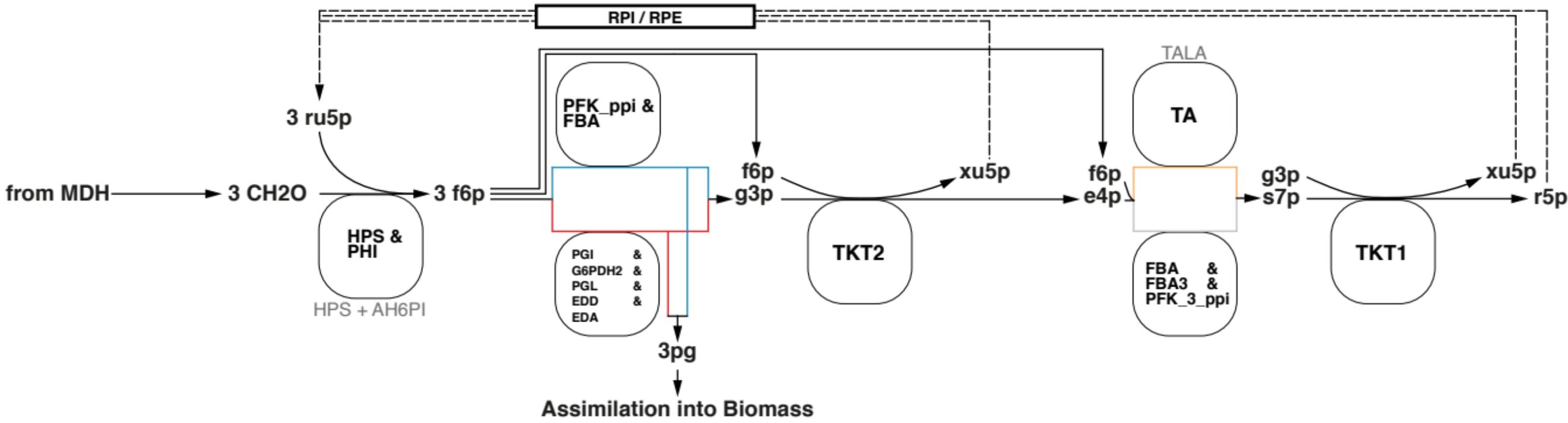

14 78. Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, et
15 al. Characterizing acetogenic metabolism using a genome-scale
16 metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact.
17 2013;12:118. doi:10.1186/1475-2859-12-118.

18 79. Øverland M, Tauson A-H, Shearer K, Skrede A. Evaluation of
19 methane-utilising bacteria products as feed ingredients for monogastric
20 animals. Arch Anim Nutr. 2010;64:171–89.
21 doi:10.1080/17450391003691534.

22 80. Makula RA. Phospholipid composition of methane-utilizing bacteria.
23 J Bacteriol. 1978;134:771–7.

- 1 <https://www.ncbi.nlm.nih.gov/pubmed/96101>.
- 2 81. Müller H, Hellgren LI, Olsen E, Skrede A. Lipids rich in
- 3 phosphatidylethanolamine from natural gas-utilizing bacteria reduce
- 4 plasma cholesterol and classes of phospholipids: A comparison with
- 5 soybean oil. *Lipids*. 2004;39:833–41. doi:10.1007/s11745-004-1304-5.
- 6 82. Bird CW, Lynch JM, Pirt FJ, Reid WW, Brooks CJW, Middleditch
- 7 BS. Steroids and Squalene in *Methylococcus capsulatus* grown on
- 8 Methane. *Nature*. 1971;230:473–4. doi:10.1038/230473a0.
- 9 83. Nakano C, Motegi A, Sato T, Onodera M, Hoshino T. Sterol
- 10 biosynthesis by a prokaryote: first in vitro identification of the genes
- 11 encoding squalene epoxidase and lanosterol synthase from
- 12 *Methylococcus capsulatus*. *Biosci Biotechnol Biochem*. 2007;71:2543–
- 13 50. doi:10.1271/bbb.70331.
- 14 84. Saier MH, Reddy VS, Tsu B V., Ahmed MS, Li C, Moreno-Hagelsieb
- 15 G. The Transporter Classification Database (TCDB): Recent advances.
- 16 *Nucleic Acids Res*. 2016;44:D372–9.
- 17 85. Hutton WE, Zobell CE. Production of nitrite from ammonia by
- 18 methane oxidizing bacteria. *J Bacteriol*. 1953;65:216–9.
- 19 <https://www.ncbi.nlm.nih.gov/pubmed/13034719>.
- 20





