

1 Transcriptomic analysis reveals similarities in genetic activation of detoxification mechanisms resulting
2 from imidacloprid and chlorothalonil exposure

3

4 Justin Clements¹, Benjamin Sanchez-Sedillo¹, Christopher Bradfield², and Russell L. Groves¹

5

6 1: Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA

7 2: Department of Oncology, University of Wisconsin-Madison, Madison, WI 53706, USA

8

9 *To whom correspondence should be addressed:

10 Russell L. Groves

11 Department of Entomology, University of Wisconsin,

12 1630 Linden Drive

13 Madison, WI 53706

14 Phone: 608-262-3229, Fax: 608-262-3322

15 Email: groves@entomology.wisc.edu

16

17 **Acknowledgements**

18 The authors would like to acknowledge support from the Wisconsin Potato and Vegetable Growers
19 Association and the associated agricultural community. We would also like to acknowledge support from
20 the University of Wisconsin-Madison Bioinformatics Research Center. This research was partially
21 supported by a combination of funding from: (1) USDA-NIFA-ARFI-ELI Postdoctoral Fellowship Grant
22 12105364 and (2) support from the Wisconsin Potato and Vegetable Growers Association.

23

24 **Abstract**

25 The Colorado potato beetle, *Leptinotarsa decemlineata* (Say), is an agricultural pest of commercial
26 potatoes in parts of North America, Europe, and Asia. Plant protection strategies within this geographic
27 range employ a variety of pesticides to combat not only the insect, but also plant pathogens. Previous
28 research has shown that field populations of *Leptinotarsa decemlineata* have a chronological history of
29 resistance development to a suite of insecticides, including the Group 4A neonicotinoids. The aim of this
30 study is to contextualize the transcriptomic response of *Leptinotarsa decemlineata* when exposed to the
31 neonicotinoid insecticide imidacloprid, or the fungicides boscalid or chlorothalonil, in order to
32 determine whether these compounds induce similar detoxification mechanisms. We found that
33 chlorothalonil and imidacloprid induced similar patterns of transcript expression, including the up-
34 regulation of a cytochrome p450 and a UDP-glucuronosyltransferase transcript, which are often
35 associated with xenobiotic metabolism. Further, transcriptomic responses varied among individuals
36 within the same treatment group, suggesting individual insects' responses vary within a population and
37 may cope with chemical stressors in a variety of manners. These results further our understanding of the
38 mechanisms involved in insecticide resistance in *Leptinotarsa decemlineata*.

39

40 **Author Contribution Statement**

41 Conceived and designed the experiments: JC, CB, RLG. Performed the experiments: JC, BSS. Analyzed the
42 data: JC, BSS. Wrote the paper: JC, BSS, RLG.

43

44 **Introduction**

45 The development of insecticide resistance in the Colorado potato beetle (*Leptinotarsa*
46 *decemlineata* (Say)) is a major concern for agricultural growers¹. *L. decemlineata* are agricultural pests
47 that originated in parts of North America and have now expanded their range to predominate in potato
48 production areas of Europe and Asia². Few natural enemies exist which can adequately control
49 populations of *L. decemlineata* at manageable levels, and when unabated by plant protection strategies,
50 populations can decrease agricultural potato yields by up to 100% through direct defoliation^{2,3}.
51 Populations of *L. decemlineata* have adapted from feeding on its native host plant, buffalobur (*Solanum*
52 *rostratum*), to other agriculturally-relevant plants within the *Solanaceae* family, including potatoes,
53 tomatoes, and eggplants².

54 Insecticide classes such as organochlorines, organophosphates, synthetic pyrethroids, and
55 carbamates have historically become ineffective for control of *L. decemlineata*⁴ in many parts of their

56 current geographic range and have been replaced by different chemical insecticides. Recent integrated
57 pest management strategies for the control of *L. decemlineata* have often included the neonicotinoid
58 insecticide, imidacloprid, a Group 4A nicotinic acetylcholine receptor agonist classified by the Insecticide
59 Resistance Action Committee⁵. Imidacloprid is a water-soluble, systemically mobile insecticide often
60 employed as an at-plant, in-furrow, or seed treatment application delivered at the beginning of the
61 growing season. Imidacloprid selectively binds to an insect's acetylcholine receptors on the post-
62 synaptic membrane causing overstimulation, which leads to paralysis and death⁶. Since 2007,
63 agriculturally-relevant populations of *L. decemlineata* have had measurable levels of resistance to
64 imidacloprid^{7,8}. Previous studies have shown that these populations originate from agricultural
65 operations where insecticide resistance management (IRM) label guidelines of imidacloprid application
66 have been followed. Unfortunately, even when IRM guidelines are adhered to, insecticide resistance
67 may develop, and producers are forced to rotate their product choices to include different mode of
68 action (MoA) classes for adequate control of this problematic pest species.

