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Abstract

Bioinformatics techniques to analyze time course bulk and single cell omics data are
advancing. The absence of a known ground truth of the dynamics of molecular changes
challenges benchmarking their performance on real data. Realistic simulated time-
course datasets are essential to assess the performance of time course bioinformatics
algorithms. We develop an R/Bioconductor package, CancerInSilico, to simulate bulk
and single cell transcriptional data from a known ground truth obtained from
mathematical models of cellular systems. This package contains a general R
infrastructure for running cell-based models and simulating gene expression data based
on the model states. We show how to use this package to simulate a gene expression
data set and consequently benchmark analysis methods on this data set with a known
ground truth. The package is freely available via Bioconductor:
http://bioconductor.org/packages/CancerinSilico/
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Introduction

Time course bioinformatics analysis techniques are emerging to delineate cellular
composition and pathway activation from longitudinal genomics data [1,2]. However,
benchmarking their performance is challenged by a lack of ground truth of the
processes occurring in those datasets. For example, even relatively simple covariates,
such as cellular density and proliferation rates impact experimental measures at a given
time point, such as therapeutic sensitivity in cancer [3]. The interactions between these
processes will introduce additional correlation structure between genes measured with
genomics technologies. Simulated data can enable robust benchmarking of
bioinformatics analysis methods for omics data. Statistical methods that utilize expected
gene expression profiles from reference datasets to model the error distribution of bulk
and single cell sequencing data are prominent [4—6]. Yet, there are few time course
omics datasets to use as a benchmark and even fewer with known cellular-molecular
dynamics. Therefore, new simulation systems with known ground truth are needed to
benchmark the performance of emerging time course bioinformatics algorithms for bulk
and single cell datasets.

Mathematical models of cellular dynamics are maturing in systems biology and can be
used to track the state of the processes occurring in each cell in complex biological
systems, such as cancer [7—13]. Some models simulate cell growth at a cellular level,
where the population behavior is driven by the laws governing the individual cells and
their interactions [14,15]. To further capture the complexity of biological systems,
numerous multiscale and hybrid models linking cellular signaling to the equations of the
cellular composition are emerging [16—18]. These models often require numerous
parameters to simulate high throughput proteomic and transcriptional data and therefore
often have similar complexity to real biological systems. Thus, mathematical models
provide a robust framework from which to develop simulated time course datasets that
are reflective of biological systems.

In this paper, we present a new software package to simulate time course
transcriptional data. This is done by developing a general software framework to
integrate mathematical models of cellular growth with statistical models of genomics
data. The software is implemented in the R/Bioconductor package CancerinSilico. We
simulate pathway activity based upon the simulated distribution of growth factor, state in
the cell cycle, and cellular type. We couple a mathematical model from [14] with a
statistical model from [19] to simulate transcriptional data based upon simulated
pathway activity. We simulate data from microarrays and single cell RNA-seq using
established platform-specific error distribution models [4,19,22]. Finally, we demonstrate
how this framework can be used to benchmark time course analysis tools for genomics
data.
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Design and implementation

Software architecture

CancerlinSilico is designed with an R user interface so that it is familiar to the
bioinformatics community. The components of the simulation such as cell types and
pathways are implemented as S4 classes in R. The cell model component of the
simulation is implemented as an S4 class hierarchy, where features such as cell
geometry (on-lattice vs off-lattice) form the basis for a set of models that individual
implementations can inherit from. This allows different levels of the cell model to be
considered separately so that the user can examine the effects of not just a single
model but a whole class of models. The hierarchy also simplifies the number of
parameters the user must interact with. Each level of the hierarchy contains its share of
the overall parameters, so if the user wants to modify the low level implementation
parameters, they can do so without worrying about any effects to the parameters
upstream. This object oriented design simplifies the workflow by allowing each
component of the model to be specified separately. In order to run the simulation, the
user just needs to pass in any desired components along with a few high-level
parameters.

All components of the simulation, including the cell model hierarchy, have a mirrored
class structure in C++. While the classes in R contain the necessary parameters, the
C++ classes also include the necessary routines to efficiently simulate a cell model.
This architecture essentially allows the user to see a snapshot of the model in R and
trust that the C++ backend will run it exactly as they prescribe. Moreover, this combines
a simple user interface in R with a powerful, efficient backend in C++. The C++ library is
exposed to R using the Rcpp package from CRAN.

