

1 **Spikeling: a low-cost hardware implementation of a spiking neuron for**
2 **neuroscience teaching and outreach**

3 Tom Baden^{1,3,4\$}, Ben James¹, Maxime JY Zimmermann¹, Phillip Bartel¹, Dorieke
4 Grijseels², Leon Lagnado^{1*}, Miguel Maravall^{1*}

5 1, School of Life Sciences, University of Sussex, UK; 2, School of Psychology,
6 University of Sussex, UK; 3, Institute for Ophthalmic Research, University of
7 Tuebingen, Germany; 4, TReND in Africa gUG (www.TReNDinAfrica.org)

8 *equal contribution

9 \$Correspondence at t.baden@sussex.ac.uk

10

11 **Summary**

12 Understanding of how neurons encode and compute information is fundamental to
13 our study of the brain, but opportunities for hands-on experience with
14 neurophysiological techniques on live neurons are scarce in science education.
15 Here, we present Spikeling, an open source £25 in silico implementation of a spiking
16 neuron that mimics a wide range of neuronal behaviours for classroom education
17 and public neuroscience outreach. Spikeling is based on an Arduino microcontroller
18 running the computationally efficient Izhikevich model of a spiking neuron. The
19 microcontroller is connected to input ports that simulate synaptic excitation or
20 inhibition, dials controlling current injection and noise levels, a photodiode that
21 makes Spikeling light-sensitive and an LED and speaker that allows spikes to be
22 seen and heard. Output ports provide access to variables such as membrane
23 potential for recording in experiments or digital signals that can be used to excite

24 other connected Spikelings. These features allow for the intuitive exploration of the
25 function of neurons and networks. We also report our experience of using Spikeling
26 as a teaching tool for undergraduate and graduate neuroscience education in Nigeria
27 and the UK.

28

29 **Introduction**

30 Neuroscience is a major arm of modern life sciences, and many universities
31 worldwide are now offering dedicated neuroscience undergraduate degrees [1], [2].
32 A fundamental aspect of these courses is understanding electrical signalling within
33 neurons and the transmission of signals across synapses [3], as well as the
34 experimental techniques necessary to observe these properties [4]. However, owing
35 to budgetary constraints and logistical hurdles, few students can be afforded the
36 opportunity to experience an electrophysiological recording of a living neuron in
37 action, for example during an experimental class. Similarly, public understanding
38 about the fundamentals of brain function is hampered by the lack of cheap,
39 approachable and easy-to-use tools for neuroscience outreach aimed at illuminating
40 how the basic machines of the brain, neurons and synapses, operate to represent
41 information [5]. The growing public interest in areas such as artificial intelligence and
42 the effects of neurodegeneration on an aging population make it more pressing than
43 ever to foster public awareness and interest in basic concepts in neuroscience [6].

44 To support university level neuroscience teaching and public understanding of
45 neurons, we designed “Spikeling” (Fig. 1A), a £25 electronic circuit that mimics the
46 electrical properties of a spiking neurons by running the computationally efficient yet
47 versatile Izhikevich model [7] in real-time. The circuit is built around an Arduino [8],
48 an open source programmable microcontroller that has found widespread use in the
49 teaching of engineering and the design and implementation of open source
50 laboratory hardware [9], [10].

51 Following the footsteps of Mahowald and Douglas’ 1991 first complete *in silico*
52 realisation of a spiking neuron [11], Spikeling presents a simple yet powerful model

53 of an excitable neuron with multiple dials and input/output options to play with. It is
54 designed to facilitate a hands-on and intuitive approach to exploring the biophysics
55 of neurons, their operation within neuronal networks and the strategies by which they
56 encode and process information. Spikeling can be excited and its activity recorded
57 so as to design a variety of classical experiments similar to those that might be
58 carried out on a biological neuron and which students learn about in textbooks [12],
59 [13]. Here, we present a series of basic neuronal processes that are efficiently
60 modelled using Spikeling, followed by an evaluation of our experience using the
61 device for teaching senior undergraduate and MSc students in the UK and a
62 graduate neuroscience summer school held in Nigeria. Spikeling should be a useful
63 tool in educating students of neuroscience and psychology, as well as students of
64 engineering and computer science who are interested in the biophysics of neurons
65 and brain function.

66

67 **MAIN**

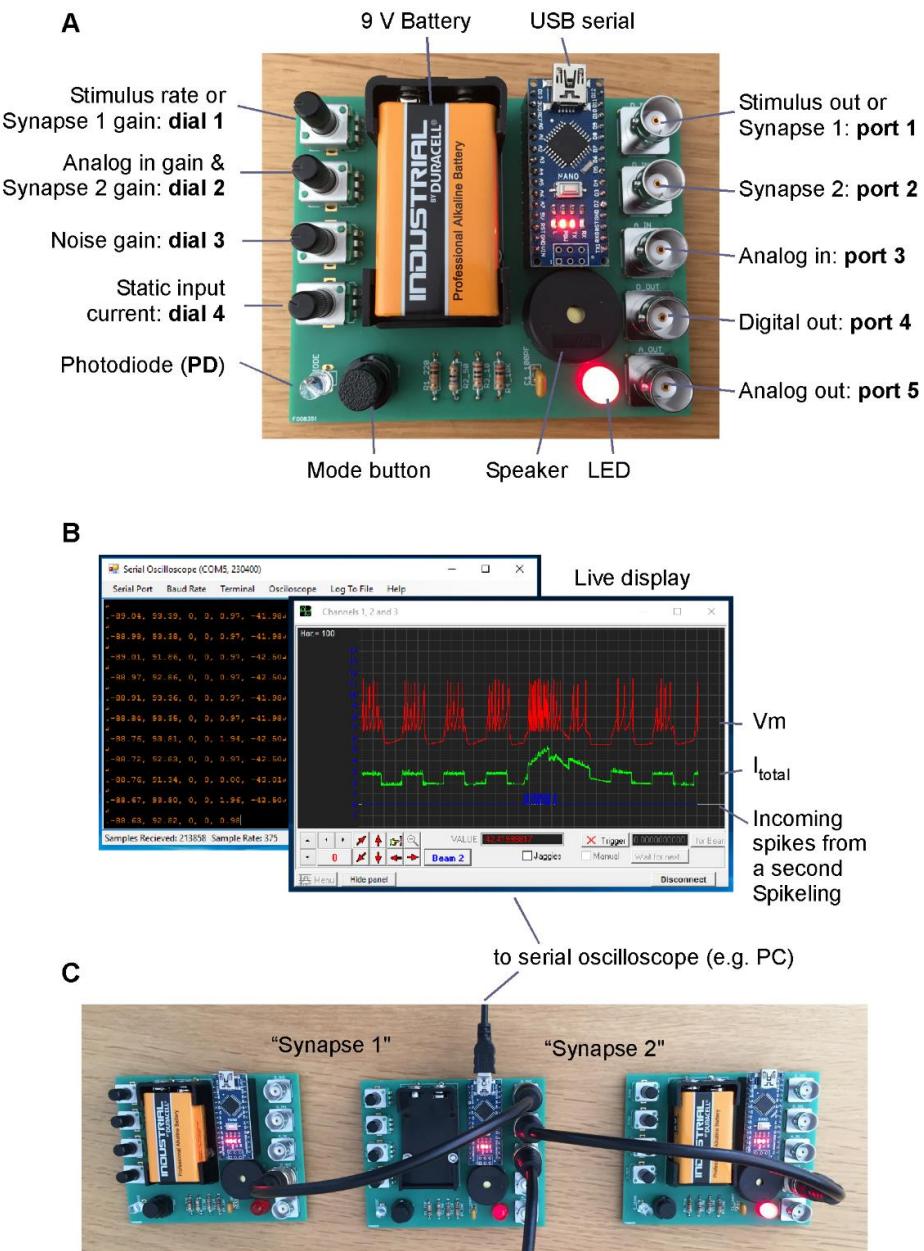
68 **A simple hardware implementation of a spiking neuron**

69 Spikeling (Fig. 1) consists of an Arduino-Nano microcontroller, a custom-printed
70 circuit board, and a small number of standard electronic components (see Bill of
71 Materials, BOM). Assembly takes between 20 minutes and 2 hours, depending on
72 previous experience with soldering and assembling circuit boards (see Spikeling
73 manual). Spikeling features large contacts and ample component spacing to facilitate
74 soldering for beginners. The functional properties of Spikeling can be modified by
75 software within the Arduino integrated development environment (IDE).

