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Summary

Resting state functional connectomes are massive and complex. It is an open
question, however, whether connectomes differ across individuals in a
correspondingly massive number of ways, or whether most differences take a small
number of characteristic forms. We systematically investigated this question and
found clear evidence of low-rank structure in which a modest number of
connectomic components, around 50-150, account for a sizable portion of inter-
individual connectomic variation. This number was convergently arrived at with
multiple methods including estimation of intrinsic dimensionality and assessment of
reconstruction of out-of-sample data. We demonstrate that these connectomic
components enable prediction of a broad array of neurocognitive and clinical
variables. In addition, using stochastic block modeling-based methods, we show
these components exhibit extensive community structure reflecting
interrelationships between intrinsic connectivity networks. We propose that these
connectivity components form an effective basis set for quantifying and interpreting
inter-individual connectomic differences, and for predicting behavioral/clinical
phenotypes.

1. Introduction

Resting state functional connectomics has emerged as a leading method for mapping
the organization of human brain networks (Biswal et al., 2010; Van Dijk et al., 2010;
Buckner, Krienen and Yeo, 2013; Lee, Smyser and Shimony, 2013; Smith et al,
2013). In addition, it presents a major opportunity for elucidation of the brain basis
of individual differences (Barch, 2013; Castellanos et al., 2013; Matthews and
Hampshire, 2016; Menon, 2011): functional networks are thought to be critical
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substrates for major neurocognitive and behavioral phenotypes (Laird et al.,, 2011;
Bressler and Menon, 2010; Mattar et al., 2015), so across-individual differences in
network organizations may predict differences in these phenotypes (Kelly et al,,
2012; Dubois and Adolphs, 2016). The eventual goal is to refine phenotypic
prediction sufficiently that functional connectomes can serve as reliable, objective
“biomarkers” of clinically meaningful traits and dimensions (Castellanos et al., 2013;
Kaiser, 2013; Woo et al., 2017; Bassett, Xia and Satterthwaite, 2018; Satterthwaite,
Xia and Bassett, 2018).

Notably, while attempts to utilize functional connectomes for prediction of
individual differences are numerous (Kelly et al.,, 2012; Dubois and Adolphs, 2016),
attempts to descriptively assess the nature, kind, and extent of population-wide
inter-individual functional connectomic variation remain scarce, c.f., Mueller et al.,
2013; Gordon et al., 2017. One important open question concerns the
dimensionality of inter-individual variation.

In high dimensional data, there is often substantial dependency in the feature set,
and it is often useful for a wide of variety of purposes—computation, interpretation,
explanation, and prediction—to identify low-rank structure in the data, i.e., major
components that explain a substantial portion of the variation. Over the last 15
years, there has been extensive work in detecting low-rank structure in intra-
individual across-time variation in the connectome, i.e., the tendency of distributed
brain regions to exhibit coherent fluctuations in their BOLD time series (Greicius et
al, 2004; van de Ven et al., 2004; Beckmann et al., 2005). This work has culminated
in the identification of a small number of intrinsic connectivity networks (ICNs) as
major components of intra-individual cross-time variation (Power et al,, 2011; Yeo
etal, 2011; Buckner, Krienen and Yeo, 2013). These networks, in turn, have played
central roles in recent models and explanations of cognitive capacities and
behavioral phenotypes (Bressler and Menon, 2010; Laird et al., 2011; Menon, 2011;
Barch, 2013; Cole et al., 2013; Mattar et al., 2015).

Importantly, however, there have not been corresponding systematic attempts to
identify low-rank structure in patterns of inter-individual variation (but see Kessler
etal, 2014; Kessler, Angstadt and Sripada, 2016; Amico et al., 2017 for limited
attempts). This is the question we address in this study. That is, analogous to the
intra-individual case, are there major components of inter-individual variation that
explain a sizable portion of cross-individual connectomic differences, and that can
be effectively harnessed for the purposes of understanding and predicting
phenotypes of interest?

In this study, we provide evidence that the answer to this question is yes. Using
convergent methods, we show that a modest number of connectivity components,
around 50-150, do indeed capture a sizable share of inter-individual differences,
and they together constitute a highly effective basis set for phenotypic prediction.
Thus, while the resting state connectome is a massive and complex object
encompassing tens to hundreds of thousands of connections (depending on the
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parcellation), differences in a fairly small set of components explain a sizable
portion of how any two individuals meaningfully differ.

