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Abstract 
Bioinformatics techniques to analyze time course bulk and single cell omics data are 
advancing. The absence of a known ground truth of the dynamics of molecular changes 
challenges benchmarking their performance on real data. Realistic simulated time-
course datasets are essential to assess the performance of time course bioinformatics 
algorithms. We develop an R/Bioconductor package, CancerInSilico, to simulate bulk 
and single cell transcriptional data from a known ground truth obtained from 
mathematical models of cellular systems. This package contains a general R 
infrastructure for running cell-based models and simulating gene expression data based 
on the model states. We show how to use this package to simulate a gene expression 
data set and consequently benchmark analysis methods on this data set with a known 
ground truth. The package is freely available via Bioconductor: 
http://bioconductor.org/packages/CancerInSilico/ 
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Introduction 
Time course bioinformatics analysis techniques are emerging to delineate cellular 
composition and pathway activation from longitudinal genomics data [1,2]. However, 
benchmarking their performance is challenged by a lack of ground truth of the 
processes occurring in those datasets. For example, even relatively simple covariates, 
such as cellular density and proliferation rates impact experimental measures at a given 
time point, such as therapeutic sensitivity in cancer [3]. The interactions between these 
processes will introduce additional correlation structure between genes measured with 
genomics technologies. Simulated data can enable robust benchmarking of 
bioinformatics analysis methods for omics data. Statistical methods that utilize expected 
gene expression profiles from reference datasets to model the error distribution of bulk 
and single cell sequencing data are prominent [4–6]. Yet, there are few time course 
omics datasets to use as a benchmark and even fewer with known cellular-molecular 
dynamics. Therefore, new simulation systems with known ground truth are needed to 
benchmark the performance of emerging time course bioinformatics algorithms for bulk 
and single cell datasets. 

Mathematical models of cellular dynamics are maturing in systems biology and can be 
used to track the state of the processes occurring in each cell in complex biological 
systems, such as cancer [7–13]. Some models simulate cell growth at a cellular level, 
where the population behavior is driven by the laws governing the individual cells and 
their interactions [14,15]. To further capture the complexity of biological systems, 
numerous multiscale and hybrid models linking cellular signaling to the equations of the 
cellular composition are emerging [16–18]. These models often require numerous 
parameters to simulate high throughput proteomic and transcriptional data and therefore 
often have similar complexity to real biological systems. Thus, mathematical models 
provide a robust framework from which to develop simulated time course datasets that 
are reflective of biological systems.  

In this paper, we present a new software package to simulate time course 
transcriptional data. This is done by developing a general software framework to 
integrate mathematical models of cellular growth with statistical models of genomics 
data. The software is implemented in the R/Bioconductor package CancerInSilico. We 
simulate pathway activity based upon the simulated distribution of growth factor, state in 
the cell cycle, and cellular type. We couple a mathematical model from [14] with a 
statistical model from [19] to simulate transcriptional data based upon simulated 
pathway activity. We simulate data from microarrays and single cell RNA-seq using 
established platform-specific error distribution models [4,19,22]. Finally, we demonstrate 
how this framework can be used to benchmark time course analysis tools for genomics 
data.  
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Design and implementation 

Software architecture 

CancerInSilico is designed with an R user interface so that it is familiar to the 
bioinformatics community. The components of the simulation such as cell types and 
pathways are implemented as S4 classes in R. The cell model component of the 
simulation is implemented as an S4 class hierarchy, where features such as cell 
geometry (on-lattice vs off-lattice) form the basis for a set of models that individual 
implementations can inherit from. This allows different levels of the cell model to be 
considered separately so that the user can examine the effects of not just a single 
model but a whole class of models. The hierarchy also simplifies the number of 
parameters the user must interact with. Each level of the hierarchy contains its share of 
the overall parameters, so if the user wants to modify the low level implementation 
parameters, they can do so without worrying about any effects to the parameters 
upstream. This object oriented design simplifies the workflow by allowing each 
component of the model to be specified separately. In order to run the simulation, the 
user just needs to pass in any desired components along with a few high-level 
parameters. 

