
1 
 

GREIN: An Interactive Web Platform for Re-

analyzing GEO RNA-seq Data 

Naim Al Mahi1, Mehdi Fazel Najafabadi1, Marcin Pilarczyk1, Michal Kouril2, and 

Mario Medvedovic1,*  

1Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, 

3223 Eden Avenue, Cincinnati, OH 45220, USA 
2Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 

*medvedm@ucmail.uc.edu 

 

ABSTRACT 

The vast amount of RNA-seq data deposited in Gene Expression Omnibus (GEO) and Sequence Read 
Archive (SRA) is still a grossly underutilized resource for biomedical research. To remove technical 
roadblocks for reusing these data, we have developed a web-application GREIN (GEO RNA-seq 
Experiments Interactive Navigator) which provides user-friendly interfaces to manipulate and analyze GEO 
RNA-seq data. GREIN is powered by the back-end computational pipeline for uniform processing of RNA-
seq data and the large number (>6,500) of already processed datasets. The front-end user interfaces 
provide a wealth of user-analytics options including sub-setting and downloading processed data, 
interactive visualization, statistical power analyses, construction of differential gene expression signatures 
and their comprehensive functional characterization, and connectivity analysis with LINCS L1000 data. The 
combination of the massive amount of back-end data and front-end analytics options driven by user-friendly 
interfaces makes GREIN a unique open-source resource for re-using GEO RNA-seq data. GREIN is 
accessible at: https://shiny.ilincs.org/grein, the source code at: : https://github.com/uc-bd2k/grein, and the 
Docker container at: https://hub.docker.com/r/ucbd2k/grein.   

 

Introduction 

Depositing RNA-seq datasets in Gene Expression Omnibus (GEO)1 and Sequence Read Archive (SRA)2 

repositories ensures the reproducibility of published studies and facilitates its reuse. Re-analysis of these 

data can lead to novel scientific insights3 and it has been routinely used to inform the design of new studies4. 

However, reuse of GEO RNA-seq data is made difficult by the complexity of the processing protocols5 and 

analytical tools6 which are often inaccessible to biomedical scientists not specializing in bioinformatics. 

Recent efforts at re-processing GEO/SRA RNA-seq data alleviate this problem by providing access to 

large number of processed and per-transcript summarized RNA-seq datasets which significantly simplifies 

its use7-9. Other resources provide access and analysis tools for specific datasets10, 11. While these platforms 

are extremely useful, they do not support additional functionalities for downstream analyses. For example, 

exploratory data analysis, differential expression analysis with batch effect adjustment, or statistical power 

analysis (Table 1). Therefore, open-source user-friendly tools with comprehensive analytical toolbox for 

re-analysis of public RNA-seq data are still lacking. We address this problem by developing and deploying 

GEO RNA-seq Experiments Interactive Navigator (GREIN) web tool for analysis of GEO RNA-seq data. 

In addition to the rich repertoire of analysis tools, GREIN provides access to more than 6,500 uniformly 

processed human, mouse, and rat GEO RNA-seq datasets with >215,000 samples that are ready for analysis. 

These datasets were retrieved from GEO and uniformly reprocessed by the back-end GEO RNA-seq 
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experiments processing pipeline (GREP2). The pipeline also curates metadata for each of the datasets and 

annotates each sample with biomedical ontologies provided by MetaSRA12. As the number of new studies 

are included in GEO, more datasets are processed and added to GREIN on a regular basis. Apart from the 

preprocessed datasets, GREIN also facilitates user requested processing of GEO RNA-seq datasets on-the-

fly (Table 1).  We also release GREP2 as an R13 package and GREIN as a Docker14 container for easy local 

deployment of the complete infrastructure which can be used to reproduce GREIN results off-line. 

 

Results 

The conceptual outline of GREIN is showed in Fig. 1. Individual RNA-seq datasets are processed by the 

GREP2 pipeline and stored locally as R Expression Sets. User can access and analyze preprocessed datasets 

via GREIN graphical user interface (GUI) or submit for processing datasets that have not yet been 

processed. GUI-driven workflows facilitate examination and visualization of data, statistical analysis, 

transcriptional signature construction, and systems biology interpretation of differentially expressed (DE) 

genes. Both GREIN and the back-end pipeline (GREP2) are written in R and released as Docker container 

and R package respectively. Graphical user interfaces for GREIN are implemented in Shiny15, a web 

framework for building dynamic web applications in R. The web instances at https://shiny.ilincs.org/grein 

is deployed via robust docker swarm of load-balanced of Shiny servers. The complete GREIN 

infrastructure, including processing pipeline is deployed via Docker containers. 

