

1 **Single-fluorescent protein reporters allow parallel quantification**
2 **of NK cell-mediated granzyme and caspase activities**
3 **in single target cells**

4
5 Clarissa Liesche (1), Patricia Sauer (1), Maren Claus (2), Roland Eils (1), Joël Beaudouin (1)*
6 and Carsten Watzl (2)*

7
8 (1) Division of Theoretical Bioinformatics at German Cancer Research Center (DKFZ),
9 Department for Bioinformatics and Functional Genomics at Institute for Pharmacy and
10 Molecular Biotechnology, BioQuant Center and Heidelberg University, Im Neuenheimer Feld
11 267, 69120 Heidelberg, Germany.

12
13 (2) Department for Immunology, Leibniz Research Centre for Working Environment and
14 Human Factors at TU Dortmund (IfADo), Dortmund, Germany

15 *corresponding authors:

16 Carsten Watzl, E-Mail: Watzl@ifado.de

17 Joël Beaudouin, E-Mail: Joel.Beaudouin@ibs.fr

18 **Key words :** Natural killer cells, cytotoxic lymphocytes, single-fluorescent protein reporters,
19 granzyme and caspase activity, apoptosis and cell death

20
21
22

23 **1. Abstract**

24

25 Natural killer (NK) cells eliminate infected and tumorigenic cells through delivery of
26 granzymes via perforin pores or by activation of caspases via death receptors. In order to
27 understand how NK cells combine different cell death mechanisms it is important to quantify
28 target cell responses on a single cell level. However, currently existing reporters do not allow
29 the measurement of several protease activities inside the same cell. Here we present a strategy
30 for the comparison of two different proteases at a time inside individual target cells upon
31 engagement by NK cells. We developed single-fluorescent protein reporters containing the
32 RIEAD or the VGPD cleavage site for the measurement of granzyme B activity. We show
33 that these two granzyme B reporters can be applied in combination with caspase-8 or caspase-
34 3 reporters. While we did not find that caspase-8 was activated by granzyme B, our method
35 revealed that caspase-3 activity follows granzyme B activity with a delay of about 6 minutes.
36 Finally, we illustrate the comparison of several different reporters for granzyme A, M, K and
37 H. The here presented approach is a valuable means for the investigation of the temporal
38 evolution of cell death mediated by cytotoxic lymphocytes.

39 **2. Introduction**

40
41 As part of the innate immune system, Natural Killer (NK) cells can eliminate infected and
42 tumorigenic cells (Watzl, 2014). To do so, they adhere to a target cell and establish an
43 immunological synapse (Mace et al., 2014). The following NK cell receptor signaling can
44 trigger the release of cytotoxic granules from the NK cell into the cleft of this synapse (Watzl
45 et al., 2014). Like cytotoxic T lymphocytes (CTLs), NK cells have two mechanisms to induce
46 cell death of target cells (Ewen et al., 2012; Strasser et al., 2009): In the first mechanism,
47 granzymes are released from cytotoxic granules and enter the target cell via perforin pores
48 and induce cell death. In the second mechanism, CD95L or TRAIL are presented at the
49 surface of NK cells and induce extrinsic apoptosis in target cells through activation of the
50 death receptors CD95 or TRAIL-R1/-R2.

51 How NK cells orchestrate the activities of granzymes and the activation of extrinsic apoptosis
52 remains poorly understood. Extrinsic apoptosis starts with the formation of the so-called death
53 inducing signaling complex (DISC), composed of activated death receptors and recruited
54 FADD adaptor proteins and initiator procaspases-8/-10. Once activated, these caspases cleave
55 and activate effector procaspase-3/-7 (Peter and Krammer, 2003; Stennicke et al., 1998),
56 leading to apoptosis, unless presence of XIAP blocks their activity (Barnhart et al., 2003;
57 Wowk and Trapani, 2004). When the pro-apoptotic Bcl-2 protein BID is cleaved by caspase-
58 8/-10 in sufficient amount, truncated BID induces mitochondrial outer membrane
59 permeabilization. Subsequent release of cytochrome c activates caspase-9, while release of
60 SMAC induces the degradation of XIAP, both leading to massive activation of effector
61 caspases.

62 To deliver granzymes in the cytosol of target cells, perforin forms a pore in cellular
63 membranes (Law et al., 2010). It is debated if this occurs at the plasma membrane (Lopez et
64 al., 2013a, 2013b) or the membrane of endosomes (Browne et al., 1999; Froelich et al., 1996;
65 Thiery et al., 2010). Of the five human granzymes A, B, H, K and M, granzyme B is the best
66 characterized one and shares substrate specificity with caspases for cleavage after aspartate
67 residues (Bots and Medema, 2006; Joeckel and Bird, 2014; Susanto et al., 2012). Both,
68 granzyme B and caspase-8 can cleave BID, yet at different sites, at D75 (RIEAD'S) and D60
69 (ELQTD'G) (Li et al., 1998), respectively. While granzyme B has been shown to cleave the
70 initiator procaspase-8 (Medema et al., 1997) and the effector procaspase-3 (Quan et al.,
71 1996)(Yang et al., 1998; Andrade et al., 1998; Atkinson et al., 1998a)(Goping et al., 2003),
72 other substrates measured *in vitro* have been reported to be more efficiently cleaved, for
73 example DNA-PKc or BID (Andrade et al., 1998; Barry et al., 2000b; Pinkoski et al., 2001;
74 Sutton et al., 2000). From this perspective, granzyme B is suggested to play a role not only as
75 an initiator but also as executioner enzyme in target cell death (Wowk and Trapani, 2004).

76 Having reporters that would allow the measurement of the contribution of granzymes and
77 caspases in a single cell would be beneficial to characterize the activity of NK cells. Specific
78 protease biosensors based on luciferase (Li et al., 2014; Vrazo et al., 2015), fluorophore
79 quenching (Packard et al., 2007) and FRET (Choi and Mitchison, 2013; Zhu et al., 2016)
80 (**Table 1**) have facilitated the study of the killing mechanism by granzymes and death
81 receptors. However they do not easily allow multiplexing for the quantification of several
82 protease activities in single cells. Parallel assessment of protease activity inside single cells
83 would allow for a better understanding of the temporal order of signaling events in the NK
84 cell killing mechanism. In order to reach this aim, we present an approach to measure NK
85 cell-mediated activity of two proteases at once in single target cells. We demonstrate our
86 approach by measuring granzyme B, caspase-8 and caspase-3 activity in target cells exposed
87 to NK cells. The pallet of reporters can easily be extended by cloning cleavage linkers, as
88 illustrated here with the measurement of potential substrates for different granzymes. We

89 believe that these reporters offer a valuable resource to characterize the physiology of NK
90 cells or to test the activity of patient-derived NK cells.

91 **3. Results**

92 **3.1. Measurement of protease activity induced by NK cells in living target cell**

93 To get insights into the process by which individual NK cells kill their target cells, we aimed
94 at comparing the strength of different proteases inside single target cells. To achieve this, we
95 designed fluorescent reporters following the strategy that we previously established to
96 measure caspase activity upon CD95 activation (Beaudouin et al., 2013). These reporters
97 consist of one fluorescent protein fused to a localization domain through a linker that can be
98 specifically cleaved by proteases. In this study we use the nuclear export signal (NES) as
99 localization domain (**Fig. 1**). As exemplified below, this reporter allows an easy quantification
100 of protease activity, and it detects any activity originating from an enzyme facing the cytosol.
101 Protease cleavage leads to separation of the fluorescent protein from the localization domain.
102 The free fluorescent protein is small enough to enter or exit the nucleus by passive diffusion, a
103 process that takes about 1 min. Reporter cleavage can be quantified by measuring the increase
104 of fluorescence signal in the nucleus. This is ideally imaged by time-lapse fluorescence
105 confocal microscopy as this allows the measurement of the fluorescence intensity inside the
106 nucleus without contamination of signal from the cytosol below and above. Thus, by
107 quantifying the spatial redistribution of the fluorescence signal inside the target cell, reporter
108 cleavage can be calculated. Image analysis can be done using the freely available ImageJ
109 software and proceeds as follows: generation of an image stack from time series data,
110 background subtraction and measurement of the mean fluorescence signal in a region of
111 interest representing the cell nucleus. To estimate the extent of substrate cleavage, this nuclear
112 signal is normalized to the cytosolic one. One possibility is to perform this normalization for
113 each time point, which requires more work but has the advantage of correcting for potential
114 photobleaching over time:

116

$$I_{nucleus}^{normalized}(t) = \frac{I_{nucleus}(t)}{I_{cytosol}(t)}$$

117 In this case, the normalized intensity tends towards 1, or 100%, when cleavage is complete.
118 The here presented data were analyzed in this way. The second possibility consists of
119 normalizing with the cytosolic signal before the addition of the NK cells. This approach is
120 relevant if photobleaching can be neglected:

121

$$I_{nucleus}^{normalized}(t) = \frac{I_{nucleus}(t)}{I_{cytosol}(t = 0)}$$

122 In this case, as the nucleus and the cytoplasm are roughly occupying the same volume, the
123 normalized intensity tends towards 0.5, or 50%.

