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Abstract
Objectives: Classical methods for combining summary data from genome-wide association studies
(GWAS) only use marginal genetic effects and power can be compromised in the presence of
heterogeneity. We aim to enhance the discovery of novel associated loci in the presence of
heterogeneity of genetic effects in sub-groups defined by an environmental factor.
Methods: We present a p-value Assisted Subset Testing for Associations (pASTA) framework that
generalizes the previously proposed association analysis based on subsets (ASSET) method by
incorporating gene-environment (G-E) interactions into the testing procedure. We conduct simulation
studies and provide two data examples.
Results: Simulation studies show that our proposal is more powerful than methods based on marginal
associations in the presence of G-E interactions and maintains comparable power even in their absence.
Both data examples demonstrate that our method can increase power to detect overall genetic
associations and identify novel studies/phenotypes that contribute to the association.
Conclusions. Our proposed method can be a useful screening tool to identify candidate single
nucleotide polymorphisms (SNPs) that are potentially associated with the trait(s) of interest for further
validation. It also allows researchers to determine the most probable subset of traits that exhibit genetic
associations in addition to the enhancement of power.
Keywords: Gene-environment independence; Gene-environment interactions; Type 2 Diabetes, Meta-

analysis; Pleiotropic effects; Overlapping subjects; Subset-based association test
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INTRODUCTION

Genome-wide association studies (GWAS) are popular epidemiologic tools for studying the genetic
architecture underlying a phenotypic trait [1]. Meta-analysis is a commonly used approach to combine
genetic associations across multiple independent studies [2]. Fixed effect meta-analysis based on
summary statistics is known to retain full efficiency of an analysis based on individual level data [3].
More recently, methods for aggregating association signals across multiple related phenotypes have

also become more popular [4,5].

The association analysis based on subsets (ASSET) test, proposed by Bhattacharjee et al. [6], uses
summary statistics from individual association analysis to develop a powerful test that allows the
existence of both a subset of null results and effects in opposite directions in different individual tests.
This approach essentially explores all possible non-empty subsets of available studies/traits and
searches for the one that yields the strongest evidence of association while adjusting for multiple
testing during such exhaustive search. One appealing feature of ASSET is that the most probable
subset of studies/traits that exhibit genetic association can be identified in addition to the enhancement
of power of detecting association signals. This method has been widely used in analyses of

associations across multiple studies and phenotypes [7,8].

Exploiting gene-environment (G-E) interaction may help identify genetic variants that do not
demonstrate very strong marginal effects due to environmental heterogeneity but may have stronger
genetic effects in sub-groups defined by certain levels of an exposure [9-12]. Like most commonly
used methods that screen only for marginal associations, ASSET does not account for potential G-E

interactions in the testing procedure. If a genetic variant only affects a subgroup, for example the
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exposed group, then in the presence of such pure G-E interaction, the power of ASSET can be largely
compromised. Several existing versions of 2-degree-of-freedom (2-df) tests for discovering genetic
associations take G-E interactions into account. Kraft et al. [11] proposed a likelihood ratio test that
jointly tests for genetic main effects and G-E interactions in case-control studies. Dai et al. [10]
proposed a slightly different approach that is based on the sum of two Wald chi-square statistics for
detecting marginal effects combined with G-E interactions. The latter approach has the advantage of
incorporating G-E independence into the test statistic for G-E interaction in case-control studies to
achieve increased power [13,14]. The literature on meta-analysis of G-E interactions or joint tests
remains relatively limited [15-17], and none of these approaches attempt to specifically identify a
subset of studies/traits that are most likely to have genetic associations and/or interactions. Current
literature shows that the 2-df tests mentioned above can offer enhanced power in the presence of G-E

interactions and do not lead to significant loss of power even when the interactions are absent [15,17].

In this paper, we propose a modification to ASSET that incorporates G-E interactions to increase the
power of detecting genetic associations in combining summary data across studies of a given
phenotype (say type 2 diabetes) or across multiple related phenotypes (say a set of lipid traits)
measured in different studies. Our approach is similar to ASSET in terms of searching over all possible
combinations of studies/phenotypes and thus inherits its advantage of identifying the maximally
associated subset along with increased power for detecting the overall associations. The proposed
framework uses p-values from the underlying tests as input instead of Z-statistics that are used by
ASSET, and is therefore referred to as p-value Assisted Subset Testing for Associations (pASTA). To
be able to incorporate G-E interactions, pASTA uses 2-df tests as the underlying test statistics to be

combined. In fact, the p-values can result from any statistical tests, including tests with multiple
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degrees of freedom. On the other hand, by using p-values, one loses the ability to incorporate the signs
of coefficients (for both genetic main effect and G-E interaction) and the method is intrinsically two-
sided. Since the key input variables are the p-values from underlying tests, pASTA can be used under
any commonly used epidemiologic study design and we present our simulation studies and data
examples for both case-control and cohort studies. Like ASSET, the analytical method in pASTA can
handle a set of correlated p-values, enabling its validity in studies with overlapping subjects or multiple

phenotypes measured on the same set of subjects.

The rest of the paper is organized as follows. We first describe the construction of our test statistic and
derivation of the associated p-value. We present extensive simulation studies to compare the
performance of our proposed method to ASSET and Fisher’s combined p-value approaches [18] with
and without G-E interactions under various parameter settings. Specifically, we examine the type |
error rates and the power to detect (1) the truly associated variant and (2) the truly associated subset of
studies/traits for the given variant. We illustrate our proposed method with two data applications. The
first is a meta-analysis of six case-control studies of type 2 diabetes (T2D) among European population,
with 4,422 cases and 5,202 controls. We focus on two single nucleotide polymorphisms (SNPs) in the
FTO gene (MIM 610966) related to obesity and their interactions with body mass index (BMI). The
second application is a multiple-phenotype analysis of nine lipid-related quantitative traits using data
of 5,123 individuals from the North Finland Birth Cohort 1966 (NFBC1966) Study. We investigate the
association between two SNPs discovered by GWAS, one near the LPL gene (MIM 609708) and the
other in the APOB gene (MIM 107730), and the nine lipid traits while taking the SNP-BMI

interactions into consideration. We conclude the paper with a discussion.
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MATERIAL AND METHODS

Notation
We consider K studies, each with sample size n,. We allow the studies to have a set of overlapping
subjects. Let Y;;, Gi; and Ej; denote the underlying phenotype, the given genetic variant and the
environmental factor, respectively, measured for the ith subject in the kth study. The trait(s) Y can
either be disease status in a case-control study or binary or quantitative trait(s) measured in a cohort
study. The genetic variant G may be coded as binary (under a dominant or recessive susceptibility
model) or as allele count (under the additive model), and for the latter case, we treat G as continuous
dosage. The environmental factor E can either be categorical or continuous. We mainly consider two
models for each of the K studies: the marginal genetic association model
9lEY | Gei)] = a(()k) + aék) - Gyi#(Model 1)

and the joint model with G-E interaction

GIE Wi | G B = B + B - G + BYY - Ens + B - G - Exi#(Model 2)
where i = 1,---,n;, and k = 1,---, K. The choice of the link function g(-) depends upon the type of Y.
Adjusted covariates are dropped from the presentation for simplicity of notations. Note that the K
studies in this setup can be replaced by K traits in a single study of size n, and the inferential procedure

for each of the K traits stays the same withn, =n foreachk =1,---, K.