All components of the simulation, including the cell model hierarchy, have a mirrored 
class structure in C++. While the classes in R contain the necessary parameters, the 
C++ classes also include the necessary routines to efficiently simulate a cell model. 
This architecture essentially allows the user to see a snapshot of the model in R and 
trust that the C++ backend will run it exactly as they prescribe. Moreover, this combines 
a simple user interface in R with a powerful, efficient backend in C++. The C++ library is 
exposed to R using the Rcpp package from CRAN. 

The statistical model for gene expression simulation is written in R and exists outside of 
the previously mentioned class structure. It is intended to be an independent component 
that only needs the output of a cell simulation and a set of parameters in order to run. 
This way it is agnostic to any implementation details of the cell simulation, as well as 
any components that may be added to the cell simulation. The needed parameters are 
provided as an S4 class for convenience, allowing them to easily be saved alongside 
the simulation results. 

Implementation details 

The cellular growth simulation is driven by the cell model hierarchy and the peripheral 
components that can be added such as drugs and cell types. The CellBasedModel 
class at the top of the hierarchy specifies the relationship between a cell model and any 
peripheral components. It makes no requirements on the cell geometry or updating 
procedure of the model. In most cases, the user will be modifying parameters at this 
level. The model-component relationship is implemented with virtual functions in C++ so 
individual model implementations can override the default behavior. This top level class 
also uses pure virtual functions to specify the functions a cell model must implement. 
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We note that the CellBasedModel has an associated Cell class to separate cell-
level logic with model-level logic. This is a design pattern seen across all levels of the 
hierarchy. 

Any class that fully implements the specification of a CellBasedModel can be used in 
CancerInSilico, however it is convenient to define an intermediate class between the 
top-level CellBasedModel and an actual implementation. This layer describes a 
certain set of cell models, usually by specifying cell geometry, e.g. off-lattice vs on-
lattice. This is a useful abstraction since the most computationally expensive aspects of 
a cell model often stem from the cell population data structure. If every model 
implementation required designing this data structure from scratch it would put an 
enormous burden on the developer. By having a pre-defined, efficient data storage and 
access API, new cell dynamics can be quickly prototyped and will come with an 
expected level of performance. 

The intermediate layer specifies the cell geometry and structure, but the updating 
procedure must be handled by the actual cell model implementation. This lowest-level 
of the hierarchy is responsible for actually enforcing the desired cell mechanics. This is 
typically done by specifying some total energy function on the full cell population. 
Updating then involves several kinds of changes that are either accepted or rejected 
with a probability based on the total energy function. Most cell models in the literature 
[12, 14] can be identified by how they handle this updating procedure. By isolating this 
layer within the CancerInSilico architecture, such models can be easily implemented. 

While the cellular growth simulation is an important part of CancerInSilico, the main 
feature of the package is the gene expression simulation. The connection between this 
simulation and the cellular growth simulation happens through user defined pathways 
that are then associated with gene expression changes in a corresponding set of genes. 
We define an intermediate variable (P) that is a continuous value between zero and one 
that records how active each biological pathway is within each modeled cell. The value 
of P in a given cell at a given time is determined by a user defined function in R. This 
allows for many types of pathways to be considered and for a great deal of 
expressiveness in how each pathway behaves. CancerInSilico also comes with some 
pre-defined pathways so that the burden is not entirely on the user to design the 
pathway behavior. Along with this user defined function, each pathway also has a set of 
genes annotated to it. Each gene in this set has a pre-specified expression range (Gmin 
to Gmax), determined either from a reference dataset or according to a specified 
distribution. 

The function inSilicoGeneExpression combines the results of a call to 
inSilicoCellModel and a list of user defined pathways to simulate the requested 
type of transcriptional data. The first step is to create a matrix of mean expression 
values. This is done by evaluating each gene according to the specified behavior from 
the list of pathways. The expected expression value for each gene and each sample is 
given as: 
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where i indexes each gene, j each sample, and k each pathway. We note that while the 
mean used in eq (1) is provided as the default, CancerInSilico allows for user defined 
functions to combine pathway specific expression values. In bulk data, Pk is determined 
by computing the average value for pathway activity in a random set of N sampled cells, 
whereas in single cell data the value of Pk for each of the N sampled cells is used 
directly. The simulated gene expression value is obtained using a platform specific 
measurement error based on this expectation. A normal error model is used to simulate 
log transformed microarray data and a negative binomial error model, adapted from the 
code for LIMMA voom [22], is used to simulate bulk RNA-sequencing data. 
Measurement error for simulated single cell RNA-sequencing data are generated using 
the error and drop out models from Splatter [4].  