124 Since each reporter contains only one fluorescent protein, these so-called single-fluorescent
125 protein reporters allow parallel assessment of several reporters within the same cell. Hence,
126 different comparison can be realized: the measurement of (i) different cleavage sites for
127 different proteases or of (ii) different cleavage sites for the same protease.

128

129

130 **3.2. Granzyme B activity can be measured with single-fluorescent protein reporters
131 having the RIEADS or the VGPD cleavage site**

132 In order to establish single-fluorescent protein reporters for the measurement of granzyme B
133 activity, we designed and tested two different reporters carrying a linker sequence known to
134 be cleaved by granzyme B. The first reporter carries the amino acid sequence RIEADS (single
135 amino acid code), which is present in the protein BID. The second reporter carries the amino
136 acid sequence VGPD from the protein DNA-PKc as cleavable linker. We co-expressed the

137 two reporters NES-RIEADS-mCherry and NES-VGPD-mGFP in HeLa cells expressing
138 CD48, a ligand for the activating NK cell receptor 2B4 (CD244), which renders them more
139 sensitive to killing by NK cells (Hoffmann et al., 2011). The transfected target cells were
140 imaged by confocal microscopy over time upon addition of the human NK cell line NK92-C1.
141 Cell death was recognized from images by cell rounding and cell shrinkage following NK cell
142 engagement (**Fig 2A**). About 20 minutes before target cell death, NES-RIEADS-mCherry and
143 NES-VGPD-mGFP reporter cleavage was detected from the appearance of fluorescence
144 inside the nucleus (**Fig 2A**). In order to plot the cleavage kinetics of several cells
145 independently of the time of NK cell engagement, we defined the time of death as time point
146 zero. In this way, we found that both reporters were cleaved on average at the same rate
147 before target cell death (**Fig 2B**). Furthermore, the cleavage efficiency of NES-RIEADS-
148 mCherry and NES-VGPD-mGFP reporters inside the same cell correlated well, showing that
149 both reporters are able to mirror the observed cell-to-cell variability of granzyme B activity
150 (**Fig 2B**). We next verified the specificity of these two reporters by measuring their cleavage
151 in cells that overexpress serpin B9, a natural inhibitor of granzyme B (Kaiserman and Bird,
152 2010). Compared to control cells, the time of cell death was delayed in serpin B9
153 overexpressing cells (**Fig 2C and D**). Consistent with that, reporter cleavage was reduced
154 from 53% to 17% (NES-RIEADS-mCherry) and from 34% to 6% (NES-VGPD-mCherry),
155 showing that both reporters are suitable for the specific measurement of granzyme B activity.
156
157

158 **3.3. Single-fluorescent protein reporters allow multiplexing: distinguishing different 159 proteases inside the same cell**

160 CD95 signaling in HeLa cells leads to notable caspase-8 and -3 activation (Beaudouin et al.,
161 2013). On the one hand it was reported that caspase-8 can get activated through cleavage by
162 granzyme B (Medema et al., 1997). On the other hand it was shown that granzyme B activates
163 effector caspases through cleavage of BID (Atkinson et al., 1998b; Goping et al., 2003;
164 Pinkoski et al., 2001; Sutton et al., 2000). Deciphering the contribution of caspase-8 and
165 granzyme B to NK cell mediated cell death, and in particular the potential activation of
166 caspase-8 by granzyme B, is an intriguing question that could help to better understand cell
167 death signaling by NK cells.

168 Therefore, we tested if caspase-8 and granzyme B activity can be distinguished within the
169 same cell using our single-fluorescent protein reporters. For this aim, we measured NES-
170 ELQTD-mGFP (for caspase-8), together with either NES-RIEADS-mCherry or NES-VGPD-
171 mCherry (for granzyme B). Upon addition of soluble trimerized CD95L (IZsCD95L) to HeLa
172 cells, we observed efficient cleavage of the caspase-8 reporter NES-ELQTD-mGFP. In
173 contrast, in the same cells, the NES-RIEADS-mCherry reporter was cleaved only up to 10%
174 (**Fig 3A**) and the NES-VGPD-mCherry reporter was virtually not cleaved (**Fig 3B**). This
175 shows that granzyme B activity (using either the RIEADS- or the VGPD-reporter) can be
176 clearly distinguished from caspase-8 activity (using the ELQTD-reporter) within the same
177 cell.

178 We next set out to test for caspase-8 activity in cells showing granzyme B activity. For this,
179 we compared reporter cleavage in HeLa cells in the absence or presence of CD95 expression.
180 Transient expression of shRNA against CD95 led to absence of cell death and caspase-8
181 activity in a control experiment using IZsCD95L as inducer (**Fig. 4A**). The nuclear protein
182 H2B-eBFP2 served as a fluorescent marker to recognize cells that contain the plasmid
183 encoding shRNA (**Fig. 4B**). Upon addition of NK cells to HeLa(CD48) cells expressing
184 control shRNA, we observed NES-RIEADS-mCherry reporter cleavage as expected
185 indicating granzyme B activity. In addition, the NES-ELQTD-mGFP reporter was cleaved on
186 average up to 7% indicating an additional activation of caspase-8 (**Fig 4C**). This caspase-8
187 activity could be due to the activation of caspase-8 by granzyme B, or due to the activation of

188 death receptors during the engagement by the NK cells. To distinguish these two possibilities,
189 we repeated the experiment in HeLa cells expressing a shRNA against CD95. The absence of
190 CD95 expression abolished NES-ELQTD-mGFP reporter cleavage (**Fig 4D**). This
191 demonstrates that the caspase-8 activity was due to activation of the CD95 pathway by NK
192 cells and it also reveals that caspase-8 is not, or not efficiently, activated by granzyme B.
193 It is known that effector caspase-3 activation can be a consequence of granzyme B activity
194 (Barry et al., 2000a). We thus hypothesized that caspase-3 activity should occur with a delay
195 after granzyme B activity, as in the case of CD95 mediated extrinsic apoptosis (Beaudouin et
196 al., 2013; Stennicke et al., 1998). To test this, we measured reporter cleavage of NES-VGPD-
197 mCherry for granzyme B and NES-DEVDR-GFP for caspase-3 in HeLa cells upon addition
198 of NK cells (**Fig 5A**). We found that caspase-3 activity appears on average about 6 minutes
199 later than granzyme B (**Fig 5B**). The onset of caspase-3 activity was about 10 minutes before
200 cell death, highlighting the speed of this cellular process. These data also show how precisely
201 cell death can be analyzed on the single cell level with this approach using single-fluorescent
202 protein reporters.

