

1 Complete diagnosis of leptospirosis in tropical 2 reproductive cattle

3 Gabriela Pacheco Sánchez^{1¶#a*} / Fabio Almeida de Lemos^{1¶} / Mirian Dos Santos Paixão-
4 Marques^{2¶} / Maria Fernanda Alves-Martin^{2¶} / Lívia Maísa Guiraldi^{2¶} / Wesley José Santos^{2¶} /
5 Simone Baldini Lucheis^{3¶}

6
7 ¹ Department of Veterinary Hygiene and Public Health, Botucatu School of
8 Veterinary Medicine and Zootechnics – UNESP, Botucatu, Brazil.

9 ² Department of Tropical Diseases, Botucatu School of Medicine – UNESP,
10 Botucatu, Brazil

11 ³ Paulista Agency for Agribusiness Technology, APTA, Bauru, Brazil

12
13 ^{#a} Current address: Bacteriology Laboratory – Butantan Institute, São Paulo, Brazil

14
15 *Corresponding author:

16 E-mail: pacheco.sanchez.gabriela@gmail.com

17
18 [¶]These authors contributed equally to this work

21 **Abstract**

22 Leptospirosis is a worldwide zoonosis of great impact in both animal and public
23 health. Bovine leptospirosis is commonly manifested by reproductive disorders, such
24 as abortion, stillbirth and infertility; causing depletion of the economic balance of
25 livestock farms, along with representing a health risk problem for farm workers. In view
26 of these consequences, we aimed to evaluate the sanitary status of tropical cattle and
27 their role as reproductive disseminators of leptospirosis. We analyzed blood and

28 semen samples from 11 brazilian herds by three diagnostic methods -Culture,
29 Microscopic Agglutination Test and Polymerase Chain Reaction. All animals were
30 negative for bacteriological culture in Fletcher's semisolid medium; 66% (264/400)
31 animals were seropositive to at least one of 19 serovars (17 serogroups) of *Leptospira*
32 spp. by MAT, given that 42.4% and 5.3% of animals presented titers against brazilians
33 isolates Guaricura and Nupezo, respectively; furthermore, five animals were positive by
34 PCR in blood and/or culture samples and three semen samples were positive by PCR
35 (one of them also seropositive). These results highlight the coexistence of both
36 disease's stages (acute and chronic) in the same environment, thus alert for venereal
37 dissemination of leptospirosis, aggravating their sanitary condition and fomenting
38 economic losses. We, authors, recommend the adoption of prophylactic measures,
39 such as systemic vaccination, treatment of animals and improvement of hygienic-
40 sanitary conditions.

41 **Keywords:** leptospirosis; diagnosis; culture; MAT; PCR; cattle

42

43 **Introduction**

44 Among reproductive diseases that affect livestock, leptospirosis has a high degree of
45 importance, specially in tropical countries (1). This zoonosis is caused by members of
46 genus *Leptospira* spp., which currently includes 22 species and more than 300
47 serovars (2). Bovine leptospirosis represents an animal health problem, given its
48 common manifestation like chronic reproductive disorders, such as abortion, stillbirth
49 and infertility (3,4). Clinical signs of the acute presentation and mortality are most
50 frequent in calves (5). Furthermore, leptospirosis also represents a public health risk for
51 farm workers along with decrease in economic balance of livestock farms (6). For
52 diagnosis of leptospirosis, many current options are available depending on sample
53 type and clinical phase of disease, each method has its own advantages and
54 disadvantages. Microscopic agglutination test – MAT, remains the reference test for