Results 

The CancerInSilico workflow 

Running a cell simulation with inSilicoCellModel. The first step when simulating 
gene expression data with CancerInSilico is to create a cell simulation to serve as a 
reference point. This cell simulation will represent the underlying cellular processes 
driving the gene expression profiles. In order to run a cell simulation, we must call 
inSilicoCellModel. The three required arguments to this function are the initial 
number of cells in the simulation, the number of hours to simulate, and the initial density 
of the cell population. Optionally, it is possible to select the underlying mathematical 
model. A full description of the optional parameters is included in the supplemental 
material. An example call to the function might look like: 

> cellModel = inSilicoCellModel(100, 72, 0.01, “DrasdoHohme”) 

Defining pathways. Before we can move on to simulating gene expression data, it is 
necessary to define the pathways which link the cell model state to the activity among a 
set of genes. CancerInSilico comes with a set of default pathways, however we can also 
explicitly define new pathways. In order to create a new pathway we must specify the 
names of the genes in the pathway and activity function which takes a cell model as an 
argument and returns a value between zero and one based on how active the pathway 
is at the current time point. Once a pathway is defined it must be calibrated either to a 
real data set or using a statistical distribution. This calibration step is important so that 
the range of the gene expression values is reasonable. Here is an example of 
calibrating a default pathway with a distribution. The mean expression levels for all 
genes is exponentially distributed and the range of expression values per gene is 
normally distributed. 

> data(samplePathways) # load pwyMitosis, pwySPhase 

> pwyMitosis = calibratePathway(pwyMitosis, lambda=20, stddev=2) 
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> pwySPhase = calibratePathway(pwySPhase, lambda=20, stddev=2) 

> pathways = list(pwyMitosis, pwySPhase) 

Simulating gene expression data with inSilicoGeneExpression. Now that we have a 
defined set of pathways and a completed cell simulation, we are able to simulate a gene 
expression data set. This step involves computing the mean level of expression in all 
the pathway genes and applying a statistical error model based on the type of data 
being generated. There are a few parameters that control this part of the simulation. 
sampleFreq and nCells specify how often samples are drawn and how many cells 
are in each sample. RNAseq and singleCell are Boolean parameters that specify the 
type of data to generate. A full description of the parameters can be found in the 
supplemental material. An example call to the function might look like: 

> params = new(“GeneExpressionParams”, nCells=50, RNAseq=TRUE) 

> exp = inSilicoGeneExpression(cellModel, pathways, params) 

Example: Simulating time-course bulk data 

Using the workflow described in the previous section, we simulate a microarray data set 
across 43 time points. The underlying mathematical model for cellular growth in this 
case is an off-lattice, cell-center model from Drasdo and Höhme [14]. We model 
pathways related to the phase transition from G to S and G to M, as well as a pathway 
related to contact inhibition. For the G to M and G to S pathways, the pathway activity is 
either zero or one at the current time point depending on whether or not the cell is 
transitioning phases. The contact inhibition pathway activity is defined by the “local 
density” of the cell, which is the proportion of surrounding area of a cell that is occupied 
by other cells. We run the cell model for 168 hours, enough for the cell population 
growth to slow down due to the density of the cells, and simulate gene expression for 
150 genes. We generate a heatmap of the data using the heatmap.2 function in R 
(Figure 2a). We also run PCA on the resulting microarray data set and show that, as 
expected, time and cell phase are the processes driving the simulated gene expression 
(Figure 2bc).  