 

Figure 1. Schematic workflow of GREP2, web interface and outputs of GREIN. GEO datasets are 

systematically processed using GREP2 pipeline and stored within the back-end dataset library. GUI-

driven GREIN workflows facilitate comprehensive analysis and visualization of processed datasets. 
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User friendly GUI driven workflows in GREIN facilitate typical reuse scenarios for RNA-seq data 

such as examination of quality control measures and visualization of expression patterns in the whole 

dataset, sample size and power analysis for the purpose of informing experimental design of future studies, 

statistical differential gene expression, gene list enrichment, and network analysis. Besides standard two-

group comparison, the differential gene expression analysis module also supports fitting of a generalized 

linear model that accounts for covariates or batch-effects. The interactive visualization and exploration tools 

implemented include cluster analysis, interactive heatmaps, principal component analysis (PCA), t-

distributed stochastic neighbor embedding (t-SNE), etc. (Supplementary Table S1). User can also search 

for ontological annotations of human RNA-seq samples and datasets provided by the MetaSRA project12. 

Each processed human RNA-seq sample is labelled with MetaSRA mapping of biomedical ontologies 

including Disease Ontology, Cell Ontology, Experimental Factor Ontology, Cellosaurus, and Uberon. 

Biological interpretation of differential gene expressions is aided by direct links to other online tools for 

performing typical post-hoc analyses such as the gene list and pathway enrichment analysis and the network 

analysis of differentially expressed (DE) genes. The connection to these analytical web services is 

implemented by submitting the differential gene expression signature (i.e., the list of average changes in 

gene expression and associated p-values for all/up/down regulated genes analyzed) to iLINCS16 (Integrative 

LINCS). iLINCS also provides the signatures connectivity analysis for recently released Connectivity Map 

L1000 signatures17. Detailed step-by-step instructions about GREIN analysis workflows are provided in the 

Supplementary Material and ‘Help’ section in GREIN. 

 

Key functionalities 

Search or submit for processing. User can either search for an already processed GEO data set in 

the ‘Search for GEO series (GSE) accession’ box or submit a dataset for processing if the dataset is not 

already processed (Supplementary Fig. S2). At this point in time, the vast majority of GEO human, mouse 

and rat RNA-seq datasets has been preprocessed and the user-submission of GEO datasets for processing 

will be required only occasionally. User can check the processing status of the requested dataset in the 

‘Processing console’ tab (Supplementary Fig. S3). Other search options include keyword search through 

metadata of the datasets and search samples through biomedical ontologies via MetaSRA ontological 

annotations. 

Explore dataset. GREIN allows access to both raw and normalized (counts per million and 

transcript per million) gene and transcript level data. GREIN comes with several interactive and 

customizable tools to visualize expression patterns such as interactive heatmaps of clustered genes and 

samples, density plots for all or a subset of samples, between and within group variability analysis through 

2D and 3D dimensionality reduction analyses and visualizations such as PCA and t-SNE (Fig. 2). User can 

also visualize expression profile of each gene separately (Supplementary Fig. S6). Comprehensive quality 

control (QC) report of raw sequence data and sequence mapping (Supplementary Fig. S7) provides read 

mapping statistics and quality scores of the sequence data files for each sample. 

Statistical power analysis. The power analysis module in GREIN facilitates calculation and 

visualization of statistical power of detecting differentially expressed genes in future studies utilizing 

similar biological samples. Estimating appropriate sample size for future studies with similar biological 

samples is often the key motivating factor in re-analysis of RNA-seq data. Power analysis also facilitates 

the post-hoc analysis of false negative rates in the current dataset. The lack of statistical power and 

differences in statistical power between genes can produce false negative results leading to wrong 
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conclusions18. The ‘Power curve’ segment provide power estimates for different number of samples based 

on a single gene (Fig. 3A). User can modify the default values of the parameters. The ‘Detectability of 

genes’ plot visualizes power estimate of each of the genes based on the selected groups and gene-wise 

dispersion (Fig. 3B). Mean coverage of the genes are plotted against their biological variability and are 

displayed in two sets based on their detectability status (power≥0.8 and power<0.8). 

