

1 **Strange Stable Replicators Generated From Mumps Virus cDNA Clones**

2 Connor Bamford^{1,4+}, Elizabeth Wignall-Fleming^{1,2+}, Richard Randall², Paul Duprex³ and Bert
3 Rima^{4*}.

4 ¹ Centre for Virus Research, Glasgow, UK; ²; School of Biology, St Andrews University,
5 UK; ³ National Emerging Infectious Disease Laboratory Boston University, USA; ⁴ Centre
6 for Experimental Medicine, Queen's University Belfast, UK.

7 **+ these authors contributed equally to the paper**

8 **Abstract**

9 In reverse genetic experiments we have isolated recombinant mumps viruses (rMuV) based
10 on a recent clinical isolate that carry large numbers of mutations clustered in small parts of
11 their genome and which are not caused by biased hyper-mutation. In two separate
12 experiments we obtained such rMuV: one virus had 19 mutations in the V/P region of the
13 genome; the other, which also contained an extra transcription unit encoding green
14 fluorescent protein (EGFP), had 32 mutations in the N gene. These specific constellations of
15 mutations have not been observed in naturally occurring MuV isolates. The vast majority of
16 the mutations (48/51) are synonymous.

17 On passage in Vero cells and human B-LCL cells, a B lymphocyte-like cell Line, these
18 mutations appear stable as no reversal occurs to the original consensus sequences, though
19 mutations in other genes occur and change in frequency during passage. Defective Interfering
20 RNAs accumulate in passage in Vero cells but not in B-LCL cells. Interestingly, in all
21 passaged samples the level of variation in the EGFP gene is the same as in the viral genes,
22 though it is unlikely that this gene is under any functionality constraint. The stability in
23 repeated high multiplicity passage indicates that the constellation of mutations is placing the

24 virus on a fitness peak from which it cannot escape. What mechanism gave rise to these
25 mutant viruses and their stability remain open questions of interest to a wider field than
26 mumps reverse genetics alone.

27

28

29 Abstract: 239 words:

30 Paper length: 3477 words

31 Keywords: mumps virus; mutation; cluster; next generation sequencing; genetic stability;
32 quantum effects.

33

34 **Introduction**

35 Mumps virus (MuV) is a human pathogenic RNA virus in the genus *Rubulavirus* in
36 the family *Paramyxoviridae* (Rubin, Sauder and Carbone, no date). This family as non-
37 segmented negative stranded RNA viruses shares basic replication strategies with the other
38 viruses in the order *Mononegavirales*. MuV has a genome of 15,384 nucleotides (nt) in
39 length, which contains 7 transcription units from the 3' end of the negative stranded genome
40 to the 5' end respectively. These encode respectively the nucleocapsid protein (N); the innate
41 immune modulatory protein V, the matrix protein (M), the fusion protein (F), a small
42 hydrophobic protein (SH), a haemagglutinin-neuraminidase protein (HN) and the large
43 protein (L) which carries the RNA-dependent RNA polymerase activity (RdRp). The major
44 co-factor for the RdRp required during transcription is the phosphoprotein (P) which is
45 generated by co-transcriptional editing during the copying of the V gene to generate P protein
46 by the insertion of 2 (or 5) non-templated G residues into the nascent transcript. A so-called I
47 protein is also generated by insertion of 1 or 4 G residues. V and I are non-structural proteins.
48 In the *Rubulavirus* genus there is no overlapping open reading frame (ORF) for the C protein
49 in the gene encoding the V and P proteins and unedited mRNAs transcribed from the MuV
50 genome encode the V protein and not the P protein as is the case in many of the other
51 *Paramyxoviridae* (Rubin, Sauder and Carbone, 2013). No overlapping ORFs have been
52 identified in the N gene of MuV.

53 Reverse genetics of MuV and other members of the order *Mononegavirales* from
54 plasmids that encode the entire genome of the virus has been described for over two decades
55 now (Clarke *et al.*, 2000) and this system has been used to elucidate aspects of mumps virus
56 pathogenesis and virulence (Rubin, Pletnikov and Carbone, 1998; Clarke *et al.*, 2000; Lemon
57 *et al.*, 2007; Sauder *et al.*, 2011; Xu *et al.*, 2012). In this, it is no different from other viruses
58 in the order *Mononegavirales*. Recently, we established a 'rescue' system based on the

59 sequence of MuV in clinical tissue material so that we could study the properties and
60 behaviour of viruses that had not been passaged in cultured cells and thereby potentially
61 exposed to selective pressures exerted by the host cell *in vitro*. Viruses were rescued on Vero
62 cells (MuV^{G09}) from the clinical material and proved to be genotype G virus, similar to other
63 viruses isolated in the US during outbreaks (Xu *et al.*, 2011). Details of the virus and its
64 rescue and use in the study of mumps pathogenesis will be described elsewhere.

65 MuV is stable in the field and replacement rates have been estimated to be
66 approximately 3×10^{-4} per annum (Pomeroy, Bjørnstad and Holmes, 2008). No laboratory
67 estimate for mutation rates has been reported. Here, we report that we obtained a number of
68 rescued viruses that carried clusters of mutations in the N and V/P genes, which involved
69 stable synonymous nucleotide changes that have not been observed in natural isolates in any
70 of the genotypes of MuV hitherto described.

