bioRxiv preprint doi: https://doi.org/10.1101/326223; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

GREIN: An Interactive Web Platform for Re-
analyzing GEO RNA-seq Data

Naim Al Mahi!, Mehdi Fazel Najafabadi!, Marcin Pilarczyk!, Michal Kouril?, and
Mario Medvedovict”

IDivision of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati,
3223 Eden Avenue, Cincinnati, OH 45220, USA

“Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
*medvedm@ucmail.uc.edu

ABSTRACT

The vast amount of RNA-seq data deposited in Gene Expression Omnibus (GEO) and Sequence Read
Archive (SRA) is still a grossly underutilized resource for biomedical research. To remove technical
roadblocks for reusing these data, we have developed a web-application GREIN (GEO RNA-seq
Experiments Interactive Navigator) which provides user-friendly interfaces to manipulate and analyze GEO
RNA-seq data. GREIN is powered by the back-end computational pipeline for uniform processing of RNA-
seq data and the large number (>6,500) of already processed datasets. The front-end user interfaces
provide a wealth of user-analytics options including sub-setting and downloading processed data,
interactive visualization, statistical power analyses, construction of differential gene expression signatures
and their comprehensive functional characterization, and connectivity analysis with LINCS L1000 data. The
combination of the massive amount of back-end data and front-end analytics options driven by user-friendly
interfaces makes GREIN a unique open-source resource for re-using GEO RNA-seq data. GREIN is
accessible at: https://shiny.ilincs.org/grein, the source code at: : https://github.com/uc-bd2k/grein, and the
Docker container at: https://hub.docker.com/r/ucbd2k/grein.

Introduction

Depositing RNA-seq datasets in Gene Expression Omnibus (GEO)! and Sequence Read Archive (SRA)?
repositories ensures the reproducibility of published studies and facilitates its reuse. Re-analysis of these
data can lead to novel scientific insights® and it has been routinely used to inform the design of new studies®.
However, reuse of GEO RNA-seq data is made difficult by the complexity of the processing protocols® and
analytical tools® which are often inaccessible to biomedical scientists not specializing in bioinformatics.

Recent efforts at re-processing GEO/SRA RNA-seq data alleviate this problem by providing access to
large number of processed and per-transcript summarized RNA-seq datasets which significantly simplifies
its use”®. Other resources provide access and analysis tools for specific datasets®® 1. While these platforms
are extremely useful, they do not support additional functionalities for downstream analyses. For example,
exploratory data analysis, differential expression analysis with batch effect adjustment, or statistical power
analysis (Table 1). Therefore, open-source user-friendly tools with comprehensive analytical toolbox for
re-analysis of public RNA-seq data are still lacking. We address this problem by developing and deploying
GEO RNA-seq Experiments Interactive Navigator (GREIN) web tool for analysis of GEO RNA-seq data.
In addition to the rich repertoire of analysis tools, GREIN provides access to more than 6,500 uniformly
processed human, mouse, and rat GEO RNA-seq datasets with >215,000 samples that are ready for analysis.
These datasets were retrieved from GEO and uniformly reprocessed by the back-end GEO RNA-seq


mailto:medvedm@ucmail.uc.edu
https://shiny.ilincs.org/grein
https://github.com/uc-bd2k/grein
https://hub.docker.com/r/ucbd2k/grein
https://doi.org/10.1101/326223
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/326223; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

[cRED? |
|GREP2

Mapped reads Transcript
&0 - e rimmomanic > A Saimon > [tximport >
oS Aspera D@ Fastq-dump “Z> files Trimmomatic FASTQ files iﬂ:ﬂ"::;l;l:;“! le:rr::c!::r‘:ts
H FastQC,

MultiQC
Qac
report
‘ Qc plot Sample density
] L] About GEO datasets Explore dataset Analyze dataset Processing console
GREIN : GEO RNA-seq Experiments Interactive Navigator Heatmap t-SNE
Sample size distribution of the processed datasets Processing status of GEO RNA-seq datasets Number of processed GED samples == 2
— J— =
¥
" § Gene Power
] ¥ detectability curve
- . ——
number of samples. e —
Search for GEO serles (GSE) accession o Search by ontologies (MetaSRA) User requested datasets o
3 #Enrichr
w —
L) Mﬁm,', N
& ¥