Differential gene expression. Creating and interpreting differential gene expression signature is a typical 

analysis scenario in RNA-seq experiments. With GREIN, user can create a signature by comparing gene 

expression between two groups of samples with or without adjustments for experimental covariates or batch 

effects. GREIN can handle complex experimental designs by providing the flexibility of rearranging groups 

and sub-groups or selecting specific samples. Differential expression signature can be visualized via 

interactive graphics that include heatmap of top differentially deregulated genes (Supplementary Figure 

S21) ranked by false discovery rate (FDR), log fold change vs. log average expression (MA) plot 

(Supplementary Figure S22), and gene detectability plot (Supplementary Figure S23). Differential 

 

Figure 2. Exploratory analysis plots in GREIN. (A) Correlation heatmap shows a higher correlation 

within cell lines and low correlation between cell lines. Generally high correlations within each cell line 

indicate high quality of transcriptional profiles. (B) Hierarchical clustering based on Pearson correlation 

of top 500 most variable genes based on median absolute deviation as the variability measure. Data is 

normalized and centered to the mean. (C) Three-dimensional principal component analysis plot of the 

cell lines. (D) Two-dimensional t-SNE plot of treatment condition and cell line shows clear separation 

of the cell lines, and then the RNA fractions indicating two dominant sources of the variability between 

RNA-seq profiles. 
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expression signature, with or without accounting for potentially false negative results, can be directly 

exported to iLINCS for enrichment and connectivity analysis. 

 

Use case: Analysis of transcriptional and translational regulation of hypoxia in 

non-malignant breast epithelial and triple-negative breast cancer cell lines 

We demonstrate the usage of GREIN by re-analyzing a recently published GEO RNA-seq data 

(GSE104193). Sesé et al.19 examined the transcriptional and translational regulation of hormone-refractory 

triple-negative breast cancer (TNBC) subtype under a combination of hypoxia and mTOR (mechanistic 

target of rapamycin) inhibitor treatment. In particular, the authors analyzed the expression profiles of TNBC 

(MDA-MB-231) and non-malignant breast epithelial (MCF10A) cells exposed to normoxic (21% O2) and 

hypoxic (0.5% O2) conditions and/or treated with an mTORC1 and -2 inhibitor PP242. Each of the samples 

were sequenced for total (T) and polysome-bound (P) mRNA. The dataset contains 32 samples, 

representing two biological replicates for each combination of cell line, oxygen level, treatment status, and 

mRNA fraction. 

Exploratory analysis of the processed dataset in GREIN (Fig. 2) shows that the strongest source of 

variation in between samples comes from differences between the two cell lines. This is re-enforced by the 

correlation analysis of full expression profiles (Fig. 2A), the hierarchical clustering of top 500 highly 

variable genes based on median absolute deviation (Fig. 2B), 3D PCA plot of the samples (Fig. 2C), and 

the 2D t-SNE plot (Fig. 2D). Furthermore, high correlations between expression profiles for the same cell 

line (Fig. 2A) indicates good signal-to-noise in the gene expression measurements. The additional 

substructure of data indicated by the 2D t-SNE plot has been examined by painting samples according to 

different attributes (Supplementary Fig. S1). This analysis revealed that separations within each cell line 

are induced by different mRNA fractions and then differences between experimental conditions. 

 

Figure 3. Power analysis for assessing transcriptional changes in non-malignant MCF10A cell 

line. (A) Single-gene based power estimates for different number of samples in each group with a 

minimal fold change of 2, statistical significance =0.01, and a common dispersion estimate. (B) Gene-

wise detectability on the log2CPM-BCOV plane with FDR≤0.1 and two samples in each group. 
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Next, we used GREIN to perform statistical power analysis based on the pattern of biological 

variability observed in this dataset. We considered transcriptional profiles of each cell line exposed to 

hypoxia and treated with or without PP242 which leads to four comparisons. Assuming an expression 

difference of at least two-fold between the groups, at the statistical significance of =.01, and with only 

two replicates in each group, statistical power of a gene to be detected as differentially expressed is below 