We primarily consider three types of association tests for each of the K studies: 1) marginal genetic
effect in Moddl 1 (MA), with null hypothesis (H,) being oc((;k) = 0; 2) genetic main effect and G-E
interaction in Model 2 (JOINT) [11], with H,; being ﬁ((;k) = é’,‘;;) = 0; and 3) marginal genetic effect

in Model 1 and G-E interaction in Model 2 (MA+GE) [10], with H,; being ag‘") = (’,‘5) =0.MAisa
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1-df test while JOINT and MA+GE are 2-df tests. A summary description of the different tests and
their corresponding null hypotheses, test statistics and distributions under the null are presented in
Supplemental Table S1. The test of the form MA+GE is typically the sum of two Wald chi-square test
statistics that are known to be asymptotically independent and can thus be combined to yield a 2-df

chi-square statistic [19].

For a case-control study, the coefficient of interaction ﬁé’,? can be estimated using case-control (CC),

case-only (CO) [13], or empirical Bayes (EB) [14] estimators, respectively denoted as [?é’é) Aé’g) and

5 (k)

+p- It has been proved that 4 are asymptotically independent, and so are S, and &

(k) ~ (k) (k) ~ (k)
cc and a; co G

when we assume G-E independence and a rare disease [19]. As such, for case-control studies we use
AC(,? and Bg;) separately as two possible choices for the estimator of ﬁg;) when computing the test
statistic of MA+GE, and denote these two types of tests as MA+CC and MA+EB, respectively [10].
Note that the use of G-E independence requires the use of a retrospective likelihood of the form
(G,E)|D, which is not valid unless the sampling is conditional on D. A cohort analysis is always based
on D|(G, E) and we cannot model the stochastic distribution of (G, E). Therefore, for a cohort study

with multiple quantitative or binary phenotypes, the use of G-E independence does not lead to

enhanced power and as such the EB estimator does not apply.

p-value Assisted Subset Testing for Associations (pASTA)
Regardless of the test statistic chosen for each study, the underlying analytical framework of pASTA
starts with a set of p-values: p;, k = 1,---, K. In our setting they are obtained from the three tests, MA,

JOINT, or MA+GE. For pASTA, we define the Z-statistic for the kth study as

Zk = —CI)_l(pk),
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where @(-) is the cumulative distribution function (CDF) corresponding to the standard normal
distribution. That is, smaller p-values indicate larger Z-statistics, and the null hypothesis H,; should be

rejected if Z,, is large in the positive direction. For any non-empty subset S < {1,---, K}, let

28) = ) mS) Zi,

kesS

where we consider \/nk(S) = \/nk/ZkeSnk as the weight of Z, . Other options for the weights

T (S) can also be accommodated in this framework. For example, when cases and controls are not of
equal numbers, n;, can be substituted by the effective sample size [2]. The test statistic for evaluating
the overall association of a given genetic variant is defined as

Zmeta = I?EE}SXZ(S),

and is obtained by searching over all possible |S| = 2% — 1 non-empty subsets of studies.

It is challenging to characterize the exact distribution of Z,,,.., in a closed form, especially when the
number of studies K is large. Therefore, we borrow the idea followed in ASSET and use the discrete
local maxima (DLM) procedure [20] to obtain a conservative upper bound for the meta-analytic
combined p-value. The DLM procedure automatically accounts for the multiple comparison issue. The
detailed derivation of the combined p-value based on Z,,,,.;, is included in Appendix. In brief, lety € I
be a K-dimensional vector, each of whose components takes value in {0, 1}, and let S, be the subset of
studies whose corresponding coordinates iny are 1. A neighbor of S, is defined as a subset in § that
can be obtained by adding or dropping one study to or from S,,. Then Z(S,-) is called a local maxima
if it is greater than all Z(S,)’s where S, refers to any possible neighbor of S,«. For an observed test
statistic Z,,,..q = T,ps, the DLM approximated p-value can be expressed as (see Equation Al in

Appendix)
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PpLm = f HP(Z(SY tk)<z|Z(S,) =z)h(2)dz,

Tobs k=1
where h(-) is the probability distribution function of Z(Sy). This DLM-based p-value is actually an
upper bound to the exact one (Equation Al in Appendix). Hence the overall procedure is conservative

in terms of type | error.

Each of the terms of the form P(Z(S, £ k) <z|Z(S,) =z) can be evaluated based on the
conditional normal distribution of Z, given Z(Sy) (Equations A2 and A3 in Appendix). Thus all we
need to evaluate is the joint bivariate distributions of Z; and Z(Sy) for k =1,---,K. Note that Z,
follows the standard normal distribution under the null hypothesis that there is no association (and
interaction) in study k. The set of Z,’s are independent if the studies are independent. For multiple
studies with overlapping subjects or multiple phenotypes measured on the same set of individuals, Z;,’s

will be correlated with variance one and correlation matrix £ with entries say, pyr = Corr(Zy, Z).

Let L = (Ly,-+, Lg), where L; = 1 if the i-th study is in S, and L; = 0 otherwise. Let Z = (Z,,--, Zg)
follow a multivariate normal distribution MV N, (0, £) . In particular, if all studies/traits are

independent, then X is a K x K identity matrix. Let w = (wy, -+, wg) be the vector of weights for the

element in L. w; = 5 e ~ ifL;=1and 0 if L; = 0. Let e, be a vector of length K where the kth
jESY 1j

T
element equals 1 and 0 elsewhere, e.g. e, = (0,1,0,---,0)7. Let 4, = (e"T), which is a 2 x K matrix.
w
Under the null hypothesis,

Ze \ )
(Z(Sy)) = A Z ~ MVN,(0, A, 2AT).
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Several methods have been proposed to estimate the correlation matrix £. Lin and Sullivan ([21]
provided a formula to estimate the correlation between a pair of studies using the information of shared
cases and controls when the number of overlapping subjects is known. They also discussed a modified
version of the formula for quantitative traits in a cross-sectional study. Bhattacharjee et al. [6] extended
Lin and Sullivan’s formula for case-control studies to accommodate the situation where cases of one
study serves as controls of another. However, these estimates will likely be inaccurate when the
overlap fraction is large, and therefore do not directly apply to multiple-phenotype analysis, where the
phenotypes are measured on the same set of subjects and the overlap fraction is 100%. In this case,
since large positive values of phenotypic measurements usually indicate strong positive genetic
associations and thus large positive Z-statistics, an intuitive way to approximate the correlations of
Z;’s is to use the phenotypic correlations [22], as is done in ASSET. We adopt this approach for our
simulation studies and the second data example to estimate the correlation matrix X corresponding to Z.