The statistical model for gene expression simulation is written in R and exists outside of
the previously mentioned class structure. It is intended to be an independent component
that only needs the output of a cell simulation and a set of parameters in order to run.
This way it is agnostic to any implementation details of the cell simulation, as well as
any components that may be added to the cell simulation. The needed parameters are
provided as an S4 class for convenience, allowing them to easily be saved alongside
the simulation results.

Implementation details

The cellular growth simulation is driven by the cell model hierarchy and the peripheral
components that can be added such as drugs and cell types. The Cel1BasedModel
class at the top of the hierarchy specifies the relationship between a cell model and any
peripheral components. It makes no requirements on the cell geometry or updating
procedure of the model. In most cases, the user will be modifying parameters at this
level. The model-component relationship is implemented with virtual functions in C++ so
individual model implementations can override the default behavior. This top level class
also uses pure virtual functions to specify the functions a cell model must implement.
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We note that the Ce11BasedModel has an associated Ce11 class to separate cell-
level logic with model-level logic. This is a design pattern seen across all levels of the
hierarchy.

Any class that fully implements the specification of a Ce11BasedModel can be used in
CancerlinSilico, however it is convenient to define an intermediate class between the
top-level Cel1BasedModel and an actual implementation. This layer describes a
certain set of cell models, usually by specifying cell geometry, e.g. off-lattice vs on-
lattice. This is a useful abstraction since the most computationally expensive aspects of
a cell model often stem from the cell population data structure. If every model
implementation required designing this data structure from scratch it would put an
enormous burden on the developer. By having a pre-defined, efficient data storage and
access API, new cell dynamics can be quickly prototyped and will come with an
expected level of performance.

The intermediate layer specifies the cell geometry and structure, but the updating
procedure must be handled by the actual cell model implementation. This lowest-level
of the hierarchy is responsible for actually enforcing the desired cell mechanics. This is
typically done by specifying some total energy function on the full cell population.
Updating then involves several kinds of changes that are either accepted or rejected
with a probability based on the total energy function. Most cell models in the literature
[12, 14] can be identified by how they handle this updating procedure. By isolating this
layer within the CancerinSilico architecture, such models can be easily implemented.

While the cellular growth simulation is an important part of CancerinSilico, the main
feature of the package is the gene expression simulation. The connection between this
simulation and the cellular growth simulation happens through user defined pathways
that are then associated with gene expression changes in a corresponding set of genes.
We define an intermediate variable (P) that is a continuous value between zero and one
that records how active each biological pathway is within each modeled cell. The value
of Pin a given cell at a given time is determined by a user defined function in R. This
allows for many types of pathways to be considered and for a great deal of
expressiveness in how each pathway behaves. CancerinSilico also comes with some
pre-defined pathways so that the burden is not entirely on the user to design the
pathway behavior. Along with this user defined function, each pathway also has a set of
genes annotated to it. Each gene in this set has a pre-specified expression range (Gmin
to Gmax), determined either from a reference dataset or according to a specified
distribution.

The function inSilicoGeneExpression combines the results of a call to
inSilicoCellModel and a list of user defined pathways to simulate the requested
type of transcriptional data. The first step is to create a matrix of mean expression
values. This is done by evaluating each gene according to the specified behavior from
the list of pathways. The expected expression value for each gene and each sample is
given as:
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1
9ij =~ INo1 PGliax + (1 — POGE, (1)

where i indexes each gene, j each sample, and k each pathway. We note that while the
mean used in eq (1) is provided as the default, CancerInSilico allows for user defined
functions to combine pathway specific expression values. In bulk data, Py is determined
by computing the average value for pathway activity in a random set of N sampled cells,
whereas in single cell data the value of P, for each of the N sampled cells is used
directly. The simulated gene expression value is obtained using a platform specific
measurement error based on this expectation. A normal error model is used to simulate
log transformed microarray data and a negative binomial error model, adapted from the
code for LIMMA voom [22], is used to simulate bulk RNA-sequencing data.
Measurement error for simulated single cell RNA-sequencing data are generated using
the error and drop out models from Splatter [4].