71

72 **Results**

73 **Generation of recombinant MuV with clusters of mutations**

74 Our attempts to obtain rMuV virus failed in all cases to give us a virus with the same
75 sequence to that in the plasmid after aspirating the material of a primary syncytium in a single
76 well and passaging this 4 times on Vero cells at low MOI. The reverse genetics system used
77 ‘helper’ expression plasmids representing the authentic N, P and L genes of MuV^{G09} and a
78 plasmid containing the consensus sequence of MuV^{G09} in order to prevent the occurrence of
79 potential recombination events between the helper plasmid and the full length genome
80 plasmid. Out of the 5 plaque picks that were made in the primary rescue wells transfected
81 with a plasmid representing the full length genome of MuV^{G09} none were identical to the
82 input cDNA clone sequence and a combined total of 18 mutations were observed; one virus
83 rMuV^{G09}PP1 (abbreviated as PP1) had 11 mutations in the V/P gene (**Table 1**) between
84 nucleotides 2551 and 2867 spacing mutations on the average 32 nt from each other. This area
85 encodes the C terminal end of the V protein and part of the more conserved C-terminal
86 domain of the P protein in MuV. Nine mutations were synonymous and two of the PP1
87 mutations led to amino acid changes at position 192 (P>L) and 212 (Q>P) in the P protein.
88 Both mutations were synonymous in the overlapping V protein reading frame.

89 Rescue was also attempted from a plasmid into which the EGFP gene had been
90 inserted between the V/P and M genes of mumps virus MuV^{G09}. Similarly, out of the 7
91 plaque picked viruses none had a nucleotide sequence identical to the original plasmid. Six
92 out of the 7 viruses carried *in toto* 9 mutations (8 non-synonymous replacements and one
93 insertion in the poly-adenylation signal in the F gene). One plaque picked virus
94 rMuV^{G09}EGFP(3)PP2 virus (abbreviated here as PP2) had 32 mutations in two clusters in the
95 N gene (**Table 2**). One cluster contained 13 mutations between nt 607 and 860 distancing

96 mutations by on average 21 nucleotides. This area encodes a relatively conserved part of the
97 N protein of MuV. The second cluster contained 19 mutations between nucleotides 1225 and
98 1558 with an average spacing of 18 nucleotides. This encodes part of the relatively variable C
99 terminal tail of the N protein of MuV. In PP2 almost all the mutations (31/32) were
100 synonymous with the exception of a single V>A mutation at position 460 of the N protein.
101 None of the mutations observed in PP1 and PP2 were observable as minor peaks in
102 sequencing chromatograms of the sequencing reactions carried out on the clinical material.
103 The constellations of synonymous mutations observed in these viruses in the N and V/P
104 genes were also not present as linked variations in sequence of the many mumps virus
105 genotypes in the databanks. No clusters of mutations were observed in the other genes of
106 MuV by Sanger sequencing of the primary isolates.

107 The original mutations first determined by Sanger sequencing in the V/P gene of PP1
108 and the N gene of PP21 were confirmed in Next Generation Sequencing (NGS) studies
109 described below, with the exception of a deletion mutation in the L gene in the recombinant
110 PP1 virus. In PP1, Sanger sequencing of the original plaque picked virus identified one extra
111 deletion mutation in the L gene (15127-138), which would have led to a premature
112 termination of the L protein. In NGS, the non-deleted sequence appeared to be present as a
113 minor species (<5%). This appears to be caused by the accumulation of Defective Interfering
114 (DI) particles which masked the standard virus sequence in Sanger sequencing. The absence
115 of a type I interferon response in African Green Monkey kidney Vero cells allows the
116 accumulation of defective interfering (DI) particles in MuV passages (Young *et al.*, 2009)
117 which give rise to highly fluctuating titres in the passages, which were indeed observed
118 (**Table S1**). In contrast, viruses populations passaged on B-LCL cells did not show their
119 presence, as the extraordinary high coverage at the 3' end of the antigenomic sequence
120 (which represents the L gene and the region covered by DI particles) present in Vero cell

121 passaged virus is absent in virus passaged on B-LCL cells (**Figure 1**). The accumulation of
122 DI particles is also indicated by the substantial number of variant readings observed at the
123 3'end of the antigenome in virus populations passaged on Vero cells (see **Tables S2, S3**) and
124 furthermore by the observation that in plaque assays the lowest dilution with the highest
125 number of pfu did not show any plaques (**Table S1**) as at high concentrations DI particles
126 prevent plaque formation.

127 Both PP1 and PP2 grew well and generated the same type of cytopathic effect in Vero
128 cells (formation of syncytia) as the wild type MuV^{G09} non-recombinant progenitor virus
129 isolated from the clinical material on Vero cells. In the case of PP2 these syncytia showed
130 green fluorescence (**Fig 2**). The cytopathic effects of PP2 and MuV^{G09} on B-LCL cells were
131 the same and green fluorescence was observable in the clumps of the PP2 infected B-LCL
132 cells floating in the medium.

