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Abstract

Ghrelin is a peptide hormone which, when acylated, regulates appetite, energy
balance and a range of other biological processes. Ghrelin predominately circulates in its
unacylated form (unacylated ghrelin; UAG). UAG has a number of functions independent of
acylated ghrelin, including modulation of metabolic parameters and cancer progression. UAG
has also been postulated to antagonise some of the metabolic effects of acyl-ghrelin,
including its effects on glucose and insulin regulation. In this study, Rag/-" mice with high-
fat diet-induced obesity and hyperinsulinaemia were subcutaneously implanted with PC3
prostate cancer xenografts to investigate the effect of UAG treatment on metabolic
parameters and xenograft growth. Daily intraperitoneal injection of 100 pg/kg UAG had no
effect on xenograft tumour growth in mice fed normal rodent chow or 23% high-fat diet.
UAG significantly improved glucose tolerance in host Rag/~ mice on a high-fat diet, but did
not significantly improve other metabolic parameters. We hypothesise that UAG is not likely
to be an effective treatment for prostate cancer, with or without associated metabolic

syndrome.
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Introduction

The peptide hormone ghrelin is a circulating appetite-stimulating hormone which
regulates a number of other biological processes [1-3], including metabolism and energy
balance [1-4], and diseases such as cancer [5]. Ghrelin acts via its cognate receptor, the
growth hormone secretagogue receptor 1a (GHSR1a), a G protein-coupled receptor [6], and
one or more unknown alternative receptors [7-10]. In order to activate GHSR 1a at
physiological concentrations, ghrelin must be acylated at its third residue, a serine [11, 12],
by the enzyme ghrelin O-acyl transferase (GOAT) [11, 12].

The major circulating form of ghrelin is its unmodified form, unacylated ghrelin
(UAG). UAG, which does not directly stimulate feeding [5], was initially considered to be
functionally inactive, but is now appreciated to bind to and activate a distinct, unknown
receptor [4, 13-18] and have a number of functions [19-22]. UAG plays roles in the
regulation of glucose and energy balance and has effects on cell proliferation [19-23].
Importantly, it may oppose some of the effects of acyl-ghrelin [16, 24-26] preventing the rise
in circulating glucose and insulin associated with acyl-ghrelin administration in rodents [22,
26, 27]. From these studies, it is apparent that UAG is an endocrine hormone in its own right
[20]. UAG and the truncated, cyclised UAG analogue AZP-531 prevented the development
of pre-diabetes in C57BL/6 mice fed a high-fat diet for two weeks, highlighting a potential of
unacylated forms of ghrelin as treatments for metabolic syndrome [27]. In human trials, UAG
had similar effects, improving glycaemic control and insulin sensitivity in patients with type
2 diabetes mellitus [28] and improving glucose handling and reducing free fatty acids in
healthy subjects when administered overnight as a continuous infusion [29]. AZP-531 also
had beneficial effects on glucose balance and led to weight loss in patients with type 2

diabetes mellitus in a phase I clinical trial [30]. Similar benefits have been observed in
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patients with Prader-Willi syndrome, a genetic disorder associated with hyperghrelinaemia
and obesity [31].

Close to two decades of work has firmly established a role for the ghrelin axis in
cancer [5, 32-35]. This includes prostate cancer, a classical endocrine-related cancer and the
most commonly diagnosed cancer in American men after skin cancer [36], where acyl-
ghrelin increases cell proliferation and migration [5, 14, 37-46]. UAG also has functional
effects in several cancers, including prostate cancer [5, 32-34, 43]. In the PC3 prostate cancer
cell line, UAG has a biphasic effect, reducing cell proliferation at supraphysiological levels
(10nM-1pM) [14].

Studies investigating the role of UAG in prostate cancer have been limited to in vitro
experiments. /n vivo studies are required, however, as obesity and overweight and co-
morbidities, including hyperinsulinaemia, are now recognised as critical risk factors for
numerous cancers [47-49]. These include cancer types with high-prevalence and mortality,
such as tumours of the prostate, endometrium, breast, and gastrointestinal system [47-55].
Obesity and increased body mass have been associated with increased risk of advanced
prostate cancer, more aggressive and high-grade disease and increased risk of death from
prostate cancer [56-59]. Castration-resistant prostate cancer (CRPC) occurs when prostate
cancer recurs after remission from androgen-targeted therapies (ATT) [60]. Treatments for
CRPC are limited and this stage of the disease often results in the formation of painful,
metastatic bone lesions and associated morbidity and mortality [61-63]. Metabolic syndrome
and hyperinsulinaemia are common side effects of ATT [64, 65] and may also further
accelerate the progression to CRPC [48, 58, 66-68]. As UAG reduces prostate cancer
proliferation in vitro [14] and has potential beneficial metabolic effects in vivo, we examined
the effect of UAG in our model of metabolic dysfunction: Rag/-~ mice fed a high-fat diet,

with subcutaneous prostate cancer cell line xenografts [69].
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100

101 Materials and Methods
102 Cell Culture

103 Human prostate cancer cell lines were obtained from the American Type Culture
104  Collection (ATCC, Manassas, VA, USA). The PC3 prostate cancer cell line was cultured in
105 Roswell Park Memorial Institute 1640 medium (RPMI-1640) and supplemented with 10%
106  (v/v) Fetal Calf serum (FCS) (Thermo Fisher Scientific, Waltham, MA, USA), 50 units/ml
107  penicillin, and 100 pg/mL streptomycin (Thermo Fisher Scientific). Cells were tested negative
108  for Mycoplasma.