Figure 1. Schematic workflow of GREP2, web interface and outputs of GREIN. GEO datasets are
systematically processed using GREP2 pipeline and stored within the back-end dataset library. GUI-
driven GREIN workflows facilitate comprehensive analysis and visualization of processed datasets.

experiments processing pipeline (GREP2). The pipeline also curates metadata for each of the datasets and
annotates each sample with biomedical ontologies provided by MetaSRA2. As the number of new studies
are included in GEO, more datasets are processed and added to GREIN on a regular basis. Apart from the
preprocessed datasets, GREIN also facilitates user requested processing of GEO RNA-seq datasets on-the-
fly (Table 1). We also release GREP2 as an R package and GREIN as a Docker** container for easy local
deployment of the complete infrastructure which can be used to reproduce GREIN results off-line.

Results

The conceptual outline of GREIN is showed in Fig. 1. Individual RNA-seq datasets are processed by the
GREP2 pipeline and stored locally as R Expression Sets. User can access and analyze preprocessed datasets
via GREIN graphical user interface (GUI) or submit for processing datasets that have not yet been
processed. GUI-driven workflows facilitate examination and visualization of data, statistical analysis,
transcriptional signature construction, and systems biology interpretation of differentially expressed (DE)
genes. Both GREIN and the back-end pipeline (GREP2) are written in R and released as Docker container
and R package respectively. Graphical user interfaces for GREIN are implemented in Shiny®®, a web
framework for building dynamic web applications in R. The web instances at https://shiny.ilincs.org/grein
is deployed via robust docker swarm of load-balanced of Shiny servers. The complete GREIN
infrastructure, including processing pipeline is deployed via Docker containers.
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User friendly GUI driven workflows in GREIN facilitate typical reuse scenarios for RNA-seq data
such as examination of quality control measures and visualization of expression patterns in the whole
dataset, sample size and power analysis for the purpose of informing experimental design of future studies,
statistical differential gene expression, gene list enrichment, and network analysis. Besides standard two-
group comparison, the differential gene expression analysis module also supports fitting of a generalized
linear model that accounts for covariates or batch-effects. The interactive visualization and exploration tools
implemented include cluster analysis, interactive heatmaps, principal component analysis (PCA), t-
distributed stochastic neighbor embedding (t-SNE), etc. (Supplementary Table S1). User can also search
for ontological annotations of human RNA-seq samples and datasets provided by the MetaSRA project*?.
Each processed human RNA-seq sample is labelled with MetaSRA mapping of biomedical ontologies
including Disease Ontology, Cell Ontology, Experimental Factor Ontology, Cellosaurus, and Uberon.
Biological interpretation of differential gene expressions is aided by direct links to other online tools for
performing typical post-hoc analyses such as the gene list and pathway enrichment analysis and the network
analysis of differentially expressed (DE) genes. The connection to these analytical web services is
implemented by submitting the differential gene expression signature (i.e., the list of average changes in
gene expression and associated p-values for all/up/down regulated genes analyzed) to iLINCS?® (Integrative
LINCS). iLINCS also provides the signatures connectivity analysis for recently released Connectivity Map
L1000 signatures®’. Detailed step-by-step instructions about GREIN analysis workflows are provided in the
Supplementary Material and ‘Help’ section in GREIN.

Key functionalities

Search or submit for processing. User can either search for an already processed GEO data set in
the ‘Search for GEO series (GSE) accession’ box or submit a dataset for processing if the dataset is not
already processed (Supplementary Fig. S2). At this point in time, the vast majority of GEO human, mouse
and rat RNA-seq datasets has been preprocessed and the user-submission of GEO datasets for processing
will be required only occasionally. User can check the processing status of the requested dataset in the
‘Processing console’ tab (Supplementary Fig. S3). Other search options include keyword search through
metadata of the datasets and search samples through biomedical ontologies via MetaSRA ontological
annotations.

Explore dataset. GREIN allows access to both raw and normalized (counts per million and
transcript per million) gene and transcript level data. GREIN comes with several interactive and
customizable tools to visualize expression patterns such as interactive heatmaps of clustered genes and
samples, density plots for all or a subset of samples, between and within group variability analysis through
2D and 3D dimensionality reduction analyses and visualizations such as PCA and t-SNE (Fig. 2). User can
also visualize expression profile of each gene separately (Supplementary Fig. S6). Comprehensive quality
control (QC) report of raw sequence data and sequence mapping (Supplementary Fig. S7) provides read
mapping statistics and quality scores of the sequence data files for each sample.