133 Assessment of the stability of the mutation in the clusters by NGS

134 Six additional passages of both viruses were carried at a high multiplicity of infection
135 to provide maximum opportunity for the fixation of mutant genomes. PP1 was passaged on
136 Vero cells and PP2 on B-LCL cells. As a control we also passaged the non-recombinant
137 MuV^{G09} virus on Vero and B-LCL cells under the same conditions as PP1 and PP2. We chose
138 these two cell substrates because of their different biological properties. Vero cells are
139 adherent and give rise to syncytia. Vero cell passages of MuV were carried out at high MOI
140 by infection of fresh Vero cell monolayers with supernatant virus from the previous passage.
141 In the B-LCL cells, which are an IFN competent human B lymphocyte cell line that grow in
142 suspension and leads to large cell clumps, we choose to allow maximum chances for the
143 accumulation of mutations by carrying out the passages in such way that each passage
144 represents an addition of fresh uninfected cells to the culture medium in which the cell

145 clumps are dispersed by gentle shaking. The supernatant virus of each passage in B-LCL
146 cells was titrated on Vero cells (**Table S1**).

147 The supernatant viruses from the Vero and B-LCL cell passages were pelleted by
148 ultracentrifugation through a 25% (w/v) sucrose cushion and analysed by NGS on an
149 Illumina platform with labelled primers so that the polarity of each read (positive or negative
150 strand) could be determined.

151 **Table 1** demonstrates that the constellation of the 11 mutations in the V/P gene of
152 PP1 was maintained and stable over the 6 passages. The stability of PP1 in the passage series
153 was not significantly different to that of the non-recombinant MuV^{G09} virus also passaged 6
154 times in parallel experiments on Vero cells. Similarly the 32 mutations in PP2 (**Table 2**) were
155 also stable on passage in B-LCL cells and as stable as the wild type nucleotides at these
156 positions in parallel passages of the MuV^{G09} virus. The frequencies with which the alternative
157 readings occur in each cluster were in the order of 0.001 or 0.1% This in our experience is the
158 normal frequency of alternative reads (0.04 to 0.10%) in NGS sequencing projects which
159 may be generated during the amplifications involved in the library preparation and the
160 sequence reading process itself. No significant predilection for changes that would restore the
161 wild type MuV^{G09} nucleotide at any given position in the cluster of mutations was observed.
162 The two other possible nucleotides at the mutated position were observed approximately
163 twice as frequent (1.7-2.3) as those that would restore the original MuV^{G09} nucleotide at that
164 position. This is what would be expected if the direction of variation was random rather than
165 directed.

166 Evolution of cluster-independent mutations during passage of rMuV

167 In order to ascertain that the passaging conditions did not impose some unexpected
168 artefactual sequence stability we assessed whether mutations occurred during the passage

169 series outside the clusters present in PP1 and PP2. Many specific mutations accumulated to
170 high frequencies during the six passages outside the clusters of originally mutated residues in
171 PP1 and PP2. This indicates that though the virus could mutate in response to the changed
172 cellular environment, the original sets of mutations were stably maintained. Examples of
173 changes are given in **Table 3**. The more comprehensive representation of all the changes
174 observed at a frequency of >1% in the deep sequencing reads are compiled and shown in
175 **Table S2** and **S3** for PP1 and MuVG09 respectively.

176 Interestingly the NGS revealed that a number of mutations were present at a low
177 frequency (~3.9%) in the fusion related external domain (FRED) of the F protein in both
178 passage 1 and passage 6 of PP1 and of MuV^{G09}. These were already present in passage 1,
179 which represents the 5th passage in Vero cells after the original rescue and they were
180 maintained at low frequency during the series. They affect the FRED domain by introduction
181 of a number of charged residues that may well impact its functionality (**Table 4**). A similar
182 observation was made in the NGS of the passages series of MuV^{G09} and thus this
183 phenomenon is not specific to PP1 (data not shown).

184 In PP2 passage on B-LCL cells two variants seem to predominate with either a
185 mutation at position 238 in the HN protein G > S or one at position 239 L > R. These are
186 almost never present in the same RNA molecule and only a small number of original non-
187 mutated wild type reads remain. The significance of the two mutations observed in the HN
188 gene of PP2 during the passage series in B-LCL cells cannot easily be assessed because this
189 is an unknown region of significance?

190 Noticeable is also that in PP2 between positions 2227 and 2260 in the sixth passage
191 about 6 % of the reads showed a linked set of U to C mutations (**Table 3**) consistent with an
192 interpretation that a number of biased hyper-mutated RNA molecules are carried along in