Example: Simulating time-course single-cell data 

CancerInSilico also encodes an option to simulate single cell RNA-sequencing data to 
generate omics data that reflects the heterogeneity of the sample population. To model 
this heterogeneity, CancerInSilico allows us to label each cell as being from a distinct 
cell type. We have control over the distribution of cell-cycle lengths within each cell type 
through a user defined function in R. We apply this framework to model two distinct cell 
types, one with a mean cell cycle length of 12 hours and standard deviation of 4 hours 
(type A) and one with a mean cell cycle length of 36 hours and standard deviation of 4 
hours (type B). This simulation models the pathway activity and corresponding gene 
expression changes for each cell with a negative binomial error model and dropout 
model adapted from Splatter [4]. The model then randomly samples a pre-specified 
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number of cells. We apply this technique to simulate single cell RNA-sequencing data 
from a simulation of a population equally distributed between the two types described 
above (Fig 3). Each cell type is labeled as a pathway with binary values for activity to 
activate a gene set that corresponds to cellular identity. In this simulated single-cell 
RNA-seq data, we observe strong separation between cell types (Fig 3a) and time (Fig 
3b) and observe a mixture between cell cycle phases (Fig 3c). 

Example: Benchmarking analysis tools 

We can use the wide range of simulation conditions in CancerInSilico to benchmark 
time course gene expression analysis methods. Moreover, by starting with biological 
parameters as opposed to statistical parameters, we can benchmark analysis methods 
on conditions we actually care about. CancerInSilico is particularly useful when the 
cellular processes underlying the simulation of interest have complex relationships with 
each other. This complexity is handled by the underlying cellular growth simulation, and 
while it does not perfectly capture the dependence between cellular processes, it does 
provide a standardized, justifiable method. Furthermore, CancerInSilico allows for the 
underlying cellular growth model to be easily swapped out so the benchmark itself can 
be tested for sensitivity to a particular model. 

Here we explore the effects of dependent cellular processes when using Independent 
Component Analysis (ICA), implemented in the R package fastICA, to analyze our 
simulated RNA-seq data set. We define two cell-types which have identical properties 
and provide an associated pathway for each one. We also define a third pathway which 
is proportional to the growth rate of a cell. We have two datasets, one in which all 
pathways have a distinct set of genes, and one where the growth pathway contains all 
of the genes in each cell type specific pathway. In this way, the growth pathway is 
confounding the cell type specific pathways. We can see that ICA with two components 
perfectly separates the cells (Fig 4a) and temporal dynamics (Fig 4b) of the simulated 
data with no confounding. When the overlapping pathway is introduced some of the 
cells can no longer be separated by type (Fig 4c) although the temporal dynamics are 
still separable via ICA (Fig 4d). Thus, this provides one example of the utility of 
CancerInSilico to benchmark the sensitivity of a time course analysis algorithm to its 
underlying mathematical assumptions. Additional parameters may be varied and further 
cell cycle pathways introduced to the data to increase the complexity of these 
simulations and more closely mirror the complexity of the analysis tasks in real, time 
course genomics data. 

Availability and future directions 
We develop a new R/Bioconductor package CancerInSilico that couples mathematical 
models of cellular growth with statistical models of technical noise. Using this coupling 
to model changes in gene sets annotated to cell signaling pathways [4,19,22] enables 
simulation of time course bulk omics data. The modeling of individual cells in this 
system also enables simulation of time course, single cell RNA-sequencing data. 
CancerInSilico provides a wide range of parameter spaces for the user to explore when 
simulating time-course gene expression data and the modular design makes it possible 
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to swap different cell models in and out of an existing simulation. Thus, this package 
provides software that can be used to benchmark the performance of methods for time 
course bioinformatics analysis from a known ground truth that is lacking in real data. We 
note that, to our knowledge, this is the first software package designed to simulate time 
course gene expression data. 

The statistical models used to simulate gene expression data from pathway activity in 
CancerInSilico mirror the process by which omics tools estimate that activity. Namely, 
pathways are assumed to activate discrete sets of genes annotated to a common 
function based upon the modeled cellular state. Default parameters for the model yield 
omics profiles with strong separation between signaling pathways that are greatly 
simplified relative to those observed in real data. Therefore, applying omics algorithms 
to these default simulations may result in under estimation of the accuracy of their 
performance for real time course data. Future work is essential to benchmark the 
performance of the CancerInSilico algorithm to real data. Mathematical models of gene 
regulatory networks have been developed to model the dynamics of regulatory networks 
that lead to transcriptional changes [28,29]. Hybrid, multi-scale approaches that 
combine these network-based models with the cellular-scale models more accurately 
model the complexity of system-wide dynamics [16–18] and are a promising area for 
future work to simulate time course omics data. However, the complexity of these gene 
regulatory models and extensive parameterization will limit the straightforward validation 
of omics algorithms that is possible from the simplified statistical models employed in 
CancerInSilico. We note that the complexity of the time course data simulated with 
CancerInSilico can be tuned by modifying the overlap between genes in simulated 
pathways, altering cell type specific cell growth parameters, or increasing the variation 
in parameter values across cells. Thus, we recommend benchmarking time-course 
omics data analysis algorithms on simulated data generated from a wide range of these 
parameter values to fully assess their performance. 