203 **3.4. Testing potential reporters for different granzymes**

204 NK cells notably express granzyme A and B (Bratke et al., 2005; Grossman et al., 2004) but
205 they also express the less characterized granzymes H, K and M (Krzewski and Coligan,
206 2012). In order to further illustrate our approach and to potentially capture the activity of
207 granzymes A, M, H and K in single target cells, we designed fluorescent reporters that contain
208 cleavage site candidates based on existing data from literature (Table 1). Using positional
209 scanning combinatorial libraries optimal substrates for the five human granzymes have been
210 previously identified and characterized (Mahrus and Craik, 2005). Among them, the IEDP
211 and IGNR sequence have been further developed as fluorescent label and inhibitor for
212 granzyme B and granzyme A (Mahrus and Craik, 2005). Moreover, optimal substrates were
213 determined to be YRFK for granzyme K, KVPL for granzyme M and PTSY for granzyme H
214 (Mahrus and Craik, 2005). In this study, we additionally designed a reporter containing the
215 sequence DVAHKQL, which is present in the mitochondrial complex I protein NDUFS3,
216 since granzyme A was reported to cleave this protein at this site after the amino acid lysine in
217 this sequence (Martinvalet et al., 2008a). We measured these six different reporters in
218 comparison to the granzyme B reporters NES-VGPD-mCherry or NES-RIEADS-mGFP. We
219 found that the RIEADS and VGPD reporters were more sensitive to detect granzyme B
220 activity compared to the IEDP reporter (**Fig. 6A**). Also, granzyme B activity was clearly
221 dominant among the different experiments as at the time of death IGNRS (granzyme A),
222 PTSYG (granzyme H), and YRFKG (granzyme K) reporter cleavage was in almost all cases
223 less than RIEADS or VGPD (granzyme B) cleavage (**Fig. 6**). Moreover, no cleavage of
224 DVAHQL (granzyme A) and KVPL (granzyme M) reporters could be observed. This
225 comparison of different reporters would suggest that granzyme B and granzyme A are the
226 most abundant granzymes used by the NK92-C1 to cleave substrates in the cytosol of target
227 cells. This experiment shows how single-fluorescent protein reporter can be used to examine
228 protease activity that is either induced inside target cells or stemming from cytotoxic
229 lymphocytes such as NK cells.

230

231 **4. Discussion**

232

233 The single-fluorescent protein reporters employed in this study are part of a larger panel of
234 protease reporters, based, for example, on cyclic luciferase (Kanno et al., 2007; Li et al.,
235 2014), fluorophore quenching (Packard et al., 2007), FRET imaging (Choi and Mitchison,
236 2013; Rehm et al., 2015; Zhu et al., 2016) or subcellular localization of a fluorophore

237 (Beaudouin et al., 2013; Lin et al., 2010). Our reporters provide us with the possibility to
238 precisely investigate NK cell induced cell death since they allow the measurement of two
239 protease activities within the same cell. This feature is useful to correlate the activity of
240 different enzymes within single cells and therefore independently of the large cell-to-cell
241 variability due to the stochasticity of the NK-target cell contact.

242 We showed that the here developed reporters containing the RIEADS or the VGPD cleavage
243 site are suitable for the measurement of granzyme B activity. We systematically tested
244 putative reporters containing amino acid sequences that were previously shown to be cleaved
245 by granzyme A, B, M, H and K (Mahrus and Craik, 2005). While granzyme B activity was
246 the most prominent, we could detect some activity of granzymes A, H, and K, but no activity
247 of granzyme M. The reporters used here contain a nuclear export signal for the measurement
248 of any enzyme activity in the cytosol. This may explain why the DVAHKQL reporter for
249 granzyme A was not cleaved in target cells upon NK cell addition, since this substrate would
250 naturally reside inside mitochondria (Martinvalet et al., 2008b). However, the contribution of
251 other granzymes to cell death still remains to be further investigated, for example by testing
252 NK cells or CTLs at different maturation stages (Nakazawa et al., 1997) or by taking into
253 account the expression levels over long term experiments (Meiraz et al., 2009).

254 Our experiments have demonstrated that granzyme B reporters can be applied in combination
255 with caspase-8 or caspase-3 activity reporters. Strong caspase-3 activity correlated with
256 granzyme B activity. These results support earlier studies (Andrade et al., 1998; Pinkoski et
257 al., 2001; Quan et al., 1996; Sutton et al., 2000) showing that granzyme B can directly or
258 indirectly (through BID) induce caspase-3 activation. Our data show that this is a fast process,
259 with caspase-3 activity being detectable within a few minutes after granzyme B activity. In
260 contrast, caspase-8 activity was only detectable in target cells expressing the CD95 receptor,
261 but not in cells where CD95 was knocked-down, despite granzyme B activity. This suggests
262 that there is no major activation of caspase-8 by granzyme B, in contrast to earlier studies
263 (Medema et al., 1997). However, this also demonstrates that NK cells can indeed use two
264 pathways to kill target cells: exocytosis of granzymes and perforin, resulting in detectable
265 granzyme B activity inside the cytosol of target cells, and surface expression of CD95L and
266 TRAIL, resulting in caspase-8 activity. Single-fluorescent protein reporters present a valuable
267 tool to decipher cell death mechanisms induced by NK cells. We believe that this approach
268 opens the door for the characterization of death receptor- versus granzyme-mediated target
269 cell killing, in particular the temporal evolution of these two death mechanisms in the context
270 of serial killing by NK cells.

271

272 5. Materials and Methods

273

274 5.1. Constructs

275 Human CD48 (UniProtKB P09326), human serpin B9/PI-9 (from Gateway cDNA library of
276 the DKFZ) and IZ-SCD95L (Walczak et al., 1999) were subcloned in the pIRES-puro2 vector.
277 Fluorescent reporters were cloned based on constructs described previously (Beaudouin et al.,
278 2013) in pEGFP N1 and C1 vectors (Takara Bio Europe Clontech, Saint-Germain-en-Laye,
279 France). DNA oligonucleotides encoding cleavage sites were cloned with AgeI/NotI or
280 BsrGI/NotI (**Table 2**). The amino acid sequence starting from the N-terminus of the nuclear
281 export sequence (NES) is MNLVDLQKKLEEELDEQQ.

282

283 **5.2. Cell culture**

284 HeLa cell lines were maintained in Dulbecco's modified eagle medium (DMEM, Invitrogen,
285 Darmstadt, Germany) containing 10% fetal calf serum (Biochrom AG, Berlin, Germany),
286 penicillin/streptomycin, 100 µg/ml each (Invitrogen). HeLa(CD48) cells over-express CD48
287 and were maintained in medium supplemented with 0.5 µg/ml puromycin (Sigma-Aldrich).
288 NK92-C1 that stably express IL-2 were maintained in phenol red-free Minimum Essential
289 Medium Eagle Alpha (MEMα, Sigma-Aldrich) without ribonucleosides and
290 deoxyribonucleosides but containing sodium bicarbonate, supplemented with 2 mM L-
291 glutamine, 0.1% 2-mercaptoethanol, 12.5% horse serum, 12.5% fetal bovine serum and
292 penicillin/streptomycin, 100 µg/ml each (Invitrogen).
293 Soluble CD95 ligand fused to the isoleucine-zipper domain (IZsCD95L, cloned in pIRES-
294 puro2) was produced in 293T cells, which were seeded in 6-well plates. 24 h after cell
295 transfection using JetPrime reagent (Polyplus), supernatant was replaced by fresh medium. At
296 the next day, supernatant containing secreted ligand was harvested.

297

298

299 **5.3. Microscopy**

300 The here presented approach uses fluorescence microscopy, which allows the extraction and
301 correlation of several features, including the time of cell death. Time-lapse microscopy was
302 performed with the TCS SP5 confocal laser scanning microscope from Leica (Leica
303 Microsystems CMS GmbH, Mannheim, Germany) equipped with a 63x/1.4 OIL, HCX PL
304 APO CS objective. We used the live data mode of the Leica software for autofocusing as
305 described in (Beaudouin et al., 2013). The resolution was 512 x 512 pixel and images were
306 acquired in 8-bit or 16-bit. Fluorescence of mGFP and mCherry was acquired in line
307 sequential mode. For mCherry we used the helium-neon laser (561 nm), detection range: 600-
308 660 nm, for mGFP we used the argon laser (488 nm), detection range: 500-560 nm. Cells
309 were imaged in 8-well ibidi chambers (ibidi GmbH, Planegg/Martinsried, Germany). We
310 applied one-, two- or three-fold more effector NK cells compared to target cells (E:T = 1, E:T
311 = 2 or E:T = 3, respectively), hence about 6×10^4 to 1.8×10^5 NK cells per well. One field of
312 view in confocal microscopy contained about 2 to 6 transfected cells. All cells expressing
313 both reporters were analyzed. The time-resolution was about 2 to 4 minutes depending on the
314 number of imaged fields and microscopy settings. Equal target cell preparation, equal NK cell
315 preparation (cell number counting, transfection) and parallel measurement of different wells
316 of an 8-well chamber allowed comparison of different conditions in one experiment.