55 routine diagnosis (7,8). Concordance among positive MAT results and positive
56 outcomes by other techniques has proved that MAT is an efficient diagnostic test for
57 prediction of infecting serogroup (9); although, another study proved that cattle may
58 not react against their own isolate by MAT, demanding caution when evaluating
59 negative MAT results for carrier status (10). Countries with strong livestock production,
60 like Brazil, have a particular concern on elucidate important features regarding
61 leptospirosis. Many research groups aim to explain the dissemination and risk factors
62 of this disease (11). Throughout the years, the interest on understanding leptospirosis
63 pathogenesis has led to studies involving possible transmission routes. Venereal
64 transmission has attracted attention since the report of genital Hardjo infection in
65 naturally infected cattle (12), and presence of *Leptospira* spp. was demonstrated in
66 bovine semen by PCR (13), proving that the bacteria can also be established in
67 gonads, suggesting possible sexual transmission. These informations should be
68 considere when assessing disease's control programs, along with endemic serovars,
69 antibiotic and vaccination availability, besides epidemiological studies (14,15). In this
70 context, we aimed to evaluate the sanitary status of this zoonosis in clinically
71 asymptomatic cattle from a tropical region of Brazil.

72

73 **Material and Methods**

74 The area chosen for this study was the microregion of Bauru, which is a country town
75 of São Paulo, Brazil. Bauru is a tropical area known for its hot temperature, typically
76 from 59 F to 86 F; with extreme seasonal variation in rainfall, the least rain falls in
77 winter and the most rain falls around summer, encompassing up to 12 inches.
78 In order to estimate sample size for this study, we used the online program Epi InfoTM
79 (<http://www.openepi.com>), with confidence interval of 95% and based on a preview
80 study that found prevalence of 58.7% in the city of Bauru, years before (16). Sample
81 size calculated for disease frequency was 373 samples.

82 We analyzed blood samples of 11 herds from five farms (representing 400 animals); as
83 to semen samples from two herds. Cattle were raised for reproductive purposes and
84 shared water fountain and pastures among most herds studied. All farms presented
85 historic of reproductive failures and no vaccination program installed for leptospirosis.
86 Animals studied were clinically asymptomatic for leptospirosis. Approximately 5-10 ml
87 of blood samples were collected using sterile syringes, by caudal tail vein venipuncture,
88 and evacuated into one tube with anticoagulant and one without it. Semen samples
89 were collected by electroejaculation (Electro-Ejaculator DUBOI), approximately 2 – 5
90 ml of semen were obtained from each animal. All samples were identified, refrigerated
91 and transported to the Animal Sanity Laboratory of Paulista Agency of Agribusiness
92 Technology, APTA, Bauru, Brazil. At the laboratory, blood and semen samples were
93 inoculated in Fletcher medium for bacteriological isolation, employing a serial dilution
94 technique with some modifications (17). From all dilutions, 0.5 mL were inoculated into
95 a tube containing semisolid Fletcher's culture medium (Difco[®]) with 0.15% agar,
96 supplemented with 100 µg of 5-fluorouracil/mL and 1% sterile rabbit serum and
97 inactivated at 56 °C for 30 min. Cultures were incubated at 28-30 °C for 16 weeks.
98 Dark-field microscopy evaluation of tubes was performed every two weeks. For
99 detection of anti-*Leptospira* antibodies, Microscopic Agglutination Test (MAT) was used
100 with a panel of 19 serovars (including two native isolates) representing 17 pathogenic
101 and intermediate serogroups (table 1), according to international standards (18). Serum
102 samples were considered reactive when reached titers ≥ 100 and the ultimate reactive
103 serogroup was determined by election of the highest titer presented; when presence of
104 coagglutinations, all serovars involved were considered as positive.

105

106 **Table 1.** Serovars used in Microscopic Agglutination Test (MAT).

SPECIES	SEROGROUP	SEROVAR	STRAIN
<i>L. interrogans</i>	Australis	Bratislava	Jez-Bratislava
<i>L. kirschneri</i>	Autumnalis	Butembo	Butembo