Results

The CancerInSilico workflow

Running a cell simulation with inSilicoCellModel. The first step when simulating
gene expression data with CancerInSilico is to create a cell simulation to serve as a
reference point. This cell simulation will represent the underlying cellular processes
driving the gene expression profiles. In order to run a cell simulation, we must call
inSilicoCellModel. The three required arguments to this function are the initial
number of cells in the simulation, the number of hours to simulate, and the initial density
of the cell population. Optionally, it is possible to select the underlying mathematical
model. A full description of the optional parameters is included in the supplemental
material. An example call to the function might look like:

> cellModel = inSilicoCellModel (100, 72, 0.01, “DrasdoHohme”)

Defining pathways. Before we can move on to simulating gene expression data, it is
necessary to define the pathways which link the cell model state to the activity among a
set of genes. CancerInSilico comes with a set of default pathways, however we can also
explicitly define new pathways. In order to create a new pathway we must specify the
names of the genes in the pathway and activity function which takes a cell model as an
argument and returns a value between zero and one based on how active the pathway
is at the current time point. Once a pathway is defined it must be calibrated either to a
real data set or using a statistical distribution. This calibration step is important so that
the range of the gene expression values is reasonable. Here is an example of
calibrating a default pathway with a distribution. The mean expression levels for all
genes is exponentially distributed and the range of expression values per gene is
normally distributed.

> data (samplePathways) # load pwyMitosis, pwySPhase

> pwyMitosis = calibratePathway (pwyMitosis, lambda=20, stddev=2)
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> pwySPhase = calibratePathway (pwySPhase, lambda=20, stddev=2)
> pathways = list (pwyMitosis, pwySPhase)

Simulating gene expression data with inSilicoGeneExpression. Now that we have a
defined set of pathways and a completed cell simulation, we are able to simulate a gene
expression data set. This step involves computing the mean level of expression in all
the pathway genes and applying a statistical error model based on the type of data
being generated. There are a few parameters that control this part of the simulation.
sampleFreq and nCells specify how often samples are drawn and how many cells
are in each sample. RNAseqg and singleCell are Boolean parameters that specify the
type of data to generate. A full description of the parameters can be found in the
supplemental material. An example call to the function might look like:

> params = new (“GeneExpressionParams”, nCells=50, RNAseqg=TRUE)

> exp = inSilicoGeneExpression (cellModel, pathways, params)

Example: Simulating time-course bulk data

Using the workflow described in the previous section, we simulate a microarray data set
across 43 time points. The underlying mathematical model for cellular growth in this
case is an off-lattice, cell-center model from Drasdo and Hohme [14]. We model
pathways related to the phase transition from G to S and G to M, as well as a pathway
related to contact inhibition. For the G to M and G to S pathways, the pathway activity is
either zero or one at the current time point depending on whether or not the cell is
transitioning phases. The contact inhibition pathway activity is defined by the “local
density” of the cell, which is the proportion of surrounding area of a cell that is occupied
by other cells. We run the cell model for 168 hours, enough for the cell population
growth to slow down due to the density of the cells, and simulate gene expression for
150 genes. We generate a heatmap of the data using the heatmap. 2 function in R
(Figure 2a). We also run PCA on the resulting microarray data set and show that, as
expected, time and cell phase are the processes driving the simulated gene expression
(Figure 2bc).

Example: Simulating time-course single-cell data

CancerlinSilico also encodes an option to simulate single cell RNA-sequencing data to
generate omics data that reflects the heterogeneity of the sample population. To model
this heterogeneity, CancerInSilico allows us to label each cell as being from a distinct
cell type. We have control over the distribution of cell-cycle lengths within each cell type
through a user defined function in R. We apply this framework to model two distinct cell
types, one with a mean cell cycle length of 12 hours and standard deviation of 4 hours
(type A) and one with a mean cell cycle length of 36 hours and standard deviation of 4
hours (type B). This simulation models the pathway activity and corresponding gene
expression changes for each cell with a negative binomial error model and dropout
model adapted from Splatter [4]. The model then randomly samples a pre-specified
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number of cells. We apply this technique to simulate single cell RNA-sequencing data
from a simulation of a population equally distributed between the two types described
above (Fig 3). Each cell type is labeled as a pathway with binary values for activity to
activate a gene set that corresponds to cellular identity. In this simulated single-cell
RNA-seq data, we observe strong separation between cell types (Fig 3a) and time (Fig
3b) and observe a mixture between cell cycle phases (Fig 3c).

Example: Benchmarking analysis tools

We can use the wide range of simulation conditions in CancerinSilico to benchmark
time course gene expression analysis methods. Moreover, by starting with biological
parameters as opposed to statistical parameters, we can benchmark analysis methods
on conditions we actually care about. CancerInSilico is particularly useful when the
cellular processes underlying the simulation of interest have complex relationships with
each other. This complexity is handled by the underlying cellular growth simulation, and
while it does not perfectly capture the dependence between cellular processes, it does
provide a standardized, justifiable method. Furthermore, CancerInSilico allows for the
underlying cellular growth model to be easily swapped out so the benchmark itself can
be tested for sensitivity to a particular model.