317

318

319 **5.4. Image analysis**

320 Images were analyzed using ImageJ (Schneider et al., 2012). To quantify the nuclear
321 redistribution of fluorescence intensity over time in single cells, the nuclear intensity was
322 measured. For this, images of each channel were background subtracted. In most cases, two
323 reporters were measured within one cell: to analyze them, one channel was assigned green,
324 the other red, both were transformed into RGB, and they were then superimposed. The mean
325 intensity within the nucleus was quantified by choosing a representative region within the
326 nucleus at each time point until cell rounding due to cell death was observed. We chose to
327 normalize the nuclear intensity to the cytosolic intensity at each time point for soluble-
328 cytosolic reporters to calculate the percentage of reporter cleavage.

329

330

331 **5.5. Statistics**

332 Data were visualized and analyzed using OriginLab software. Data groups were considered
333 significantly different as indicated in the text, but considered not significantly different when

334 P values were greater than 0.05. Boxplots additionally show raw data points. Box and lines
335 indicate median, 25% quartile and 75% quartile. To plot the mean kinetics of reporter
336 cleavage of single cell data, we set the time point that directly preceded cell death to time = 0
337 and calculated the mean and standard deviation of single cell responses. The time values can
338 therefore have a negative sign on the plots.

339

340

341 **Acknowledgements:** We kindly thank the DKFZ for providing the Gateway cDNA sequence
342 of human serpin B9/PI-9. This work was supported by the Initiative and Networking Fund of
343 the Helmholtz Association within the Helmholtz Alliance on Systems Biology/ SBCancer.
344 CW is supported by funding of the Leibniz Association (SAW-2013-IfADo-2) and the
345 Deutsche Forschungsgemeinschaft (DFG, WA-1552/5-1).

346

347 **Conflict of Interest:** The authors declare that they have no conflict of interest.

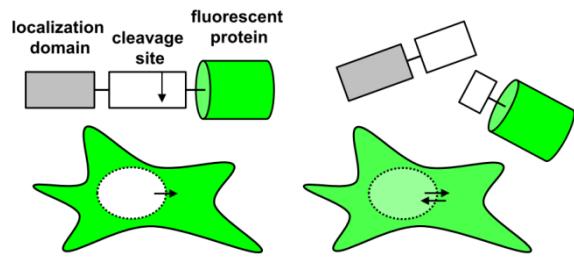
348

349 **Author contributions:** CL designed the study, performed experiments, analyzed the data and
350 wrote the paper. PS performed experiments and analyzed data. MC isolated and purified
351 primary human NK cells. RE, JB and CW supervised the work and helped writing the paper.

352
353
354
355

TABLES AND FIGURES

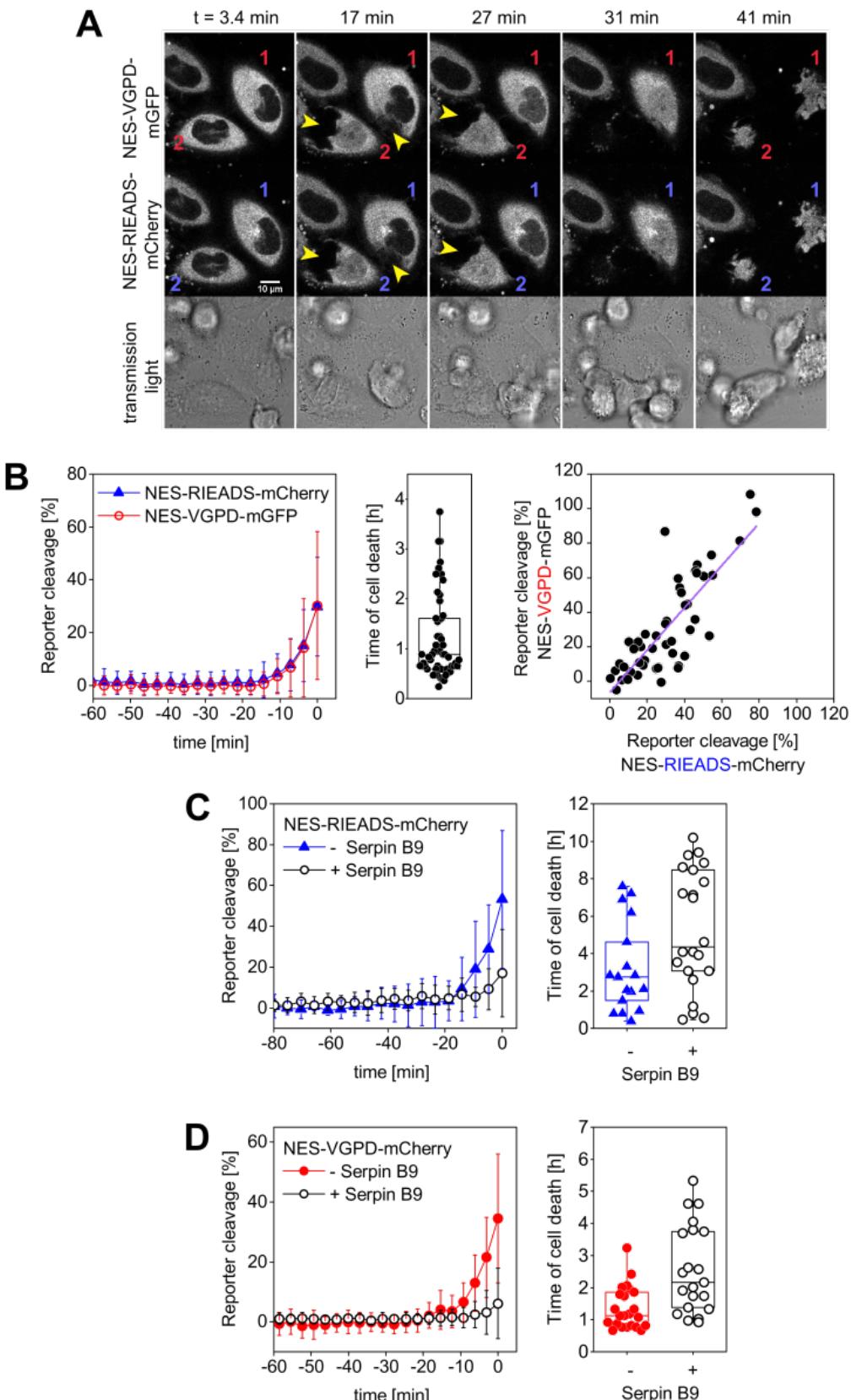
Table 1: Cleavage sites used in this study


Substrate/ cleavage site	Cleaved by protease	Protein containing the cleavage site	References
ELQTD'G	Caspase-8/-10	human BID	(Beaudouin et al., 2013; Li et al., 1998)
RIEAD'S	Granzyme B, Caspase-10	human BID	(Backes et al., 2005; Casciola-Rosen et al., 2007; Fischer et al., 2006; Li et al., 1998, 2014)
DEVD'R	Caspase-3/-7	PARP-1	(Li et al., 2014; McStay et al., 2008)
VGPD'FGR	Granzyme B	DNA-PK	(Backes et al., 2005; Choi and Mitchison, 2013; Li et al., 2014; Packard et al., 2007; Zhu et al., 2016)
RIEPD'S	Granzyme B	mouse BID	(Casciola-Rosen et al., 2007; Mahrus and Craik, 2005)
IGNR'S	Granzyme A		(Mahrus and Craik, 2005)
PTSY'G	Granzyme H		(Mahrus and Craik, 2005)
YRFK'G	Granzyme K		(Guo et al., 2010; Mahrus and Craik, 2005)
KVPL'AA	Granzyme M		(Mahrus et al., 2004; Mahrus and Craik, 2005)
DVAHK'QL	Granzyme A	NDUFS3	(Martinvalet et al., 2008b)

356 **Table 2: DNA sequence encoding protease cleavage sites used for plasmid cloning**