<i>L. borgpetersenii</i>	Ballum	Castellonis	Castellón
<i>L. interrogans</i>	Bataviae	Bataviae	Van Tienen
<i>L. interrogans</i>	Canicola	Canicola	Hond Utrecht IV
<i>L. weili</i>	Celledoni	Whitcombi	Whitcombi
<i>L. kirschneri</i>	Cynopteri	Cynopteri	3552 C
<i>L. interrogans</i>	Djasiman	Sentot	Sentot
<i>L. kirschneri</i>	Grippotyphosa	Grippotyphosa	Moska V
<i>L. interrogans</i>	Hebdomadis	Hebdomadis	Hebdomadis
<i>L. interrogans</i>	Icterohaemorrhagiae	Icterohaemorrhagiae	RGA
<i>L. borgpetersenii</i>	Javanica	Javanica	Veldrat Batavia 46/RA 94
<i>L. noguchi</i>	Panama	Panama	CZ 214 K
<i>L. interrogans</i>	Pomona	Pomona	Pomona
<i>L. interrogans</i>	Pyrogenes	Pyrogenes	Salinem
<i>L. interrogans</i>	Sejroe	Hardjo	Hardjoprajitno
<i>L. santarosai</i>	Shermani	Shermani	LT 821
<i>L. santarosai</i>	Sejroe	Guaricura	Bov G.
<i>L. interrogans</i>	Canicola	Nupezo	NUP-1

107

108 Serum samples were considered reactive when reached titers ≥ 100 .
109 DNA from blood and culture samples (for confirmatory purposes) was extracted for
110 Polymerase Chain Reaction (PCR) using the Illustra Blood Genomic Prep Mini Spin kit
111 (GE Healthcare[®]), while DNA from semen samples was extracted using DNAzol[®]
112 reagent, both according to manufacturers' recommendations. Primers employed
113 amplify a fragment of 331 base pairs length (19): LEP 1 (5'
114 GGCGGCGCGTCTTAAACATG 3') and LEP 2 (5' TTCCCCCCCATTGAGCAAGATT 3').
115 The final reaction volume was 25 μ L, including 2.5 μ L of PCR buffer solution (50 mM
116 KCl and 10 mM Tris-HCl, pH 8.0), 0.75 μ L of MgCl₂ (1.5 mM), 0.5 μ L of dNTP solution
117 (0.2 mM), 0.5 μ L of **Taq Platinum** DNA (1 U) (Invitrogen[®]), 0.5 μ L of each primer (10
118 pM), 17.75 μ L of ultrapure water, and 2 μ L of the DNA extracted from each sample.
119 PCR reaction was conducted in a Mastercycler[®] gradient thermal cycler (Eppendorf),
120 according to the protocol described by Merien et al., 1992, with modifications. The
121 amplified products were visualized by electrophoresis in 1.5% agarose. Cultures of

122 *Leptospira interrogans* serovar Copenhageni in EMJH medium were used as positive
123 controls, as well as ultrapure water like negative controls.

124

125 **Results**

126 Cultures of all samples were performed to detect presence of *Leptospira* spp. in blood
127 and semen samples. All samples were negative to bacteriological culture, using
128 visualization by dark-field microscope. All eleven herds presented titers against at least
129 one pathogen serogroup of *Leptospira* spp. (minimum of 50% animals reactive per
130 herd); 66% (264/400) of animals were positive to MAT. Most reactive serogroups were
131 Sejroe, serovar Guaricura (local strain) with 112 positive animals and serovar Hardjo
132 with 102 positive animals; and serogroup Autumnalis with 77 positive MAT reactive
133 samples. Highest titers reached 3200 when tested against serovar Guaricura and
134 serovar Hardjo. Coaglutinations reached up to 37.1% of all MAT positive outcomes.

135 Analysis by PCR of blood samples showed some controversial results. Out of all
136 negative blood cultures, four animals turned out to be positive by confirmatory culture
137 PCR. When analyzing direct blood PCR results, we noted that three animals were
138 positive for presence of *Leptospira* spp.; perturbation aroused when confirming that out
139 of the positive samples, only one was positive both in confirmatory culture PCR as to in
140 blood PCR. Thus, confirming the conflicted scenario of having the same theoretical
141 sample positive in one test and negative in the other. None of these positive animals
142 had MAT positive outcomes (table 2).

143

144 **Table 2.** Molecular and serological outcome for bulls positive by PCR in semen
145 and/or blood samples.