76 Upon current injection, Spikeling begins to fire, with each spike translating into an
77 audible “click” from a speaker. In tandem, membrane potential is continuously
78 tracked by the brightness of a light-emitting-diode (LED). To mimic different types of
79 neurons, Spikeling features a “mode button” for switching between different pre-
80 programmed model behaviours (e.g. regular spiking, fast spiking, bursting etc.).

81 These can also be modified in the code provided.

Figure 1 - Basic Hardware and Software



83 For inputs, Spikeling (Fig. 1A, Supplementary Figure S1) has three Bayonet Neill-
84 Conelman (BNC) ports: Two are “input synapses” that each respond to 5V
85 transistor-transistor-logic (TTL) pulses (ports 1,2) such as the “spike output” of a
86 second unit. Thus, Spikelings can also be connected into simple neuronal networks
87 (Fig. 1B, C). A third BNC input connection (port 3) is an analog-in port that can be
88 driven with a stand-alone stimulus generator or by a computer with a suitable output
89 port. The gain and sign of all inputs can be continuously set with rotary encoder
90 knobs (dials 1 & 2 – with dial 2 controlling both analog-in and synapse 2 gain). One
91 aim in the design of Spikeling was to also teach how neurons encode a sensory
92 stimulus so an on-board photodiode allows Spikeling to sense light. A light stimulus
93 can be delivered externally (e.g. using a torch), or via an LED driven by a
94 programmable on-board pulse generator. To mimic the “noisiness” of biological
95 neurons in intact neural circuits, a knob is provided to add variable amounts of
96 membrane noise to the simulation (dial 3) while a final knob controls a static input
97 current to set resting membrane voltage (dial 4).

98 For outputs, Spikeling features digital (port 4) and analog (port 5) BNC connections
99 that can be used to visualise the “membrane voltage” output on an external
100 oscilloscope or to drive another Spikeling. Alternatively, the modelled membrane
101 potential and several key internal processes (e.g. different current sources, input
102 spikes etc.) can be directly read out through the USB-based serial port for live
103 display on a computer screen and data logging (Fig. 1B). We also provide Matlab
104 (Mathworks) scripts for basic data visualisation and analysis. Finally, the system
105 can be powered through the universal serial bus (USB) port or by a 9V battery.

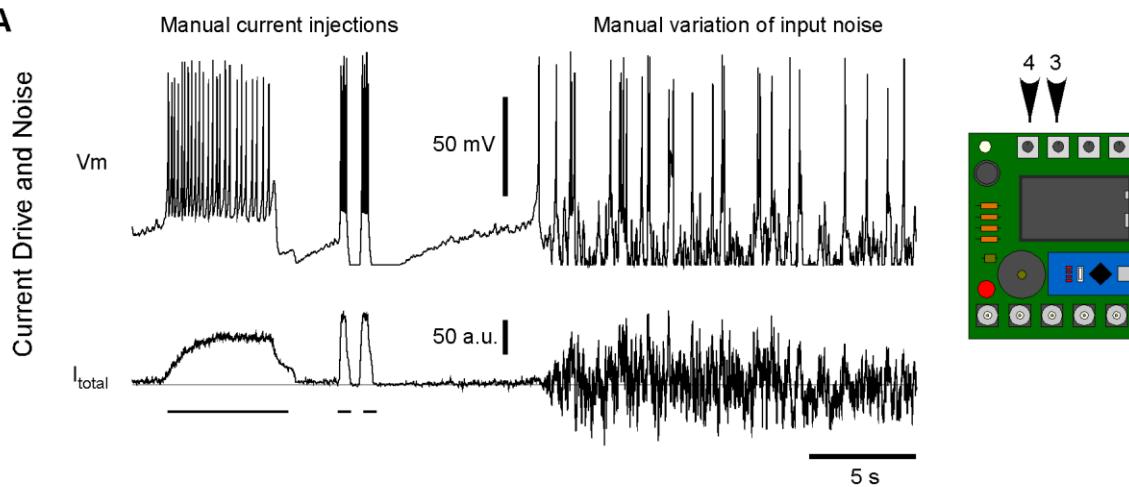
106

107 **Simulating neuronal activity**

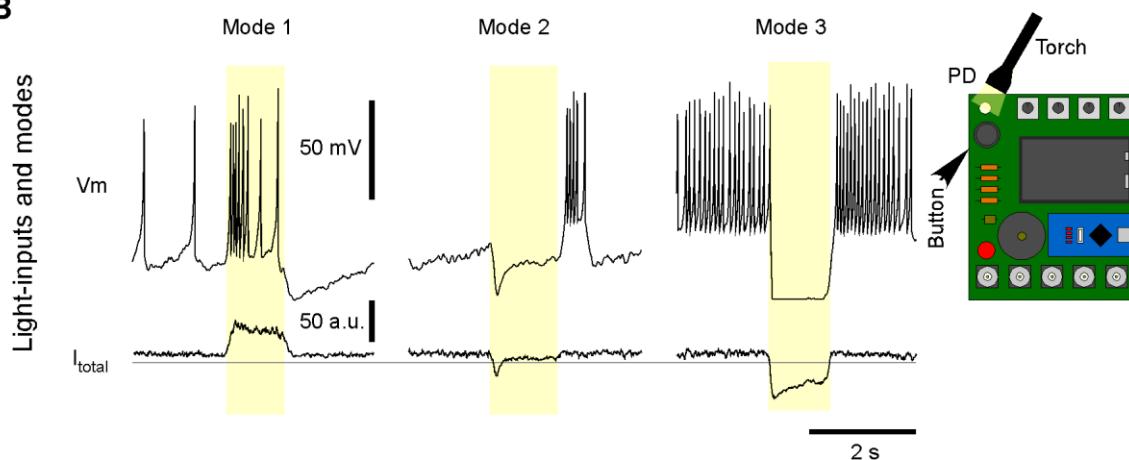
108 In an informal setting, Spikeling can be explored in a playful manner simply by (i)
109 depolarising or hyperpolarising the neuron via the input current (dial 4), (ii) dialling up
110 the membrane noise (dial 3, Fig. 2A) or (iii) manual stimulation of the photodiode
111 with a torch (Fig. 2B, SVideo 1). In each case, elicited spike activity can be intuitively
112 tracked by audible clicks coupled to flashes of the onboard LED. In parallel,
113 membrane potential and input current can be tracked live on a PC screen through a
114 serial plotter such as the openly available “Serial oscilloscope” [14] (Fig. 1B). In this
115 setup, Spikeling can be used to explore basic concepts in neuronal coding. For
116 example, holding a torch over the photodiode initially elicits a burst of spikes that
117 gradually slows down if the light is held in place, thereby mimicking a slowly adapting
118 “light-on” responsive neuron (Fig. 2B, left). The same experiment with Spikeling set
119 to mode 2 (toggled via the onboard button) will reveal a rapidly adapting rebound
120 burst of spikes upon removing the light, thereby mimicking a transient light-off
121 responsive neuron (Fig. 2B, center). Next, mode 3 mimics a sustained light-off driven
122 neuron with an elevated basal spike rate (Fig. 2B, right, cf. SVideo 2). In total,
123 Spikeling is pre-programmed with 5 modes (Supplementary Figure 2). These can
124 easily be modified or extended by the user in the Arduino code provided.

Figure 2 - Manual Exploration of Spikeling Functions

A



B



125

126

127 For more formal experimentation, Spikeling can be driven in a temporally precise
128 manner via the analog-in port or a regularly pulsed light source mounted over the
129 photodiode (SVideo 3). As a stimulus, port 1 (synapse 1/ stimulus out) can be flexibly
130 reconfigured into a digital stimulus generator. Alternatively, an external 0-5V analog
131 stimulus generator can be connected (not shown). At default settings, this port will
132 continuously generate 0-5V pulses at 50% duty cycle, with the stimulation rate being
133 controlled through dial 1. Accordingly, simply connecting port 1 (stimulus out) to port
134 3 (analog-in) allows for simple, time precise stimulation of the model neuron.