In other words, if corr(Y;,--,Y,) =S, thenwe let £ = S.

Comparison of pASTA and ASSET

We would like to point out a few features of pASTA as compared to ASSET when one is only
interested in marginal genetic association estimated by Model 1. First, ASSET and pASTA use the Z-
statistics in different ways (Table S2). The Z-statistics used in pASTA no longer differentiate between
possible directions of association, while the signs of the Z-statistics used in ASSET are consistent with

those of @

s. ASSET can detect genetic associations in either one direction (one-sided) or both
directions (two-sided). For the latter case, ASSET searches for the subsets of studies that yield the
strongest evidence separately in both directions. It obtains a p-value for each direction, and combines

the two p-values using Fisher’s combined p-value method [18]. pASTA does not have this feature. A
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more detailed comparison of the Z-statistics, test statistics and analytic expression for the DLM-based
p-values of the two methods are presented in Table S2. The extension in this paper is mainly to
incorporate interaction while testing association using 2-df tests in the ASSET framework via the use

of p-values.

Simulation studies
Simulation Study 1: Combining Signals Across Multiple I ndependent Case-Control Studies

Methods Considered. We first assess the performance of the proposed pASTA approach for

combining summary results from multiple independent case-control studies that have no overlapping
subjects or relatedness. We compare pASTA to three classes of alternatives (Table 1): ASSET,
Fisher’s combined p-value method [18], and the gold standard test which assumes that the true subset
of non-null studies and the true model from which the data are generated are known a priori, to reflect
the maximum achievable power for benchmarking each method. Given K independent p-values
pP1, -, Pk, the chi-square test statistic of Fisher’s method follows a)(ﬁf:z,( distribution under the
global null. Bhattacharjee et al. [6] has already compared inverse-variance weighted meta-analysis
with ASSET and Fisher’s method, showing that the former is not as powerful as the latter two.
Therefore, we do not include standard fixed effect inverse-variance weighted meta-analysis method in
our comparative study. We use several choices of 2 df tests as described in Table 2 and expanded in
Table S1.

Data Generative Modd. We consider K = 10 independent studies with 6,000 cases and 6,000

controls. The disease status D, the genetic marker G and the environmental factor E are assumed
binary (1 for presence and 0 for absence) for simplicity. Following the standard approach of simulating

case-control data with G-E interaction [9], we generate the data from a logistic regression model
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OgP(Dki = 1|Gyy, Eyi) _ po
P(Dy; = 0[Gy) Ex) 0

k k k
+ B8 - Grg + BEY - By + BSE - Gra - Er

for k =1,---,K. In addition, we let 8., p; and p; denote the G-E association, the frequency of
G = 1 (this probability depends on the frequency of the risk allele, we only consider a dominant model

in the simulation study) and the prevalence of environmental factor (E = 1) in controls, respectively.

We specify the parameters 0., p;, Pe, g"’), ,gk), and ,8((;',‘5) , and determine the odds ratios of marginal
genetic association (ORg) and environmental association (ORg) using the formula in Boonstra et al.
[9]. In all of our simulation studies, we assume G-E independence among the control population, i.e.,

QGE = O

Evaluation of Type | Error. To assess the type | error rate of each method in the presence or absence
of environmental effects, we generate data under the null hypothesis of no genetic effects, namely, set

((;k) = é’,‘;;) = 0 in Model 2. We consider two scenarios (Table S3), one with no environmental factor
and hence no G-E interaction and the other with ORg = 1.4. All ten studies share the same parameters
in each scenario (Table S3). We evaluate the type | errors at three levels of significance: « = 1072 and
1073 resembling a candidate gene study, and 105 resembling large scale exploration. We simulate
5 x 10° replicated datasets for each scenario.

Metrics for Power Analysis. We compare the power of pASTA with the other methods displayed in

Table 1 from two perspectives: the power of detecting overall genetic associations and the accuracy of

identifying the exact subset of non-null studies. Here the non-null studies refer to studies in which
either ag"’) # 0 (and hence ﬁ’g‘) + 0) or ﬁé’,? # 0. The specific definitions of the two metrics are given
in Appendix. We also report the sensitivity and specificity of identifying the subset of non-null studies,

defined as the proportion of non-null studies that are correctly identified by subset-based approaches,

and the proportion of truly null studies that are declared null, respectively.
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Power for Detecting Marginal Association. Prior to consideration of G-E interaction we extensively

investigate the relative performance of ASSET and pASTA(MA) in detecting marginal genetic
associations in a case-control setting where the data are generated under Model 1. We consider two
scenarios in this simulation, each with K = 10 independent studies and k, = 4 of them having true
associations. The prevalence of the genetic variant p,; is 0.2. In the first scenario, we assume that the
marginal genetic effects in the four non-null studies are all in the positive direction. In the second, we

reverse the sign of the log-odds ratio parameter of genetic effect (5,;) in two of the four studies. In both

scenarios, the absolute values of log odds ratio of marginal associations |aé")| are the same for all non-

null studies, ranging from log 1.05 to log 1.2, and ORg‘) is incremented by 0.01. Since in reality it is
possible that all studies have non-null signals, we also carry out a simulation study where k, = 10 .
We use a = 0.001 as the significance level, which resembles a candidate gene study with 50 SNPs,
and repeat the simulation 2,000 times for each parameter configuration.

Power for Detecting Association After Incorporating Interaction. We then consider both G and E in

our model and the whole set of 1-df and 2-df tests as listed in Table 1. We consider five scenarios
(Table S4) to evaluate the power of pASTA. Scenario 1 assumes no G-E interaction and a moderate
marginal genetic effect (OR;). In Scenario 2, we set parameters to induce large G-E interaction but
small marginal genetic effect. Scenario 3 considers the same magnitude of interaction as Scenario 2,
but with zero genetic and environmental main effects, which result in a smaller marginal genetic effect
compared to Scenario 2. Scenario 4 assumes strong G-E interaction and protective genetic main effect,
the two of which cancel out and result in an odds ratio of marginal genetic effect close to one. Scenario
5 considers negative interaction and positive genetic main effect, which lead to a nearly-null marginal
genetic effect. The last two scenarios represent less common case-control settings, where the genetic

associations exist in opposite directions for exposed and unexposed groups. The number of non-null
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studies ranges from two to seven. Simulations are repeated 2,000 times for each scenario, and

significance level is &« = 0.001.