0.55 in all the comparisons (Table 2). Our analysis indicates that one would need 4 replicates per group to 

achieve 80% power detecting two-fold change in expression (Table 2 and Fig. 3A). In a typical RNA-seq 

experiment, a sequencing depth of 20-30 million is sufficient to quantify gene expression for almost all 

genes4, 20 which is also evident in this dataset. We also evaluated statistical power of each gene to be detected 

as differentially expressed from the ‘Detectability of genes’ plot. Average log of counts per million (CPM) 

values of the genes were plotted against gene-wise biological coefficient of variation (BCOV) and power 

was calculated for the corresponding genes (Fig. 3B). A controlled false discovery rate of 0.05 and expected 

percentage of true positives of 10% was used to estimate statistical significance. We define a gene to be 

detectable as differentially expressed in hypoxic condition if its power is 0.8 or above. As expected, there 

exists an inverse relationship between BCOV and power (Fig. 3B). Also, power to detect differential 

expression of a gene increases with a higher log CPM or effect size. 

One of the goals of the study was to analyze transcriptional changes in hypoxic and normoxic 

conditions with and without PP242 treatment in both MCF10A and MDA-MB-231 cell lines. We created 

transcriptional signatures of hypoxia and hypoxia+PP242 in total mRNA by differential expression analysis 

between hypoxia and hypoxia+PP242 samples respectively against the control samples while adjusting for 

batch effect by treating ‘replicate’ as a covariate, for each cell line separately. We found a higher number 

of genes differentially expressed (DE) in MCF10A cell lines compared to MDA-MB-231 in both hypoxia 

and hypoxia+PP242 (Fig. 4A) indicating that perhaps the tumor cell line is better equipped to deal with 

hypoxia. This analysis also showed that most non-differentially expressed genes are also not detectable, 

indicating that they may represent false negative results. This is in accordance with the power analysis 

 

Figure 4. Differential expression and detectability of the genes. (A) The number of genes (log10 

scale) not differentially expressed and not detectable (NDE&NDT), differentially expressed (DE), and 

not differentially expressed but detectable (NDE&DT) in the comparisons with normoxia for total 

mRNA fraction. We call a gene detectable (DT) if its power≥0.8 and differentiable if FDR<0.05. (B) 

The gene detectability plot for the first comparison (MCF10A and hypoxia) which visualizes the above-

mentioned list of genes along with their respective fold changes (FC). 

A) B) 
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showing that 4 samples per group would be needed to consistently identify differentially expressed genes 

with average BCOV. To identify lower expressed genes an even higher sample size would be required. 

To interpret differentially expressed genes in terms of affected biological pathways, we submitted the 

differential gene expression signatures of hypoxia to online enrichment tools (DAVID21, ToppGene22, 

Enrichr23, and Reactome24) via iLINCS. The submitted signatures included a combined list of DE and 

NDE&DT genes representing likely true positive and true negatives.  Genes were selected based on a cutoff 

of 0.7 and 0.01 for statistical power and FDR respectively. Fig. 5 illustrates the enrichment results obtained 

 

Figure 5. Snapshot of some of the significant pathway and gene ontology (GO) categories from 

ToppGene via iLINCS. These categories are found in the comparison between hypoxia and normoxia 

in MCF10A cell line using a combined list of DE and NDE&DT genes. The red vertical line is the 

selected cutoff of 0.05. 
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from ToppGene for the MCF10 hypoxia signature. Significantly enriched (FDR<0.05) top 10 gene ontology 

(GO) categories from ToppGene and DAVID functional annotation tool include response to hypoxia, 

response to decreased oxygen levels, angiogenesis, regulation of cell proliferation, oxidation-reduction 

process, and response to abiotic stimulus that are common in both cell lines (Supplementary Table S2 and 

Supplementary Table S3). Most of these categories are consistent with the original study. In addition, 

ToppGene suite identified hypoxia induced factor (HIF-1-alpha) transcription factor network that was 

activated in both cell lines (Supplementary Table S4 and Supplementary Table S5).  