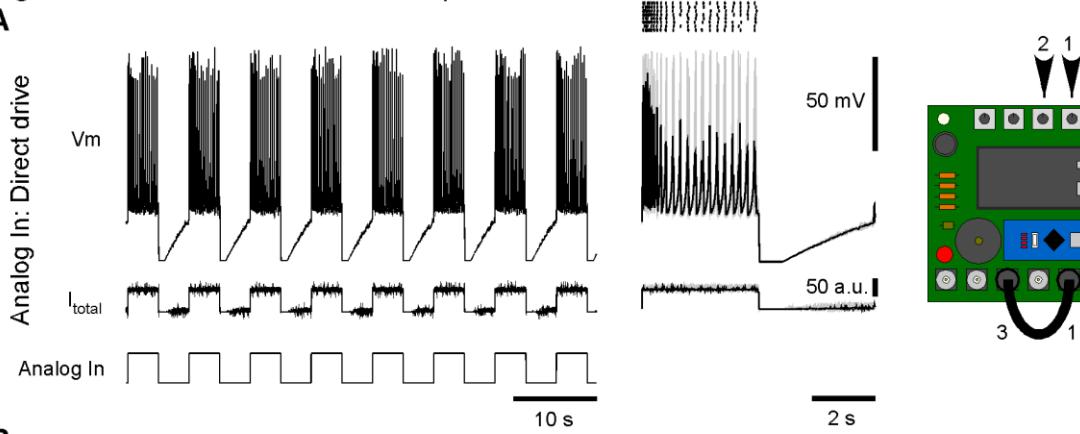
135 The millisecond time precision achieved in this way can then be exploited to study
136 neuronal function in further detail. For example, at default settings (see Spikeling
137 manual) the stimulator directly coupled to the analog-in port drives a highly
138 stereotyped spike train upon repeated stimulation (Fig. 3A, left), as further
139 elaborated in the raster plot (Fig. 3A, right, see also Supplementary Figure S2). From
140 here, systematic variation of the analog-in gain (dial 2) can be used to drive
141 Spikeling with different amplitude current steps, for example to build amplitude tuning
142 functions for spike rate, latency or first-spike time-precision (Fig. 3B).

143 Next, rather than delivering port 1's square-pulse drive via analog-in, the user can
144 instead drive an LED from the same port. In this way, positioning the LED above the
145 photodiode (e.g. via the 3D-printable adapter provided, or a custom paper tube)
146 allows for temporally precise driving of Spikeling via light (Fig. 3C). Adding noise to
147 this simulation allows exploring how the addition of noise initially distorts spike
148 timings before affecting rates (Fig. 3D).