69 Comprehensive plant protection strategies must necessarily consider the control of other pest
70 species, including fungal pathogens. In doing so, regular foliar applications of protectant fungicides are
71 widely used and often occur throughout the growing season in potatoes when conditions or criteria for
72 the risk for disease development have been surpassed. Further, fungicide applications may be applied in
73 a tank mixture with, or may follow, neonicotinoid insecticide (e.g. imidacloprid) application leading to
74 combined or even subsequent exposure to both the fungicide and insecticide. One of the most widely
75 used broad spectrum, and multi-site MoA fungicides used in potatoes is chlorothalonil. Chlorothalonil is
76 classified by the Fungicide Resistance Action Committee as a multi-site MoA, chloronitrile
77 (phthalonitrile)^{9,10}, and may be applied weekly during periods of high disease risk as a wide range of
78 formulated products applied at rates of 0.67 kg/ha of active ingredient per acre¹¹. Another commonly
79 used, single-site MoA fungicide applied to potatoes is the carboxamide (MoA Group 7) boscalid. Here
80 again, potatoes can receive 2-4 successive, foliar applications of boscalid as a protectant fungicide at
81 rates of 0.49 kg/ha¹². In the context of an organism's continued exposure to both insecticides and
82 fungicides over a crop season, populations of *L. decemlineata* may become tolerant to a normally toxic
83 chemical when previously exposed to a different chemical MoA that is similarly metabolized by identical
84 proteins; operationally defined here as cross-resistance. Drivers of insecticide cross-resistance have
85 been characterized in many pest species including, *Cydia pomonella*¹³, *Aedes aegypti*¹⁴, and *Bactrocera*
86 *dorsalis*¹⁵. Clements et al. (2017) previously demonstrated that imidacloprid tolerance can be partially
87 ablated through the RNA interference of transcripts encoding for a cytochrome p450, suggesting the

88 major role that these proteins play in resistance within select populations¹⁶. Recent transcriptomic
89 investigations have revealed differentially expressed transcripts between imidacloprid resistant and
90 susceptible populations of *L. decemlineata*, and suggest that cytochrome p450s, cuticular proteins, ABC
91 transporters, and glutathione related proteins are up-regulated in resistant populations⁸. Still other
92 investigations in multiple insect taxa further support these findings and suggest that a discrete set of
93 genes appear to be responding to insecticides ^{16,17,18}, suggesting that these proteins may be playing vital
94 roles in xenobiotic metabolism. We hypothesize that fungicides may be able to up-regulate similar
95 genetic detoxification mechanisms as imidacloprid, and therefore, could play a role in conferring cross-
96 resistance.

97 The current study employed RNA sequencing to characterize the transcriptomic response of *L.*
98 *decemlineata* when exposed to imidacloprid, chlorothalonil, or boscalid in controlled investigations, and
99 investigated whether similar patterns of genetic expression of detoxification mechanisms were induced
100 by these compounds. We compared the transcriptomic profiles of known genes involved in the
101 detoxification of imidacloprid to those that were up-regulated in response to field-relevant application
102 rates of both boscalid and chlorothalonil. The up-regulation of these genes when exposed to boscalid or
103 chlorothalonil may confer cross-resistance to neonicotinoid insecticides.

104

105 **Materials and Methods**

106 **Data Availability**

107 All relevant data are contained within the paper and its supporting information files. The accession
108 numbers for the raw RNA sequencing data are deposited in the Sequence Read Archive (SRA)
109 SRP144770 and The Transcriptome Shotgun Assembly project has been deposited at
110 DDBJ/EMBL/GenBank under the accession GGNV00000000. The version described in this paper is the
111 first version, GGNV01000000.

112

113 **Ethics Statement**

114 No specific permits were required for field collection or experimental treatment of *L. decemlineata* for
115 the study described.

116

117 **Insect Maintenance**

118 Approximately 300 adult beetles were initially collected on June 20th, 2016 from the Arlington
119 Agricultural Research Station, Arlington, Wisconsin (AARS, 43.315527, -89.334545), where populations

120 have little prior exposure to insecticides, and this population remains highly susceptible to
121 imidacloprid^{7,8}. Healthy adult beetles were hand-collected from the canopy of potato plants, placed in
122 plastic containers, and returned to the University of Wisconsin-Madison. Reproducing populations of *L.*
123 *decemlineata* were sustained on healthy potato plants in mesh cages under a 16:8 hour light:dark (L:D)
124 photoperiod. Untreated foliage from potato plants was obtained from plants grown at the University of
125 Wisconsin-Madison greenhouse and provided to beetles daily. Adult beetles were given the opportunity
126 to randomly mate and lay clutches of eggs on potato foliage. Egg masses were collected daily and placed
127 on filter paper in 100 x 15 mm petri dishes (Corning, Corning, New York) and held at 26°C, 70% relative
128 humidity (RH), and 16:8 (L:D) photoperiod. Following egg hatch, larvae were provided untreated foliage
129 daily and maintained as cohort groups throughout the remainder of their larval development before
130 being returned to mesh cages with fresh potato plants and soil and allowed to pupate and subsequently
131 emerge as adults.

132

133 **Insecticide and Fungicide Feeding Exposure**

134 From the previously described laboratory colony, twenty-four, 7th generation adult beetles (emerging
135 from within 24 hours of pupation) were removed, and these selected adult beetles were used in the
136 following experiments. Adult beetles were placed in individual 100 x 15 mm Petri dishes (Corning,
137 Corning, NY,) on top of filter paper, and starved for 24 hours in a Percival incubator (Percival Scientific,
138 Perry, IA) at 26°C, 70% humidity, and 16:8 (L:D) in advance of any experiments. Fresh potato leaves were
139 removed from healthy, greenhouse-grown plants and cleaned of any debris prior to the excision of a
140 2.01cm² leaf disk. For each chemical compound assayed, one leaf disk for each individual beetle was
141 dipped in acetone solutions containing field-relevant concentrations of technical chlorothalonil (6.9
142 µg/µl), boscalid (13 µg/µl), imidacloprid (0.000079 µg/µl), or an acetone control (n=6
143 insects/treatment). Adult beetles were presented individual leaf disks in their petri dish. Beetles were
144 monitored until the insect had located and started feeding upon their leaf disks. Once feeding was
145 initiated on the leaf disk, the adults were then given 24 hours to consume the entire leaf disk and were
146 held at 26°C, 70% humidity, and 16:8 (L:D) throughout this interval. After 24 hours, we randomly
147 selected four individual adults representing each compound from among those which had consumed
148 the entire leaf disk provided, and these individuals were later used for transcriptomic analyses.