Animal	Herd	PCR Blood		MAT	
		Sample	Culture	Serum	
31	2	-	+	-	-

33	2	-	+	-
170	6	+	-	-
191	7	+	+	-
327	10	-	+	-
387	11	+	-	-

146

147 Analysis by PCR of semen displayed some interesting results as well. Two bulls were
148 positive for confirmatory PCR of negative culture (dark-field microscopy); three bulls
149 were positive for semen PCR and for semen culture confirmation PCR; and other two
150 bulls were positive solely for culture confirmation PCR, but not for direct semen PCR.
151 Among these positive bulls, three were also positive by MAT (table 3).

152

153 **Table 3.** Molecular and serological outcome for bulls positive by PCR in semen
154 and/or blood samples.

Animal	Herd	PCR Blood		PCR Semen		MAT	
		Sample	Culture	Sample	Culture	Serum	
5	1	-	-	-	+	+	
7	1	-	-	+	+	-	
27	2	-	-	+	+	-	
29	2	-	-	-	+	+	
30	2	-	-	+	+	+	
31	2	-	+	-	-	-	
33	2	-	+	-	-	-	

155

156 **Discussion**

157 In order to evaluate sanitary state of the disease and not just merely exposure to the
158 bacteria, we used serovars from pathogenic species of *Leptospira* spp., one serovar
159 representative from each serogroup and also two native brazilian isolates, serovar
160 Guaricura (*Leptospira santarosai* serogroup Sejroe) and serovar Nupezo (*Leptospira*

161 *canicola* serogroup Canicola). Serovar Nupezo showed reactivity when compared to
162 serovar Canicola, supporting the inclusion of local strains for more sensitive MAT
163 results. Serogroup Sejroe had most positive outcomes, however serogroups
164 Autumnalis and Hebdomadis were also quite reactive, suggesting possible contact
165 among cattle with wild animals, given that only serogroup Sejroe is known to be
166 adaptive to cattle and the other two serogroups have been reported in wild animals
167 (20,21). Several studies around Brazilian territory showed the magnitude and
168 importance of leptospirosis in this tropical region, and despite variety of these studies'
169 outcomes, the seriousness can't be disguised (table 4).

170

171 **Table 4.** Prevalence studies about bovine leptospirosis in Brazil.

Region	State	Prevalence	Animals	Frequent serogroups	References
North	Maranhão	35.94%	4832 cows	Sejroe	(22)
Northeast	Bahía	45.42%	10 823 bovines	Sejroe	(23)
Central-west	Mato Grosso do Sul	98.8%	1801 cows	Sejroe	(24)
Southeast	Santa Catarina	65.53%	3945 cows	Autumnalis and Sejroe	(25)
	Rio de Janeiro	14%	120 cows	Sejroe and Shermani	(26)
South	São Paulo	45.8%	2761 bovines	Sejroe	(16)

172

173 Considering that 66% (264/400) of cattle were seropositive, furthermore six animals
174 were positive for PCR of blood and/or culture of blood, as three bulls were also positive
175 by confirmatory PCR of semen cultures (one of them confirmed by semen PCR as
176 well), we can suggest there is an imminent present exposure of cattle to the disease in

177 those farms, the same ones that constitute a representation of the extensive livestock
178 production system in this tropical region.

179 PCR outcomes also showed trustworthiness when compared to culture, given that
180 results that were negative by culture were positive by PCR, which was no surprise
181 considering difficultness of visualization of spirochetes by dark-field microscopy (7).

182 Surprise came when comparing PCR results between negative cultures and samples,
183 animals were positive on blood culture but not on whole blood or vice versa, suggesting
184 that there could be an inhibitor in blood that was diluted when cultured. Similar results
185 occurred with two semen samples, thus same explanation can be granted (27).