Simulation Study 2: A Multiple-Phenotype Analysisin a Cohort Study

Methods Considered. We compare the performance of pASTA and ASSET in a cohort study with a set

of multiple correlated traits. In this case, the test statistics of Fisher’s method no longer follows a
X§f=2K distribution under the null hypotheses due to the correlations among p;, -+, px. Resampling-
based approaches can be used to obtain the null distribution when correlations exist [23], but in this
situation we are dealing with significance level at the magnitude of 10> or smaller. It is
computationally intensive to obtain a null distribution to evaluate the p-value at such a stringent
threshold. Therefore, we exclude comparison with Fisher’s method from Simulation Study 2.

Data Generative Mode!. We consider a multiple-phenotype study with 6,000 subjects and K = 9

correlated traits. The outcome Y is generated from a multivariate linear regression model

Vi = Yo(k) + Yg(k) Gri + ngk)Eki + Vég)Gki “Epi + €1
where (&5, *, €x; )T~MVN(0, £2). We use the empirical phenotypic correlations from the NFBC1966
study (Table S5) as the generative covariance matrix (.

Typel Error and Power Analysis.  Similar to Simulation Study 1, the type | error rates are estimated

in the presence and absence of environmental factor (Table S6). The power of these subset-based
approaches are evaluated in two scenarios (Table S7) using the same metrics as used in Simulation

Study 1. In Scenario 1, no interaction is involved, while in Scenario 2, interaction comes into play.

Data Analyses
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We illustrate our methods by using data from two genetic association studies. The first is a meta-
analysis of six independent case-control studies of T2D and the other considers a multiple-phenotype
analysis of nine quantitative lipid-related traits measured on a population-based cohort. In both
examples, we compare the performance of pASTA with other competing methods as described in

Table 1.

Application to Case-Control Studiesof Type 2 Diabetes

This analysis includes data from a subset of subjects in six independent studies of T2D: FIN-D2D 2007
(D2D2007), The DIAbetes GENetic Study (DIAGEN), the Finland-United States Investigation of
NIDDM Genetics Stage 2 (FUSION S2), The Nord-Trgndelag Health Study 2 (HUNT), the
METabolic Syndrome In Men Study (METSIM) and the Tromsg Study (TROMSO) [24]. We
investigated the associations of T2D and two SNPs in the FTO gene, rs6499640 and rs1121980,
respectively after taking into account potential interaction effects with BMI. These two SNPs were
chosen as candidates because they showed significant interactions with BMI in a previous study [25].
Descriptive statistics of the six studies are summarized in Supplemental Table S8. In particular, the
total sample size of the six studies was 9,624, with 4,422 cases and 5,202 controls. Sample sizes of the
six studies vary from 1,058 to 2,219 and the case to control ratios vary from 0.37 to 1.75. The minor
allele frequencies (MAF) of rs6499640 and rs1121980 in controls range from 0.37 to 0.43 and 0.39 to

0.48, respectively, across the studies.

The outcome of interest is the presence (D = 1) or absence (D = 0) of T2D. Each SNP is coded as
G =0,1,2, representing the number of minor alleles in rs6499640 or rs1121980 for each subject

assuming an additive genetic susceptibility model. Let E denote BMI, A denote age in years, and S
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represent an indicator of sex (Male = 1). For the i-th individual in the k-th study, the standard logistic
regression model incorporating G-E interaction is specified as

P(Dy; = UE;, Gir Zy)

lo =
8 P(Dki = OlEki:Gkieri)

ék) + ék) - (Eyi — Ex) + 3c(;k) - Gy

+ Bg}? Gy - (B — Ex) + ﬁflk) A + Bs(k) -+ Sxi (Model 3)
and the standard logistic regression model of marginal SNP effect (adjusted for BMI, age and gender)
is specified as

P(Dki = 1|Ekir Gkieri) _
P(Dki = OlEkir Gkieri)

k k - k
log a(())+a,g)-(Eki—Ek)+aé)-Gki

+a£k) . Aki + aék) . Ski' (MOdel 4‘)
Model 3 and Model 4 were fitted separately to the six studies. Then the various meta-analysis methods
were applied to the summary statistics. Note that the METSIM study only contains male subjects, so

the sex indicator was removed from the two models for this study.

Application to the North Finland Birth Cohort 1966 Study

We obtained the genotype and phenotype data of the NFBC1966 study from dbGaP with accession
number phs000276.v2.p1. The NFBC1966 data contain 5,402 individuals and 364,590 SNPs, with
multiple metabolic traits measured on subsets of individuals. Among these traits, we considered nine
quantitative traits in the present study as phenotypes: C-reactive protein (CRP), glucose, insulin, total
cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides (TG),
systolic blood pressure (SBP), and diastolic blood pressure (DBP). Body mass index (BMI) was the
environmental factor of interest. Following previous studies [26,27] we excluded individuals with
missing phenotype data or having discrepancies between reported sex and sex determined from the X

chromosome. We excluded SNPs with a minor allele frequency less than 1%, having missing values in
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more than 1% of the individuals, or with a Hardy-Weinberg equilibrium p-value below 10~%. This left
us with 5,123 individuals and 319,147 SNPs. For each phenotype in turn, we quantile transformed the
phenotypic values to a standard normal distribution, regressed out sex, oral contraceptives and
pregnancy status effects [26], and quantile transformed the residuals to a standard normal distribution
again. We replaced the missing genotypes for a given SNP with its mean genotype value. To account
for potential relatedness in the Finnish population one can use a kinship matrix in a linear mixed model
to account for population admixture. As an alternative, we find that using linear regression models
with principal components (PCs) as covariates also effectively controls for population stratification in
the data. For example, with ten PCs, the genomic control factors for the ten phenotypes ranged from
0.96 to 1.01, with a median value of 0.99. Therefore, we extracted the top ten PCs from the genotype

matrix as covariates to control for potential population stratifications.