149

150 **RNA Extraction, RNA Sequencing and Transcriptome Assembly**

151 Sixteen adult *L. decemlineata*, 4 from each treatment (boscalid, chlorothalonil, imidacloprid, and
152 control), were sacrificed exactly 24 hours after the onset of leaf ingestion. Total RNA was extracted from
153 each adult beetle using Trizol (Life Technology, Grand Island, NY). DNA contamination was removed with
154 TurboDNase (Life Technology, Grand Island, NY) and total RNA was purified through an EtOH
155 precipitation, air dried until no visible liquid was observed, and then suspended in 50 μ L DNase/RNase-
156 free H₂O. Quality of RNA was initially assessed using a Nanodrop (ThermoFisher Scientific, Waltham,
157 MA). From each sample, 2500 ng of total RNA was provided to the University of Wisconsin-Madison
158 Biotechnology Center (UWMBC). RNA quality was further examined using a 2100 Bioanalyzer (Agilent
159 Technologies, Santa Clara, CA). The UWMBC was also contracted to isolate and generate mRNA libraries
160 and subsequently perform Illumina HiSeq 2x125bp sequencing (Illumina, San Diego, CA). From raw RNA
161 sequencing reads, the UWMBC generated de novo transcriptome assembly using Trinity bioinformatics
162 software. A Busco (Version 3.0.2) analysis was conducted on the assembled transcriptome to
163 characterize coverage.

164

165 **Differentially-Expressed Transcripts and Transcriptome Analysis**

166 Transcript expression was determined using Trinity bioinformatics software (RSEM). TPM (transcripts
167 per million) were calculated for each contig in the transcriptome. Further, differentially-expressed
168 transcripts were determined using edgeR, which produced a log fold change along with the
169 corresponding FDR (false discover rate). In the analysis, transcripts were considered to be over- or
170 under-expressed with a log₂ fold change greater than 2 and an FDR value < 0.05. A sample correlation
171 matrix was generated for differentially-expressed transcripts (**Supplemental Figure S1**). Three
172 differentially-expressed transcript analyses were conducted, including transcript abundance between
173 the control group and each of the chemical induction groups. Further, from the sample correlation
174 matrix, it was noted that the transcript expression of specific beetle replicates (Imidacloprid_rep2,
175 Imidacloprid_rep3, and Chlorothalonil_rep1) were statistically similar, but distinct from the remaining
176 experimental individuals. These statistically similar individuals were classified as the “Effect” group,
177 while the remaining individuals were classified as the “No Effect” group. A differential expression
178 analysis was conducted between Imidacloprid_rep2, Imidacloprid_rep3, and Chlorothalonil_rep1
179 (Effect) and all other experimental individuals (No Effect). Trinity transcripts were classified using BLAST
180 standalone. Reference protein sequences (Refseq) from all Coleoptera were downloaded from NCBI for
181 a total of 119,760 sequences. A reference database was created with the protein sequences for BLAST

182 analyses and comparison. Using BLAST standalone with BLASTx, the total unique trinity contigs in the
183 transcriptome were compared to the reference proteins (E value $<10^{-3}$). Transcripts were classified
184 based on the NCBI nomenclature returned by BLASTx. BLASTx results were uploaded into Blast2Go¹⁹ for
185 further data analysis. BLASTx was conducted on the entire transcriptome. Within the analysis, we chose
186 to focus on the longest isoform of each Trinity gene set. Components were mapped to the
187 corresponding GO terms, then the annotation step was run with a cutoff of $E_{value} < 1E-3$, annotation cut
188 off > 45 , and GO weight >5 .

189

190 **Confirmation of Transcript Abundance with Quantitative PCR**

191 To confirm the patterns of transcript abundance, four differentially-expressed targets were chosen from
192 the transcriptome. From the purified RNA, cDNA was generated using a Superscript III kit (ThermoFisher
193 Scientific, Waltham, MA). The cDNA was diluted to a final concentration of 5ng/ μ l of RNA equivalent
194 input for qPCR. The ribosomal protein 4 (RP4)²⁰ was used as a reference gene for all analyses. The qPCR
195 reaction was run on a CFX-96 platform (Bio-Rad Laboratories, Hercules, CA) with a master mix of
196 Bullseye EverGreen (MIDSCI, Valley Park, MO). Primer and primer efficiency can be found in
197 **Supplemental Table S1**. Primer specificity was checked against the transcriptome using BLAST. Primer
198 efficiencies were calculated and optimized. Triplicate reactions were run at 95°C for 10 min followed by
199 95°C for 15 s, 62°C for 60 s, for 40 cycles. Data were collected for each biological replicate, and relative
200 expression of resistant strains to susceptible strains was calculated using the Pfaffl methodology²¹.

201

202 **Complimentary Chlorothalonil and Imidacloprid Assays Conducted to Verify Transcripts of Interest**

203 The insecticide and feeding exposure assay to chlorothalonil and imidacloprid was repeated twice more
204 to further validate the genetic response described by the transcriptomic analysis. RNA was extracted
205 and cDNA was generated to observe genetic induction of similar detoxification mechanisms (n=4
206 insects/compound/trial 2, and n=5 insects/compound/trial 3). Quantitative PCR was conducted as
207 previously stated to observe the expression for each exposure group to the transcripts of interest
208 (cytochrome P450 (6k1 isoform X1) and UDP-glucuronyltransferase (2b7-like)).