186 Some current studies have attempt to confirm presence of leptospiral DNA in
187 reproductive secretions. In cattle, two research group evaluated semen of seropositive
188 bulls with unsuccessful results (28,29)), but more recently another research group was
189 capable to detect Leptospiral DNA from vaginal fluid of cows (30). Other studies have
190 been executed in goats and sheeps, with positive results for vaginal fluids and semen
191 (31); and in mares and horses, which lead to detection of leptospiral DNA in vaginal
192 fluids, genital tract and semen (32,33). Thus, the results obtained in this study enhance
193 current knowledge of not only sanitary status of the disease, but to possible
194 participation of sexual transmission in farms representative of the extensive livestock
195 production farming in this tropical region.

196 These farms do not have an established surveillance program for leptospirosis,
197 therefore lack of prevention could be one of the main reasons for the serological and
198 molecular results. We, authors, strongly recommend the adoption of prophylactic
199 measures, such as systemic vaccination, treatment of animals and improvement of
200 hygienic-sanitary conditions, given the results obtained.

201

202 **Acknowledgments**

203 We will like to thank to National Council for Scientific and Technological Development
204 – CNPq and Paulista Agency of Agribusiness Technology – APTA Bauru.

205

206 **References**

- 207 1. Martins G, Lilenbaum W. The panorama of animal leptospirosis in Rio de
208 Janeiro, Brazil, regarding the seroepidemiology of the infection in tropical
209 regions. *BMC Vet Res* [Internet]. 2013;9:237. Available from:
210 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750000/>
211 trez&rendertype=abstract
- 212 2. Picardeau M. Virulence of the zoonotic agent of leptospirosis: still terra
213 incognita? *Nat Rev Microbiol* [Internet]. 2017 [cited 2017 Aug 23];15(5):297–307.
214 Available from: <http://doi.org/10.1038/nrmicro.2017.5>
- 215 3. Ellis W. Animal Leptospirosis. In: *Leptospira and Leptospirosis*. Springer; 2015.
216 p. 295.
- 217 4. Martins G, Penna B, Hamond C, Leite RC-K, Silva A, Ferreira A, et al.
218 Leptospirosis as the most frequent infectious disease impairing productivity in
219 small ruminants in Rio de Janeiro, Brazil. *Trop Anim Health Prod* [Internet].
220 2012;44(4):773–7. Available from:
221 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490700/>
- 222 5. Lilenbaum W, Martins G. Leptospirosis in cattle: A challenging scenario for the
223 understanding of the epidemiology. *Transbound Emerg Dis*.
224 2014;61(SUPPL1.):63–8.
- 225 6. Langoni H, de Souza LC, da Silva V, Cunha ELP, da Silva RC.
226 Epidemiological aspects in leptospirosis. Research of anti-Leptospira spp
227 antibodies, isolation and biomolecular research in bovines, rodents and workers
228 in rural properties from Botucatu, SP, Brazil [Aspectos epidemiológicos nas
229 leptospiroses: Pesquisa d. Brazilian J Vet Res Anim Sci [Internet].
230 2008;45(3):190–9. Available from:
231 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2500000/>
232 78149436726&partnerID=40&md5=e85cfb1ce0f76c5de43234e55c5a5b3b
- 233 7. Picardeau M. Diagnosis and Epidemiology of leptospirosis. *Diagnostic
234 épidémiologie la leptospirose* [Internet]. 2013 [cited 2017 Aug 24];43:1–9.
235 Available from: <http://dx.doi.org/10.1016/j.medmal.2012.11.005>
- 236 8. Picardeau M, Bertherat E, Jancloes M, Skouloudis AN, Durski K, Hartskeerl R a.
237 Rapid tests for diagnosis of leptospirosis: current tools and emerging

238 technologies. *Diagn Microbiol Infect Dis* [Internet]. 2014 Jan [cited 2014 Oct
239 22];78(1):1–8. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24207075>

240 9. Blanco RM, dos Santos LF, Galloway RL, Romero EC. Is the microagglutination
241 test (MAT) good for predicting the infecting serogroup for leptospirosis in Brazil?
242 *Comp Immunol Microbiol Infect Dis*. 2016;44:34–6.