Finally, we utilized GREIN connection with iLINCS to “connect” the uploaded signature with 

LINCS25 consensus (CGS) gene knockdown signatures17. We found 3,727 LINCS consensus gene 

knockdown signatures that were significantly (pValue<0.05) connected with our uploaded signature. The 

target genes of top 100 connected signatures were selected for further enrichment analysis. We found 

cellular response to hypoxia and regulation of Hypoxia-inducible Factor (HIF) by oxygen in the list of top 

10 activated pathways in both cell lines (Supplementary Table S6 and Supplementary Table S7). While this 

analysis yields similar enriched functional categories as the initial enrichment analysis, it complements the 

original analysis by implicating several target genes that are not differentially expressed although they are 

sufficiently highly expressed to be detectable according to our power analyses. Tying these two results 

together implicates these genes as potential higher level regulators of the response to hypoxia.  

 

Discussion 

The combination of the access to a vast number of preprocessed mRNA expression data and the diversity 

of the analytical tools implemented makes GREIN a unique new resource for reuse of public domain RNA-

seq data. GREIN not only removes technical barriers in reusing GEO RNA-seq data for biomedical 

scientists, but also facilitates easy assessment of the validity and reproducibility of the analysis results while 

uncovering new insights of the experiments. Our case-study analysis indicated that GREIN can be used for 

quickly reproducing results of the published studies as well as for gleaning additional insights that go 

beyond the original analysis. The complete analysis can be reproduced in less than 10 minutes. The web 

instance deployed on our server provides no-overhead use and requires no technical expertise. Open source 

R packages and the Docker container provide a flexible and transparent way for computationally savvy 

users to deploy the complete infrastructure locally with very little effort.  

The GUI-driven analysis workflows implemented by GREIN covers a large portion of use cases for 

RNA-seq data analysis, making it the only tool that a scientist may need to meaningfully re-analyze GEO 

RNA-seq data. In addition, the power analysis workflow provides means to assess the statistical reasons for 

detecting or not-detecting specific differentially expressed genes. This kind of analyses is not common in 

the standard RNA-seq pipelines, but the results can be extremely useful when assessing false negative 

results. For example, when performing gene list enrichment analysis of differentially expressed genes, 

genes that do not meet a statistical significance cut-off are considered not differentially expressed. 

However, our power analysis indicates that the vast majority of these genes may simply be below detection 

limits for the available number of samples. GREIN allows user to distinguish between genes not detectable 

due to sample size limitations and/or their low expression levels, vs genes that are expressed at high enough 

expression levels but were not differentially expressed. This kind of resolution allows for more nuanced 

interpretation of analysis results. Off-line use of GREP2 and GREIN packages, as well as flexible export 

options enable additional analyses of GREIN-processed and pre-analyzed datasets.  
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Methods 

GREIN back-end pipeline 

To consistently process GEO RNA-seq datasets through a robust and uniform system, we have developed 

GEO RNA-seq experiments processing pipeline (GREP2) which is available as an R package in CRAN. 

Both GREP2 and GREIN are simultaneously running on different Docker containers. The whole processing 

workflow can be summarized in the following steps: 

1. Obtain GEO series accession ID (series type: Expression profiling by high throughput sequencing) from 

GEO that contain at least two human, mouse, or rat RNA-seq samples. We then retrieve metadata for each 

GEO series accession using Bioconductor package GEOquery26. We also obtain metadata files from the 

Sequence Read Archive (SRA) to get corresponding run information and merge both the GEO and SRA 

metadata. 

2. Download corresponding experiment run files from SRA using ‘ascp’ utility of Aspera Connect27 and 

convert them into FASTQ file format using NCBI SRA toolkit28. All the downloaded files are stored in the 

local repository until processed. 

3. Run FastQC29 on each FASTQ file to generate QC reports and remove adapter sequences if necessary 

using Trimmomatic30. 

4. Quantify transcript abundances by mapping reads to reference transcriptome using Salmon31. 

5. Transcript level abundances are then then summarized to gene level using Bioconductor package 

tximport32. We use lengthScaledTPM option in the summarization step which gives estimated counts scaled 

up to library size while considering for transcript length. Gene annotation for Homo sapiens (GRCh38), 

Mus musculus (GRCm38), and Rattus norvegicus (Rnor_6.0) are obtained from Ensemble33 (release-91). 