209

210 **Results**

211 **Transcriptome Assembly**

212 Illumina short-read sequences from mRNA isolated from 16 adult *L. decemlineata*, 4 from each
213 treatment (boscalid, chlorothalonil, imidacloprid, and control), were compiled into a transcriptome

214 using Trinity bioinformatics software²². The compiled transcriptome revealed 418,015 total transcripts
215 and 218,882 unique trinity 'genes'. When compared to the compiled NCBI data base of reference
216 Coleoptera sequences, there were 55,064 total transcripts with a BLASTx match. Further, a Busco
217 analysis (Version 3.0.2) conducted on the transcriptome revealed that 97 percent coverage was
218 achieved. Trinity Transcriptome Assembly Statistics can be found in Table 1.

219

Trinity Transcriptome Assembly Statistics	
Total Trinity Transcripts	418,015
Total Trinity 'Genes'	218,882
BLASTx Hits (e value ≥ 0.001)	55,064
Percent GC	36.53
Contig N50	1,074
Median Contig Length	349
Average Contig	661.56
Total Assembled Bases	276,543,627
Busco Analysis of Transcriptome	
C:97.0%[S:38.1%,D:58.9%],F:2.5%,M:0.5%,N:1658	
1609 Complete BUSCOs (C)	
632 Complete and single-copy BUSCOs (S)	
977 Complete and duplicated BUSCOs (D)	
42 Fragmented BUSCOs (F)	
7 Missing BUSCOs (M)	
1658 Total BUSCO groups searched	

220

221 Table 1: Trinity De Novo Assembly Statistics.

222

223 **Differential Expression Analysis**

224 Several classes of previously described enzymatic detoxification mechanisms were up or down-regulated
225 in response to both the insecticide or fungicide treatments, as listed in Table 2. Differentially- expressed
226 transcripts were classified using a \log_2 fold change ≥ 2 and an FDR < 0.05 as seen in Table 2. The specific
227 classes of detoxification mechanisms examined in the current study were based on previously classified
228 detoxification mechanisms^{1,8,18,23}.

229

	Whole Transcriptome	Boscalid Up-regulated	Boscalid Down-regulated	Chlorothalonil Up-regulated	Chlorothalonil Down-regulated	Imidacloprid Up-regulated	Imidacloprid Down-regulated
Total Trinity 'Genes'	218,882	32	11	137	82	1147	178
Total Transcripts BLASTX Evalue (0.001)	55,064	16	10	103	60	857	99
Cytochrome P450	171	0	0	1	0	4	1
Cuticular	120	0	0	2	0	4	0
ABC Transporter/Multidrug resistant proteins	259	0	1	1	1	1	4
UDP-glucuronosyltransferase	65	0	0	1	0	1	0
Acetylcholine receptor	22	0	0	0	0	0	0
Carboxylesterase	56	0	0	0	1	1	1
HSP68/70	30	0	0	4	1	2	1
Glutathione S-transferase	28	0	0	0	0	0	0

230

231 Table 2: Differentially expressed transcripts between the control adult beetles and fungicide and
232 insecticide exposures. Differentially-expressed transcripts were classified using a log2 fold change > 2
233 and an FDR < 0.05

234

235 Examination of differentially-expressed transcripts revealed several previously described insecticide
236 detoxification mechanisms, including multiple cytochrome p450s and cuticular proteins. Further
237 examination of the similarities between imidacloprid or chlorothalonil exposure revealed two known
238 enzymatic mechanisms of insecticide detoxification to be statistically overexpressed in both the
239 imidacloprid and chlorothalonil treatment groups. These previously described pesticide detoxification
240 mechanisms included a cytochrome P450 (**6k1 isoform X1**) and UDP-glucuronosyltransferase (**2b7-like**)
241 that were independently overexpressed as a result of both treatments. Classified enzymatic
242 detoxification mechanisms based on log₂ fold change and FDR can be found in Table 3. Examination of
243 differentially-expressed transcripts between boscalid exposure groups and the control group revealed
244 no statistically significant change in transcript expression for known detoxification mechanisms.

245

NCBI Blast Match	Trinity Transcript ID	Log ₂ FC	FDR
<i>Imidacloprid Induction group</i>			
Probable cytochrome P450	DN45930_c0_g1	10.24	8.47E-05
Heat shock 70 kDa cognate 4-like	DN45929_c0_g1	9.30	0.00027
Endocuticle structural glyco bd-8-like	DN53725_c1_g1	6.29	0.0025
Cytochrome P450 6k1 isoform X1	DN61141_c1_g1	5.86	0.0032
Pupal cuticle 20-like	DN59030_c2_g1	5.84	0.010
Endocuticle structural glyco bd-5-like	DN23859_c0_g1	5.70	0.0099
Cuticle-like	DN48928_c1_g1	4.79	0.011
Cytochrome P450 4d2-like	DN46083_c0_g3	4.69	0.0019
UDP-glucuronosyltransferase 2B7-like	DN61595_c0_g3	3.99	0.017
Probable cytochrome P450 49a1	DN47979_c8_g1	3.96	0.0024
heat shock 68-like	DN54580_c0_g1	3.13	0.017
Probable multidrug resistance-associated lethal(2)03659	DN63738_c2_g1	2.82	0.0039
Venom carboxylesterase-6-like	DN48501_c1_g1	2.82	0.038
<i>Chlorothalonil Induction Group</i>			
Uncharacterized oxidoreductase	DN44684_c0_g1	5.08	0.046
Cytochrome P450 6k1 isoform X1	DN61141_c1_g1	4.45	0.014
Heat shock 70 A1-like isoform X1	DN62524_c2_g4	4.43	0.00013
Heat shock 68a	DN62524_c2_g1	4.16	1.46E-07
Heat shock 70 A1-like isoform X1	DN62524_c2_g2	3.91	1.21E-06
UDP-glucuronosyltransferase 2B7-like	DN61595_c0_g3	3.89	0.046
Heat shock 70 A1	DN41892_c0_g1	3.55	0.00082
Pupal cuticle 20-like	DN44960_c0_g1	3.45	0.037
Cuticle 7-like	DN45742_c0_g1	2.96	0.047
Probable multidrug resistance-associated lethal(2)03659	DN63738_c2_g1	2.59	0.023

246

247 Highlighted transcripts are significantly up-regulated in both imidacloprid and chlorothalonil groups

248 Table 3: Up-regulated transcripts that could encode for known pesticide detoxification mechanisms

249 induced by either imidacloprid or chlorothalonil.