243 10. Libonati H, Pinto PS, Lilenbaum W. Seronegativity of bovines face to their own
244 recovered leptospiral isolates. *Microb Pathog*. 2017;108:101–3.

245 11. Fávero JF, Araújo HL De, Lilenbaum W, Machado G, Tonin AA, Baldissera MD,
246 et al. Bovine leptospirosis : Prevalence , associated risk factors for infection and
247 their cause-effect relation. *Microb Pathog* [Internet]. 2017 [cited 2017 Aug
248 22];107:149–54. Available from: <http://dx.doi.org/10.1016/j.micpath.2017.03.032>

249 12. Ellis W, Songer J, Montgomery J, Cassells J. Prevalence of *Leptospira*
250 interrogans serovar hardjo in the genital and urinary tracts of non-pregnant
251 cattle. *Vet Rec*. 1986;118(1):11–3.

252 13. Heinemann MB, Garcia JF, Nunes CM, Morais ZM, Gregori F, Cortez A, et al.
253 Detection of leptospires in bovine semen by polymerase chain reaction. *Aust Vet J*.
254 1999;77(1):32–4.

255 14. Adler B, de la Peña Moctezuma A. Leptospira and leptospirosis. *Vet Microbiol*
256 [Internet]. 2010 Jan 27 [cited 2014 May 24];140(3–4):287–96. Available from:
257 <http://www.ncbi.nlm.nih.gov/pubmed/19345023>

258 15. Martins G, Lilenbaum W. Control of bovine leptospirosis: Aspects for
259 consideration in a tropical environment. *Res Vet Sci* [Internet]. 2017 [cited 2017
260 Aug 24];112:156–60. Available from: <http://dx.doi.org/10.1016/j.rvsc.2017.03.021>

261 16. Langoni H, Meireles LR, Gottschalk S, Cabral KG, Silva AV. Perfil Sorológico Da
262 Leptospirose Bovina Em Regiões Do Estado De São Paulo. *Arq Inst Biol, São ...*
263 [Internet]. 2000 [cited 2018 Apr 1];37–41. Available from: <http://revistas.bvs-vet.org.br/arqib/article/download/25774/26642>

264 17. Passos EDC, Vasconcellos SA, Ito FH, Yasuda PH, Junior RN. Isolamento de
265 Leptospiros a partir do tecido renal de hamsters experimentalmente infectados
266 com *Leptospira interrogans* sorotipo pomona. Emprego das técnicas da pipeta
267 Pasteur e a das diluições seriadas em meio de cultura de Fletcher tratado com
268 5-Fluor-ur. *Rev da Fac Med Vet e Zootec da Univ São Paulo*. 1988;25(2):221–
269 35.

270 18. OIE. Leptospirosis. In: *Manual of Diagnostic Tests and Vaccines for Terrestrial*
271 *Animals - Web Format*. Fifth edit. Paris: OIE; 2014. p. 1–15.

272 19. Merien F, Amouriaux P, Perolat P, Baranton G, Girons I Saint. Polymerase
273 Chain Reaction for Detection of *Leptospira* in Clinical Samples. *J Clin Microbiol*.

275 1992;30(9):2219–24.

276 20. Paixão MDS, Alves-Martin MF, Tenório MDS, Starke-Buzetti W a, Alves ML, da
277 Silva DT, et al. Serology, isolation, and molecular detection of *Leptospira* spp.
278 from the tissues and blood of rats captured in a wild animal preservation centre
279 in Brazil. *Prev Vet Med* [Internet]. 2014 Jul 1 [cited 2014 Oct 23];115(1–2):69–
280 73. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24703251>

281 21. Pinto PS, Pestana C, Medeiros MA, Lilenbaum W. concept of adaptability of
282 leptospires to cattle. 2017;172(April):156–9.

283 22. Silva FJ, Conceição WLF, Fagliari JJ, Girio RJS, Dias R a., Borba MR, et al.
284 Prevalência e fatores de risco de leptospirose bovina no estado do maranhão.
285 *Pesqui Vet Bras.* 2012;32(4):303–12.