Cleavage site s: sense as: antisense	Oligonucleotide, 5' → 3'
KVPLAA, (s)	CCGGTGGCGGCAAGGTTCCACTGCCGCCGGAGGAGGC
KVPLAA, (as)	GGCCGCCTCCTCCGGCGGCAAGTGGAACCTGCCGCCA
IEPDG, (s)	CCGGTGGCGGCATTGAACCAAGATGGTGGTGGAGGAGGC
IEPDG, (as)	GGCCGCCTCCTCCACCACCATCTGGTTCAATGCCGCCA
IGNRS, (s)	CCGGTGGCGGCATTGGTAACAGATCAGGTGGAGGAGGC
IGNRS, (as)	GGCCGCCTCCTCCACCTGATCTGTTACCAATGCCGCCA
PTSYG, (s)	CCGGTGGCGGCCAACATCATATGGTGGTGGAGGAGGC
PTSYG, (as)	GGCCGCCTCCTCCACCACCATATGATGTTGGGCCGCCA
YRFKG, (s)	CCGGTGGCGGCTATCGCTTCAAGGGTGGTGGAGGAGGC
YRFKG, (as)	GGCCGCCTCCTCCACCACCCCTGAAGCGATAGGCCGCCA
DVAHKQL, (s)	CCGGTGGCGCGATGTTGCCACAAGCAGCTGGAGGAGGC
DVAHKQL, (as)	GGCCGCCTCCTCCAAGCTGCTGTGGCAACATGCCGCCA
VGPDFGRG, (s)	GTACAAGGGCGTAGGTGGCTCCGGTGGCGGAGTGGACCCG ACTTCGGAAGGGCGGAGGAGGC
VGPDFGRG, (as)	GGCCGCCTCCTCCGCCCTTCCGAAGTCGGGTCCCCTCCGC CACCGGAGCCACCTACGCCCTT
RIEADS, (s)	GTACAAGGGCGTAGGTGGCTCCGGTGGCGGAAGAATTGAAG CAGACTCAGGCAGGAGGAGGC
RIEADS, (as)	GGCCGCCTCCTCCGCCCTGAGTCTGCTTCAATTCTCCGCCAC CGGAGCCACCTACGCCCTT

357 **Figure 1**


358

359

360 **Fig. 1:** Schematic representation of a single-fluorescent protein (single FP) reporter and its
361 fluorescence distribution inside the cell when using a nuclear export signal as localization
362 domain. Upon cleavage of the reporter, the fluorescent protein can diffuse passively into the
363 nucleus.

364 **Figure 2**

365

366

367

368

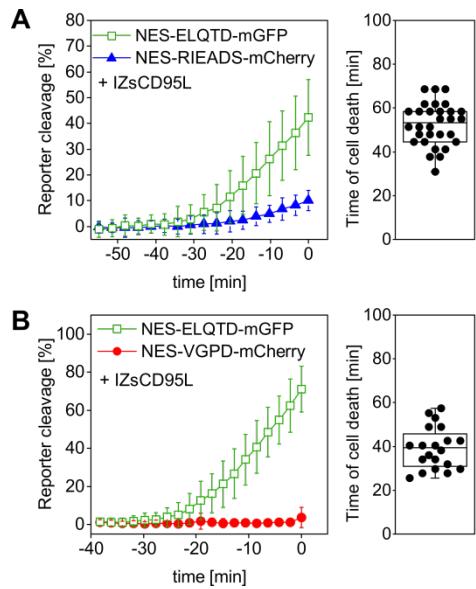

369

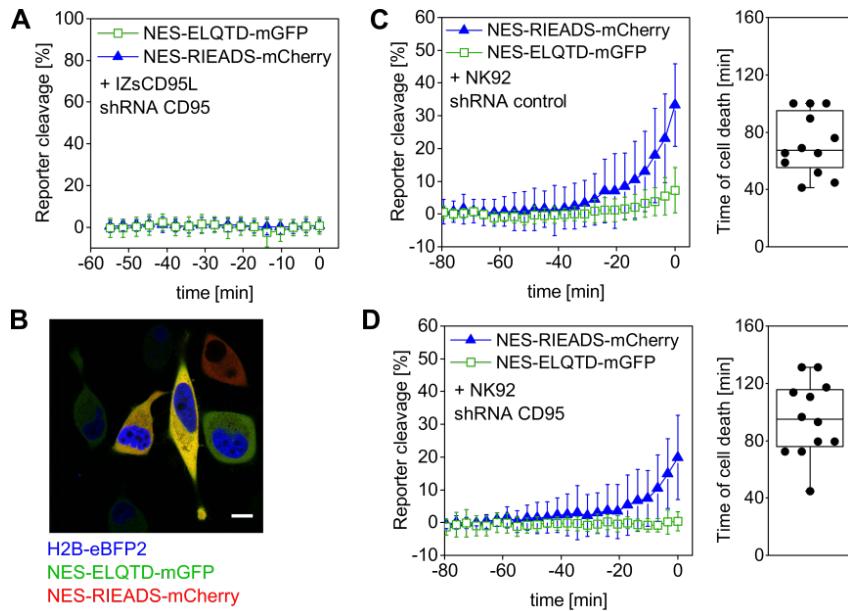
Fig. 2: Measurement of granzyme B activity in target cells using single FP-reporters. (A-B) HeLa cells transfected with CD48, NES-VGPD-mGFP and NES-RIEADS-mCherry were imaged by confocal microscopy upon incubation with 3-fold more NK92-C1 cells than target cells. **(A)** Representative images from confocal microscopy. Two target cells were labelled 1

370 and 2. Their contact with NK cells can be seen on fluorescence images (arrowheads).
371 Appearance of fluorescence signal in the nucleus shows reporter cleavage. **(B)** NES-VGPD-
372 mGFP and NES-RIEADS-mCherry reporter cleavage quantification. The last measurement
373 point preceding cell death was set to time = 0 in order to calculate the mean and standard
374 deviation from 51 single cell measurements as shown. The boxplot shows the time of cell
375 death of each cell. The scatter plot shows the correlation between NES-VGPD-mGFP and
376 NES-RIEADS-mCherry reporter cleavage. Values correspond to the measurement point
377 preceding cell death. Linear fit of data with slope = 1.23 ± 0.12 and Pearson's correlation
378 coefficient = 0.82. **(C-D)** SerpinB9 expression in target cells reduces NES-VGPD-mCherry
379 and NES-RIEADS-mCherry reporter cleavage induced by NK92-C1 cells. **(C)** HeLa(CD48)
380 cells were transfected with NES-RIEADS-mCherry reporter alone or with the NES-RIEADS -
381 mCherry reporter and serpin B9, E:T ratio = 1. Mean and standard deviation of 17 and 22
382 cells, respectively. **(D)** HeLa(CD48) cells were transfected with NES-VGPD-mCherry
383 reporter alone or with the NES-VGPD-mCherry reporter and serpin B9, E:T ratio = 3. Mean
384 and standard deviation of 23 and 22 cells, respectively. For cell death times shown in boxplots
385 C and D, the mean between the control group and the test group (cells transfected with
386 serpinB9) is significantly different at the 0.05 level.

387 **Figure 3**

388

389

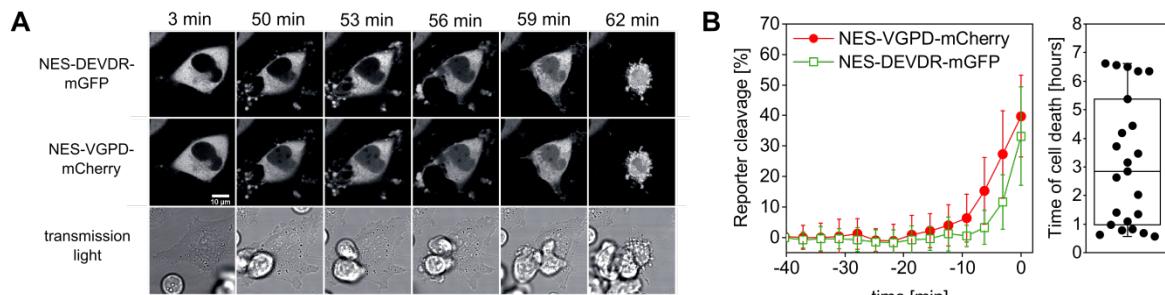

390

391 Fig. 3: Granzyme B activity can be distinguished from caspase-8 activity.

392 HeLa cells overexpressing CD95 were transfected with (A) NES-ELQTD-mGFP (for
393 caspase-8) and NES-RIEADS-mCherry for granzyme B or (B) NES-ELQTD-mGFP for
394 caspase-8 and NES-VGPD-mCherry for granzyme B and imaged by confocal microscopy
395 upon incubation with 1 μ g/ml IZsCD95L.