CancerInSilico is available as an R package on Bioconductor 
bioconductor.org/packages/CancerInSilico/ and the source code is made available at 
github.com/FertigLab/CancerInSilico. A live tutorial (vignette) is provided in the R 
package and link to a pre-rendered version is available in the GitHub README. 
CancerInSilico is supported and tested on Windows, Mac, and Linux. The source code 
to generate the figures seen in this paper can be found at 
github.com/FertigLab/CancerInSilico-Figures. 

ACKNOWLEDGEMENTS 

We thank Ludmila V Danilova, Alexander V Favorov, Emily Flam, Dylan Kelley, Feilim 
Mac Gabhann, Cristian Tomasetti, and members of NewPISlack for critical comments 
and feedback on this project. 

FUNDING 

This work was supported by NIH Grants CA177669, CA006973, CA212007, CA50633, 
CA51008, DE017982, and SPORE DE019032. This work was also supported by The 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/328807doi: bioRxiv preprint 

https://doi.org/10.1101/328807
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
10 

Cleveland Foundation Helen Masenhimer Fellowship, Johns Hopkins University 
Catalyst and Discovery Grants, and Johns Hopkins School of Medicine Synergy Award. 
This project has been made possible in part by grant number 2018-183444 from the 
Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community 
Foundation. 

REFERENCES 

1. Liang Y, Kelemen A. Dynamic modeling and network approaches for omics time 
course data: overview of computational approaches and applications. Brief. Bioinform. 
2017; 
2. Liang Y, Kelemen A. Computational dynamic approaches for temporal omics data 
with applications to systems medicine. BioData Min. 2017; 10: 
3. Hafner M, Niepel M, Chung M, et al. Growth rate inhibition metrics correct for 
confounders in measuring sensitivity to cancer drugs. Nat. Methods 2016; 13:521–527 
4. Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing 
data. Genome Biol. 2017; 18: 
5. Frazee AC, Jaffe AE, Langmead B, et al. Polyester: simulating RNA-seq datasets 
with differential transcript expression. Bioinformatics 2015; 31:2778–2784 
6. Griebel T, Zacher B, Ribeca P, et al. Modelling and simulating generic RNA-Seq 
experiments with the flux simulator. Nucleic Acids Res. 2012; 40:10073–10083 
7. Barish S, Ochs MF, Sontag ED, et al. Evaluating optimal therapy robustness by 
virtual expansion of a sample population, with a case study in cancer immunotherapy. 
Proc. Natl. Acad. Sci. 2017; 114:E6277–E6286 
8. Tran PT, Bendapudi PK, Lin HJ, et al. Survival and Death Signals Can Predict Tumor 
Response to Therapy After Oncogene Inactivation. Sci. Transl. Med. 2011; 3:103ra99-
103ra99 
9. Chmielecki J, Foo J, Oxnard GR, et al. Optimization of Dosing for EGFR-Mutant Non-
Small Cell Lung Cancer with Evolutionary Cancer Modeling. Sci. Transl. Med. 2011; 
3:90ra59-90ra59 
10. Picco N, Sahai E, Maini PK, et al. Integrating Models to Quantify Environment-
Mediated Drug Resistance. Cancer Res. 2017; 77:5409–5418 
11. Rockne R, Alvord EC, Rockhill JK, et al. A mathematical model for brain tumor 
response to radiation therapy. J. Math. Biol. 2009; 58:561–578 
12. Szabó A, Merks RMH. Cellular Potts Modeling of Tumor Growth, Tumor Invasion, 
and Tumor Evolution. Front. Oncol. 2013; 3: 
13. Ghaffarizadeh A, Heiland R, Friedman SH, et al. PhysiCell: an Open Source 
Physics-Based Cell Simulator for 3-D Multicellular Systems. 2017;  
14. Drasdo D, Höhme S. Individual-based approaches to birth and death in avascular 
tumors. Math. Comput. Model. 2003; 37:1163–1175 
15. Gallaher J, Anderson A. The role of contact inhibition in intratumoral heterogeneity: 
An off-lattice individual based model. 2016;  
16. Rejniak KA, Anderson ARA. Hybrid models of tumor growth. Wiley Interdiscip. Rev. 
Syst. Biol. Med. 2011; 3:115–125 
17. Clancy CE, An G, Cannon WR, et al. Multiscale Modeling in the Clinic: Drug Design 
and Development. Ann. Biomed. Eng. 2016; 44:2591–2610 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/328807doi: bioRxiv preprint 