Statistical power analysis. The power analysis module in GREIN facilitates calculation and
visualization of statistical power of detecting differentially expressed genes in future studies utilizing
similar biological samples. Estimating appropriate sample size for future studies with similar biological
samples is often the key motivating factor in re-analysis of RNA-seq data. Power analysis also facilitates
the post-hoc analysis of false negative rates in the current dataset. The lack of statistical power and
differences in statistical power between genes can produce false negative results leading to wrong
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Figure 2. Exploratory analysis plots in GREIN. (A) Correlation heatmap shows a higher correlation
within cell lines and low correlation between cell lines. Generally high correlations within each cell line
indicate high quality of transcriptional profiles. (B) Hierarchical clustering based on Pearson correlation
of top 500 most variable genes based on median absolute deviation as the variability measure. Data is
normalized and centered to the mean. (C) Three-dimensional principal component analysis plot of the
cell lines. (D) Two-dimensional t-SNE plot of treatment condition and cell line shows clear separation
of the cell lines, and then the RNA fractions indicating two dominant sources of the variability between
RNA-seq profiles.

conclusions?®. The ‘Power curve’ segment provide power estimates for different number of samples based
on a single gene (Fig. 3A). User can modify the default values of the parameters. The ‘Detectability of
genes’ plot visualizes power estimate of each of the genes based on the selected groups and gene-wise
dispersion (Fig. 3B). Mean coverage of the genes are plotted against their biological variability and are
displayed in two sets based on their detectability status (power=>0.8 and power<0.8).

Differential gene expression.  Creating and interpreting differential gene expression signature is a typical
analysis scenario in RNA-seq experiments. With GREIN, user can create a signature by comparing gene
expression between two groups of samples with or without adjustments for experimental covariates or batch
effects. GREIN can handle complex experimental designs by providing the flexibility of rearranging groups
and sub-groups or selecting specific samples. Differential expression signature can be visualized via
interactive graphics that include heatmap of top differentially deregulated genes (Supplementary Figure
S21) ranked by false discovery rate (FDR), log fold change vs. log average expression (MA) plot
(Supplementary Figure S22), and gene detectability plot (Supplementary Figure S23). Differential
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expression signature, with or without accounting for potentially false negative results, can be directly
exported to iLINCS for enrichment and connectivity analysis.

Use case: Analysis of transcriptional and translational regulation of hypoxia in
non-malignant breast epithelial and triple-negative breast cancer cell lines

We demonstrate the usage of GREIN by re-analyzing a recently published GEO RNA-seq data
(GSE104193). Sesé et al.’® examined the transcriptional and translational regulation of hormone-refractory
triple-negative breast cancer (TNBC) subtype under a combination of hypoxia and mTOR (mechanistic
target of rapamycin) inhibitor treatment. In particular, the authors analyzed the expression profiles of TNBC
(MDA-MB-231) and non-malignant breast epithelial (MCF10A) cells exposed to normoxic (21% O2) and
hypoxic (0.5% O-) conditions and/or treated with an mTORCL1 and -2 inhibitor PP242. Each of the samples
were sequenced for total (T) and polysome-bound (P) mRNA. The dataset contains 32 samples,
representing two biological replicates for each combination of cell line, oxygen level, treatment status, and
mRNA fraction.