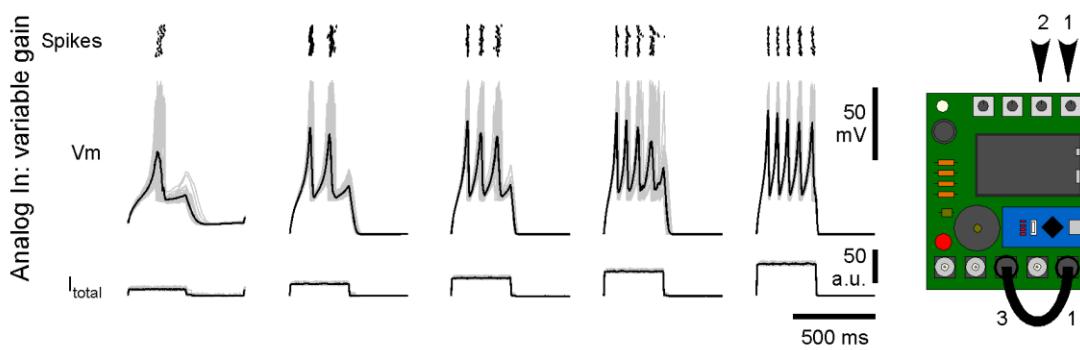
149

Figure 3 - Basic stimulus-driven operation

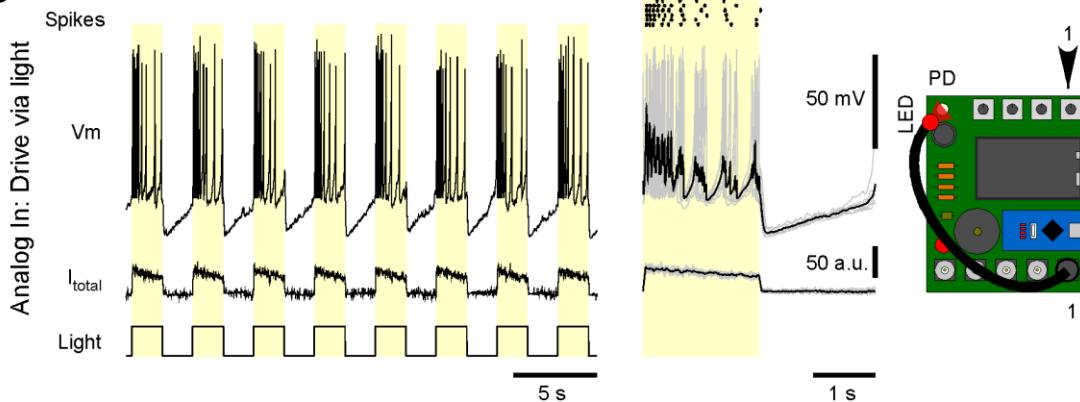
A



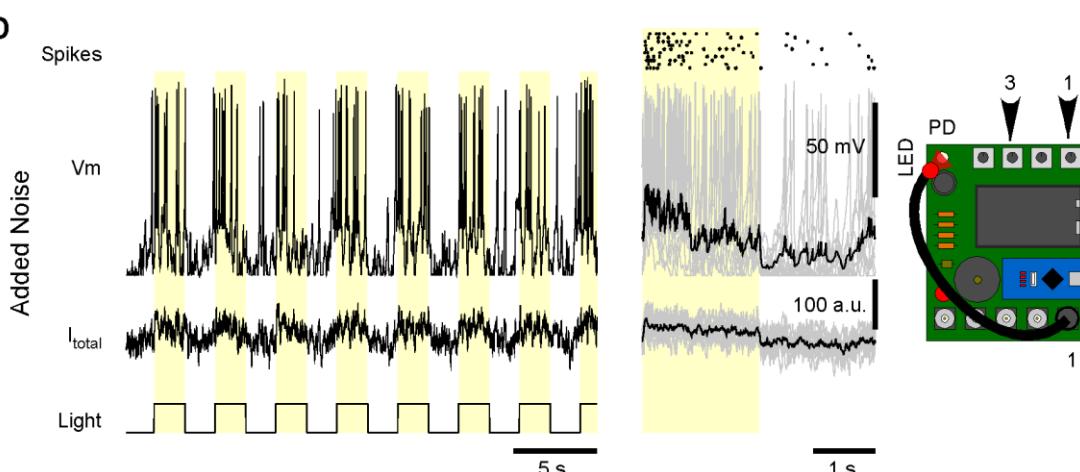
B



C



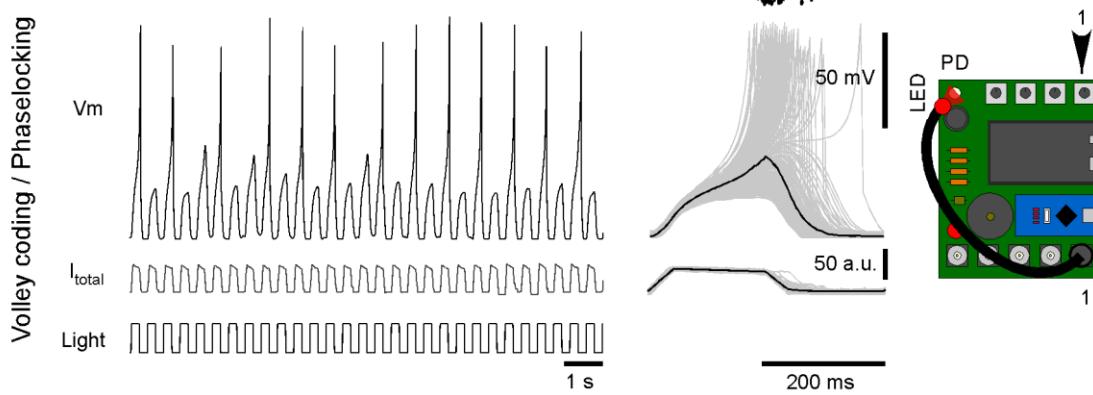
D



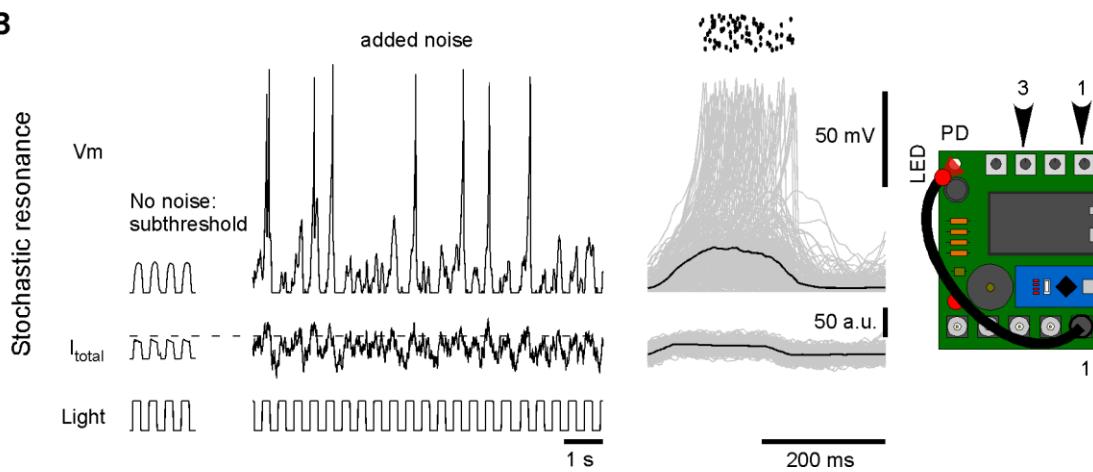
151 Similarly, the experimenter could vary the rate of stimulation to probe the intrinsic
152 frequency tuning of a neuron (dial 1, not shown). At faster stimulus rates, Spikeling
153 can be set to occasionally “miss” individual current steps and instead adopt a volley
154 code [15] for event timing (Fig. 4A). In this configuration, Spikeling continues to
155 phase-lock to the stimulus, as summarised in the event-aligned plot to the right. Note
156 that even though spikes frequently fail, the subthreshold potential continues to
157 reliably track the stimulus. From here, the static input current (dial 4) and noise (dial
158 3) can be tweaked to put the system into stochastic resonance [16], [17]: In this
159 situation, counterintuitively, the addition of noise is beneficial to the code (Fig. 4B). In
160 the example shown, the “generator potential” (the noise-free stimulus driven
161 membrane voltage fluctuations) is itself insufficient to elicit any spikes. As a result,
162 the neuron fails to encode the stimulus at the level of its spike output (Fig. 4B, left).
163 However, addition of noise occasionally takes the combined generator potential and
164 noise above spike threshold (Fig. 4B, middle). Importantly, the probability of this
165 threshold crossing is higher during a depolarising phase of the generator. As a
166 result, the system now does elicit spikes which, depending on the noise level
167 chosen, reliably phase-lock to the stimulus (Fig. 4B, right). Such stochastic
168 resonance can be used e.g. by sensory systems to deal with noisy inputs – summing
169 across the spike output from many such resonating neurons can then reconstruct the
170 original stimulus with high fidelity [18], [19].

Figure 4 - Volley coding and stochastic resonance

A



B

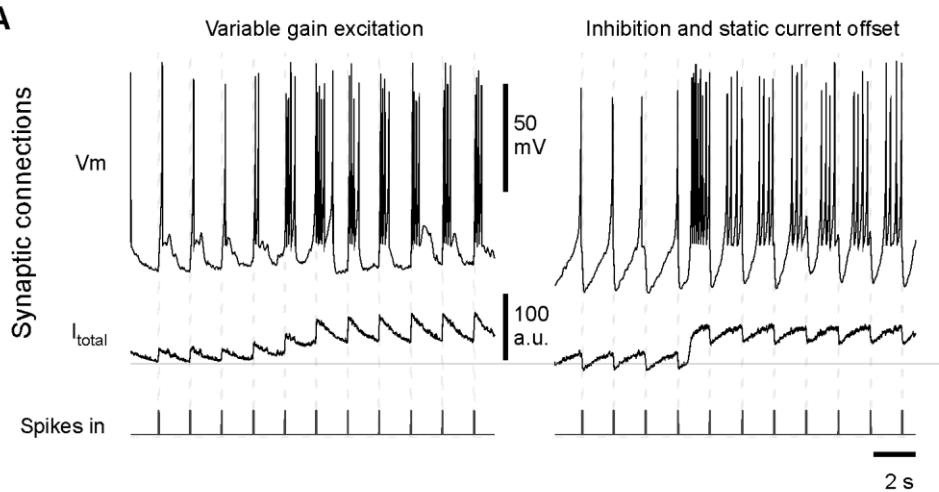


171

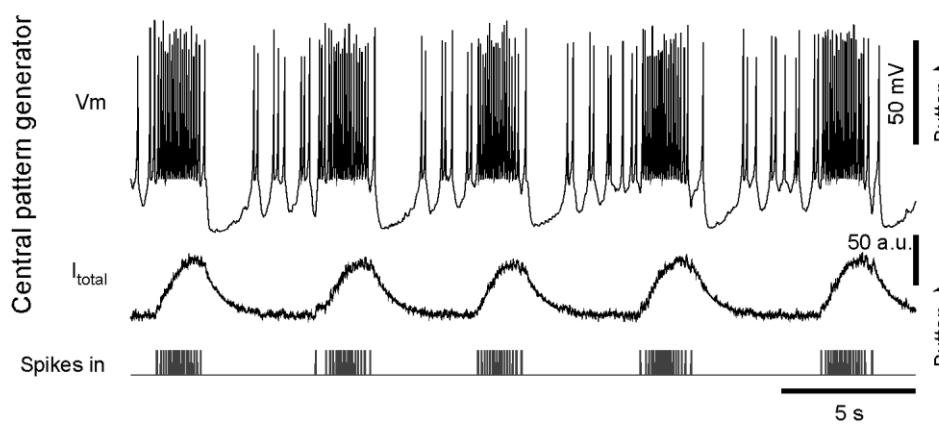
172 Next, two or more Spikelings can be connected into a network via BNC cables
173 (SVideo 4). For this, the digital-out connector (port 4) of one unit is connected to one
174 of two "synapse-in" connectors (e.g. port 2) on another unit. Synaptic gain can then
175 be controlled using a rotary encoder (here: dial 2) to vary the efficacy and sign of the
176 coupling, thus mimicking excitatory or inhibitory connections (Fig. 5A). Two
177 reciprocally connected units can then be used to set up a basic central pattern
178 generator [20], [21] (Fig. 5B).