109

110 Hyperinsulinaemic Ragl-- mouse model treated with unacylated

111 ghrelin (UAG)

112 To determine the metabolic effect of UAG in an engraftable mouse model of

113  hyperinsulinaemia [69], male recombination-activation gene deficient mice (B6.SVJ129-
114  Ragl™!Bal/Arc; Ragl™’") (Jackson Laboratories, supplied by Animal Resource Centre,

115  Murdoch, WA, Australia) were weaned onto a diet of low-fat normal chow (LFD) or a

116  Western-style, high-fat diet (HFD; 23% fat, SF04-027, Specialty Feeds, WA) [69]. After two
117  weeks on the diet, mice were subcutaneously injected into the left flank with 1x10° PC3 cells
118  diluted 1:1 in growth factor reduced, phenol red-free Matrigel (Corning, NY, USA). Tumours
119  were allowed to grow until a volume of approximately 50-100 mm? was reached, when mice
120  were randomly divided into two experimental groups. Mice then received daily

121  intraperitoneal injections of 100 ug/kg UAG (Mimotopes, Mulgrave, Vic, Australia) (n=6
122 HFD, n=10 LFD) (a dose previously determined to inhibit breast cancer growth in vivo [8])

123 or phosphate buffered saline (PBS) control (=8 HFD, n=10 LFD) for 16 days. Tumour
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124  volume was calculated by measuring subcutaneous tumour length and width twice weekly
125  using digital calipers (ProSciTech, Kirwan, QLD, Australia). Tumour volume was calculated
126  using the equation ‘tumour volume = (width x length?)/2’ [70]. Bodyweight was measured
127  twice weekly. At endpoint, tumours and adipose tissue (epididymal fat pad and interscapular
128  brown adipose tissue) were excised and weighed. Fasting blood glucose was measured at
129  endpoint and blood was collected by cardiac puncture for serum biochemical measurements.
130  Surrogate indices of insulin resistance, insulin sensitivity, and steady state -cell function
131  were determined using the homeostatic model for assessment calculator (HOMA?2), available
132 from the Oxford Centre for Diabetes, Endocrinology and Metabolism [71], using measured
133  fasting glucose and insulin levels.

134

135  Statistics

136 Statistical analyses were performed using GraphPad Prism v.6.01 software (GraphPad
137  Software, Inc., San Diego, CA). Kruskal-Wallis (three or more groups) and Mann-Whitney
138  U-test (two groups) tests used for non-normally distributed data, while a two-way ANOVA
139  with Tukey’s post-hoc test used for normally distributed data. P < 0.05 was considered to be

140  statistically significant.

141 Results
142 No effect of intraperitoneal administration of UAG on PC3

143 xenograft growth in obese, hyperinsulinaemic Ragl-* mice

144 No significant differences in tumour volume over the treatment period or tumour
145  weight (P=0.57) and volume at endpoint (P=0.55) were observed between UAG-treated and
146  untreated obese mice (14 days of treatment) (Mann-Whitney test, Fig. 1A-C). An increase in

147  insulin sensitivity (P=0.70) and reduction in body weight (P=0.08), epididymal fat pad
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148  weight (P=0.26), interscapular brown adipose tissue weight (P=0.12), fasting blood glucose
149  (P=0.50), fasting blood insulin (P=0.90), insulin resistance (P=0.70), and steady-state -cell
150  function (P=0.22) was observed in the UAG treatment group in HFD-fed Ragl~- mice —
151  however, these changes were not statistically significant (Fig. 1D-L). There was a significant
152  difference in blood glucose at 30 minutes following glucose challenge in HFD-fed UAG-
153  treated mice compared to PBS controls at endpoint (after 16 days of treatment) (21.6 +

154  1.2mM, n=6 vs 25.4 £ 1.9mM, n=35, P=0.02, two-way ANOV A with post-hoc test, Fig. 1G),
155  however, this was not observed at other time points, suggesting no major change in glucose
156  tolerance. There was no significant difference in fasting blood glucose (P=0.50), blood

157  insulin concentration (P = 0.90, Mann-Whitney test, Fig. 11), insulin resistance (P = 0.70,
158  Mann-Whitney test, Fig. 1J), or insulin sensitivity (P=0.70, Mann-Whitney test, Fig. 1L).
159