Exploratory analysis of the processed dataset in GREIN (Fig. 2) shows that the strongest source of
variation in between samples comes from differences between the two cell lines. This is re-enforced by the
correlation analysis of full expression profiles (Fig. 2A), the hierarchical clustering of top 500 highly
variable genes based on median absolute deviation (Fig. 2B), 3D PCA plot of the samples (Fig. 2C), and
the 2D t-SNE plot (Fig. 2D). Furthermore, high correlations between expression profiles for the same cell
line (Fig. 2A) indicates good signal-to-noise in the gene expression measurements. The additional
substructure of data indicated by the 2D t-SNE plot has been examined by painting samples according to
different attributes (Supplementary Fig. S1). This analysis revealed that separations within each cell line
are induced by different mRNA fractions and then differences between experimental conditions.
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Figure 3. Power analysis for assessing transcriptional changes in non-malignant MCF10A cell
line. (A) Single-gene based power estimates for different number of samples in each group with a
minimal fold change of 2, statistical significance «=0.01, and a common dispersion estimate. (B) Gene-
wise detectability on the log2CPM-BCOV plane with FDR<0.1 and two samples in each group.
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Next, we used GREIN to perform statistical power analysis based on the pattern of biological
variability observed in this dataset. We considered transcriptional profiles of each cell line exposed to
hypoxia and treated with or without PP242 which leads to four comparisons. Assuming an expression
difference of at least two-fold between the groups, at the statistical significance of o=.01, and with only
two replicates in each group, statistical power of a gene to be detected as differentially expressed is below
0.55 in all the comparisons (Table 2). Our analysis indicates that one would need 4 replicates per group to
achieve 80% power detecting two-fold change in expression (Table 2 and Fig. 3A). In a typical RNA-seq
experiment, a sequencing depth of 20-30 million is sufficient to quantify gene expression for almost all
genes* 2 which is also evident in this dataset. We also evaluated statistical power of each gene to be detected
as differentially expressed from the ‘Detectability of genes’ plot. Average log of counts per million (CPM)
values of the genes were plotted against gene-wise biological coefficient of variation (BCOV) and power
was calculated for the corresponding genes (Fig. 3B). A controlled false discovery rate of 0.05 and expected
percentage of true positives of 10% was used to estimate statistical significance. We define a gene to be
detectable as differentially expressed in hypoxic condition if its power is 0.8 or above. As expected, there
exists an inverse relationship between BCOV and power (Fig. 3B). Also, power to detect differential
expression of a gene increases with a higher log CPM or effect size.

One of the goals of the study was to analyze transcriptional changes in hypoxic and normoxic
conditions with and without PP242 treatment in both MCF10A and MDA-MB-231 cell lines. We created
transcriptional signatures of hypoxia and hypoxia+PP242 in total mMRNA by differential expression analysis
between hypoxia and hypoxia+PP242 samples respectively against the control samples while adjusting for
batch effect by treating ‘replicate’ as a covariate, for each cell line separately. We found a higher number
of genes differentially expressed (DE) in MCF10A cell lines compared to MDA-MB-231 in both hypoxia
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Figure 4. Differential expression and detectability of the genes. (A) The number of genes (log10
scale) not differentially expressed and not detectable (NDE&NDT), differentially expressed (DE), and
not differentially expressed but detectable (NDE&DT) in the comparisons with normoxia for total
mRNA fraction. We call a gene detectable (DT) if its power=0.8 and differentiable if FDR<0.05. (B)
The gene detectability plot for the first comparison (MCF10A and hypoxia) which visualizes the above-
mentioned list of genes along with their respective fold changes (FC).

and hypoxia+PP242 (Fig. 4A) indicating that perhaps the tumor cell line is better equipped to deal with
hypoxia. This analysis also showed that most non-differentially expressed genes are also not detectable,
indicating that they may represent false negative results. This is in accordance with the power analysis
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showing that 4 samples per group would be needed to consistently identify differentially expressed genes
with average BCOV. To identify lower expressed genes an even higher sample size would be required.

To interpret differentially expressed genes in terms of affected biological pathways, we submitted the
differential gene expression signatures of hypoxia to online enrichment tools (DAVID?, ToppGene?,
Enrichr?®, and Reactome?®) via iLINCS. The submitted signatures included a combined list of DE and
NDE&DT genes representing likely true positive and true negatives. Genes were selected based on a cutoff
of 0.7 and 0.01 for statistical power and FDR respectively. Fig. 5 illustrates the enrichment results obtained
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Figure 5. Snapshot of some of the significant pathway and gene ontology (GO) categories from
ToppGene via iLINCS. These categories are found in the comparison between hypoxia and normoxia

in MCF10A cell line using a combined list of DE and NDE&DT genes. The red vertical line is the
selected cutoff of 0.05.
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from ToppGene for the MCF10 hypoxia signature. Significantly enriched (FDR<0.05) top 10 gene ontology
(GO) categories from ToppGene and DAVID functional annotation tool include response to hypoxia,
response to decreased oxygen levels, angiogenesis, regulation of cell proliferation, oxidation-reduction
process, and response to abiotic stimulus that are common in both cell lines (Supplementary Table S2 and
Supplementary Table S3). Most of these categories are consistent with the original study. In addition,
ToppGene suite identified hypoxia induced factor (HIF-1-alpha) transcription factor network that was
activated in both cell lines (Supplementary Table S4 and Supplementary Table S5).