Figure 5 - Synaptic Networks

A



B



179

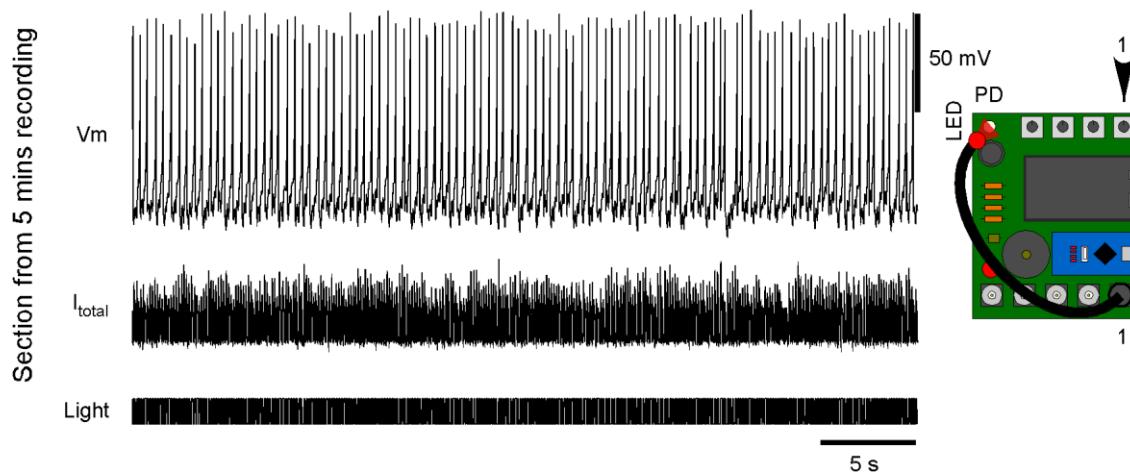
180 Spikeling can also be used to explore neuronal function more systematically, for
181 example by estimating the linear filter that underlies its photo-response in a given
182 mode [22]. This is a fundamental approach in computational and sensory
183 neuroscience, and the calculation of the linear filter is based on recording a neuron's
184 response to a "noise stimulus" for several minutes. Subsequent reverse correlation
185 of the elicited spike- or subthreshold activity against the original stimulus then allows
186 calculating the average stimulus that drove a response in the neuron: the linear filter,
187 sometimes also referred to as "time-reversed impulse response" or "response
188 kernel". Reverse correlation to spikes is the more common calculation, when the
189 linear filter is also termed the "spike-triggered average" or STA [23]. To explore this

190 concept, Spikeling's stimulus port (1) can be set to generate binary noise at e.g. 50
191 Hz via a flag in the Arduino code (see Spikeling manual). In this configuration, the
192 photodiode can be stimulated by this noise stimulus via an LED as before (Fig. 6A,
193 cf. Fig 3C), thereby driving spikes and subthreshold oscillations. The linear filters of a
194 mode 1 Spikeling ("slow") reveal a clear biphasic (band pass) stimulus dependence
195 at the level of spikes, but a monophasic dependence (low pass) at the level of
196 subthreshold activity (Fig. 6B, black). In comparison, the same mode 1 neuron
197 retuned to use a rapidly adapting photodiode-driven current ("fast") gives a triphasic
198 stimulus dependence at the level of spikes and a biphasic dependence at the level of
199 the subthreshold generator (Fig. 6B, red).

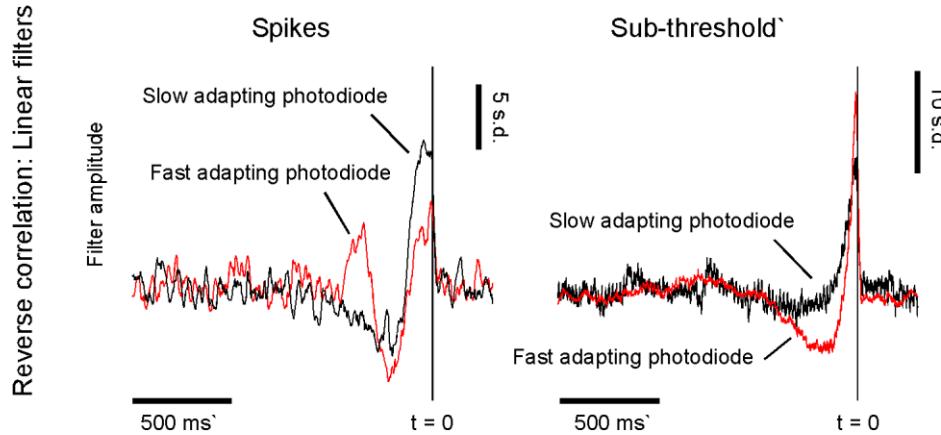
Figure 6 - Estimating linear filters by reverse correlation

A

50 Hz binary noise flicker via photodiode



B



200

201 Taken together, Spikeling can be used in a variety of classroom and demonstration
202 scenarios, ranging from simple observations of changes in spike rates upon
203 stimulation to advanced concepts in neuronal computation and analysis.

204 An example set of Spikeling-based classroom exercises is provided (see Spikeling
205 manual). From here, advanced users can easily re-programme the Arduino code to
206 implement or fine tune further functionalities as required. The entire project, including
207 all code, hardware design, bill of materials and detailed build instructions are
208 available online for anyone to freely view and modify
209 (<https://github.com/BadenLab/Spikeling> and <https://badenlab.org/resources/>).

210

211 **Spikeling in the classroom**

212 We evaluated the utility of Spikeling in two classroom scenarios: (i) as a 2-day
213 section within a 3-week intensive neuroscience summer school held at Gombe State
214 University, Nigeria by TReND in Africa [24] and (ii) as part of an 18 lecture module
215 on *Sensory function and computation* delivered for 3rd year undergraduate and MSc
216 neuroscience students at the University of Sussex, UK. We report on each
217 experience in turn.

218 At Gombe State University, Nigeria, we ran two identical 2-day sessions for a total of
219 18 Africa-based biomedical graduate students (9 at a time) as part of the 7th
220 TReND/ISN school on Insect Neuroscience and *Drosophila* Neurogenetics [24].
221 None of the students had much experience with neuronal computation or
222 electrophysiological techniques, although most had covered basic concepts in
223 neuroscience such as action potential generation in their undergraduate degrees.
224 We introduced Spikeling in three steps. First, we held a 1-hour lecture where a single

225 Spikeling was connected to a computer with the serial oscilloscope output being
226 projected live to the wall. In parallel, a whiteboard was used for explanations and
227 discussions. From here, we combined a general explanation of concepts in neuronal
228 computation on the board (for example, rate- versus time-coding, sub-threshold
229 integration, phase-locking etc.) and then demonstrated each phenomenon in front of
230 the class using Spikeling. Based on feedback after the class, this was perceived as a
231 very engaging and effective method for introducing concepts in neuronal coding.
232 Next, we moved on to assembling Spikelings from bags of pre-compiled parts. For
233 this, every student was provided with the printed circuit board, the electronic
234 components and a soldering iron and taken through the assembly process by two
235 instructors. After 2-3 hours, every student had successfully assembled a working
236 unit, despite most not having had any experience with soldering or electronic circuit
237 logic. In a third step, each student was then provided with the serial oscilloscope
238 software as well as the exercise document and asked to sequentially work through a
239 set of pre-designed exercises (see Spikeling manual) in their own time, with faculty
240 being available to help as required. Following the course, all students kept their
241 Spikeling to facilitate their own teaching at their host institutions in 7 different African
242 countries (Nigeria, Malawi, Sudan, Egypt, Kenya, Zambia, Burkina Faso).

243
244 At the University of Sussex, UK, we introduced pre-assembled Spikelings as part of
245 3 sets of 3-hour workshops that each ran twice to accommodate 26 students in
246 groups of 13. For this, we used a PC lab where each student had their own Spikeling
247 and PC with Arduino, Serial Oscilloscope and Matlab preinstalled. The first session
248 began with a 20 mins presentation of basic concepts in neuronal modelling and
249 electronics followed by a conceptual comparison between the biophysically realistic

250 yet computationally heavy Hodgkin Huxley model [25], [26] and the much lighter
251 phenomenological Izhikevich model [7] implemented in Spikeling. Next, we projected
252 the serial oscilloscope screen of one Spikeling connected to the lecturer's laptop to
253 the wall. This allowed easy, live demonstrations of some Spikeling functions, such as
254 the photo-response or the use of different modes. From here, we asked students to
255 connect and set up their own units on their PCs and to start exploring "how to best
256 drive spikes" using their mobile phone torches. Students quickly realised that simply
257 holding the light above the photodiode ceases to be effective after a few hundred
258 milliseconds, while repeatedly moving the light over the photodiode reliably elicits
259 bursts of spikes. In this way, students could intuitively explore basic concepts in time
260 coding. Afterwards, we brought everyone back to the same page by demonstrating
261 those key ideas on the Spikeling output projected to the wall. We then showed
262 students how to use the stimulator, what the dials do, and how to log data on the
263 serial oscilloscope. We also showed how to load and display their data using pre-
264 written Matlab routines (see Supplementary Materials). From this point, we asked
265 students to themselves quantify a neuron's amplitude tuning at the level of
266 instantaneous spike rate and first-spike latency to compare the two, again followed
267 by an in-class demonstration and discussion afterwards. In this way, we moved
268 through the majority of Spikeling functions described in this paper over the course of
269 3 workshops.