193 passaged virus. One further interesting observation from these data is that unrelated to the
194 passage series it is clear that PP1 but also other MuV viruses frequently insert extra
195 nucleotides in the genomic sequences (**Table S4**). The significance of this is unclear. Similar
196 observations have been made for other paramyxoviruses (our unpublished observations) such
197 HPIV3, PIV5, hPIV2 and measles virus. In PP1 passaged on Vero cells these occur most
198 frequently in the positions from about nt 12000 to the end of the (anti)genome representing
199 most probable DI RNAs as they would likely affect the functionality of the L protein. These
200 insertions occur primarily in two sets. The first is in the polyA sites. However the fact that the
201 reads extend into the next gene indicates that these probably originate from read-through
202 transcripts with extra As inserted. The G residue embedded in the homopolymeric stretch of
203 A residues of the poly-adenylation signal (n.b. all expressed as + sequence) also is often
204 observed to mutated to a G in these situations and these are also seen in the case of other
205 virus in NGS studies. Both these types of changes may occur because during the generation
206 of read-through transcripts the RdRp reads the stuttering signals normally associated with the
207 generation of polyA tails of the mRNA. The second set of insertions at homopolymeric
208 stretches in the area of the genome that is contained in DI RNA and in this case insertions of
209 A, U and C nucleotides occur. The use of stuttering signals in the generation of Ebolavirus
210 glycoprotein mutants during passage and reverse genetics has been well documented (Tsuda
211 *et al.*, 2015). In the case described here however, the effect seems to be most frequently
212 associated with read-through mRNA, the function of which remains unclear or potentially
213 occurs in DI particles where function is no longer of importance.

214

215 The EGFP gene does not vary to a greater extent than the virus genes.

216 *A priori* the expectation was that the EFP gene in PP2 is not under selective constraint
217 and that henceforth the ORF would have accumulated more mutations than the true virus

218 genes. This appeared not to be the case when the number of variant readings at all positions
219 in the ORFs encoding virus genes and that of EGFP were compared. The overall frequency of
220 variant nucleotides at 0.20% was no greater in the EGFP ORF than in the other viral genes
221 that presumably were under selective constraint (**Table S5**). This is an unexpected result but
222 has been replicated in other paramyxoviruses with other fluorescent reporter proteins (our
223 unpublished observations).

224

225 **Discussion**

226 How and when during the rescue of PP1 and PP2 viruses the clusters of synonymous
227 mutations arose is unclear. These replicating MuV were isolated as plaques in the wells in
228 which the rescue experiment was performed. This is feasible because the rescue efficiency is
229 relatively low and most wells in a six well plate do not contain more than one syncytium at 5-
230 7 days post transfection. We have demonstrated here that once these clusters of mutations
231 were generated the resulting replicator was stable. In the deep sequencing of viruses passaged
232 6 times at high multiplicity to allow for the maximum chance of the fixation of mutations no
233 selection pressure to reversion was to the original nucleotide in the “wild type” sequence was
234 observable. The direction of mutations appeared random and the variant readings were
235 observed at such low frequencies as to probably be errors derived from the deep sequencing
236 process rather than representing true variants in the virus population. It is also clear that the
237 stability of the PP1 and PP2 replicating viruses did not reflect an inability of the viruses to fix
238 mutations during these passage series as variations did occur during the passages in other
239 genes and nucleotide positions in both the PP1 and PP2 viruses as well as in the parent virus
240 upon passage. These were often found at very high frequencies (3-45%) even though many
241 were non-synonymous. The stability of the clustered mutations thus indicates that they
242 contribute to a stable and fit genotype that does not readily reverts back to the wild type
243 constellations. Potential compensatory mutations in the V/P gene of PP1 and the N gene of
244 PP2 were not observed as consistent features of the variations observed in NGS.

245 The stability of these mutant constellations is remarkable. As they consist primarily of
246 synonymous mutations, it would be difficult to see a constraint at the protein coding level that
247 would affect their reversion frequency. Non-synonymous mutations would probably be
248 counter selected. The maintenance of the constellation in repeat passaging may point to a
249 higher order RNA structural constraint but these would be predicted to be operative only at

250 the mRNA level as the RNA in the + and – strand RNPs appears devoid of secondary
251 structure in the paramyxoviruses (ref). Computational structure prediction of the mRNA did
252 also not demonstrate a clear association with the generation of the clusters of mutations or in
253 their maintenance (data not shown). The position of the mutant constellation is interesting.
254 They are located at the 3' end of the genome. This areas has been shown to be preferentially
255 sensitive to biased hyper-mutation in measles virus (Otani *et al.*, 2014). Biased hyper-
256 mutation is also prevalent in these MuV samples in the N gene and the start of the V/P gene.
257 The limited size of the constellations does also not affect the overall codon usage in these
258 replicating MuV, which is known to be a specific feature of each paramyxovirus (Sciences
259 and Ireland, no date) and the lack of synonymous mutations during viral evolution in the
260 paramyxoviruses is observed but not explained.

261 How these mutant constellations were generated in the first place is an open question.
262 The phenomenon described here may be specific for MuV. In our experience with rescue of
263 other paramyxo- and pneumoviruses such as measles, canine distemper and rinderpest viruses
264 - as well as respiratory syncytial virus (Gassen *et al.*, 2000; Moeller *et al.*, 2001; Brown *et al.*,
265 2005; Lemon *et al.*, 2015) - we have not encountered this phenomenon apart from occasional
266 clusters of mutation that were generated by biased hypermutation involving primarily U to C
267 and at a lesser frequency A to G changes. The clusters of mutations in the PP1 and PP2
268 viruses do not show this bias. The value for κ i.e. the ratio of transitions over transversions in
269 all clusters summed together was 4.9 (bias towards transitions) which is similar to that found
270 in between genotype comparisons for MuV. It is not due to the presence of the extra EGFP
271 gene as it occurred both in PP1 and PP2.