Finally, we utilized GREIN connection with iLINCS to “connect” the uploaded signature with
LINCS? consensus (CGS) gene knockdown signatures’. We found 3,727 LINCS consensus gene
knockdown signatures that were significantly (pValue<0.05) connected with our uploaded signature. The
target genes of top 100 connected signatures were selected for further enrichment analysis. We found
cellular response to hypoxia and regulation of Hypoxia-inducible Factor (HIF) by oxygen in the list of top
10 activated pathways in both cell lines (Supplementary Table S6 and Supplementary Table S7). While this
analysis yields similar enriched functional categories as the initial enrichment analysis, it complements the
original analysis by implicating several target genes that are not differentially expressed although they are
sufficiently highly expressed to be detectable according to our power analyses. Tying these two results
together implicates these genes as potential higher level regulators of the response to hypoxia.

Discussion

The combination of the access to a vast number of preprocessed mRNA expression data and the diversity
of the analytical tools implemented makes GREIN a unique new resource for reuse of public domain RNA-
seq data. GREIN not only removes technical barriers in reusing GEO RNA-seq data for biomedical
scientists, but also facilitates easy assessment of the validity and reproducibility of the analysis results while
uncovering new insights of the experiments. Our case-study analysis indicated that GREIN can be used for
quickly reproducing results of the published studies as well as for gleaning additional insights that go
beyond the original analysis. The complete analysis can be reproduced in less than 10 minutes. The web
instance deployed on our server provides no-overhead use and requires no technical expertise. Open source
R packages and the Docker container provide a flexible and transparent way for computationally savvy
users to deploy the complete infrastructure locally with very little effort.

The GUI-driven analysis workflows implemented by GREIN covers a large portion of use cases for
RNA-seq data analysis, making it the only tool that a scientist may need to meaningfully re-analyze GEO
RNA-seq data. In addition, the power analysis workflow provides means to assess the statistical reasons for
detecting or not-detecting specific differentially expressed genes. This kind of analyses is not common in
the standard RNA-seq pipelines, but the results can be extremely useful when assessing false negative
results. For example, when performing gene list enrichment analysis of differentially expressed genes,
genes that do not meet a statistical significance cut-off are considered not differentially expressed.
However, our power analysis indicates that the vast majority of these genes may simply be below detection
limits for the available number of samples. GREIN allows user to distinguish between genes not detectable
due to sample size limitations and/or their low expression levels, vs genes that are expressed at high enough
expression levels but were not differentially expressed. This kind of resolution allows for more nuanced
interpretation of analysis results. Off-line use of GREP2 and GREIN packages, as well as flexible export
options enable additional analyses of GREIN-processed and pre-analyzed datasets.
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Methods

GREIN back-end pipeline

To consistently process GEO RNA-seq datasets through a robust and uniform system, we have developed
GEO RNA-seq experiments processing pipeline (GREP2) which is available as an R package in CRAN.
Both GREP2 and GREIN are simultaneously running on different Docker containers. The whole processing
workflow can be summarized in the following steps:

1. Obtain GEO series accession ID (series type: Expression profiling by high throughput sequencing) from
GEO that contain at least two human, mouse, or rat RNA-seq samples. We then retrieve metadata for each
GEO series accession using Bioconductor package GEOquery?. We also obtain metadata files from the
Sequence Read Archive (SRA) to get corresponding run information and merge both the GEO and SRA
metadata.

2. Download corresponding experiment run files from SRA using ‘ascp’ utility of Aspera Connect?” and
convert them into FASTQ file format using NCBI SRA toolkit?. All the downloaded files are stored in the
local repository until processed.