2. Methods

2.1  Subjects and Data Acquisition

All subjects and data were from the HCP-1200 release (Van Essen et al., 2013; WU-
Minn HCP, 2017). All subjects provided informed consent. Subject recruitment
procedures and informed consent forms, including consent to share de-identified
data, were approved by the Washington University institutional review board. Four
runs of resting state fMRI data (14.5 minutes each; two runs per day over two days)
were acquired on a modified Siemans Skyra 3T scanner using multiband gradient-
echo EPI (TR=720ms, TE=33ms, flip angle = 52°, multiband acceleration factor = 8,
2mm isotropic voxels, FOV = 208x180mm, 72 slices, alternating RL/LR phase
encode direction). T1 weighted scans were acquired with 3D MPRAGE sequence
(TR=2400ms, TE=2.14ms, TI=1000ms, flip angle = 8, 0.7mm isotropic voxels,
FOV=224mm, 256 sagittal slices). T2 weighted scans were acquired with a Siemens
SPACE sequence (TR=3200ms, TE=565ms, 0.7mm isotropic voxels, FOV=224mm,
256 sagittal slices).

Subjects were eligible to be included if they had structural T1 and T2 data and had 4
complete resting state fMRI runs (14m 30s each; 1206 subjects total in release files,
1003 with full resting state and structural).

2.2 Data Preprocessing

Processed volumetric data from the HCP minimal preprocessing pipeline including
ICA-FIX denoising were used. Full details of these steps can be found in Glasser
(2013) and Salimi-Korshidi (2014). Briefly, T1w and T2w data were corrected for
gradient-nonlinearity and readout distortions, inhomogeneity corrected, and
registered linearly and non-linearly to MNI space using FSL’s FLIRT and FNIRT.
BOLD rfMRI data were also gradient-nonlinearity distortion corrected, rigidly
realigned to adjust for motion, fieldmap corrected, aligned to the structural images,
and then registered to MNI space with the nonlinear warping calculated from the
structural images. Then FIX was applied on the data to identify and remove motion
and other artifacts in the timeseries. These files were used as a baseline for further
processing and analysis (e.g.
MNINonLinear/Results/rfMRI_REST1_RL/rfMRI_REST1_RL_hp2000_clean.nii.gz
from released HCP data).

Images were smoothed with a 6mm FWHM Gaussian kernel, and then resampled to
3mm isotropic resolution. This step as well as the use of the volumetric data, rather
than the surface data, were done to allow comparability with other large datasets in
ongoing and planned analyses that are not amenable to surface-based processing.
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The smoothed images then went through a number of resting state processing steps,
including a motion artifact removal steps comparable to the type B (i.e.,
recommended) stream of Siegel et al. (2017). These steps include linear detrending,
CompCor to extract and regress out the top 5 principal components of white matter
and CSF (Behzadi et al.,, 2007), bandpass filtering from 0.1-0.01Hz, and motion
scrubbing of frames that exceed a framewise displacement of 0.5mm. Subjects with
more than 10% of frames censored were excluded from further analysis, leaving
966 subjects. A resting state quality control plot (Power et al.,, 2014) relating motion
effects by edge length showed a near zero mean (0.006), low dispersion around the
mean (sd 0.06) and absence of a meaningful distance-dependent relationship.

2.3 Connectome Generation

We next calculated spatially-averaged time series for each of 264 4.24mm radius
ROIs from the parcellation of Power et al. (Power et al, 2011). We then calculated
Pearson’s correlation coefficients between each ROI. These were then were
transformed using Fisher’s r to z-transformation.

2.4 Train/Test/Retest Split

The 966 subjects after exclusions were divided into three groups. First, 38 subjects
who had two separate completed scans were pulled aside for later test-retest
reliability analysis. Of the remaining subjects, 18 did not have complete behavioral
data for our analyses so were excluded. Next, 100 unrelated subjects were randomly
selected from all unrelated subjects to serve as our held out test set, with the other
810 serving as our training set.