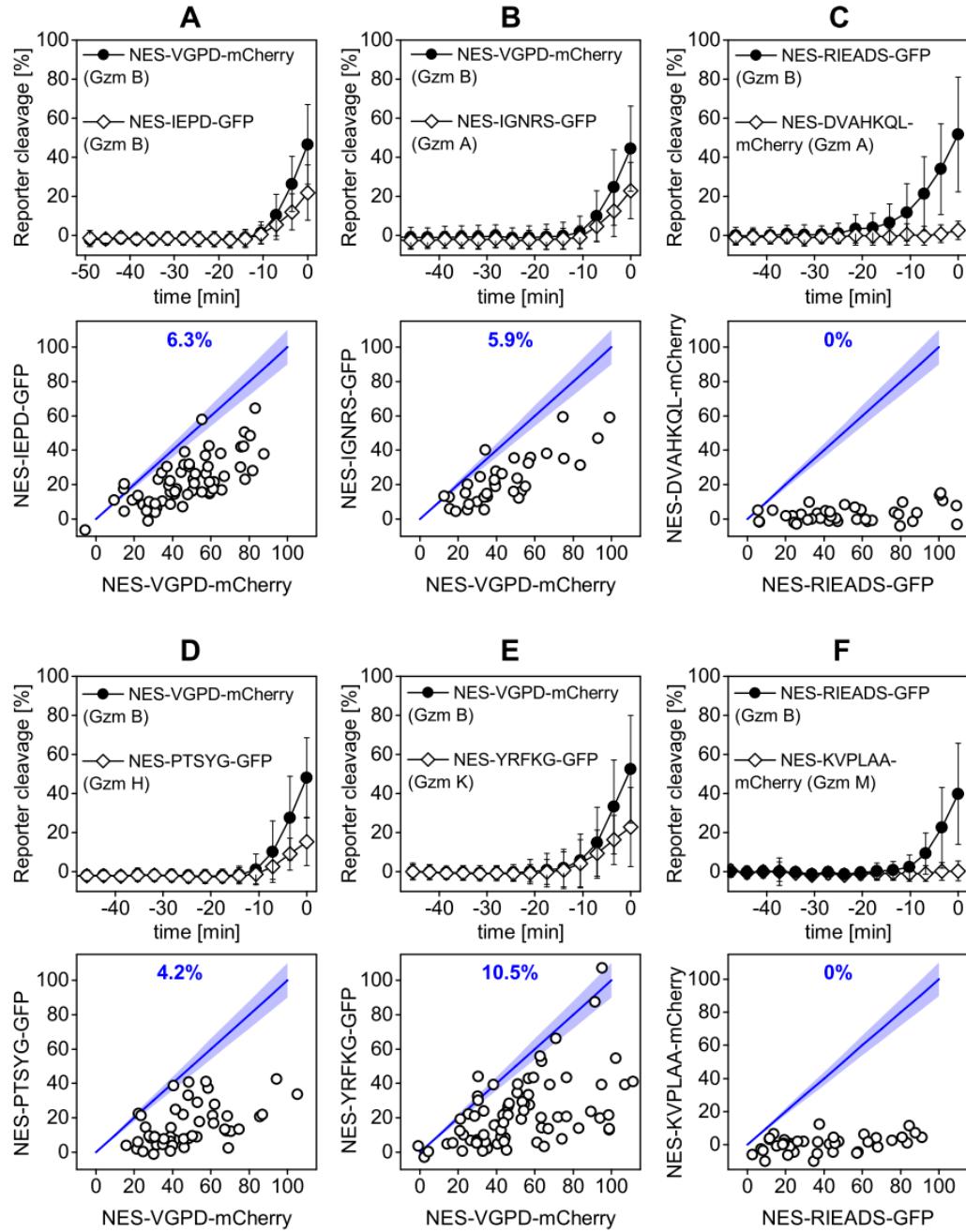
396 **Figure 4**

397



398

Fig. 4 Caspase-8 activity generated by NK92 cells is not induced by granzyme B


399 HeLa(CD48) cells were triple-transfected with NES-ELQTD-mGFP (for caspase-8) and NES-
400 RIEADS-mCherry (for granzyme B) together with a plasmid encoding shRNA against CD95
401 and the fluorescent marker H2B-eBFP2 (A, D) or with a plasmid encoding control shRNA
402 and H2B-eBFP2 (C). (A) Cells expressing H2B-eBFP2 (and shRNA against CD95) and
403 incubated with 1 μ g/ml IZsCD95L neither showed reporter cleavage nor cell death. The plot
404 shows data from 10 analyzed cells with time zero being the end of the microscopy time series.
405 (B) Field of view showing HeLa(CD48) cells imaged by confocal fluorescence microscopy.
406 The image is an overlay of three fluorescence emission channels: The nuclear protein H2B-
407 eBFP2 (blue) was expressed as fluorescent marker from the same plasmid encoding shRNA
408 against CD95. NES-ELQTD-mGFP (green) and NES-RIEADS-mCherry (red) overlay result
409 in yellow color depending on reporter amounts. Scale bar: 10 μ m. (C) Cells expressing
410 control shRNA and co-cultured with NK92-C1 cells (E:T = 1) showed strong NES-RIEADS-
411 mCherry reporter cleavage. The same cells showed on average up to 7% NES-ELQTD-mGFP
412 reporter cleavage. (D) NES-ELQTD-mGFP reporter cleavage was absent in cells expressing
413 shRNA against CD95, while granzyme B activity was clearly present in the same cells as seen
414 from NES-RIEADS-mCherry reporter cleavage.
415

416 **Figure 5**

417
418 **Fig 5: Measurement of granzyme B and caspase-3 activity in single target cells. (A, B)**
419 HeLa cells transfected with CD48, NES-VGPD-mCherry (for granzyme B) and NES-
420 DEVDR-mGFP (for caspase-3) were imaged by confocal microscopy upon incubation with
421 NK92-C1 cells (E:T = 2). (A) Example images of the time series. Note that the fluorescence
422 signal inside the nucleus is visible for NES-VGPD-mCherry at $t = 50$ min and for NES-
423 DEVDR-mGFP at $t = 56$ min. Scale bar: 10 μ m. (B) Quantification of reporter cleavage of 23
424 cells and boxplot showing the time of target cell death. On average, caspase-3 activity appears
425 with a short delay of about 6 min after granzyme B activity.

426 **Figure 6**

427

428

429 **Fig. 6: Cleavage of reporters carrying the VYPD and RIEADS cleavage sites for**
430 **granzyme B is predominant.** Quantification of reporter cleavage upon NK92-C1 co-culture
431 (E:T = 3) in HeLa(CD48) cells (A, B, D, E) or HeLa cells transfected with CD48 (C, F),
432 NES-VYPD-mCherry (A, B, D, E) or NES-RIEADS-GFP (C, F) and a second reporter, which
433 was (A) NES-IEPD-GFP for granzyme B, (B) NES-IGNRS-GFP for granzyme A, (C) NES-
434 DVAHKQL-mCherry for granzyme A, (D) NES-PTSYG-GFP for granzyme H, (E) NES-
435 YRFKG-GFP for granzyme K or (F) NES-KVPLAA-mCherry for granzyme M, with 34 to 82
436 cells per condition. Scatter plots below show reporter cleavage values in single cells at the
437 measurement point before cell death. Percentages (blue) indicate the fraction of single cells
438 showing more or equal ($\pm 10\%$) IEPD-, IGNRS-, DVAHKQL-, PTSYG-, YRFKG- or
439 KVPLAA-reporter cleavage compared to VYPD- and RIEADS-reporter cleavage.

440
441

REFERENCES

442 Andrade, F., Roy, S., Nicholson, D., Thornberry, N., Rosen, A., and Casciola-Rosen, L.
443 (1998). Granzyme B directly and efficiently cleaves several downstream caspases
444 substrates: Implications for CTL-induced apoptosis. *Immunity* 8, 451–460.
445 doi:10.1016/S1074-7613(00)80550-6.