The linear regression model with G-E interaction is specified as
Yiy = ék) + ﬁc(;k) Gy + ﬁék) "By + ﬂc(;];s) Gy - Epy + CkiB(ck) (Model 5)
and the linear regression model of marginal SNP effect (adjusted for BMI and PCs) is specified as
Yii = a((,k) + agk) <Gy + aék) B + Ckia(ck) (Model 6)
where k indexes phenotypes, i indexes subjects, E denotes BMI, G denotes the number of minor alleles,
and C denotes the vector of top ten PCs. We performed a genome-wide analysis of multiple
phenotypes by fitting Model 5 and Model 6 separately to each of the nine phenotypes for all 319,147
SNPs in the data. Then for each SNP we calculated the meta-analytic p-values using ASSET and
pASTA, respectively. Correlations among the resultant Z -statistics of the nine phenotypes were

estimated using observed phenotypic correlations.
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After the genome-wide screening using the nine phenotypes separately, we performed another
genome-wide association analysis by analyzing all ten traits jointly with the multivariate linear mixed
model implemented in GEMMA [28,29] and compared the results of the two GWAS. We then selected
the top 100 SNPs that showed the strongest associations for subsequent interaction analysis. We

performed SNP-BMI interaction analysis on these 100 SNPs.

Results

Simulation Study 1: Combining Signals Across M ultiple Independent Case-Control Studies
Typel Error

In both scenarios, empirical type | error rates at thresholds @ = 1072, 1073, and 1075 are well-
preserved for all methods except pASTA(MA+EB) (Table 2), which tends to be conservative (e.g. type
| error rate being 3.8 x 107 at the level of 10~>). This has been noted in previous studies of EB-type

adaptive methods [14].

Power Comparisons of ASSET and pASTA Based on 1-df Tests for Marginal Genetic Association

We extensively investigate how pASTA(MA) performs compared to ASSET when no environmental
factors are considered (i.e. data generated under Model 1). The power of pASTA to detect overall
genetic associations is almost the same as that of ASSET as the odds ratio of the marginal genetic
effects varies, regardless of the directions of the genetic effects (Figures S1A, S1E). However, there is
an observable difference in their accuracy of determining the exact subset of non-null studies for both
scenarios (Figures S1B, S1F). When the marginal genetic effects of non-null studies exist in the same

direction (in this case positive direction), the accuracy of pASTA to determine the correct subset
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increases as the signal grows stronger, and reaches an empirical power of 0.72 as the odds ratio goes
up to 1.2. However, two-sided ASSET is rarely able to identify the exact true subset, and the
corresponding power stays around zero as the odds ratio varies. The main reason for such low accuracy
is that two-sided ASSET searches for associated subset in both positive and negative directions,
identifies a subset that gives the largest |Z(S)| for each direction, and takes the union of the two
subsets as the final identified subset regardless of the significance of association in either direction. As
a result, two-sided ASSET generally identifies more false positive studies when the significant
associations are all in one direction. For example, when associations only exist in the positive direction
in a subset of studies, the log odds ratios in the truly null studies are likely to be estimated as negative,
and thus some null studies will be selected by two-sided ASSET. When the associations exist in
opposite directions, two-sided ASSET has improved power to identify the correct subset of studies, but
pASTA still consistently outperforms ASSET (Figures S1B, S1F). For both scenarios, the sensitivity of
ASSET consistently stays higher than that of pASTA, while the specificity of ASSET is relatively low
(Figures S1C, S1D, S1G, S1H). These results are intuitively reasonable, since sensitivity is the
proportion of non-null studies that are correctly identified and does not require that the exact subsets to
be identified.

When all of the ten studies are non-null (Figure S2A), pASTA is as powerful as ASSET in detecting
signals of marginal associations, and only slightly less powerful than Fisher’s method when the odds

ratio of marginal genetic effects is small (<1.1).

Power Comparison of All Methodswith Data Generated under Model 2

Detection of Association. We consider five scenarios (Table S4) to evaluate the power of detecting

overall genetic associations. When there exists only marginal genetic effect but no G-E interaction
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(Scenario 1), 1-df methods are slightly more powerful in discovering the overall associations than 2-df
methods when the number of non-null studies k, < 5. For example, pASTA(JOINT) reaches a power
of 0.85 when four out of the ten studies are non-null, which is 9.1%, 7.1%, and 9.9% lower than the
power of Fisher’s(MA), ASSET, and pASTA(MA), respectively (Figure 1A). This loss of power
results from a penalty of the additional degree of freedom incorporated in the testing procedure in the
absence of G-E interaction. In Scenario 2, when G-E interaction exists and marginal genetic effect is
moderate, all 2-df methods provide substantial power gain over 1-df methods (Figure 1B). For example,
when k, = 7, the power of pASTA(MA+EB) reaches 0.99, while that of ASSET stays around 0.6. In
Scenario 3, where the marginal genetic effect is even smaller, the power of all methods is
compromised, with pASTA(MA+EB) achieving the best power of 0.79 when k, = 7. The gold
standard test has the second best performance with the power being 0.61 when k, = 7. All 1-df
methods barely detect any signals (Figure 1C). When the marginal association is nearly null but sub-
group effects of genetic factor present in opposite directions in the exposed and unexposed group
(Scenario 4), 2-df methods are more powerful in detecting signals than their 1-df counterparts.
Specifically, pASTA(MA+EB) performs the best when k, > 3, already achieving a power of 0.82
when k, = 3. Other 2-df methods perform slightly worse, with their power ranging from 0.44 to 0.52
when k, = 3, but they still yield power greater than 0.8 when k, > 5. All 1-df methods fail to detect
the associations (Figure 1D). In a much less common situation where “cross-over” interaction exists
(Scenario 5), the empirical power curves show a similar trend (Figure 1E) to those in Scenario 4. It is
instructive to note that for Scenario 2-5 where the interaction effects are present, we tested the null
hypothesis of JOINT for the gold standard test. Therefore, pASTA(MA+EB) outperforms the gold
standard when k, is large since EB estimator exploits the putative G-E independence and can be more

efficient in this case.
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Subset Identification. When the environmental factor is absent (Scenario 1), pASTA(MA) achieves

the highest accuracy in identifying the exact subset of non-null studies, with the corresponding power
being constantly around 0.4 (Figure 1F). The sensitivity of the subset-based methods, whether they are
1-df or 2-df, are close to one another as the number of non-null studies varies, and all of the methods
are able to identify more than 80% of the non-null studies (Figure S3A). The specificity of ASSET is
much smaller than that of the other subset-based methods based on pASTA (Figure S3F). When G-E
interaction comes into play (Scenario 2-5), pASTA(MA+EB) performs the best in identifying the exact
subset and has both the highest sensitivity and specificity across the four scenarios. In particular, in
Scenario 4 where the genetic variant has opposite effects on exposed and unexposed groups, the
highest empirical probability of pASTA(MA+EB) to select the correct non-null studies is 0.46 when
three out of the ten studies are non-null. pASTA(JOINT) and pASTA(MA+CC) have the second-best
performance in terms of determining the exact subset of non-null studies as well as sensitivity and
specificity across Scenarios 2-5. It is noteworthy that in all five scenarios, the specificity of ASSET is
the lowest among the subset-based methods, which indicates that ASSET tends to give more false

positives of non-null studies than pASTA.