3. Run FastQC? on each FASTQ file to generate QC reports and remove adapter sequences if necessary
using Trimmomatic®.

4. Quantify transcript abundances by mapping reads to reference transcriptome using Salmon®,

5. Transcript level abundances are then then summarized to gene level using Bioconductor package
tximport®2. We use lengthScaledTPM option in the summarization step which gives estimated counts scaled
up to library size while considering for transcript length. Gene annotation for Homo sapiens (GRCh38),
Mus musculus (GRCm38), and Rattus norvegicus (Rnor_6.0) are obtained from Ensemble® (release-91).

6. Compile FastQC reports and Salmon log files into a single interactive HTML report using MultiQC34,

Power analysis

The power analysis in GREIN is performed using the Bioconductor package RNASeqPower* which uses
the following formula:
nlog, A2

(Zl‘% + ZB)Z - 2(’11+02) (1)

Where, a is the target false positive rate, B is the target false negative rate or 1-f is power, n is the sample
size, A is the effect size, u is the average sequencing depth, and o is the biological coefficient of variation
(BCOV) calculated as the square root of the dispersion. We use common dispersion and tagwise dispersion
estimates from Bioconductor package edgeR* for computing power of a single gene and multiple genes
respectively.

Typically, thousands of genes are tested simultaneously for differential expression in RNA-seq
experiments. Therefore, the above method for estimating power needs further adjustment to correct for
multiple testing. Jung et al.*® derived an FDR correction formula and consequently the significance level
(o) to calculate sample size for microarray data in the following form:

* rlf

@ = e (2)
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Where, r; is the expected number of true positives in m, rejected null hypotheses, m, denote the number
of genes for which null hypotheses are true, and f implies desired FDR level. Hence, to calculate power
for each of the genes, we replace o with a* in equation (1).

Differential expression analysis

GREIN uses negative binomial generalized linear model as implemented in edgeR to find differentially
expressed genes between sample groups. Data is normalized using trimmed mean of M-values (TMM) as
implemented in edgeR. All the analyses are based on CPM values and genes are filtered at the onset with a
cutoff of CPM>0 in m samples, where m is the minimum sample size in any of the groups. Besides two-
group comparison, GREIN also supports adjustment for experimental covariates or batch effects. A design
matrix is constructed with the selected variable and groups. We use gene-wise negative binomial
generalized linear models with quasi-likelihood tests and gene-wise exact tests to calculate differential
expression between groups with and without covariates respectively. P-values are adjusted for multiple
testing correction using Benjamini-Hochberg method®’. Interactive visualization of the differentially
expressed genes is also available via heatmap of the top ranked genes, MA plot, and gene detectability plot.
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Tables
RNA-seq processed data resources
Comparison GREIN Recount2’ | ARCHS4® | Toil° Expression
Atlas®
Data availability Gene and Gene and Gene and | Transcript | Gene
transcript transcript transcript
Quantification type Read Read Read Read Read alignment
mapping alignment mapping mapping (Tophat)
(Salmon) (Rail-RNA) | (Kallisto) | (Kallisto)
Interactive exploratory Yes No No No No
analysis
QC report Yes No No Yes Yes
Power analysis Yes No No No No
Differential expression Yes No No No No
analysis on-the-fly
Enrichment analysis for | Yes No No No Yes
differential expression
signature
Pipeline availability R package | R package Docker Docker NA
and Docker | and Docker | container | container
container container
Process data on-the-fly Yes No No No No
Ontological annotations | Yes No No No No
of samples

Table 1. Comparison of different RNA-seq data resources. All these resources provide access to
processed RNA-seq data, however most of them do not provide interactive interfaces for further
manipulation and analyses of the datasets.

Cell line Comparison Average Common | Power Power Power
groups sequencing | BCOV (2 samples) | (3 samples) | (4 samples)
depth (in
million)
MCF10A | Hypoxia and 41.72 0.21 0.52 0.74 0.87
normoxia
MCF10A | Hypoxia+PP242 | 38.18 0.31 0.28 0.44 0.59
and normoxia
MDA- Hypoxia and 27.86 0.24 0.38 0.73 0.86
MB-231 normoxia
MDA- Hypoxia+PP242 | 29.52 0.19 0.51 0.73 0.86
MB-231 and normoxia

Table 2. Statistical power analysis to assess transcriptional changes in malignant and non-malignant
cell lines. With a minimal fold change of 2 between the groups and statistical significance at a=.01, all the
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comparisons are under-powered with two samples in each group. However, power increases as we increase
the sample size.
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