160  Fig. 1. Unacylated ghrelin (UAG) affects glucose tolerance but has no effect on tumour
161  volume or on other metabolic parameters. Rag/”- mice fed a 23% high-fat diet (HFD) or
162  low-fat diet (LFD) were injected with subcutaneous PC3 xenografts and administered UAG
163  (100pg/kg/day, 1.p.) (=6 HFD, n=10 LFD) or PBS control (»=8 HFD, n=10 LFD) once
164  tumours were palpable. Mean =+ s.e.m. * P<0.05. (A) Tumour volume (mm?) measured over
165  time (P=0.57), (B) tumour volume (mm?) (P=0.55) and (C) tumour weight (g) measured at
166  experimental endpoint were not significantly different between UAG- and PBS-treated mice
167  fed HFD or LFD. Mean + s.e.m. Mann-Whitney test. (D) Body weight (g) of mice at

168  endpoint (P=0.08), (E) epididymal fat pad weight (g) (P=0.26) and (F) interscapular brown
169  adipose tissue weight (g) (P=0.12) were not significantly different in UAG-treated mice
170  compared to PBS-treated mice. Mean =+ s.e.m. Mann-Whitney test. (G) HFD-fed UAG-

171  treated mice (n=6) had significantly lower blood glucose 30 min post-glucose challenge

172 compared to HFD-fed PBS treated mice (n=8), determined by intraperitoneal glucose
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173  tolerance test (IPGTT). Mean + s.e.m. Two-way ANOVA. * P=0.025. (H) Fasting blood

174  glucose (mM) (P=0.50) and (I) fasting blood insulin (ng/ml) were not altered in UAG-treated
175  compared to PBS-treated mice on either diet. Mean + s.e.m. P=0.90. Mann-Whitney test. (J)
176  Insulin resistance (HOMA-IR) (P=0.70), (K) steady state B-cell function (HOMA%B)

177  (P=0.22) and (L) insulin sensitivity (HOMA%S) (P=0.70) were not altered in UAG-treated

178  compared to PBS-treated mice on either diet. Mean + s.e.m. Mann-Whitney test.

179 Discussion
180
181 It has recently been recognised that UAG can under some conditions act as a

182  functional ghrelin inhibitor, reducing ghrelin-mediated increases in plasma glucose [22, 26,
183 28, 72] and lipid [27, 29]. As the ghrelin axis also plays a role in the progression of a number
184  of endocrine-related cancers [5, 32-34], including prostate cancer [5, 43], we hypothesised
185  that UAG may have beneficial effects in advanced prostate cancer associated with metabolic
186  syndrome. To evaluate this hypothesis, we examined the effect of UAG on a prostate cancer
187  cell line in vivo.

188 In our diet-induced hyperinsulinaemic Rag!/”- mouse model [69], we investigated the
189  effect of supraphysiological systemic UAG treatment (100pug/kg/day) on metabolic

190 parameters and PC3 prostate cancer xenograft growth. No differences in metabolic

191  parameters (fasting blood glucose, fasting blood insulin, insulin resistance, steady-state B-cell
192  function, and insulin sensitivity) were observed with UAG treatment in HFD-fed mice. Other
193  studies have found that UAG prevents insulin resistance and hyperglycaemia in short-term
194  HFD-fed mice [73], observations which may stem from the ability of UAG to cross the

195  blood-brain barrier and oppose the central actions of ghrelin on energy homeostasis [74].

196  Furthermore, in human clinical trials UAG improved glucose and lipid metabolism in healthy

197  [29] and diabetic patients [28]. In our study, a decrease in bodyweight, epididymal fat pad
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198  weight, and interscapular brown adipose tissue was observed in HFD-fed UAG treated mice
199  but this difference was not statistically significant. UAG did significantly reduce blood

200  glucose levels at 30 minutes post-glucose challenge in HFD, but not LFD-fed mice, however.
201  This is similar to other studies, which have only found positive effects of UAG on glucose
202  tolerance in obese patients [72]. Similarly, in clinical trials, AZP-531 (a cyclised, truncated
203  analogue of UAG) improved food-related behaviour, waist circumference, and glucose

204  tolerance in Prader-Willi syndrome patients, but had no effect on body weight [31]. AZP-531
205  also prevents HFD-induced weight gain, insulin resistance, and impairment of glucose

206  tolerance in mice [27].

207 To the best of our knowledge, this is the first report on the effects of UAG on cancer
208  cell line xenograft growth in vivo. While our study and others show somewhat promising
209  effects of UAG treatment on metabolic parameters, systemic UAG administration had no
210  effect on prostate tumour xenograft size in mice fed a low-fat or high-fat diet. While

211  preliminary, our study suggests that UAG administration, or targeting of endocrine UAG,
212  may have limited therapeutic potential for prostate cancer, in patients with and without

213  symptoms of metabolic syndrome.
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