Simulation Study 2: A Multiple-Phenotype Analysisin a Cohort Study

Typel Error

The results of the type | error rates are presented in Table 2. In general, the type | error rates of all
methods tend to be conservative at all thresholds under evaluation. The only exception is that
PASTA(JOINT) yields a type | error of 1.2 x 10~° at the level of 10~> when no environmental factor
is considered. The conservativeness of the type | errors may be due to the inaccurate estimation of X,

the correlation matrix of the Z-statistics.
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Power Comparison

Detection of Association. Figure 2A reveals that in the absence of interaction, pASTA(MA)

outperforms the other two methods when over five out of the nine traits have genetic associations. The
power of ASSET drastically falls when the number of non-null traits exceeds five due to computational
issues of the ASSET package. According to Figure 2E, when interaction exists, pASTA(JOINT)
provides great power gain in detecting the overall associations and reaches a power of 0.92 when five
out of the nine traits are non-null. The power of the 1-df methods stays below 0.9.

Subset Identification. Similar to what we observe in Simulation Study 1, the accuracy of ASSET in

identifying the exact subset of non-null traits are constantly close to 0 in both scenarios (Figures 2B,
2F). In Figures 2C and 2G, the sensitivity of the pASTA approaches is close to one another and stays
above 0.8 as the number of non-null traits varies, which indicates that these methods are able to
identify over 80% of the non-null traits in one study. On the other hand, the sensitivity of ASSET
decreases as the number of non-null traits increases. The curves of specificity (Figures 2D, 2H) show

similar trends to those of sensitivity.

Application 1: Type 2 Diabetes Data

The exponential of the parameter estimates (aék), ((;k) and ﬁ((;’;)), their corresponding 95% confidence
interval (Cl) and p-values obtained from Model 3 and Model 4 for each of the six studies are
summarized in Supplemental Table S9. The EB estimates of the interaction terms and their associated
Wald chi-square statistics were obtained using the R package CGEN [30]. For SNP rs6499640, the

odds ratios of marginal genetic effect range from 0.89 to 1.11, and none of them are significant at the

level of 0.05. When the interaction between SNP and BMI is included in the model, the odds ratios of
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genetic main effect do not change remarkably from those of marginal genetic effects. However, despite
the small effect sizes of interactions in all six studies, the interaction effects are statistically significant
in D2D2007 for CC method (p=0.017) and in FUSION S2 for CC (p=0.0006) and EB (p=0.003)
methods. The SNP rs1121980 has significant marginal associations with T2D in FUSION S2 (OR; =
1.19, p=0.011) and HUNT (OR; = 1.21, p=0.020), while none of the studies show significant SNP-

BMI interactions for this SNP.

We then meta-analyzed the results from the six studies by applying all methods in Table 1, and we
present the results of the eight methods in Table 3. For SNP rs6499640, all 1-df methods give
insignificant p-values for marginal genetic associations with T2D at the level of 0.05. As for 2-df
methods, pASTA(JOINT) gives the smallest p-value (p=0.008), and pASTA(MA+CC) give a slightly
higher p-value (p=0.009). The result of pASTA(MA+EB) is not statistically significant (p=0.090),
which may be due to the presence of G-E correlation in this example. All 2-df pASTA methods
identify D2D2007 and FUSION S2 as the non-null studies, which is consistent with what we observe
from the results of 2-df tests for each study separately. We also investigated the odds ratios of T2D
across different levels of BMI by fitting a logistic regression adjusting for age, gender, and the studies
to which the subjects belong. Supplemental Figure S4 shows that the marginal odds ratio for the SNP
rs6499640 is close to 1, but when G-E interaction is taken into account, this SNP reveals a significant
protective effect at the level of 0.05 when BMI equals 20 and 25. When BMI equals 30, the odds ratio

of T2D becomes positive and is significantly different from the one when BMI equals 20.

When there is no evidence for G-E interactions in individual studies, as with SNP rs1121980, all 2-df

methods fail to detect the overall genetic associations, but the p-values obtained from 2-df pASTA are
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smaller than those from 2-df Fisher’s p-value combined methods. Furthermore, the p-value given by
pASTA(MA) (p=0.024) is smaller than those of Fisher’s(MA) (p=0.080) and ASSET (p=0.031).
pASTA also provides more plausible subset identification than ASSET when there are only significant
marginal genetic effects. In addition to FUSION S2 and HUNT as identified by all pASTA methods,
ASSET also includes D2D2007, METSIM, and TROMSO as associated studies, whose p-values with
respect to marginal associations in study-specific analysis (Table S9) are far from significant. This data
analysis demonstrates that without sacrificing much efficiency in the absence of G-E interaction,
pASTA provides potential power gain when marginal genetic effects are modest and interactions are

involved. Moreover, pASTA yields a more plausible subset of non-null studies.

Application 2: North Finland Birth Cohort 1966 Data

We performed a genome-wide multiple-phenotype analysis by applying pASTA and ASSET to the
lipid-related traits in the NFBC1966 study. Supplemental Table S10 presents the SNPs whose meta-
analytic p-values are smaller than the genome-wide significance level (p = 5 x 1078). Seventeen
SNPs are identified by pASTA(MA) at the genome-wide significance level. ASSET identifies seven
SNPs as the genome-wide significant SNPs, and the only overlapping SNP between the two sets is
rs754524, which is located in the APOB region on chromosome 2. However, it should be noted that
since ASSET fails to produce p-values for some of the SNPs due to computational issues, the list of
genome-wide significant SNPs generated by ASSET is not comprehensive and thus is not comparable
to the list generated by pASTA(MA). Taking G-E interaction into consideration, pASTA(JOINT)
identifies 13 SNPs, which are a subset of the SNPs identified by pASTA(MA). The SNP rs3764261,

located on chromosome 16 near the CETP gene, is identified by pASTA(MA) (p = 3.6 x 1072%) and
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PASTA(JOINT) (p = 7.1 x 10729) as the top SNP. Figure 3 presents the QQ plots corresponding to
the three methods.