250

251 When a correlation matrix was generated between all individuals within the experimental and control
252 groups, a unique distribution of overall transcript expression among test organisms was observed

253 (**Supplemental Figure S1**). Transcript expression patterns for the specific adult beetles: Imidacloprid_2,

254 Imidacloprid_3 and Chlorothalonil_1, significantly grouped together (Effect) from the rest of the test
255 individuals (No Effect). Differentially-expressed transcripts were examined between these two groups
256 and patterns are illustrated in Tables 4 and 5.

257

	Effect Vs. No Effect Up-regulated	Effect Vs. No Effect Down-regulated
Total Trinity 'Genes'	1457	1250
Total Transcripts BLASTX evalue (0.001)	1056	835
Cytochrome P450	7	10
Cuticular	6	4
ABC Transporter/ Multidrug resistant proteins	4	5
UDP- glucuronosyltransferase	0	2
Acetylcholine receptor	1	0
Carboxylesterase	1	2
HSP68/70	2	1
Glutathione S- transferase	0	3

258

259 Table 4: Differentially-expressed transcripts between Effect and No Effect groups.

260

NCBI Blast Match	Trinity Transcript ID	Log ₂ FC	FDR
Effect Vs. No Effect			
Acetylcholine receptor subunit alpha-like	DN52191_c2_g3	11.70	2.96E-96
Heat shock 70 kDa cognate 4-like	DN45929_c0_g1	10.68	1.99E-118
Probable cytochrome P450	DN45930_c0_g1	10.55	6.37E-157
NADH-quinone oxidoreductase subunit B 2	DN33393_c0_g1	9.34	9.63E-46
Endocuticle structural glyco bd-8-like	DN53725_c1_g1	6.88	2.30E-18
Cuticle 7-like	DN42933_c0_g1	6.62	6.28E-14
Endocuticle structural glyco bd-5-like	DN23859_c0_g1	6.38	3.40E-22
Pupal cuticle 20-like	DN59030_c2_g1	6.28	1.36E-21
Cytochrome P450 4d2-like	DN46083_c0_g3	6.28	7.77E-56
Cuticle-like	DN48928_c1_g1	6.12	2.58E-28
Multidrug resistance-associated 1 isoform X3	DN52951_c2_g1	5.63	4.28E-11
Probable cytochrome P450 4d14	DN46083_c0_g2	5.43	1.55E-11
Cytochrome P450 6k1-like	DN43906_c0_g1	4.50	2.03E-06
Heat shock 68-like	DN54580_c0_g1	4.12	7.52E-41
Probable cytochrome P450 49a1	DN47979_c8_g1	3.90	2.71E-12
Probable multidrug resistance-associated lethal(2)03659 isoform X1	DN48864_c1_g1	3.02	0.00013
Carboxylesterase 5A	DN56141_c0_g1	2.73	0.0026
Probable cytochrome P450 305a1	DN51839_c1_g1	2.47	5.83E-05
Probable multidrug resistance-associated lethal(2)03659	DN63738_c2_g1	2.43	3.10E-06
Pupal cuticle 20-like	DN44960_c0_g1	2.40	0.0048
Cytochrome P450 4C1-like isoform X1	DN45995_c0_g1	2.33	2.61E-05
Multidrug resistance-associated 4-like	DN48293_c3_g1	2.06	9.42E-19

261

262 Table 5: Up-regulated transcripts that could encode for known pesticide detoxification mechanisms

263 induced in the Effect group as compared to the No Effect group.

264

265 Examination of over-expressed transcripts within the Effect group revealed previously described
266 detoxification mechanisms, including 7 cytochrome p450's, multiple cuticular proteins, multidrug
267 resistant proteins, and a highly up-regulated acetylcholine receptor subunit (alpha-like). Enrichment
268 analysis on all the significantly up-regulated transcripts was conducted for each treatment group
269 including the Effect vs No Effect group and can be found as **Supplemental Table S2**.

270

271 **Quantitative PCR Confirmation**

272 Quantitative PCR confirmed transcript expression obtained from the RNA-sequencing data. A subset of
273 differentially-expressed transcripts was confirmed, validating the RNA-sequencing and transcriptomic
274 data. Further, separately from the transcriptomic study, two additional groups (Trial 2 and 3) of adult
275 beetles were exposed to imidacloprid or chlorothalonil to examine if a similar genetic response for the
276 two classified enzymatic detoxification mechanisms (cytochrome P450 6k1 isoform X1 and UDP-
277 glucuronyltransferase 2b7-like) was induced (Table 6). Threshold cycle values along with their standard
278 deviations can be found in **Supplemental Table S3**.

279

	Cytochrome P450 6k1 isoform X1 (DN61141)	UDP-glucuronyltransferase 2B7-like (DN61595)	Acetylcholine receptor subunit alpha-like (DN52191)	Probable cytochrome P450 (DN45930)
Transcriptome Chlorothalonil (TMM)	5.86	4.45	NA	NA
Validation of Chlorothalonil RNA in Transcriptome (qPCR)	4.97	2.91	NA	NA
Transcriptome Imidacloprid (TMM)	3.99	3.85	NA	NA
Validation of Imidacloprid RNA in Transcriptome (qPCR)	2.88	3.22	NA	NA
Transcriptome Effect (TMM)	NA	NA	11.7	10.5
Validation of Effect group RNA in Transcriptome (qPCR)	NA	NA	12.4	10.11
Trail 2 rerun exposure to chlorothalonil	5.23	3.52	NA	NA
Trail 2 rerun exposure to imidacloprid	1.17	0.45	NA	NA
Trail 3 rerun exposure to chlorothalonil	3.07	6.47	NA	NA
Trail 3 rerun exposure to imidacloprid	-1.35	1.82	NA	NA

280

281 Table 6: Differentially-expressed transcript values as reported from edgeR and quantitative PCR. Values
282 represent a \log_2 transformation.