270 Taken together, Spikeling allowed students to explore a number of fundamental
271 aspects in sensory neuroscience, including analog and digital coding, detection of
272 signals above noise, the functional consequences of adaptation, and the variety of
273 temporal filters that neurons implement. The concepts acquired, as tested with take-
274 home problem sets, dovetailed with lecture content covering rate and time coding,

275 feature selectivity and tuning diversity, and adaptation. Students reported that the
276 Spikeling work helped them to develop a more intuitive grasp of these central ideas
277 in sensory systems neuroscience.

278

279 **Discussion**

280 With modern systems neuroscience increasingly moving into the area of big data
281 where the activity of 1,000s of neurons can be routinely recorded across a wide
282 range of neuronal circuits [27]–[33], a deep understanding of how neurons encode
283 and compute information is fundamental. These concepts need to be taught not just
284 to students of the biological sciences but also to students of psychology as well as
285 engineers and computer scientists interested in theoretical and computational
286 neuroscience, artificial intelligence and robotics [4]. However, concepts in neuronal
287 coding and computation can be unintuitive to grasp or “dry” in lectures, while
288 classroom electrophysiology on live biological specimens can be technically
289 challenging and costly to set up [3]. As a result, many students in these disciplines
290 graduate without ever having had the opportunity to experience and control neuronal
291 activity in hands-on experiments. Indeed, in many parts of the world, systems
292 neuroscience is only a rather peripheral aspect of neuroscience curricula, if present
293 at all, while the cross-over of neuroscience into engineering and informatics often
294 jumps immediately into discussions of networks based on units that are greatly
295 simplified versions of biological neurons.

296 Spikeling is intended to help ameliorate some of these issues by allowing students to
297 carry out experiments in the same general fashion as classical electrophysiologists
298 but without the amplifiers, filters, manipulators, stimulus generators and other

299 equipment normally required. Its low cost makes it widely affordable, and once
300 assembled, it can be used for teaching for many years without additional investment.
301 It should also be immediately approachable to students of engineering and
302 informatics who can explore the electrical properties of neurons and the code used
303 to model these as well as carry out experiments illustrating basic concepts in
304 theoretical and computational neuroscience [23]. By allowing students to interact
305 physically with the device, e.g. by providing actual sensory inputs, Spikeling can help
306 build an intuitive grasp of neuronal computations beyond that provided by pure
307 computer simulation of neurons.

308 Other recent efforts have also recognised the need for more intuitive hardware
309 models of spiking neurons, most notably the Neurotinker® initiative [34] who release
310 NeuroBytes®. In this case, the design is geared towards schools and the general
311 public to facilitate playful exploration of neuronal function and, in particular, networks.
312 Another initiative aiming to build microcontroller-based neurons is Spikee [35].

313 With time, we hope that others may take up our basic design and build upon it, for
314 example by providing inputs to other sensory modalities such as touch or sound or
315 by changing the Arduino code to implement new functions or simulate neurons with
316 different tuning properties. Spikeling is available on a share-alike open license,
317 prompting any modifications of the original code to be freely re-shared for everyone
318 to use. We aim to keep these efforts centralised on the Spikeling GitHub, or link to
319 new repositories as they arise to gradually build a community of users and
320 contributors.

321 **Acknowledgements**

322 We thank Peter Reed and Chen Qian for technical advice and Ihab Riad for helping
323 with in-class Spikeling assembly and teaching in Nigeria. The authors would also like
324 to acknowledge support from the FENS-Kavli Network of Excellence. Funding was
325 provided by the European Research Council (ERC-StG “NeuroVisEco” 677687 to
326 TB), Marie Skłodowska-Curie European Training network “Switchboard” to TB
327 (Switchboard receives funding from the European Union’s Horizon 2020 research
328 and innovation programme under the Marie Skłodowska-Curie grant agreement No.
329 674901), The Deutsche Forschungsgemeinschaft (DFG: BA 5283/1-1 to TB), The
330 Medical Research Council (TB, MC_PC_15071) and the Leverhulme Trust
331 (PLP_AAF_20171024 to TB). In addition, we would like to thank the International
332 Society of Neurochemistry (ISN), the Company of Biologists (CoB), The Cambridge
333 Alborada Fund and hhmi Janelia Research Campus for supporting our work in
334 Nigeria.

335

336 **Author contributions**

337 TB conceived of, designed and implemented Spikeling. The Matlab pre-processing
338 scripts were written by BJ, with modifications by TB. Spikelings for UK teaching were
339 assembled and tested by MYZ, PB and DG. All authors contributed to in-class
340 teaching and evaluation in the UK. TB taught the course in Nigeria. The paper was
341 written by TB with help from LL and MM and inputs from all authors.

342

343

344

345 **Data availability**

346 All Hardware instructions, code, manuals and example data are freely available at:

347 <https://github.com/BadenLab/Spikeling> and <https://badenlab.org/resources/>.

348

349 **REFERENCES**

- 350 [1] R. L. Ramos, G. J. Fokas, A. Bhambri, P. T. Smith, B. H. Hallas, and J. C.
351 Brumberg, "Undergraduate Neuroscience Education in the U.S.: An Analysis using
352 Data from the National Center for Education Statistics.," *J. Undergrad. Neurosci.
353 Educ.*, vol. 9, no. 2, pp. A66-70, 2011.
- 354 [2] K. J. Frantz, C. D. McNerney, and N. C. Spitzer, "We've Got NERVE: A Call to
355 Arms for Neuroscience Education," *J. Neurosci.*, vol. 29, no. 11, pp. 3337–3339,
356 2009.
- 357 [3] K. Mead *et al.*, "ARTICLE IFEL TOUR: A Description of the Introduction to
358 FUN Electrophysiology Labs Workshop at Bowdoin College , July 27-30 , and the
359 Resultant Faculty Learning Community," *J. Undergrad. Neurosci. Educ.*, vol. 5, no. 2,
360 pp. A42–A48, 2007.
- 361 [4] B. Litt, "Engineering the next generation of brain scientists," *Neuron*, vol. 86,
362 no. 1. pp. 16–20, 2015.
- 363 [5] A. Petto, Z. Fredin, and J. Burdo, "The Use of Modular, Electronic Neuron
364 Simulators for Neural Circuit Construction Produces Learning Gains in an
365 Undergraduate Anatomy and Physiology Course.," *J. Undergrad. Neurosci. Educ.*,
366 vol. 15, no. 2, pp. A151–A156, 2017.
- 367 [6] D. P. Friedman, "Public Outreach: A Scientific Imperative," *J. Neurosci.*, vol.
368 28, no. 46, pp. 11743–11745, 2008.
- 369 [7] E. M. Izhikevich, "Simple model of spiking neurons," *IEEE Trans Neural Netw.*
370 vol. 14, no. 6, pp. 1569–1572, 2003.
- 371 [8] "Arduino." [Online]. Available: <http://www.arduino.cc/>.

- 372 [9] T. Baden *et al.*, “Open Labware: 3-D printing your own lab equipment.,” *PLoS*
373 *Biol.*, vol. 13, no. 3, p. e1002086, Mar. 2015.
- 374 [10] J. M. Pearce, *Open-Source lab*, 1st ed. Elsevier, 2013.
- 375 [11] M. Mahowald and R. Douglas, “A silicon neuron.,” *Nature*, vol. 354, no. 6354,
376 pp. 515–8, 1991.
- 377 [12] R. M. John Nicholls, “From Neuron to Brain,” *University of Colorado - School*
378 *of Medicine*, 2012.
- 379 [13] P. Sterling and S. B. Laughlin, “Principles of Neural Design,” 2016. [Online].
380 Available: <https://mitpress.mit.edu/neuraldesign>. [Accessed: 18-Dec-2015].
- 381 [14] “Serial Oscilloscope.” [Online]. Available: <http://x-io.co.uk/serial-oscilloscope/>.
- 382 [15] E. G. Wever and C. W. Bray, “The perception of low tones and the resonance-
383 volley theory,” *J. Psychol. Interdiscip. Appl.*, vol. 3, no. 1, pp. 101–114, 1937.
- 384 [16] L. Gammaconi, P. Hänggi, P. Jung, and F. Marchesoni, “Stochastic
385 resonance,” *Rev. Mod. Phys.*, vol. 70, no. 1, pp. 223–287, 1998.
- 386 [17] T. Shimokawa, a. Rogel, K. Pakdaman, and S. Sato, “Stochastic resonance
387 and spike-timing precision in an ensemble of leaky integrate and fire neuron
388 models,” *Phys. Rev. E*, vol. 59, no. 3, pp. 3461–3470, Mar. 1999.
- 389 [18] T. Baden, F. Esposti, A. Nikolaev, and L. Lagnado, “Spikes in Retinal Bipolar
390 Cells Phase-Lock to Visual Stimuli with Millisecond Precision.,” *Curr. Biol.*, vol. 21,
391 no. 22, pp. 1859–1869, 2011.