446 Atkinson, E. A., Barry, M., Darmon, A. J., Shostak, I., Turner, P. C., Moyer, R. W., et al.
447 (1998a). Cytotoxic T lymphocyte-assisted suicide: Caspase 3 activation is primarily the
448 result of the direct action of granzyme B. *J. Biol. Chem.* 273, 21261–21266.
449 doi:10.1074/jbc.273.33.21261.

450 Atkinson, E. A., Barry, M., Darmon, A. J., Shostak, I., Turner, P. C., Moyer, R. W., et al.
451 (1998b). Cytotoxic T lymphocyte-assisted suicide: Caspase 3 activation is primarily the
452 result of the direct action of granzyme B. *J. Biol. Chem.* 273, 21261–21266.
453 doi:10.1074/jbc.273.33.21261.

454 Backes, C., Kuentzer, J., Lenhof, H. P., Comtesse, N., and Meese, E. (2005). GraBCas: A
455 bioinformatics tool for score-based prediction of Caspase- and granzyme B-cleavage
456 sites in protein sequences. *Nucleic Acids Res.* 33, 208–213. doi:10.1093/nar/gki433.

457 Barnhart, B. C., Alappat, E. C., and Peter, M. E. (2003). The CD95 Type I/Type II model.
458 *Semin. Immunol.* 15, 185–193. doi:10.1016/S1044-5323(03)00031-9.

459 Barry, M., Heibein, J. A., Pinkoski, M. J., Lee, S. F., Moyer, R. W., Green, D. R., et al.
460 (2000a). Granzyme B short-circuits the need for caspase 8 activity during granule-
461 mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. *Mol. Cell. Biol.* 20,
462 3781–94.

463 Barry, M., Heibein, J. a, Pinkoski, M. J., Lee, S. F., Moyer, R. W., Green, D. R., et al.
464 (2000b). Granzyme B short-circuits the need for caspase 8 activity during granule-
465 mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. *Mol. Cell. Biol.* 20,
466 3781–3794. doi:10.1128/MCB.20.11.3781-3794.2000.

467 Beaudouin, J., Liesche, C., Aschenbrenner, S., Hörner, M., and Eils, R. (2013). Caspase-8
468 cleaves its substrates from the plasma membrane upon CD95-induced apoptosis. *Cell
469 Death Differ.* 20, 1–12. doi:10.1038/cdd.2012.156.

470 Bots, M., and Medema, J. P. (2006). Granzymes at a glance. *J. Cell Sci.* 119, 5011–5014.
471 doi:10.1242/jcs.03239.

472 Bratke, K., Kuepper, M., Bade, B., Virchow, J. C., and Luttmann, W. (2005). Differential
473 expression of human granzymes A, B, and K in natural killer cells and during CD8+ T
474 cell differentiation in peripheral blood. *Eur. J. Immunol.* 35, 2608–2616.
475 doi:10.1002/eji.200526122.

476 Browne, K. A., Blink, E., Sutton, V. R., Froelich, C. J., Jans, D. A., and Trapani, J. A. (1999).
477 Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal
478 disruption, in addition to transmembrane pore formation, is an important function of
479 perforin. *Mol. Cell. Biol.* 19, 8604–15.

480 Casciola-Rosen, L., Garcia-Calvo, M., Bull, H. G., Becker, J. W., Hines, T., Thornberry, N.
481 A., et al. (2007). Mouse and human granzyme B have distinct tetrapeptide specificities
482 and abilities to recruit the bid pathway. *J. Biol. Chem.* 282, 4545–4552.
483 doi:10.1074/jbc.M606564200.

484 Choi, P. J., and Mitchison, T. J. (2013). Imaging burst kinetics and spatial coordination during
485 serial killing by single natural killer cells. *Proc. Natl. Acad. Sci. U. S. A.* 110, 6488–93.
486 doi:10.1073/pnas.1221312110.

487 Ewen, C. L., Kane, K. P., and Bleackley, R. C. (2012). A quarter century of granzymes. *Cell
488 Death Differ.* 19, 28–35. doi:10.1038/cdd.2011.153.

489 Fischer, U., Stroh, C., and Schulze-Osthoff, K. (2006). Unique and overlapping substrate

490 specificities of caspase-8 and caspase-10. *Oncogene* 25, 152–159.
491 doi:10.1038/sj.onc.1209015.

492 Froelich, C. J., Orth, K., Turbov, J., Seth, P., Gottlieb, R., Babior, B., et al. (1996). New
493 paradigm for lymphocyte granule-mediated cytotoxicity: Target cells bind and
494 internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery
495 and subsequent apoptosis. *J. Biol. Chem.* 271, 29073–29079.
496 doi:10.1074/jbc.271.46.29073.

497 Goping, I. S., Barry, M., Liston, P., Sawchuk, T., Constantinescu, G., Michalak, K. M., et al.
498 (2003). Granzyme B-induced apoptosis requires both direct caspase activation and relief
499 of caspase inhibition. *Immunity* 18, 355–365. doi:10.1016/S1074-7613(03)00032-3.

500 Grossman, W. J., Verbsky, J. W., Tollefson, B. L., Kemper, C., Atkinson, J. P., and Ley, T. J.
501 (2004). Differential expression of granzymes A and B in human cytotoxic lymphocyte
502 subsets and T regulatory cells. *Blood* 104, 2840–8. doi:10.1182/blood-2004-03-0859.

503 Guo, Y., Chen, J., Shi, L., and Fan, Z. (2010). Valosin-containing protein cleavage by
504 granzyme K accelerates an endoplasmic reticulum stress leading to caspase-independent
505 cytotoxicity of target tumor cells. *J. Immunol.* 185, 5348–5359.
506 doi:10.4049/jimmunol.0903792.

507 Hoffmann, S. C., Cohnen, A., Ludwig, T., and Watzl, C. (2011). 2B4 engagement mediates
508 rapid LFA-1 and actin-dependent NK cell adhesion to tumor cells as measured by single
509 cell force spectroscopy. *J. Immunol.* 186, 2757–64. doi:10.4049/jimmunol.1002867.

510 Joeckel, L. T., and Bird, P. I. (2014). Are all granzymes cytotoxic in vivo? *Biol. Chem.* 395,
511 181–202. doi:10.1515/hsz-2013-0238.

512 Kaiserman, D., and Bird, P. I. (2010). Control of granzymes by serpins. *Cell Death Differ.* 17,
513 586–595. doi:10.1038/cdd.2009.169.

514 Kanno, A., Yamanaka, Y., Hirano, H., Umezawa, Y., and Ozawa, T. (2007). Cyclic
515 Luciferase for Real-Time Sensing of Caspase-3 Activities in Living Mammals. *Angew. Chemie - Int. Ed.* 46, 7595–7599. doi:10.1002/anie.200700538.

516 Krzewski, K., and Coligan, J. E. (2012). Human NK cell lytic granules and regulation of their
517 exocytosis. *Front. Immunol.* 3, 335. doi:10.3389/fimmu.2012.00335.

518 Law, R. H. P., Lukyanova, N., Voskoboinik, I., Caradoc-Davies, T. T., Baran, K., Dunstone,
519 M. A., et al. (2010). The structural basis for membrane binding and pore formation by
520 lymphocyte perforin. *Nature* 468, 447–51. doi:10.1038/nature09518.

521 Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the
522 mitochondrial damage in the Fas pathway of apoptosis. *Cell* 94, 491–501.
523 doi:10.1016/S0092-8674(00)81590-1.

524 Li, J., Figueira, S. K., Vraza, A. C. A., Binkowski, B. F., Butler, B. L., Tabata, Y., et al.
525 (2014). Real-time detection of CTL function reveals distinct patterns of caspase
526 activation mediated by Fas versus granzyme B. *J. Immunol.* 193, 519–28.
527 doi:10.4049/jimmunol.1301668.

528 Lin, S.-Y., Chen, N.-T., Sun, S.-P., Chang, J. C., Wang, Y.-C., Yang, C.-S., et al. (2010). The
529 Protease-Mediated Nucleus Shuttles of Subnanometer Gold Quantum Dots for Real-
530 Time Monitoring of Apoptotic Cell Death. *J. Am. Chem. Soc.* 132, 8309–8315.
531 doi:10.1021/ja100561k.