283

284 **Discussion**

285 The ability of the Colorado potato beetle to develop insecticide resistance to multiple classes of
286 pesticides has been well documented^{1,4,8}. What is not immediately apparent from these investigations
287 are the genetic mechanisms by which these insects adapt, survive and establish resistance. Further, the
288 ability of one chemical (precursor) to activate a resistance mechanism that, in turn, can detoxify other
289 relevant pesticides has also been established and has operationally been described as cross-resistance²⁴.
290 In the current manuscript, we hypothesize that a select set of agri-chemicals commonly applied in the
291 potato agro-ecosystem and targeting unrelated pest taxa (fungi versus insects), can activate similar

292 genetic mechanisms of detoxification and potentially have inadvertent consequences on *L.*
293 *decemlineata* susceptibility to insecticides. Here we establish the genetic response in the form of
294 transcript induction of known enzymatic detoxification mechanisms under lab conditions to the
295 pesticides imidacloprid, chlorothalonil, and boscalid. Imidacloprid has been established as a highly
296 effective insecticide used to control populations of *L. decemlineata*, while chlorothalonil and boscalid
297 are fungicides used to control foliar pathogens of potato including *Phytophthora infestans* or *Alternaria*
298 *solani*, (late and early blight of potato, respectively). Undoubtedly, populations of *L. decemlineata* in
299 many potato producing areas of the United States are regularly exposed to repeat applications of all
300 three compounds, especially those populations in the Midwest and Eastern production areas where the
301 threat of foliar disease is greatest^{1,9}. Our focus here, however, is not to demonstrate cross-resistance
302 between fungicides and insecticides, but rather to demonstrate that selected insecticides and fungicides
303 can induce a similar genetic detoxification response, which may increase the potential for cross-
304 resistance in a field setting.

305 A transcriptome generated from total RNA representing 16 adult *L. decemlineata* was created.
306 These individuals represented experimental groups treated with different pesticides, including
307 imidacloprid, chlorothalonil, or boscalid. These compounds were selected based upon their frequency of
308 use and regular occurrence in potato. Transcripts were compared to reference Coleoptera protein
309 sequences from NCBI to determine their identity, revealing a total of 218,882 unique transcripts and
310 55,065 transcripts that had a corresponding BLASTx match. Using the transcriptome, its corresponding
311 transcripts, and the RNA sequencing data, we determined differentially-expressed transcripts.
312 Differentially-expressed transcripts were generated for each pesticide exposure group versus the
313 control. In our analysis, we focused on the classification of previously known mechanisms of pesticide
314 resistance. Toxicokinetic and toxicodynamic mechanisms are two broad categories of protection that
315 organisms possess to respond to toxins²⁵. Toxicokinetic mechanisms describe the biotransformation and
316 excretion of the toxicant (insecticide) after it has been absorbed into the body. A toxicodynamic driver
317 of resistance includes selection of target site insensitivity, such as a change in the peptide residues at
318 the site of action, which lowers the affinity for the target, thus lowering the effective concentration to
319 produce an adverse effect²⁶. Toxicodynamic response describes the interaction of the toxicant at the
320 target site of action, and the molecular alterations within the cell that elicit an adverse effect.
321 Toxicokinetic mechanisms include the enhancement of metabolic processes that break down the
322 chemical into subsequent metabolites and transport the xenobiotic away from sites of sensitivity. The
323 phase 1 and phase 2 metabolism of neonicotinoids has been well characterized and has identified

324 enzymatic proteins that have been linked to the detoxification of imidacloprid, which include
325 cytochrome P450s, monooxygenases, and glutathione related proteins^{18,23}. The transport of a toxic
326 chemical away from the target site of action is partly achieved through the use of ABC transporters¹⁷.
327 Additionally, transport can be facilitated for the sequestration of the chemical into non-metabolically
328 active tissues such as the cuticle to make them inert^{24,27}. A third mechanism involved in resistance is
329 behavioral modification in insects' phenology, habitat choices, or foraging behavior¹.

330 From the toxicokinetic and toxicodynamic mechanisms, we chose to focus on phase 1 and phase
331 2 enzymes, cuticular proteins, and receptor sites. Examination of down-regulated transcripts, including
332 receptor sites (none of which were observed to be statistically down-regulated) was conducted for each
333 experimental group, however our efforts were primarily focused on the classification of over-expressed,
334 enzymatic detoxification transcripts which could result in the production of more proteins, and could
335 theoretically increase the detoxification of the pesticide insult. A search within each set of differentially-
336 expressed transcripts was conducted. While we observed multiple detoxification mechanisms as a
337 response to imidacloprid and chlorothalonil exposure, we did not observe any known detoxification
338 mechanisms as a result of exposure to boscalid. This observation is interesting because it has been
339 previously noted that boscalid can have a driving selection on this insect taxa²⁸. More detailed
340 examination of the detoxification mechanisms in common between the imidacloprid and chlorothalonil
341 treatment groups revealed two enzymatic mechanisms of detoxification: a cytochrome p450 (**6k1**
342 **isoform X1**) and a UDP- glucuronyltransferase (**2b7-like**). Several cytochrome p450 enzymes have
343 previously been implicated in imidacloprid resistance in *L. decemlineata*, including in a study performed
344 by Kaplanogula et al. (2017) where the over-expression of cytochrome p450 4Q3 and UDP-
345 glucuronyltransferase 2 was linked to imidacloprid resistance¹⁸. The over-expression of the two similar
346 enzymatic detoxification mechanisms described within our study suggests exposure to the fungicide
347 chlorothalonil could induce a similar genetic response to the insecticide imidacloprid, which could
348 eventually lead to increased levels of insensitivity to other pesticide insults, and the potential for cross-
349 resistance in a field setting. An additional and important distinction centers on the number of dissimilar
350 mechanisms between both imidacloprid and chlorothalonil, suggesting that while we did observe
351 similarities, the detoxification and genetic responses to these pesticides are also quite unique.