2.5 Estimation of Intrinsic Dimensionality

In the training dataset, each subject’s connectome was vectorized and concatenated
yielding an 810 subjects x 34,716 connections matrix. We estimated the number of
intrinsic dimensions of this matrix using two methods.

First, we used a maximum likelihood estimation method based on distance between
close neighbors (Levina and Bickel, 2004), appropriate for low-dimensional data
that is embedded in a high-dimensional space in a complicated, potentially non-
linear, fashion. Levina and Bickel (2004) provides a full derivation of the estimator
using a Poisson approximation and demonstrates improved performance relative to
alternatives in simulated and real data. The method averages over a range of values
of k, the number of nearest neighbors, from k7 to k2. We used the default values k1
=10 to k2 = 20 suggested by the original analysis.

Second, we used the method of Choi et al. (2017), which attempts to calculate an
upper bound on the on the number of dimensions with exact type 1 error control.
This is a distribution-based method that leverages a post-selection inference
framework, and extends the work of Taylor, Loftus, and Tibshirani (2016) to the
PCA setting.
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To visualize the presence of low-rank structure, we ordered the components by
eigenvalue (i.e., percent variance explained), and plotted these eigenvalues. Next we
constructed a null distribution of eigenvalues by permutation methods. Specifically,
we permuted columns of the data matrix separately for each subject. We plotted the
permutation mean and 95% confidence interval for the null distribution.

2.6  Principal Component Analysis

The subjects x connections matrix from the training dataset was next submitted to
principal components analysis using the pca function in MATLAB, yielding 809
components ordered by descending eigenvalues..

2.7  Assessing Out-of-Sample Reconstruction

We examined the ability of an n-sized basis set (consisting of the first n PCA
components ordered by descending eigenvalues), to reconstruct out-of-sample data,
systematically varying the size of n. First, a full set of 809 PCA components were
learned on the training dataset. Next, for each value of n from 1 to 809, we did the
following: Using multiple regression, each subject in the test dataset was
reconstructed as linear combination of the components of an n-sized basis set.
Goodness of reconstruction was measured by calculating the Pearson’s correlation
across edges between actual versus reconstructed connectomes for each subject,
and averaging across subjects.

2.8 Assessing Phenotypic Prediction

2.8.1 HCP Phenotypic Measures

We used a total of 11 phenotypes from the HCP data. Factor analysis, implemented
in SPSS 23 (IBM, Armonk, NY), was used to produce two neuropsychological factors
from the HCP task data. First, a general executive factor was created based on
overall accuracy for three tasks: n-back working memory task, relational processing
task, and Penn Progressive Matrices task. Factor loadings were 0.81, 0.80, and 0.76
respectively, and the factor accounted for 62.2% of the variance in the variables. A
speed of processing variable was created based on three NIH toolbox tasks:
processing speed, flanker task, and card sort task (all age-adjusted performance),
similar to Carlozzi et al, 2015. Of note, the first of these three tasks is designed to be
a measure of processing speed, while the latter two primarily reflect processing
speed because for most subjects in the HCP dataset, accuracy is close to ceiling
(Slotkin et al., 2012). This variable had loadings of 0.75, 0.81, and 0.82 respectively,
and the factor accounted for 63.0% of the variance in the variables. From the Adult
Self Report (ASR) instrument (Achenbach, 2009), we used three scale-derived
summary scores for psychopathology: overall internalizing, overall externalizing,
and attention. In addition, from the Neuroticism/Extroversion/Openness Five
Factor Inventory instrument (McCrae and Costa, 2004), we used the five personality
factors: openness to experience, conscientiousness, extroversion, agreeableness,
and neuroticism. Finally, we used the Penn Progressive Matrices task by itself as it
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has been featured in other connectome-based prediction studies of HCP data (Finn
etal, 2015; Ma, Guntupalli and Haxby, 2017).

In an additional analysis, we used multiple regression to remove a number of
potential confounds from each of the 11 phenotypic variables. Variables regressed
from the phenotypes were: age, age2, mean FD, mean FD2, gender, brain size (S
BrainSeg Vol), brain size2, and multiband reconstruction algorithm version number
(fMRI 3T ReconVrs). Analyses involving phenotypic prediction (§2.8.3 and §2.8.4)
were then repeated with the confound-cleansed phenotypes. Results were broadly
similar to the original analyses, and are presented in the Supplement.