- 392 [19] T. Baden, A. Nikolaev, F. Esposti, E. Dreosti, B. Odermatt, and L. Lagnado,
393 “A Synaptic Mechanism for Temporal Filtering of Visual Signals,” *PLoS Biol.*, vol. 12,
394 no. 10, 2014.
- 395 [20] S. L. Hooper, “Central Pattern Generators,” *eLS*, no. February 2000, pp. 1–
396 12, 2001.
- 397 [21] C. S. Sherrington, “Flexion-reflex of the limb, crossed extension-reflex, and
398 reflex stepping and standing,” *J. Physiol.*, vol. 40, no. 1–2, pp. 28–121, 1910.
- 399 [22] E. J. Chichilnisky, “A simple white noise analysis of neuronal light,” *Netw.*
400 *Comput. Neural Syst.*, vol. 12, pp. 199–213, 2001.
- 401 [23] L. Abbott and P. Dayan, “Theoretical Neuroscience Abbott, L., & Dayan, P.
402 (2001). Theoretical Neuroscience. Computational and Mathematical Modeling of
403 Neural ..., 60(3), 489–95. <http://doi.org/10.1016/j.neuron.2008.10.019>,” *Comput.*
404 *Math. Model. Neural ...*, vol. 60, no. 3, pp. 489–95, 2001.
- 405 [24] L. L. Prieto Godino and T. Baden, “TReND in Africa.” [Online]. Available:
406 www.TReNDinAfrica.org.
- 407 [25] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane
408 current and its application to conduction and excitation in nerve,” *J. Physiol.*, vol. 117,
409 pp. 500–544, 1952.
- 410 [26] F. Santamaria and J. M. Bower, “Hodgkin-Huxley Models,” in *Encyclopedia of*
411 *Neuroscience*, 2010, pp. 1173–1180.
- 412 [27] M. B. Ahrens *et al.*, “Brain-wide neuronal dynamics during motor adaptation in
413 zebrafish,” *Nature*, vol. 485, no. 7399, pp. 471–7, May 2012.

- 414 [28] G. D. Field *et al.*, “Functional connectivity in the retina at the resolution of
415 photoreceptors.,” *Nature*, vol. 467, no. 7316, pp. 673–7, Oct. 2010.
- 416 [29] T. Baden, P. Berens, K. Franke, M. Roman-Roson, M. Bethge, and Euler,
417 “The functional diversity of mouse retinal ganglion cells,” *Nature*, pp. 1–21, 2016.
- 418 [30] K. Franke, P. Berens, T. Schubert, M. Bethge, T. Euler, and T. Baden,
419 “Inhibition decorrelates visual feature representations in the inner retina,” *Nature*, vol.
420 542, no. 7642, pp. 439–444, Feb. 2017.
- 421 [31] M. J. Zimmermann *et al.*, “Zebrafish differentially process colour across visual
422 space to match natural scenes,” *bioRxiv*, p. 230144, 2017.
- 423 [32] J. J. Jun *et al.*, “Fully integrated silicon probes for high-density recording of
424 neural activity,” *Nature*, vol. 551, no. 7679, pp. 232–236, 2017.
- 425 [33] I. H. Stevenson and K. P. Kording, “How advances in neural recording affect
426 data analysis,” in *Nature Neuroscience*, 2011, vol. 14, no. 2, pp. 139–142.
- 427 [34] “Neurotinker.” [Online]. Available: <http://www.neurotinker.com>.
- 428 [35] “Spikee.” [Online]. Available: <https://www.youtube.com/channel/UCbnGzeoLUJIPCgCkfZseexg>.
- 430

431 **Figure legends**

432 **Figure 1 | Basic hardware and software.** **A**, Fully assembled Spikeling board. **B**,
433 Screenshots of the Serial Oscilloscope software [14] used displaying Spikeling
434 activity of the network in (C). **C**, Three Spikelings connected into a simple network.

435

436 **Figure 2 | Manual exploration of Spikeling functions.** **A**, Example recording of
437 Spikeling membrane potential (top) and current (bottom) during manual
438 manipulations of the input current dial (4) to depolarise the neuron (left) and following
439 the addition of a noise current (dial 3, right). **B**, Example light responses in modes 1-
440 3 (left to right, toggled by the button) to manual photodiode (PD) stimulation with a
441 torch. The grey horizontal lines indicate $I_{total} = 0$.

442

443 **Figure 3 | Basic stimulus-driven functions.** **A**, Example recording of Spikeling in
444 Mode 1 driven by the internal stimulator (port 1) via the Analog In connector (port 3)
445 as indicated. Gain and stimulus rate are controlled on dials 2 and 1, respectively.
446 Right: stimulus aligned response segments (grey) and average (black) as well as
447 spike raster plot. **B**, as (A, right), with varying input gain to probe amplitude tuning.
448 Note systematic effects on spike number, rate, time latency and time precision. **C**, As
449 (A), but this time driving Spikeling via an LED attached to the stimulus port
450 stimulating the photodiode. Note different waveforms of input current and
451 consequences on the elicited spike pattern compared to (A). **D**, as (C), with addition
452 of current noise (dial 3). Note distortion of spike timings, while the number of spike
453 triggered remains approximately constant.

454 **Figure 4 | Volley coding and stochastic resonance.** **A**, By varying the stimulus
455 rate, Spikeling can be set-up to “miss” individual stimulus cycles at the level of the
456 spike output (left). However, when elicited, spikes remain phase-locked to the
457 stimulus (right). **B**, Example of stochastic resonance: as (A), with neuron
458 hyperpolarised just enough to prevent all spikes (left). Now, addition of membrane
459 noise occasionally elicits spikes (middle), which again are phase-locked to the
460 stimulus (right). Dotted line indicates approximate spike threshold.

461

462 **Figure 5 | Synaptic Networks.** **A**, Two or more Spikelings can be connected to form
463 synaptic connections, as indicated. Left: Excitatory synaptic connection with synaptic
464 gain gradually increased by hand over time (dial 2). Right: Inhibitory connection at
465 two different depolarisation states (dial 4). **B**, Example of a 2-neuron central pattern
466 generator (CPG). The two Spikelings are set to mode 2 and wired to mutually excite
467 each other. In each case, all traces display the activity and incoming spikes of the
468 top-most Spikeling.

469

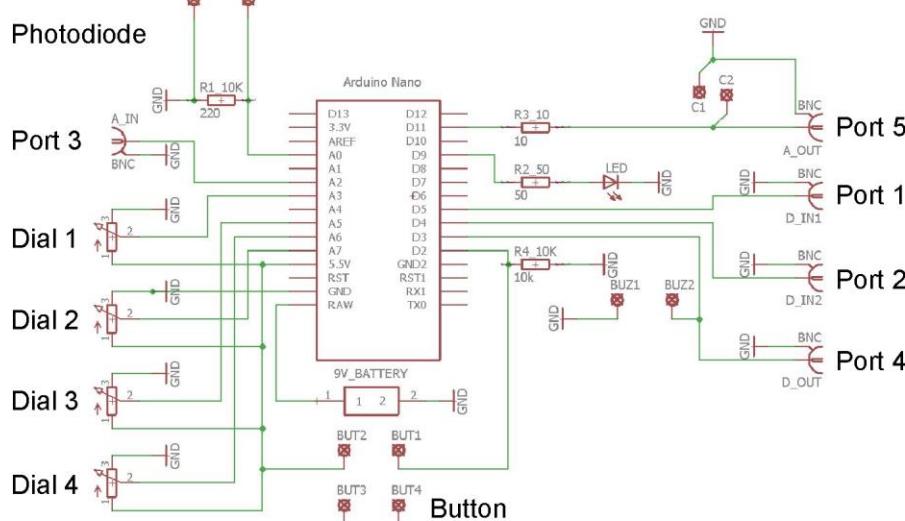
470 **Figure 6 | Estimating linear filters by reverse correlation.** **A**, Via the Arduino
471 code, the stimulus port can be set to deliver 50 Hz binary noise, here used to drive
472 the photodiode via an LED (cf. Fig 3C). Current and spike pattern elicited by this
473 stimulus. **B**, linear filters of a slow (black) and a fast (red) photo-adapting mode 1
474 neuron estimated at the level of spikes (left) and subthreshold membrane potential
475 (right).