272 It seems unlikely that the limited number of replications required to generate a
273 syncytium during the primary isolation of these viruses would allow sequential selection of
274 the large number of mutations that would provide this stable constellation. Furthermore, the

275 observation that these mutations are clustered indicates a different mechanism for their
276 generation. We suggest that the most likely process that generated the clusters is the
277 transcription of the DNA plasmid by T7 RNA polymerase followed by removal of unfit
278 viruses by selection against viruses with lethal mutations in the N and V/P ORFs. Why the
279 mutations occur in clusters remain an open question. One possible explanation for the
280 occurrence of the clusters of mutation may be that quantum biological effects led to
281 entanglement of the protons in what is essentially a proton code in the plasmid DNA formed
282 by the patterns of two (A-U) or three (G-C) hydrogen bonds read by the T7 RNA polymerase.
283 Entanglement has been invoked in a number of studies dealing with mutations in biological
284 systems (Pusuluk and Deliduman, 2010)(Al-khalili, 2013) as wells as in catalysis of ATP
285 independent cleavage of DNA by restriction endonucleases (Kurian, Dunston and Lindesay,
286 2014). On the basis of modelling studies Rieper et al. (Rieper, Anders and Vedral, 2010)
287 suggested that nucleotides in DNA might be read in the context of their neighbouring
288 nucleotides, which may explain constraints on synonymous mutation in RNA viruses (Rima,
289 2015). However, whilst quantum biological effects merit more attention in virology, their
290 experimental verification remains a challenge (Al-khalili, 2013).

291 Author statements

292 The study was funded by Queen's University Belfast and St Andrews University. The authors
293 declare no conflicts of interest. Ethical requirements have been fulfilled as no animal or
294 human subjects were used.

295 **Materials and Methods**

296 Viruses and Cells:

297 Clinical material was obtained from Dr Paul Rota (CDC Atlanta) as a buccal swab from a
298 patient during the 2009/10 US outbreak of mumps in New York caused by a genotype G5
299 virus (Xu *et al.*, 2011). We isolated the virus on Vero cells, passaged four times in Vero cells
300 and named it here abbreviated to MuV^{G09}. The complete consensus sequences of the viral
301 RNA in the tissue sample and the isolated viruses were determined by classical Sanger
302 sequencing of overlapping RT-PCR amplicons (sequences of primers available on request)
303 and found to be identical.

304 Vero cells were used for isolation, rescue and routine passage of the viruses as well as
305 titration of plaque forming units (pfu). B-LCL cells were obtained from Erasmus University
306 Medical Centre, Rotterdam

307 Generation of recombinant viruses

308 Plasmids that expressed the N, V/P and L proteins with the authentic sequence of the MuV^{G09}
309 virus were generated to act as helper plasmids in the rescue experiments. Plasmids were also
310 generated that represented the full length consensus sequence of the viral RNA which was
311 identical to that of the isolated virus MuV^{G09} as well as one in which the enhanced green
312 fluorescent protein gene (EGFP) was inserted as an additional transcription unit between the
313 V/P gene and the M gene of MuV. These sequences were placed between a T7 promotor and
314 hepatitis delta ribozyme. After infection of Vero cells with Fowl Pox-expressing T7, the cell
315 monolayer was transfected with the helper and full lengths cDNA plasmids and the
316 appearance of syncytia was monitored over 1 week. Usually never more than one syncytium

317 was observed per well. These were aspirated and propagated further on Vero cells for 4 low
318 MOI passages.

319

320 Next generation Sequencing (NGS)

321 The RNA was extracted from infected cells and subjected to total RNA with ribosomal and
322 mitochondrial RNA reduction library preparation as per manufacturer's instructions
323 (Illumina). The samples were sequenced using the Hi-seq illuminated platform. The
324 sequencing data was subjected to directional analysis which separates the reads based on
325 directionality allowing the isolation of the viral genome (negative sense) and viral mRNA
326 reads (positive sense). The isolated viral genome reads were then aligned to the MuV
327 reference sequence using BWA alignment software. An in-house script was then used to
328 enumerate the SNPs at each nucleotide of the reference sequence.

329

330 Figure 1 legend: **Coverage of reads and preponderance of Defective Interfering RNAs in**
331 **passages of viruses on Vero and B-LCL cells**

332 Diagrams that show the total numbers of reads obtained in NGS for each nucleotide over the
333 entire mumps genome of 15372 nucleotides displayed by the Tablet programme (Milne *et al.*,
334 2013). In Fig 1A the scale is 1-3000 in Fig 1B it is 1-1,500,000 indicating the extraordinary
335 accumulation of reads associated with the appearance of DI particles.

336 Figure 2 legend: **Rescue of the viruses as replicators; cpe and fluorescent plaques.**

337 Figure 2A: Generation of rMuV^{G09} by reverse genetics.

338 Panel 1 shows the presence of primary foci of rescue at 5 days post transfection; panel 2
339 shows primary syncytia which were plaque picked and subsequently Vero cells were
340 infected with the aspirated virus stocks. CPE was detected 1-2 dpi. Panel 3 shows plaque
341 picked rMuV^{G09} grown for 4 low MOI passages on Vero cells. All show characteristic
342 syncytium-formation.