2.8.2 Brain Basis Set Modeling

To generate predictions of phenotypes from a basis set consisting of n components,
we used Brain Basis Set (BBS) modeling, similar to the approach introduced in
Kessler, Angstadt, and Sripada 2016. In a training dataset, we calculate the
expression scores for each of the n components for each subject. We then fit a linear
regression model with these expression scores as predictors and the phenotype of
interest as the outcome, saving B, the n x 1 vector of fitted coefficients, for later use.
In a test dataset, we again calculate the expression scores for each of the n
components for each subject. Our predicted phenotype for each test subject is the
dot product of B learned from the training dataset with the vector of component
expression scores for that subject.

2.8.3 10-fold cross validation procedure

We assessed prediction of HCP phenotypes as a function of number of components
in the predictive basis set, in order to identify the presence of plateaus where
adding additional components does not enhance predictive accuracy. This analysis
was performed using a 10-fold cross-validation procedure within the training
dataset split described above (to preserve the test dataset for additional analyses
described below). On each of the ten folds, we used the training partition to learn
new PCA components and then fit beta coefficients for BBS modeling. We then made
predictions for the phenotypes in the held out test partition. The correlations
between actual phenotype and predicted phenotype were then averaged across the
ten folds.

2.8.4 Comparison with CPM

To further assess the effectiveness of a low-rank basis set for capturing phenotypic
differences in the HCP dataset, we compared the accuracy of phenotypic predictions
derived from the 100 component basis set (coupled with CBS modeling) with
predictions derived from an alternative leading method: connectome predictive
modeling (CPM) (Shen et al, 2017), which has achieved excellent results in a
number of studies using diverse phenotypes (Finn et al., 2015; Rosenberg et al,,
2016; Yoo et al.,, 2018; Beaty et al., 2018; Lake et al., 2018). In brief, CPM is first
trained with every edge of the connectome to identify edges that are predictive of
the phenotype of interest above some prespecified level (e.g., Pearson’s correlation
with significance of p < 0.01). The sum of weights for these specified edges is then
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calculated for each test subject, and these sums serve as “predicted scores” that are
correlated with the actual phenotypic scores. CPM treats positively and negatively
predictive edges differently, and we focus on the positive edges in the main article,
following the typical practice of its authors, and present results for negative edges in
the Supplement.

2.9 Density of Parcellation Analysis

To assess the robustness of the analysis to parcellations of systematically varying
densities, we used the set of parcellations created by Craddock et al. (2011). These
parcellations (available here: http://ccraddock.github.io/cluster roi/atlases.html)
were produced with a spatially constrained spectral clustering approach that, for
preset values of K, produces approximately K functionally and spatially coherent
regions. We utilized parcellations with K ranging from 100-900 in intervals of 100.
For each parcellation, we repeated steps 3 through 8 of the above analysis in order
to assess whether our three methods for identifying low-rank structure (assessment
of: intrinsic dimensionality, out-of-sample- reconstruction, and phenotypic
prediction) differed according to parcellation density. Of note, our implementation
of the method of Choi et al. did not converge for larger parcellations (K > 500) and
so we focus on the the method of Levina and Bickel for this analysis.

2.10 Assessing Community Structure

For all 809 components, we assessed the presence of community structure
corresponding to ICNs from the parcellation of Power et al. (2011) using a stochastic
block model (SBM; Holland, Laskey and Leinhardt, 1983), a well established
generative model for graphs, coupled with a non-parametric testing procedure. For
each of the 809 components, we first fix node community assignments according to
the Power parcellation (Power et al,, 2011), and then estimate the parameters of a
SBM with these fixed assignments. We replace the Bernoulli distribution assumption
on binary edges made by the classical SBM with a normal distribution assumption
on edge weights, since we work with Fisher-transformed correlations as edge
weights. Once these parameters are estimated, we summarize the fit with the profile
log-likelihood statistic. We then randomly permute node labels many times, keeping
the total number of nodes in each of the communities fixed, and obtain a profile
likelihood value from each of these fits corresponding to permuted node labels. We
then obtain a p-value by comparing the profile likelihood for the Power parcellation
to the empirical null distribution of profile likelihoods. Finally, the p-values for the
809 components were adjusted for multiple comparisons using Bonferroni’s
correction, to control the Family-Wise Error Rate at o = 0.05. A more detailed
description of this procedure is provided in the Supplement.