352 When a correlation matrix was generated from the transcriptomic and RNA sequencing data, a
353 grouping of three individuals (Imidacloprid_2, Imidacloprid_3 and Chlorothalonil 1) was clearly
354 observed, and the expression patterns of these three insects were statistically similar to each other.
355 Differentially-expressed transcripts between these individuals and the remainder of the test insects was

356 further evaluated. This examination revealed highly over-expressed detoxification mechanisms
357 including acetylcholine receptor subunit (alpha-like), cytochrome p450's, cuticular proteins, multi-drug
358 resistance proteins and an oxidoreductase subunit. Further, to determine whether the transcriptomic
359 expression of these three individuals was based on some biological process and not the response of
360 pesticide exposure, we examined the transcript expression of these individuals for a multitude of several
361 biological processes including spermatogenic transcripts (could suggest a sex-linked factor) and apoptotic
362 genes. Further, examination of the over-expressed transcripts' GO terms was also conducted. Taken
363 together, these supplemental examinations revealed similarities in over-expression of sperm related
364 transcripts including transcripts encoding for spermatogenesis, suggesting that these individuals were
365 probably all male at the same developmental stage following emergence from pupation. No apoptotic
366 genes were found and over expression of iron production and oxidoreducatase activity in the GO terms
367 was noted. Overall, the genetic analysis suggested that all three insects (e.g. Imidacloprid_2,
368 imidacloprid_3 and Chlorothalonil_1) responded similarly to their pesticide exposure.

369 To confirm the results from edgeR and the differentially-expressed transcripts, expression
370 patterns were confirmed using qPCR. The expression determined by qPCR was very similar to what
371 edgeR produced, validating the differentially-expressed data. To further confirm the importance of the
372 two similar genetic detoxification mechanisms (cytochrome p450 6k1 isoform X1 and a UDP-
373 glucuronyltransferase 2b7-like) in imidacloprid and chlorothalonil detoxification, we re-evaluated our
374 pesticide feeding assays independently using two additional replicate assays and measured the
375 expression of our two transcripts of interests. From these two additional replicate assays, we observed
376 high variation in transcript expression between replicates for both cytochrome p450 6k1 isoform X1 and
377 the UDP- glucuronyltransferase 2b7-like. Multiple individuals over-expressed both genetic mechanisms
378 in both exposure groups, while other individuals also showed no expression differences. The average of
379 the biological replicates is presented in Table 6 and their corresponding CT values with corresponding
380 STD is presented in **Supplemental Table S3**. Within the two additional chlorothalonil replicates, we
381 observed over-expression of both cytochrome p450 6k1 isoform X1 and a UDP- glucuronyltransferase
382 2b7-like transcripts, whereas in the two additional imidacloprid replicates we observed only slight over-
383 expression of the UDP- glucuronyltransferase in one group and no over-expression of any other
384 mechanisms in any other group. These findings further suggest that the activation of putative resistance
385 mechanisms is highly variable between individuals, but are partially regulated by pesticide exposure and
386 should be further examined in field relevant populations for their role in insecticide resistance.

387 The aim of our transcriptomic study was to classify the genetic detoxification mechanisms
388 activated from exposure of the insecticide imidacloprid and the fungicides chlorothalonil and boscalid,
389 and further to determine if there was any overlap in the genetic response within these individuals. In
390 our exploration we found several over-expressed transcripts as a response to these chemicals. Further,
391 we were able to classify two enzymatic detoxification mechanisms activated in common by both
392 imidacloprid and chlorothalonil. Interestingly, individual beetle responses varied greatly to their
393 chemical stressors, suggesting that these genetic responses, while similar, could also be dependent
394 upon individual genetics. Examination of the genetic response imposed by commonly occurring
395 pesticides on both target and off-target individuals can lead to a better understanding of how insecticide
396 resistance develops. While this study was conducted with a naïve lab colony, future studies from field
397 relevant individuals would help confirm the significance of our results and the effects of off-target
398 pesticide treatments.

399

400 **Conflict of interest**

401 The Authors declare no conflicts of interest.

402

403 **References**

- 404 1. Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Graefius E. Colorado potato beetle resistance to
405 insecticides. *American Journal of Potato Research*. 2008 Dec 1;85(6):395-413.
- 406 2. Weber DC, Ferro DN, Zehnder GW. Colorado potato beetle: diverse life history poses challenge
407 to management. *Advances in Potato Pest Biology and Management*. 1994:54-70.
- 408 3. Hare JD. Ecology and management of the Colorado potato beetle. *Annual Review of
409 Entomology*. 1990 Jan;35(1):81-100.
- 410 4. Forgash AJ. Insecticide resistance in the Colorado potato beetle. In *Proceedings- XVII
411 International Congress of Entomology*, ed., D.N. Ferro and R.H. Voss, Amherst, MA:
412 Massachusetts Agricultural Experiment Station Research Bulletin. 1985(704):33-52.
- 413 5. Sparks TC, Nauen R. IRAC: Mode of action classification and insecticide resistance management.
414 *Pesticide Biochemistry and Physiology*. 2015 Jun 1;121:122-8.
- 415 6. Tomizawa M, Casida JE. Molecular recognition of neonicotinoid insecticides: the determinants of
416 life or death. *Accounts of Chemical Research*. 2008 Nov 21;42(2):260-9.