343 Figure 2 B: Generation of rMuV^{G09} expressing EGFP - rMuV^{G09}EGFP(3) - by reverse
344 genetics.

345 Panel 1 shows the presence of primary foci of rescue at 5 days post transfection in both phase
346 contrast and UV microscopy; panel 2 shows primary syncytia which were plaque picked and
347 subsequently Vero cells were infected with the aspirated virus stocks. EGFP expression was
348 evident 1 dpi and cpe was detected 1-2 dpi. Panel 3 shows plaque picked rMuV^{G09}EGFP(3)
349 grown for 4 low MOI passages on Vero cells Passaged virus images show characteristic
350 syncytium-formation.

351

352

353 **Table 1: Stability of the unique mutations in MuV-PP1 after 6 passages on Vero cells**

Position nr in the genome	Change from G09 to PP1	Effect in PP1	Reads in PP1 passage 6	Variant reads	Reads in MuV ^{G09} passage 6	Variant reads
2551	C=U	P192P=L; V191P=P syn	276 U	none	1606 C	1 A
2611	A=C	P212Q=P V211P=P syn	207 C	1 A ; 2 U	1171 A	1 A; 1 C
2654	A=G	P226R=R syn	206 G	3 A	986 A	none
2763	C=U	P263L=L syn	222 U	none	1544 C	1 U
2768	U=A	P264A=A syn	232 A	none	1312 U	3 C; 1 G
2780	A=G	P268G=G syn	206 G	none	1417 A	none
2789	G=A	P271A=A syn	265 A	1 G	1635 G	1 U
2810	G=U	P278P=P syn	261 U	none	2149 G	2 U
2816	C=U	P280N=N syn	266 U	1 A; 2 G	1645 C	2 A
2864	U=C	P296H=H syn	280 C	none	1714 U	none
2867	A=G	P297V=V syn	294 G	none	1609 A	none
Total			2715	10	16788	frequency 0.8×10^{-3}

354 Syn= synonymous; in bold variants that would restore the original nucleotide in MuV^{G09}

355

356 **Table 2 : Stability of the unique mutations in PP2 after 6 passages on B-LCL cells**

Position nr in the genome	Change from G09 to PP2	antigenome reads in passage 6	Variant reads	genome reads in passage 6	Variant reads
607	G > A syn	846 A	1 C	850 A	2 C
622	A > G syn	1031 G	none	1001 G	none
628	A > G syn	1067 G	4 U	1059 G	none
679	C > A syn	680 A	none	1506 A	1 G; 1 U; 1 C
697	U > G syn	692 G	none	2502 G	3 U
736	G > U syn	887 U	5 C; 2 G	2733 U	6 A; 1 C; 7 G
760	G > U syn	1093 U	4 C; 3 G	1594 U	1 G
784	A > G syn	975 G	3 A	1348 G	6 U; 2 A
841	U > C syn	1338 C	2 U; 2 A; 2 G	659 C	2 A
844	U > C syn	1400 C	3 A; 3 U	650 C	2 A; 1 G
850	U > C syn	1447 C	1 U; 1 G	632 C	1 G; 1 U
859	A > G syn	1444 G	2 U	523 G	none
860	C > U syn	1434 U	3 C; 3 G	489 U	none
Total frequency	cluster 1	14334	43	15546	37 1.04 x 10 ⁻³
1225	C > U syn	1325 U	2 C	620 U	1 C; 1 G
1240	G > A syn	1461 A	6 C; 1 U	514 A	1 C
1312	A > G syn	2819 G	2 U; 1 A	369 G	2 U
1327	C > U syn	2613 U	6 C; 2 G; 1 A	339 U	1 C
1330	U > C syn	2645 C	10 A; 8 U; 1 G	343 C	1 U
1354	A > G syn	2759 G	12 A; 2 C; 4 U	488 G	none
1366	G > A syn	2811 A	5 G; 2 C; 1 U	764 A	3 G; 1 U
1369	A > G syn	2836 G	9 U; 3 A; 2 C	784 G	1 C; 1 U
1384	G > C syn	2596 C	6 A; 3 U	1195 C	3 A; 1 U
1387	G > A syn	2610 A	8 C; 2 U; 1 G	1322 A	1 U1]
1390	C > U syn	2584 U	4 A; 2 G	1429 U	3 A; 3 G
1413	G > A syn	3626 A	3 C; 2 U; 1 G	1612 A	3 U; 1 C
1438	G > A syn	3749 A	6 C; 5 G; 3 U	1553 A	8 C; 3 U; 1 G
1451	U > C syn	3508 C	5 A; 3 U; 2 G	1510 C	3 A; 1 U
1468	C > U syn	4457 U	5 C; 3 G; 2 A	982 U	4 C; 2 G; 1 A
1471	U > C syn	4496 C	3 A; 2 U	1167 C	2A; 1 U
1489	U > C syn	4259 C	7 U; 5 A	1352 C	2 U
1524	U > C N460V=A	4359 C	5 A; 3 U	1265 C	4 A; 1 G; 1 U
1558	G > A syn	2910 A	3 U; 2 C; 1 G	729 A	1 G; 1 U; 1 C
Total frequency	cluster 2	58423	176	18337	65 1.05 x 10 ⁻³
Total	both clusters	72757	To wt: 81 other: 138 Other/wt = 1.70	33883	To wt: 31 To other: 71 other/wt = 2.29