286 23. Oliveira FCS, Azevedo SS, Pinheiro SR, Viegas SARA, Batista CSA, Coelho
287 CP, et al. Soroprevalência Da Leptospirose Em Fêmeas Bovinas Em Idade
288 Reprodutiva No Estado De São Paulo, Brasil. *Arq Inst Biol.* 2009;76(4):539–46.

289 24. Figueiredo A de O, Pellegrin AO, Gonçalves VSP, Freitas EB, Monteiro LARC,
290 Oliveira JM de, et al. Prevalência e fatores de risco de leptospirose em bovinos
291 de Mato Grosso do Sul. *Pesqui Veterinária Bras.* 2009;29(5):375–81.

292 25. Tonin AA, Azevedo MI De, Escobar TP, Casassola I, Gaspareto L, Schafer A, et
293 al. LEPTOSPIROSE BOVINA : AUMENTO NA INCIDÊNCIA DA *Leptospira*
294 interrogans SOROVAR butembo NO REBANHO DO ESTADO DE SANTA
295 CATARINA , BRASIL. *Microbiol.* 2010;4(4):294–7.

296 26. Folly M, Estadual U, Fluminense N. Anti-*Leptospira* agglutinins in farm workers ,
297 bovines and canines performed in the microregion of Itaperuna *J Bras*
298 *Ciência Anim.* 2013;6(July 2013):406–17.

299 27. Alaeddini R. Forensic implications of PCR inhibition - A review. *Forensic Sci Int*
300 *Genet* [Internet]. 2012 [cited 2017 Aug 24];6(3):297–305. Available from:
301 <http://dx.doi.org/10.1016/j.fsigen.2011.08.006%0A>

302 28. Magajevski FS, Silva Girio RJ, Mathias LA, Myashiro S, Genovez MÉ, Scarcelli
303 EP. Detection of *Leptospira* spp. in the semen and urine of bulls serologically
304 reactive to *Leptospira* interrogans serovar Hardjo. *Brazilian J Microbiol.*
305 2005;36:43–7.

306 29. Vinodh R, Raj GD, Govindarajan R, Thiagarajan V. Detection of *Leptospira* and
307 *Brucella* genomes in bovine semen using polymerase chain reaction. *Trop Anim*
308 *Health Prod* [Internet]. 2008 [cited 2017 Aug 24];40:323–9. Available from:
309 <http://doi.org/10.1007/s11250-007-9110-5%0D>

310 30. Loureiro AP, Pestana C, Medeiros MA, Lilenbaum W. High frequency of
311 leptospiral vaginal carriers among slaughtered cows. *Anim Reprod Sci* [Internet].

312 2017 [cited 2017 Aug 23];178:50–4. Available from:
313 <https://doi.org/10.1016/j.anireprosci.2017.01.008>

314 31. Lilenbaum W, Vargas R, Brandão FZ, Cortez A, de Souza SO, Brandão PE, et
315 al. Detection of *Leptospira* spp. in semen and vaginal fluids of goats and sheep
316 by polymerase chain reaction. *Theriogenology* [Internet]. 2008 [cited 2017 Aug
317 24];69(7):837–42. Available from:
318 <http://doi.org/10.1016/j.theriogenology.2007.10.027>

319 32. Hamond C, Martins G, Medeiros MA, Lilenbaum W. Presence of leptospiral DNA
320 in semen suggests venereal transmission in horses. *J Equine Vet Sci* [Internet].
321 2013 [cited 2017 Aug 24];33:1157–9. Available from:
322 <http://dx.doi.org/10.1016/j.jevs.2013.03.185>

323 33. Hamond C, Pestana CP, Rocha-de-Souza CM, Cunha LER, Brandão FZ,
324 Medeiros MA, et al. Presence of leptospires on genital tract of mares with
325 reproductive problems. *Vet Microbiol* [Internet]. 2015 [cited 2017 Aug
326 24];179:264–9. Available from: <https://doi.org/10.1016/j.vetmic.2015.06.014>

327

328