417 7. Huseth AS, Groves RL. Effect of insecticide management history on emergence phenology and
418 neonicotinoid resistance in *Leptinotarsa decemlineata* (Coleoptera: Chrysomelidae). *Journal of*
419 *Economic Entomology*. 2013 106:2491–2505.

420 8. Clements J, Schoville S, Peterson N, Lan Q, Groves RL. Characterizing molecular mechanisms of
421 imidacloprid resistance in select populations of *Leptinotarsa decemlineata* in the Central Sands
422 region of Wisconsin. *PLoS One*. 2016 Jan 28;11(1):e0147844.

423 9. USDA. USDA National Agricultural Statistical Service Agricultural Chemical Use Program.
424 Agriculture 501 Chemical Use Program Available at:
425 https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/. (Accessed: 10th,
426 February 2016).

427 10. EPA. R.E.D FACTS Chlorothalonil. Available at:
428 <https://archive.epa.gov/pesticides/reregistration/web/pdf/0097fact.pdf>. (1999).

429 11. Syngenta. “Bravo Fungicide.” North Carolina. 2015.

430 12. BASF. “Endura Fungicide.” North Carolina. 2015.

431 13. Dunley JE, Welter SC. Correlated insecticide cross-resistance in azinphosmethyl resistant codling
432 moth (Lepidoptera: Tortricidae). *Journal of Economic Entomology*. 2000 Jun;93(3):955-62.

433 14. Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, Manguin S, Morgan JC,
434 Hemingway J. Pyrethroid and DDT cross-resistance in *Aedes aegypti* is correlated with novel
435 mutations in the voltage-gated sodium channel gene. *Medical and Veterinary Entomology*. 2003
436 Mar 1;17(1):87-94.

437 15. Hsu JC, Feng HT. Development of resistance to spinosad in oriental fruit fly (Diptera: Tephritidae)
438 in laboratory selection and cross-resistance. *Journal of Economic Entomology*. 2006
439 Jun;99(3):931-6.

440 16. Clements J, Schoville S, Peterson N, Huseth AS, Lan Q, Groves RL. RNA interference of three up-
441 regulated transcripts associated with insecticide resistance in an imidacloprid resistant
442 population of *Leptinotarsa decemlineata*. *Pesticide Biochemistry and Physiology*. 2017 Jan
443 1;135:35-40.

444 17. Gott RC, Kunkel GR, Zobel ES, Lovett BR, Hawthorne DJ. Implicating ABC Transporters in
445 Insecticide Resistance: Research Strategies and a Decision Framework. *Journal of Economic*
446 *Entomology*. 2017 Feb 28;110(2):667-77.

447 18. Kaplanoglu E, Chapman P, Scott IM, Donly C. Overexpression of a cytochrome P450 and a UDP-
448 glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle,
449 *Leptinotarsa decemlineata*. *Scientific Reports*. 2017 May 11;7(1):1762.

450 19. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: A universal tool for
451 annotation, visualization and analysis in functional genomics research. *Bioinformatics*.
452 2005;21(18):3674–6. pmid:16081474

453 20. Zhu F, Xu J, Palli R, Ferguson J, Palli S. Ingested RNA interference for managing the population of
454 the Colorado potato beetle, *Leptinotarsa decemlineata*. *Pest Management Science*. 2010 Aug;
455 DOI 10.1002/PS.2048.

456 21. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic*
457 *Acids Res*. 2001;29(9):e45. pmid:11328886.

458 22. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript
459 sequence reconstruction from RNA-seq using the Trinity platform for reference generation and
460 analysis. *Nature Protocols*. 2013;8(8):1494–512. pmid:23845962.

461 23. Casida JE. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms,
462 and relevance. *Journal of Agricultural and Food Chemistry*. 2010 Aug 23;59(7):2923-31.

463 24. Yu S (2015). *The Toxicology and Biochemistry of Insecticides*. CRC Press, Boca Raton, FL.

464 25. Jager T, Albert C, Preuss TG, Ashauer R. General unified threshold model of survival-a
465 toxicokinetic-toxicodynamic framework for ecotoxicology. *Environmental Science & Technology*.
466 2011 Mar 2;45(7):2529-40.

467 26. Liu Z, Williamson MS, Lansdell SJ, Denholm I, Han Z, Millar NS. A nicotinic acetylcholine receptor
468 mutation conferring target-site resistance to imidacloprid in *Nilaparvata lugens* (brown
469 planthopper). *Proceedings of the National Academy of Sciences of the United States of America*.
470 2005 Jun 14;102(24):8420-5.

471 27. Medina P, Smagghe G, Budia F, del Estal P, Tirry L, Viñuela E. Significance of penetration,
472 excretion, and transovarial uptake to toxicity of three insect growth regulators in predatory
473 lacewing adults. *Archives of Insect Biochemistry and Physiology*. 2002 Oct 1;51(2):91-101.

474 28. Clements J, Schoville S, Clements A, Amezian D, Davis T, Sanchez-Sedillo B, Bradfield C, Huseth
475 AS, Groves RL. (2018). Agricultural fungicides inadvertently influence the fitness of Colorado
476 potato beetles, *Leptinotarsa decemlineata*, and their susceptibility to insecticides. *BioRxiv*
477 286377; doi: <https://doi.org/10.1101/286377>.

478