Here we explore the effects of dependent cellular processes when using Independent
Component Analysis (ICA), implemented in the R package fast1ica, to analyze our
simulated RNA-seq data set. We define two cell-types which have identical properties
and provide an associated pathway for each one. We also define a third pathway which
is proportional to the growth rate of a cell. We have two datasets, one in which all
pathways have a distinct set of genes, and one where the growth pathway contains all
of the genes in each cell type specific pathway. In this way, the growth pathway is
confounding the cell type specific pathways. We can see that ICA with two components
perfectly separates the cells (Fig 4a) and temporal dynamics (Fig 4b) of the simulated
data with no confounding. When the overlapping pathway is introduced some of the
cells can no longer be separated by type (Fig 4c) although the temporal dynamics are
still separable via ICA (Fig 4d). Thus, this provides one example of the utility of
CancerinSilico to benchmark the sensitivity of a time course analysis algorithm to its
underlying mathematical assumptions. Additional parameters may be varied and further
cell cycle pathways introduced to the data to increase the complexity of these
simulations and more closely mirror the complexity of the analysis tasks in real, time
course genomics data.

Availability and future directions

We develop a new R/Bioconductor package CancerInSilico that couples mathematical
models of cellular growth with statistical models of technical noise. Using this coupling
to model changes in gene sets annotated to cell signaling pathways [4,19,22] enables
simulation of time course bulk omics data. The modeling of individual cells in this
system also enables simulation of time course, single cell RNA-sequencing data.
CancerlinSilico provides a wide range of parameter spaces for the user to explore when
simulating time-course gene expression data and the modular design makes it possible
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to swap different cell models in and out of an existing simulation. Thus, this package
provides software that can be used to benchmark the performance of methods for time
course bioinformatics analysis from a known ground truth that is lacking in real data. We
note that, to our knowledge, this is the first software package designed to simulate time
course gene expression data.

The statistical models used to simulate gene expression data from pathway activity in
CancerinSilico mirror the process by which omics tools estimate that activity. Namely,
pathways are assumed to activate discrete sets of genes annotated to a common
function based upon the modeled cellular state. Default parameters for the model yield
omics profiles with strong separation between signaling pathways that are greatly
simplified relative to those observed in real data. Therefore, applying omics algorithms
to these default simulations may result in under estimation of the accuracy of their
performance for real time course data. Future work is essential to benchmark the
performance of the CancerInSilico algorithm to real data. Mathematical models of gene
regulatory networks have been developed to model the dynamics of regulatory networks
that lead to transcriptional changes [28,29]. Hybrid, multi-scale approaches that
combine these network-based models with the cellular-scale models more accurately
model the complexity of system-wide dynamics [16—18] and are a promising area for
future work to simulate time course omics data. However, the complexity of these gene
regulatory models and extensive parameterization will limit the straightforward validation
of omics algorithms that is possible from the simplified statistical models employed in
CancerinSilico. We note that the complexity of the time course data simulated with
CancerlinSilico can be tuned by modifying the overlap between genes in simulated
pathways, altering cell type specific cell growth parameters, or increasing the variation
in parameter values across cells. Thus, we recommend benchmarking time-course
omics data analysis algorithms on simulated data generated from a wide range of these
parameter values to fully assess their performance.

CancerlinSilico is available as an R package on Bioconductor
bioconductor.org/packages/CancerInSilico/ and the source code is made available at
github.com/FertigLab/CancerInSilico. A live tutorial (vignette) is provided in the R
package and link to a pre-rendered version is available in the GitHub README.
CancerlinSilico is supported and tested on Windows, Mac, and Linux. The source code
to generate the figures seen in this paper can be found at
github.com/FertigLab/CancerInSilico-Figures.
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LIST OF FIGURES

Fig 1. Visual representation of CancerinSilico. (a) Overview of association between
mathematical and statistical modeling to generate simulated time course gene
expression data. (b) Each component of the software is shown with arrows indicating
how it is related to the rest of the components. R input arguments shown in pink, R
software components shown in blue, and C++ components shown in green.

Fig 2. PCA of simulated time course microarray data. (a) Heatmap of microarray
data. Plot of first two principal components colored by (b) time and (c) cell phase.

Fig 3. T-SNE of simulated time course single cell RNA-sequencing data for a
population with cells of types A and B. Points colored by (a) cell type, (b) time, and
(c) cell cycle phase.

Fig 4. Benchmarking ICA when cell type pathways are confounded with third
pathway. ICA with no confounding colored by (a) cell type and (b) time. ICA with third
pathway confounding colored by (c) cell type and (d) time.
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