357 In bold variants that would restore the original nucleotide in MuV^{G09}

358

359 **Table 3 Examples of novel mutations observed after 6 passages of PP1, PP2 and the**
360 **parent MuV^{G09} virus**

Virus/cell type	position nr	Passage 1	Passage 6	Effect	Frequency
PP1/Vero	849	U	U=G	N235F=C	11.5%
	1178	G	G=A	N345V=I	24.6%
	3355	A	A=G	M31E=G	52%
	9014	U	U=C	L193I=T	9.9%
	12748	C	C=U	L1437syn	20%
PP2/B-LCL	559	U	U=C	N138Psyn	3%
	1896	U	U=C	N3'UTR	7%
	1897	U	U=A	N3'UTR	6.6%
	2710	A	A=G	P245Q=R	33%
	2859	A	A=G	P295D=N	7.6%
	8171	G	G=A	HN238G=S	38%
	8175	U	U=G	HN239L=R	46%
	2227	U	U=C	syn	6%
	2251	U	U=C	syn	6%
G09/Vero	2256	U	U=C	P93I=T	6%
	2260	U	U=C	syn	6%
	1366	G	G=U	syn	20.3%
	1481	G	G=U	N446D=Y	18.5%
	2710	A	A=G	P245Q=R	20.8%
	5638	U	U=A	F365Y=N	38.7%
	6704	A	A=U	HN32T=P	17.4%
	9896	G	G=U	L487D=Y	45.4%

361

362

363 **Table 4 A cluster of mutations in the FRED of the fusion protein of PP1**

364 N terminus of F1 FAG**I**IGIAA**ALG****V**ATAA**Q****V**T*

Position	Mut	Effect	P1geno	P1 anti	P6c geno	P6canti
4869	U=G	I=M	3/385	4/58	1/176	3/28
4873	A=U	I=F	6/380	3/59	3/170	0/32
4881	A=C	A syn	3/365	4/59	3/170	3/35
4884	C=G	L syn	10/367	4/64	9/169	0/35
4888	G=U	V=F	5/360	2/66	4/169	1/36
4892	C=A	A=E	12/335	2/67	6/161	0/38
4894	A=C	T=P	19/328	9/65	13/159	4/38
4898	C=A	A=E	8/326	0/66	1/161	0/39
4901	C=A	A=E	12/330	1/66	5/161	1/39
4903	C=A	Q=K	22/329	7/66	11/159	1/38
4907	U=A	V=E	20/327	1/69	11/156	2/42
total			120/3832	37/705	67/1811	14/400
frequency			3.1%	5.2%	3.7%	3.5%

365

366 * In large capitals the residues of the fusion related external domain that are affected by the mutations
367 and in bold those that are changed as a result of a non-synonymous mutation.

368

369

370

371

372

373 References

374 Al-khalili, J. (2013) 'Nature's quantum subways', *Physics World*, 26(3), pp. 42–45.

375

376 Brown, D. D., Collins, F. M., Duprex, W. P., Baron, M. D., Barrett, T. and Rima, B. K.

377 (2005) "Rescue" of mini-genomic constructs and viruses by combinations of morbillivirus

378 N, P and L proteins', *Journal of General Virology*, 86(4), 1077–1081. doi:

379 10.1099/vir.0.80804-0.

380

381 Clarke, D. K., Sidhu, M. S., Johnson, J. E. and Udem, S. A. (2000) 'Rescue of mumps virus

382 from cDNA.', *Journal of Virology*, 74(10), 4831–8. doi: 10.1128/JVI.74.10.4831-

383 4838.2000.Updated.

384

385 Gassen, U., Collins, F. M., Duprex, W. P. and Rima, B. K. (2000) 'Establishment of a rescue

386 system for canine distemper virus', *Journal of Virology* 74. 10737–10744.

387

388 Kurian, P., Dunston, G. and Lindesay, J. (2016) 'Does quantum entanglement in DNA

389 synchronize the catalytic centers of type II restriction endonucleases?', *Journal of Theoretical*

390 *Biology* 391, 102-112. doi: 10.1016/j.jtbi.2015.11.018.

391 Lemon, K., Nguyen, D. . T., Ludlow, M., Rennick, L. J., Yüksel, S., van Amerongen, G.,

392 McQuaid, S., Rima, B. K., de Swart, R. L. and Duprex, W. P. (2015) 'Recombinant subgroup

393 B human respiratory syncytial virus expressing enhanced green fluorescent protein efficiently

394 replicates in primary human cells and is virulent in cotton rats', *Journal of Virology* 89(5),
395 2849-56. doi: 10.1128/JVI.03587-14.

396

397 Lemon, K., Rima, B. K., McQuaid, S., Allen, I. V. and Duprex, W. P. (2007) 'The F gene of
398 rodent brain-adapted mumps virus is a major determinant of neurovirulence', *Journal of*
399 *Virology* 81(15), 8293-8302. doi: 10.1128/JVI.00266-07.