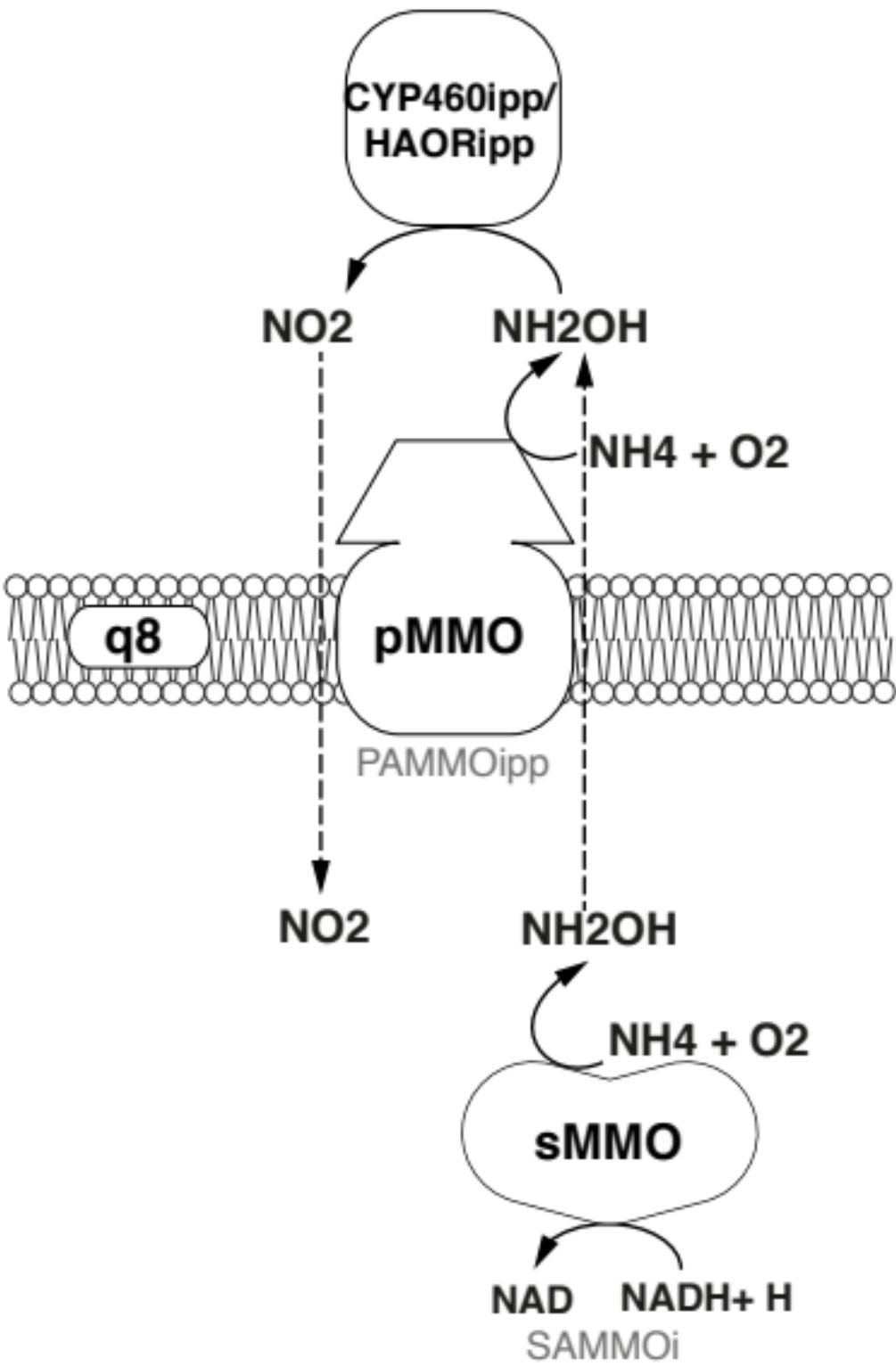
NADP NADPH

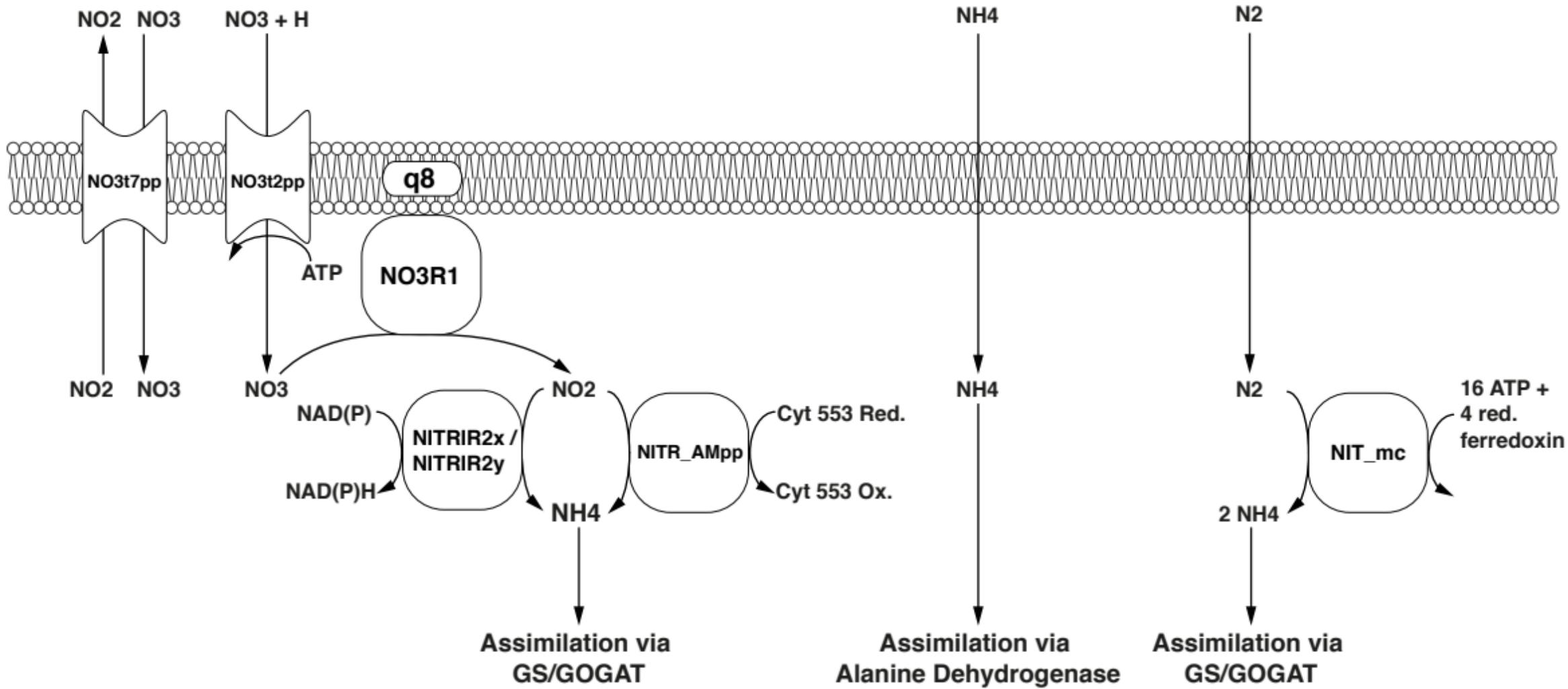
THMPT-dependent Pathway

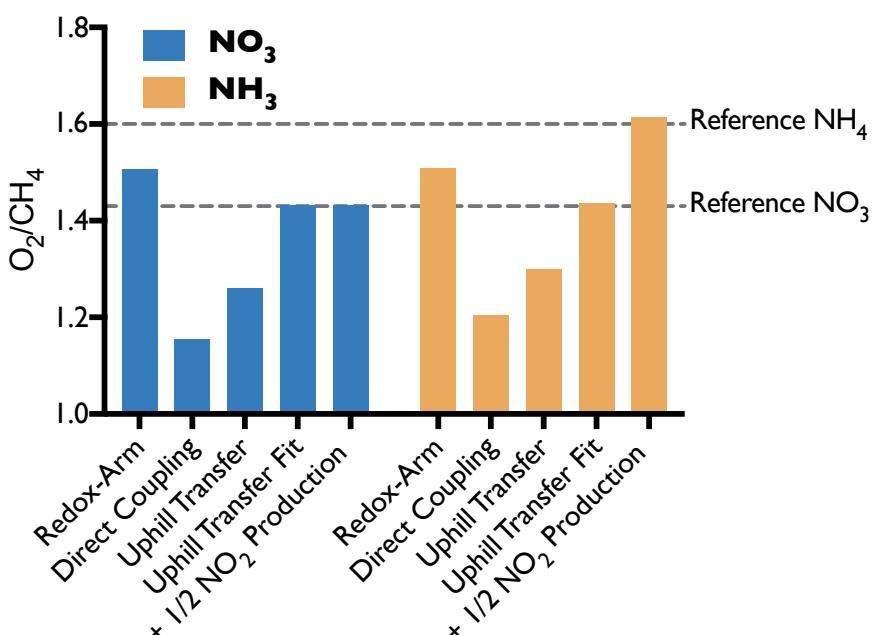
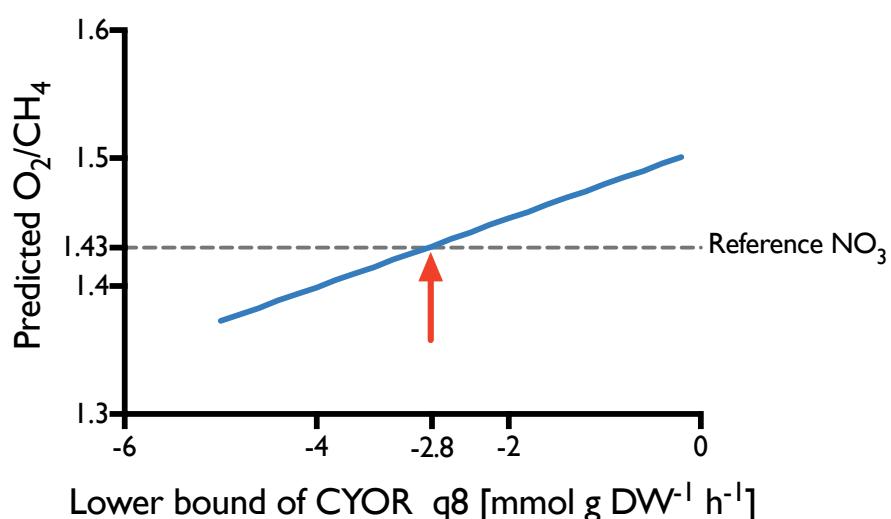
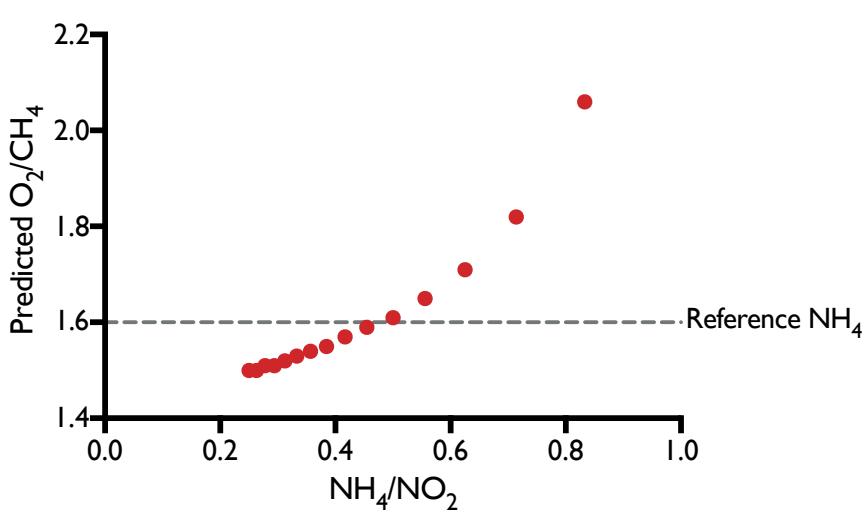
FAEi + MTDBi + MCHi + FTR + FMFRDHi

Net equation for each combination in the model:

— FBA — TA : $3 \text{CH}_2\text{O} + \text{NAD(P)}^+ + \text{ADP} + \text{PPi}$


— EDA — FBA3 : 3 CH₂O + NADP⁺ + ATP + Pi + H₂O


— FBA — FBA3 : 3 CH₂O + NAD(P)⁺ + ADP + PP_i




$$= 3pq + \text{NAD(P)H} + \text{ATP} + 2 \text{ H}^+$$

$$= 3pq + \text{NADPH} + \text{AMP} + \text{PPi} + 3 \text{ H}^+$$

$$= 3pq + \text{NAD(P)H} + \text{ATP} + 2 \text{ H}^+$$

A**B****C**