532 Lopez, J. A., Jenkins, M. R., Rudd-Schmidt, J. A., Brennan, A. J., Danne, J. C., Mannering, S.
533 I., et al. (2013a). Rapid and unidirectional perforin pore delivery at the cytotoxic immune
534 synapse. *J. Immunol.* 191, 2328–34. doi:10.4049/jimmunol.1301205.

535 Lopez, J. A., Susanto, O., Jenkins, M. R., Lukyanova, N., Sutton, V. R., Law, R. H. P., et al.
536 (2013b). Perforin forms transient pores on the target cell plasma membrane to facilitate
537 rapid access of granzymes during killer cell attack. *Blood* 121, 2659–68.
538 doi:10.1182/blood-2012-07-446146.

539 Mace, E. M., Dongre, P., Hsu, H.-T., Sinha, P., James, A. M., Mann, S. S., et al. (2014). Cell

541 biological steps and checkpoints in accessing NK cell cytotoxicity. *Immunol. Cell Biol.*
542 92, 245–55. doi:10.1038/icb.2013.96.

543 Mahrus, S., and Craik, C. S. (2005). Selective chemical functional probes of granzymes A and
544 B reveal granzyme B is a major effector of natural killer cell-mediated lysis of target
545 cells. *Chem. Biol.* 12, 567–577. doi:10.1016/j.chembiol.2005.03.006.

546 Mahrus, S., Kisiel, W., and Craik, C. S. (2004). Granzyme M is a regulatory protease that
547 inactivates proteinase inhibitor 9, an endogenous inhibitor of granzyme B. *J. Biol. Chem.*
548 279, 54275–54282. doi:10.1074/jbc.M411482200.

549 Martinvalet, D., Dykxhoorn, D. M., Ferrini, R., and Lieberman, J. (2008a). Granzyme A
550 Cleaves a Mitochondrial Complex I Protein to Initiate Caspase-Independent Cell Death.
551 *Cell* 133, 681–692. doi:10.1016/j.cell.2008.03.032.

552 Martinvalet, D., Dykxhoorn, D. M., Ferrini, R., and Lieberman, J. (2008b). Granzyme A
553 cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. *Cell*
554 133, 681–92. doi:10.1016/j.cell.2008.03.032.

555 McStay, G. P., Salvesen, G. S., and Green, D. R. (2008). Overlapping cleavage motif
556 selectivity of caspases: implications for analysis of apoptotic pathways. *Cell Death
557 Differ.* 15, 322–331. doi:10.1038/sj.cdd.4402260.

558 Medema, J. P., Toes, R. E., Scaffidi, C., Zheng, T. S., Flavell, R. A., Mielief, C. J. M., et al.
559 (1997). Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-
560 induced apoptosis. *Eur. J. Immunol.* 27, 3492–3498. doi:10.1002/eji.1830271250.

561 Meiraz, A., Garber, O. G., Harari, S., Hassin, D., and Berke, G. (2009). Switch from perforin-
562 expressing to perforin-deficient CD8+ T cells accounts for two distinct types of effector
563 cytotoxic T lymphocytes in vivo. *Immunology* 128, 69–82. doi:10.1111/j.1365-
564 2567.2009.03072.x.

565 Nakazawa, T., Agematsu, K., and Yabuhara, A. (1997). Later development of Fas ligand-
566 mediated cytotoxicity as compared with granule-mediated cytotoxicity during the
567 maturation of natural killer cells. *Immunology* 92, 180–7.

568 Packard, B. Z., Telford, W. G., Komoriya, A., and Henkart, P. A. (2007). Granzyme B
569 activity in target cells detects attack by cytotoxic lymphocytes. *J. Immunol.* 179, 3812–
570 3820. doi:10.4049/jimmunol.179.6.3812.

571 Peter, M. E., and Krammer, P. H. (2003). The CD95(APO-1/Fas) DISC and beyond. *Cell
572 Death Differ.* 10, 26–35. doi:10.1038/sj.cdd.4401186.

573 Pinkoski, M. J., Waterhouse, N. J., Heibein, J. A., Wolf, B. B., Kuwana, T., Goldstein, J. C.,
574 et al. (2001). Granzyme B-mediated Apoptosis Proceeds Predominantly through a Bcl-2-
575 inhibitable Mitochondrial Pathway. *J. Biol. Chem.* 276, 12060–12067.
576 doi:10.1074/jbc.M009038200.

577 Quan, L. T., Tewari, M., O'Rourke, K., Dixit, V., Snipas, S. J., Poirier, G. G., et al. (1996).
578 Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B. *Proc. Natl.
579 Acad. Sci. U. S. A.* 93, 1972–6.

580 Rehm, M., Parsons, M. J., and Bouchier-Hayes, L. (2015). Measuring caspase activity by
581 Förster resonance energy transfer. *Cold Spring Harb. Protoc.* 2015, pdb.prot082560.
582 doi:10.1101/pdb.prot082560.

583 Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years
584 of image analysis. *Nat. Methods* 9, 671–5.

585 Stennicke, H. R., Jürgensmeier, J. M., Shin, H., Devereaux, Q., Wolf, B. B., Yang, X., et al.
586 (1998). Pro-caspase-3 is a major physiologic target of caspase-8. *J. Biol. Chem.* 273,
587 27084–27090. doi:10.1074/jbc.273.42.27084.

588 Strasser, A., Jost, P. J., and Nagata, S. (2009). The Many Roles of FAS Receptor Signaling in
589 the Immune System. *Immunity* 30, 180–192. doi:10.1016/j.immuni.2009.01.001.

590 Susanto, O., Trapani, J. A., and Brasacchio, D. (2012). Controversies in granzyme biology.
591 *Tissue Antigens* 80, 477–487. doi:10.1111/tan.12014.

592 Sutton, V. R., Davis, J. E., Cancilla, M., Johnstone, R. W., Ruefli, A. A., Sedelies, K., et al.
593 (2000). Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not
594 direct granzyme B-mediated caspase activation. *J. Exp. Med.* 192, 1403–14.
595 Thiery, J., Keefe, D., Saffarian, S., Martinvalet, D., Walch, M., Boucrot, E., et al. (2010).
596 Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for
597 plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis.
598 *Blood* 115, 1582–1593. doi:10.1182/blood-2009-10-246116.
599 Vrazo, A. C., Hontz, A. E., Figueira, S. K., Butler, B. L., Ferrell, J. M., Binkowski, B. F., et
600 al. (2015). Live cell evaluation of granzyme delivery and death receptor signaling in
601 tumor cells targeted by human natural killer cells. *Blood* 126, e1–e10.
602 doi:10.1182/blood-2015-03-632273.
603 Walczak, H., Miller, R. E., Ariail, K., Gliniak, B., Griffith, T. S., Kubin, M., et al. (1999).
604 Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo.
605 *Nat. Med.* 5, 157–163. doi:10.1038/5517.
606 Watzl, C. (2014). How to trigger a killer: Modulation of natural killer cell reactivity on many
607 levels. *Adv. Immunol.* 124, 137–170. doi:10.1016/B978-0-12-800147-9.00005-4.
608 Watzl, C., Urlaub, D., Fasbender, F., and Claus, M. (2014). Natural killer cell regulation -
609 beyond the receptors. *F1000Prime Rep.* 6, 87. doi:10.12703/P6-87.
610 Wowk, M. E., and Trapani, J. A. (2004). Cytotoxic activity of the lymphocyte toxin granzyme
611 B. *Microbes Infect.* 6, 752–758. doi:10.1016/j.micinf.2004.03.008.
612 Yang, X., Stennicke, H. R., Wang, B., Green, D. R., Jänicke, R. U., Srinivasan, A., et al.
613 (1998). Granzyme B mimics apical caspases: Description of a unified pathway for trans-
614 activation of executioner caspase-3 and -7. *J. Biol. Chem.* 273, 34278–34283.
615 doi:10.1074/jbc.273.51.34278.
616 Zhu, Y., Huang, B., Shi, J., Zhu, Y., Huang, B., and Shi, J. (2016). Fas ligand and lytic
617 granule differentially control cytotoxic dynamics of Natural Killer cell against cancer
618 target. *Oncotarget* 5. doi:10.18632/oncotarget.9980.
619