476

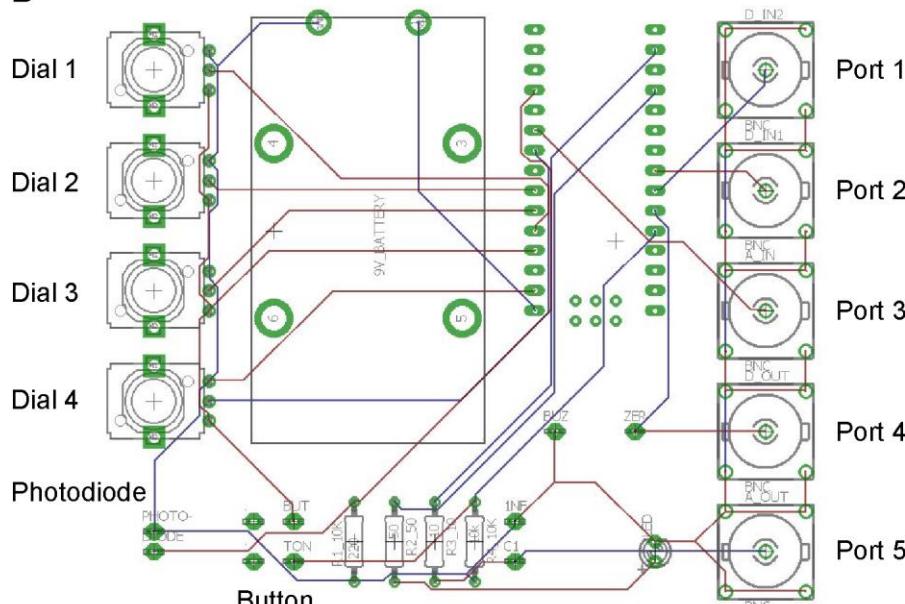
477 **Supplementary Materials**

Supplementary Fig 1 - Circuit and PCB layout

A



B



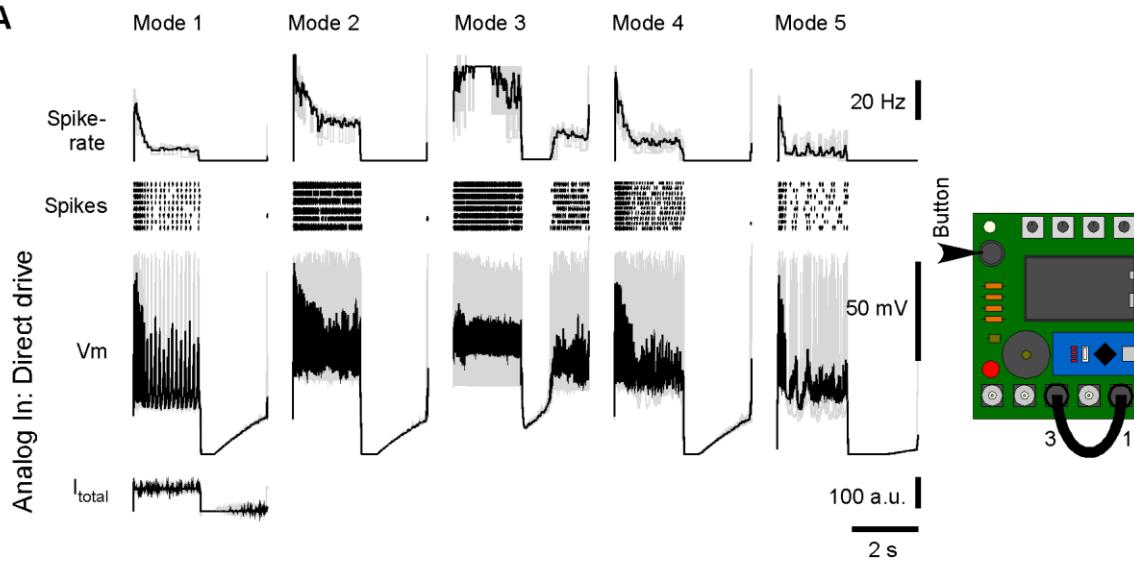
478

479 **Supplementary Figure 1 | Circuit and PCB layout. A**, Wiring diagram of Spikeling.

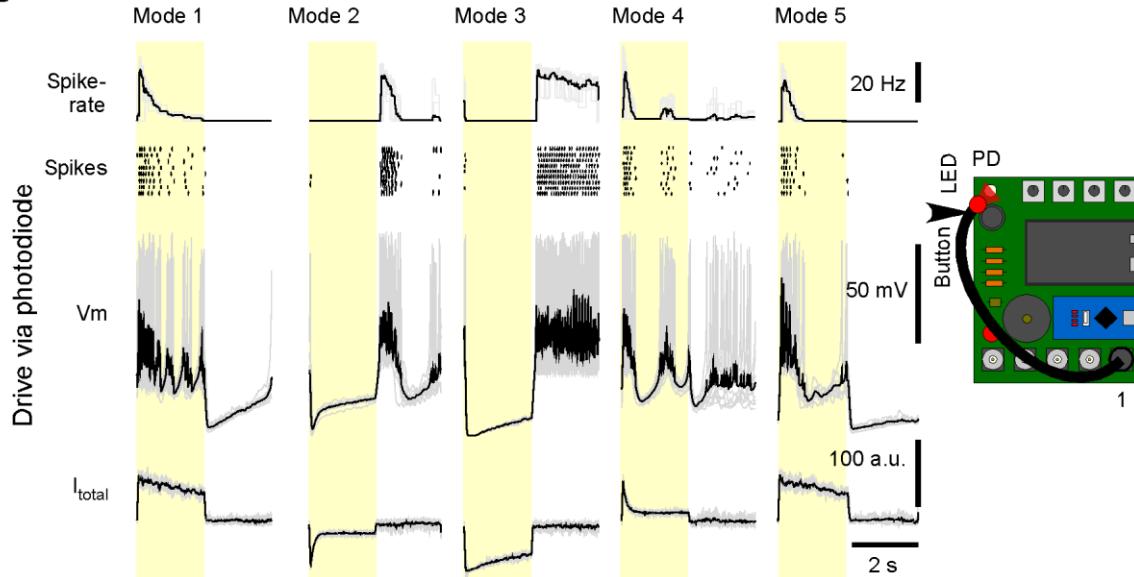
480 **B**, PCB Layout.

Supplementary Fig 2 - Mode Overview

A



B



481

482 **Supplementary Figure 2 | Mode Overview. A,B**, All 5 pre-programmed Spikeling
483 modes responding to current (A) and light steps (B). Additional modes can be easily
484 added in the Arduino code (see Spikeling manual).

485

486

487 **Supplementary Video 1: Basic functions**

488 **Supplementary Video 2: Modes**

489 **Supplementary Video 3: Stimulus generator**

490 **Supplementary Video 4: Synaptic Networks**

491

492 **Supplementary data files provided:**

493 - Spikeling Manual including assembly and example exercises

494 - Bill of Materials (BOM)

495 - PCB layout files (Eagle)

496 - Arduino code (x2) for Spikeling

497 - Matlab code (x2) for basic data analysis and visualisation

498 - OpenSCAD and surface-tessellation (stl) files for 3D-printable LED-mounting
499 adapter

500 - Example logged data (csv)