https://doi.org/10.1101/328807
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
11 

18. Yankeelov TE, An G, Saut O, et al. Multi-scale Modeling in Clinical Oncology: 
Opportunities and Barriers to Success. Ann. Biomed. Eng. 2016; 44:2626–2641 
19. Fertig EJ, Favorov AV, Ochs MF. Identifying context-specific transcription factor 
targets from prior knowledge and gene expression data. IEEE Trans. Nanobioscience 
2013; 12:142–149 
20. Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from 
patterns to profiles. Nucleic Acids Res. 2003; 31:374–378 
21. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a 
knowledge-based approach for interpreting genome-wide expression profiles. Proc. 
Natl. Acad. Sci. U. S. A. 2005; 102:15545–15550 
22. Law CW, Chen Y, Shi W, et al. voom: precision weights unlock linear model 
analysis tools for RNA-seq read counts. Genome Biol. 2014; 15:R29 
23. Fertig EJ, Ren Q, Cheng H, et al. Gene expression signatures modulated by 
epidermal growth factor receptor activation and their relationship to cetuximab 
resistance in head and neck squamous cell carcinoma. BMC Genomics 2012; 13:160 
24. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses 
for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43:e47–e47 
25. Patro R, Duggal G, Love MI, et al. Salmon provides fast and bias-aware 
quantification of transcript expression. Nat. Methods 2017; 14:417–419 
26. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-
level estimates improve gene-level inferences. F1000Research 2015; 4:1521 
27. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2. Genome Biol. 2014; 15: 
28. Chasman D, Fotuhi Siahpirani A, Roy S. Network-based approaches for analysis of 
complex biological systems. Curr. Opin. Biotechnol. 2016; 39:157–166 
29. Trairatphisan P, Mizera A, Pang J, et al. Recent development and biomedical 
applications of probabilistic Boolean networks. Cell Commun. Signal. 2013; 11:46 
30. Fertig EJ, Ozawa H, Thakar M, et al. CoGAPS matrix factorization algorithm 
identifies transcriptional changes in AP-2alpha target genes in feedback from 
therapeutic inhibition of the EGFR network. Oncotarget 2016; 5: 
31. Stein-O’Brien G, Kagohara LT, Li S, et al. Integrated time course omics analysis 
distinguishes immediate therapeutic response from acquired resistance. 2018;  
32. Kleyman M, Sefer E, Nicola T, et al. Selecting the most appropriate time points to 
profile in high-throughput studies. eLife 2017; 6: 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/328807doi: bioRxiv preprint 

https://doi.org/10.1101/328807
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
12 

LIST OF FIGURES 

Fig 1. Visual representation of CancerInSilico. (a) Overview of association between 
mathematical and statistical modeling to generate simulated time course gene 
expression data. (b) Each component of the software is shown with arrows indicating 
how it is related to the rest of the components. R input arguments shown in pink, R 
software components shown in blue, and C++ components shown in green. 

Fig 2. PCA of simulated time course microarray data. (a) Heatmap of microarray 
data. Plot of first two principal components colored by (b) time and (c) cell phase. 
 
Fig 3. T-SNE of simulated time course single cell RNA-sequencing data for a 
population with cells of types A and B. Points colored by (a) cell type, (b) time, and 
(c) cell cycle phase. 
 
Fig 4. Benchmarking ICA when cell type pathways are confounded with third 
pathway. ICA with no confounding colored by (a) cell type and (b) time. ICA with third 
pathway confounding colored by (c) cell type and (d) time. 
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