We then compared the 17 genome-wide significant SNPs identified by pASTA(MA) to the 23 SNPs
identified by another GWAS where all ten traits were analyzed jointly using a multivariate marginal
association test (i.e. GEMMA) (Table S10). Seven SNPs belong to both lists, and the top five SNPs
identified respectively by GEMMA and pASTA(MA) are the same (though in slightly different order).
We considered the top 100 SNPs identified by GEMMA for follow-up interaction analysis. The p-
values produced by GEMMA for the 100 SNPs range from 5.5 x 1073% to 7.0 x 1075, The results of
the combined p-values for the complete set is presented in Supplemental Table S11. Two SNPs,
rs2083637 (on chromosome 8, near gene LPL) and rs754524 (on chromosome 2, in the APOB region),
are used to illustrate the performance of the methods in the presence (rs2083637) or absence (rs754524)
of G-E interaction. These two examples offer insight into the properties of the proposed methods and

illustrate the advantage of incorporating G-E interaction into the analytic framework very clearly.

Supplemental Table S12 summarizes the linear regression coefficients and their corresponding 95% CI

and p-values obtained from Model 5 and Model 6. The SNP rs2083637, located near the LPL gene, is
marginally associated with HDL and TG, with coefficients being -0.1 (p = 3.4x107%) and 0.1 (p =

5.6x10°°), respectively. CRP (p = 1.3x103), TC (p = 6.3x10?), and LDL (p = 8.2x1073) are

associated with rs2083637 through SNP-BMI interactions. On the other hand, rs754524 has a positive
marginal effect on HDL (p = 3.6x10°?) and a negative marginal effect on TC (p = 6.3x1071%), LDL

(p = 2.1x10°'1), and TG (p = 1.8x10°2), while no significant SNP-BMI interactions are observed for

these nine phenotypes under the 0.05 threshold.
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For rs2083637, ASSET and pASTA(MA) both identify TG and HDL as associated phenotypes (Table
4). However, both pASTA(JOINT) and pASTA(MA+CC) identify three additional phenotypes (CRP,
TC, LDL), for which rs2083637 has significant interaction with BMI, when G-E interaction is taken
into account. Supplemental Figure S5 presents the effect and the corresponding 95% Cls for rs2083637
on CRP, TC, and LDL when BMI equals the mean, mean+1 standard deviation (sd), and mean+2sd.
We observe variation of the SNP effect sizes across different levels of BMI. For example, rs2083637
has positive but not significant effect on CRP for subjects with average BMI, while for subjects whose
BMI is 2 sd greater than the average, the association becomes negative and significant at the level of
0.05. Therefore, the incorporation of G-E interaction can enhance the knowledge that is not available

in marginal association testing. The overall p-value of associations given by pASTA(JOINT)

(2.5x107) is also smaller than those given by 1-df methods (2.7x10> for pASTA[MA] and 3.6x10
for ASSET). For rs754524, pASTA(MA) identifies two phenotypes (TC and LDL), both of which have
significant marginal associations with this SNP in phenotype-specific analysis, as associated
phenotypes. SNP rs754524 has been previously reported to be associated with both traits. [31,32].
ASSET identifies two additional phenotypes, glucose and HDL, and fails to identify TC. The evidence
for the marginal association of this SNP with HDL is not strong [27], which indicates that such
identified association may be false. pASTA (JOINT) identifies the same set of associated traits as
pASTA(MA). This example shows that by incorporating interactions one can obtain smaller p-values
for detecting overall associations and discover more relevant traits that are missed by ASSET, ones

that show significant G-E interaction effects in phenotype-specific analysis.

Discussion

We propose a powerful subset-based framework for the analysis of association studies after accounting
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for potential G-E interactions. Simulation studies demonstrate that this framework improves the power
to detect overall associations as well as the accuracy of determining associated studies/traits by
incorporating G-E interactions, while maintaining comparable power to ASSET in the absence of such
interactions. Our data examples exemplify that 2-df pASTA vyields smaller meta-analytic p-values for
SNPs that show significant G-E interactions in study/phenotype-specific analysis compared to 1-df
methods where only marginal genetic associations are considered (Table 3 and Table 4). In addition,
our analysis on the NFBC1966 data illustrates that pASTA is able to identify new phenotypes that are
associated with given susceptibility loci after considering G-E interactions that will be missed by
traditional marginal association analysis (Table 4). These properties make pASTA a powerful tool to
identify candidate SNPs that are potentially associated with the trait(s) of interest in the screening step
of a GWAS, which then can be followed by deeper characterization/interpretation of the associations
through other methods, such as biological validation. For example, RNA sequencing experiments can
be performed to examine whether the candidate SNPs affect the expression level of the target gene [33].
Crispr-Cas9 knockout screening can be carried out in human cell lines to determine the functional

significance of these candidate SNPs [34].

Our simulation studies show that in the presence of interaction, pASTA(MA+EB) has the best
performance in terms of all four evaluation metrics in a case-control setting where G-E independence
holds. The rest of the 2-df methods (Fisher’s methods, pASTA[JOINT] and pASTA[MA+CC]) give
similar power for detecting overall associations across the scenarios (Figures 1B-1E), but pASTA has
the advantage of being able to identify the subset of studies/traits that are most likely to contribute to
the associations. For a cohort study with multiple phenotypes where the G-E independence does not

apply, pASTA(JOINT) gives the best performance in terms of the four metrics (Figures 2E-2H).
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There are several limitations of our proposed approach that lend the problem to future research. The
present proposal for pASTA focuses on testing the existence of genetic associations using p-values as
inputs and is purely bi-directional in nature. It aggregates the evidence of both genetic effects and G-E
interactions from individual studies but does not specify the directions of such effects or interactions. It
IS a pure testing approach and does not provide pooled regression coefficient estimates from meta-
analysis. Thus it loses insight into the nature of the environmental heterogeneity across cohorts.
Further work is needed to define the subsets of studies that have similar direction of genetic effects in
subsets defined by the environmental factor (for example the sign of estimates S in the group E = 0
and of S, + B in the group E = 1 for a binary exposure E). The method is currently based on the
assumption of fixed effect(s) meta-analysis. Since the input is p-values, the method can be extended to
random effects meta-analysis as well as hybrid methods that combine fixed and random effects meta-
analysis [35]. In our simulation studies and data analysis, pASTA uses phenotypic correlations to
approximate the correlations among Z;,’s, which may result in compromised power and conservative

type I error. Optimizing the estimation of such correlation is an issue that needs to be further addressed.