6. Compile FastQC reports and Salmon log files into a single interactive HTML report using MultiQC34. 

 

Power analysis 

The power analysis in GREIN is performed using the Bioconductor package RNASeqPower4 which uses 

the following formula:  

(𝒛𝟏−
𝜶

𝟐
+ 𝒛𝜷)

𝟐
=

𝒏 𝐥𝐨𝐠𝒆 ∆𝟐

𝟐(
𝟏

𝝁
+𝝈𝟐)

     (1) 

Where,  is the target false positive rate,  is the target false negative rate or 1- is power, 𝑛 is the sample 

size,  is the effect size,  is the average sequencing depth, and  is the biological coefficient of variation 

(BCOV) calculated as the square root of the dispersion. We use common dispersion and tagwise dispersion 

estimates from Bioconductor package edgeR35 for computing power of a single gene and multiple genes 

respectively. 

Typically, thousands of genes are tested simultaneously for differential expression in RNA-seq 

experiments. Therefore, the above method for estimating power needs further adjustment to correct for 

multiple testing. Jung et al.36 derived an FDR correction formula and consequently the significance level 

() to calculate sample size for microarray data in the following form: 

𝜶∗ =
𝒓𝟏𝒇

𝒎𝟎(𝟏−𝒇)
        (2) 
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Where, 𝑟1 is the expected number of true positives in 𝑚1 rejected null hypotheses, 𝑚0 denote the number 

of genes for which null hypotheses are true, and 𝑓 implies desired FDR level. Hence, to calculate power 

for each of the genes, we replace  with  in equation (1). 

 

Differential expression analysis 

GREIN uses negative binomial generalized linear model as implemented in edgeR to find differentially 

expressed genes between sample groups. Data is normalized using trimmed mean of M-values (TMM) as 

implemented in edgeR. All the analyses are based on CPM values and genes are filtered at the onset with a 

cutoff of CPM>0 in 𝑚 samples, where 𝑚 is the minimum sample size in any of the groups. Besides two-

group comparison, GREIN also supports adjustment for experimental covariates or batch effects. A design 

matrix is constructed with the selected variable and groups. We use gene-wise negative binomial 

generalized linear models with quasi-likelihood tests and gene-wise exact tests to calculate differential 

expression between groups with and without covariates respectively. P-values are adjusted for multiple 

testing correction using Benjamini-Hochberg method37. Interactive visualization of the differentially 

expressed genes is also available via heatmap of the top ranked genes, MA plot, and gene detectability plot.  
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Tables 

 
 

Comparison 

RNA-seq processed data resources 

GREIN Recount27 ARCHS48 Toil9 Expression 

Atlas10 

Data availability Gene and 

transcript 

Gene and 

transcript 

Gene and 

transcript 

Transcript Gene 

Quantification type Read 

mapping 

(Salmon) 

Read 

alignment 

(Rail-RNA) 

Read 

mapping 

(Kallisto) 

Read 

mapping 

(Kallisto) 

Read alignment 

(Tophat) 

Interactive exploratory 

analysis 

Yes No No No No 

QC report Yes No No Yes Yes 

Power analysis Yes No No No No 

Differential expression 

analysis on-the-fly 

Yes No No No No 

Enrichment analysis for 

differential expression 

signature 

Yes No No No Yes 

Pipeline availability R package 

and Docker 

container 

R package 

and Docker 

container 

Docker 

container 

Docker 

container 

NA 

Process data on-the-fly Yes No No No No 

Ontological annotations 

of samples 

Yes No No No No 

Table 1. Comparison of different RNA-seq data resources. All these resources provide access to 

processed RNA-seq data, however most of them do not provide interactive interfaces for further 

manipulation and analyses of the datasets. 

 

Cell line Comparison 

groups 

Average 

sequencing 

depth (in 

million) 

Common 

BCOV 

Power  

(2 samples) 

Power 

(3 samples) 

Power 

(4 samples) 

MCF10A Hypoxia and 

normoxia 

41.72 0.21 0.52 0.74 0.87 

MCF10A Hypoxia+PP242 

and normoxia 

38.18 0.31 0.28 0.44 0.59 

MDA-

MB-231 

Hypoxia and 

normoxia 

27.86 0.24 0.38 0.73 0.86 

MDA-

MB-231 

Hypoxia+PP242 

and normoxia 

29.52 0.19 0.51 0.73 0.86 

Table 2. Statistical power analysis to assess transcriptional changes in malignant and non-malignant 

cell lines. With a minimal fold change of 2 between the groups and statistical significance at =.01, all the 
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comparisons are under-powered with two samples in each group. However, power increases as we increase 

the sample size. 
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