400

401 Milne, I., Stephen, G., Bayer, M., Cock, P. J. A., Pritchard, L., Cardle, L., Shawand, P. D.
402 and Marshall, D. (2013) 'Using tablet for visual exploration of second-generation sequencing
403 data', *Briefings in Bioinformatics* 14(2), 193–202. doi: 10.1093/bib/bbs012.

404

405 Moeller, K., Duffy, I., Duprex, P., Rima, B., Beschorner, R., Fauser, S., Meyermann, R.,
406 Niewiesk, S., ter Meulen, V. and Schneider-Schaulies, J. (2001) 'Recombinant measles
407 viruses expressing altered hemagglutinin (H) genes: functional separation of mutations
408 determining H antibody escape from neurovirulence.', *Journal of Virology* 75(16), 7612–
409 7620. doi: 10.1128/JVI.75.16.7612-7620.2001.

410

411 Otani, S., Ayata, M., Takeuchi, K., Takeda, M., Shintaku, H. and Ogura, H. (2014) 'Biased
412 hypermutation occurred frequently in a gene inserted into the IC323 recombinant measles
413 virus during its persistence in the brains of nude mice.', *Virology* 462–463, 91–97. doi:
414 10.1016/j.virol.2014.05.035.

415

416 Pomeroy, L. W., Bjørnstad, O. N. and Holmes, E. C. (2008) 'The evolutionary and
417 epidemiological dynamics of the *Paramyxoviridae*.', *Journal of Molecular Evolution* 66(2),
418 98–106. doi: 10.1007/s00239-007-9040-x.

419

420 Pusuluk, O. and Deliduman, C. (2010) 'Entanglement Swapping Model of DNA Replication',
421 *arXiv*, 1101.0073 [quant-ph]. Available at <http://arxiv.org/abs/1101.0073>.

422

423 Rieper, E., Anders, J. and Vedral, V. (2010) 'Quantum entanglement between the electron
424 clouds of nucleic acids in DNA', (1) arXiv:1006.4053 [quant-ph] Available at:
425 <http://arxiv.org/abs/1006.4053>.

426

427 Rima B.K. (2015). Nucleotide sequence conservation in paramyxoviruses; the concept of
428 codon constellation. *Journal of general Virology* 96(5), 939-955. doi: 10.1099/vir.0.070789-0

429

430 Rubin, S. A., Sauder, C. J. and Carbone, K. M. Rubin SA. Sauder CJ, Carbone KM. (2013).
431 Mumps virus. In: Knipe DM, Howley PM, editors. *Fields Virology*. Vol 2. 6th ed.
432 Philadelphia: Lippincott, Williams and Wilkins, Wolters Kluwer Health; 2013. pp.1025-41.

433

434 Rubin, S. A, Pletnikov, M. and Carbone, K. M. (1998) 'Comparison of the neurovirulence of
435 a vaccine and a wild-type mumps virus strain in the developing rat brain.', *Journal of*
436 *Virology* 72, 8037–8042. PMID: 9733843

437

438 Sauder, C. J., Zhang, C. X., Ngo, L., Werner, K., Lemon, K., Duprex, W. P., Malik, T.,
439 Carbone, K. and Rubin, S. A (2011) 'Gene-specific contributions to mumps virus
440 neurovirulence and neuroattenuation.', *Journal of Virology* 85, 7059–7069. doi:
441 10.1128/JVI.00245-11.

442

443 Tsuda, Y., Hoenen, T., Banadyga, L., Weisend, C., Ricklefs, S. M., Porcella, S. F. and
444 Ebihara, H. (2015) 'An Improved Reverse Genetics System to Overcome Cell-Type-
445 Dependent Ebola Virus Genome Plasticity', *Journal of Infectious Diseases* 212(Suppl 2),
446 S129–S137. doi: 10.1093/infdis/jiu681.

447

448 Xu, P., Li, Z., Sun, D., Lin, Y., Wu, J., Rota, P. A. and He, B. (2011) 'Rescue of wild-type
449 mumps virus from a strain associated with recent outbreaks helps to define the role of the SH
450 ORF in the pathogenesis of mumps virus', *Virology* 417(1), 126–136. doi:
451 10.1016/j.virol.2011.05.003.

452

453 Xu, P., Luthra, P., Li, Z., Fuentes, S., D'Andrea, J. A., Wu, J., Rubin, S., Rota, P. A. and He,
454 B. (2012) 'The V Protein of Mumps Virus Plays a Critical Role in Pathogenesis', *Journal of*
455 *Virology* 86, 1768–1776. doi: 10.1128/JVI.06019-11.

456

457 Young, D. F., Galiano, M. C., Lemon, K., Chen, Y. H., Andrejeva, J., Duprex, W. P., Rima,
458 B. K. and Randall, R. E. (2009) 'Mumps virus Enders strain is sensitive to interferon (IFN)

459 despite encoding a functional IFN antagonist', *Journal of General Virology* 90, 2731–2738.

460 doi: 10.1099/vir.0.013722-0.

461