We only focused on candidate loci with known marginal association or gene-environment interaction
in our data examples. Simulation results indicate that pASTA is scalable to a genome-wide level and
maintains Type 1 error at smaller 1075 threshold of «. In the T2D data analysis, the average
run time of pASTA for the marginal effect, i.e. pASTA(MA), for one SNP was 181.7 milliseconds on a
2.9 GHz Intel processor, and the incorporation of G-E interaction, i.e. pASTA(JOINT), yielded a
similar computation time (159.2 milliseconds). For the data from the NFBC 1966 study where

correlations across the test statistics need to be taken into account, the average run times for both
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pASTA(MA) and pASTA(JOINT) for one SNP were 1.7 seconds. For a typical GWAS to analyze one
million SNPs, the projected computation time of pASTA on 20 CPU cores is approximately one day.
ASSET was slightly faster than pASTA in the NFBC 1966 data analysis (1.5 seconds) but twice slower
625 in the T2D data analysis (3.3 seconds). Computing time was calculated using the R package
microbenchmark [36]. We plan to optimize the pASTA implementation code and develop an efficient

R package akin to ASSET.

630 Appendix

Detailed Derivation of M eta-analytic p-value

For an observed test statistic Z,,,.., = T,ps, the DLM approximated p-value can be expressed as
P(Zmeta > Tobs) = P(USES {Z(S) > Tobs})
< P(Uyer {2(S,) > Tops and Z(S, ) being alocal maxima})
< Z P(Z(S,) > T,ps and Z(S, ) being a local maxima).
yer

For a fixed subset S, < {1,---, K},
P(Z(S,) > T,ps and Z(S, ) being a local maxima)

= j P(Z(Sy) being a local maxima | Z(Sy) = Z)h(z)dz
T

obs

= foo P(Z(S, t k) <z Vk|Z(S,) = z)h(z)dz

K

< : HP(Z(SY tk)<z|Z(S,) =z)h(z)dz,  (Equation Al)

Tops k=1
where h(-) is the probability distribution function of Z(Sy). The last inequality is justified by the
635  “separability” assumption that given the current subset, its neighbors have independent Z-statistics.
i) Whenk ¢S5, giventhat Z(S,) = z,
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Hence,
1— Zlesy n, -y
Zlesy n; +ny
Z(S,+k)<z & Z, < - = u,(z) (Equation A2)
k
Zlesy n; +n
and

P(Z(S, +k)<z|Z(S,) =2)=P(Z, <wu(2) | Z(S,) = z)
ii) Whenk €S, giventhat Z(S, ) = z,

n;

_ j
jes 2t les,—{k} T
Zzesy n N
= . Z] - : Zk
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640 Hence,

Zlesy n,

) 2L B B
Zlesynl + 1y

Z(S,—k)<z & Z, < = [, () (Equation A3)

Ny
Lies, u + T
P(Z(S, — k) <z|Z(S,) =2)=P(Z > k(D) | Z(S,) = 2).

This conditional probability of Z,, given Z(Sy) can be evaluated based on a joint bivariate normal
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distribution, which is specified in the main text. For numerical evaluation of the integrals, we directly
apply the R function integrate().

645
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Metrics Used in Power Analyss

We used two main metrics for evaluation:

e Power of detecting genetic associations that truly exist, defined as the probability of

rejecting the relevant null hypotheses H,, within study k with a pre-specified level a. This
650 quantity is estimated as the empirical proportion of replications where the meta-analytic p-
value combined across all studies is smaller than «;

e Power of identifying the exact true subset of non-null studies, defined as the probability of
correctly identifying such subset. The definition of non-null studies is specified above. The
corresponding empirical proportion of replications declaring the correct subset to be non-null is

655 used to estimate this power.
We also report the sensitivity and specificity of identifying the subset of non-null studies, defined as
the proportion of non-null studies that are correctly identified by subset-based approaches, and the
proportion of truly null studies that are declared null, respectively. They are both estimated by the
corresponding empirical proportions in the simulation. Note that sensitivity and specificity respectively
660 allow false positives and false negatives in the identified subset, while power of identifying exactly the

true subset is a much more stringent criterion.
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Tables

Table 1. Methods Considered in Simulation Studies

Method L abel Explanation

Fisher’s(MA) Fisher’s combined p-value method applied to p-values obtained from
testing hypotheses of MA, i.e. aék) =0.

Fisher’s(JOINT) Fisher’s combined p-value method applied to p-values obtained from
testing hypotheses of JOINT, i.e. ﬁék) = é’;) =0.

Fisher’s(MA+CC) Fisher’s combined p-value method applied to p-values obtained from
testing hypotheses of MA+GE, i.e. ag"') = é’,? =0; ﬁé’,? being CC
estimator.

ASSET(MA) Two-sided ASSET for testing hypotheses of MA, i.e. a0 = 0

pASTA(MA) pASTA applied to p-values obtained from testing hypotheses of MA, i.e.
aék) = 0.

PASTAJOINT) pASTA applied to p-values obtained from testing hypotheses of JOINT, i.e.

@ = ~o.

pASTA(MA+CC) pPASTA applied to p-values obtained from testing hypotheses of MA+GE,
i.e. ag"') = é’,? =0, ﬁé’,? being CC estimator.

pASTA(MA+EB) pPASTA applied to p-values obtained from testing hypotheses of MA+GE,
i.e. ag"') = é’,? = 0; ﬁé’,? being EB estimator.

Gold standard Fisher’s combined p-value method as if the true subset of non-null studies

and the model from which data were generated were known a priori.

The null hypothesis in gold standard depends on specific situations. In the presence and absence of G-E
interaction, JOINT and MA were tested, respectively. Therefore, the statistical power is not comparable
across scenarios.
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Table2. Typel Error Ratesat Various Significance L evelsfor the Two Simulation Studies

Method Scenario 1" Scenario 2

a =102 a=10"3 a=10"% a=1072 a=10"3 a=10"5

Smulation 1

Fisher’'s(MA) 94x1073% 13x10% 12x10° 1.0x107%2 90x10"* 9.0x10°°
Fisher’s(JOINT) 12%x107%2 11x107® 11x10° 94x102% 7.0x10™* 1.1x107°
Fisher’s(MA+CC) 1.2x107%2 11x107% 11x1075 98x10% 80x10"* 1.0x107°
ASSET 1.1x107% 12x107% 14x1075 1.1x107! 80x10™* 11x107°
PASTA(MA) 98x107% 9.0x10™* 11x10° 10x10"2 80x107* 1.2x107°
PASTA(JOINT) 1.1x1072 9.0x10™* 11x107° 9.0x10% 70x10"* 86x10°°

pASTA(MA+CC) 1.1x1072 90x10™* 11x107° 94x10% 60x10"* 76x10°°

PASTA(MA+EB) 68x107° 60x107* 38x10° 50x103 3.0x107* 42x10°°

Smulation 2°

ASSET 50x1072 50x107* 80x10°® 34x103% 29x107* 40x10°°
PASTA(MA) 75x107% 6.6x107* 60x10° 61x1032 57x107* 6.0x10°°
PASTA(JOINT) 71x107% 56x107* 12x107° 55x107% 45x107