2.11 Test/Retest Reliability

Test-retest reliability was assessed in 38 subjects in the HCP test-retest dataset.
Reliability was assessed with intra-class correlation (ICC) statistic, specifically type
(2,1) according to the scheme of Shrout and Fleiss (1979). For each subject, ICC’s
were calculated for each individual edge as well as for expression scores for each
component in the 100-member basis set. Since aggregating edges can itself improve
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ICC, we also examined ICC’s for “random” aggregations of edges created by
permuting the edges of each of the 100 components. For each component, 1000
randomly permuted components were created in this way, and ICC’s for the
expressions of these components were calculated.

3 Results

3.1 Thereis convergent evidence for substantial low-rank
structure in cross-individual connectomic variation based on three
different methods

3.1.1 Method 1: Assessing intrinsic dimensionality

Figure 1 shows the percent variance explained (i.e., eigenvalues) for all 809
components (in blue). Also plotted is mean eigenvalues for 1000 realizations of
random data created through permutation methods (in red). This plot provides
initial suggestive evidence of significant low-rank stricture in the data, indicated by
the substantially elevated variance explained by early components derived from
observed connectomes relative to what components derived from random data.

We next turned to quantitative dimensionality estimation procedures. Applying the
maximum likelihood method from Levina and Bickel (2004) yielded an estimated
dimensionality of 62. Applying the dimensionality estimation method of Choi et al
(2017) found an upper bound of 147 components with alpha set at 0.05.
Importantly, these two results should be seen as complementary and not
necessarily in tension, as the Levina and Bickel method attempts to arrive at the
number of components that is most likely given the data, while the Choi et al method
attempts to provide an upper bound on the number of components, with statistical
control over type 1 errors. Taken together, these methods provide strong initial
evidence for substantial low-rank structure in cross-individual connectomic
variation. In addition, they suggest a plausible range for the number of true
dimensions in the data as being somewhere between 50 and 150.

3.1.2 Method 2: Assessing out of sample reconstruction

A second method for detecting and quantifying low-rank structure relies on
examining the ability of the PCA components to accurately reconstruct connectomes
from an independent test sample, i.e., a sample that was not used to generate the
components. Figure 2 shows the Pearson’s correlations between actual test sample
connectomes and connectomes reconstructed with a PCA-derived basis set, as a
function of the number of components in the basis set. Using all 809 components in
the basis set, this correlation was 0.68, and this represents the ceiling correlation
that is achievable. With 50, 100, and 150 components, the correlation is 0.47, 0.53,
0.57, respectively. This represents, respectively, 69%, 78%, and 84% of ceiling, and
it provides additional evidence that a low-rank representation captures a sizable
portion of the generalizable variance in the data.
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3.1.3 Method 3: Assessing predictive accuracy with respect to a broad range of
HCP phenotypes

An additional means to assess low-rank structure consists in examining prediction
of criterion variables: If a modest sized basis set captures a large portion of cross-
individual variation, then it ought to predict a broad range of behavioral and clinical
phenotypes (that are plausibly linked to functional connectomic variation) similarly
to the full unreduced dataset.

For each of 11 phenotypes, we used the BBS modeling method to make predictions
of phenotype values for each subject based on connectomic component expression
scores. We applied BBS to the 810 subjects in the training dataset in a 10-fold cross
validation procedure (see Methods, §8.2). As shown in Figure 3, there is a noticeable
plateau at around 50-100 components for most of the phenotypes: Adding further
components to the basis set beyond this number does not appreciably increase
accuracy of phenotypic prediction. Table S1 shows the correlations between
predicted and actual phenotypes across three basis set sizes: 50, 100, and 150
components. All three basis sets perform similarly, though there is a slight
advantage for the 100-component basis set, especially with regard to the processing
speed factor.

To further assess the performance of a modest sized basis set in predicting
phenotypes of interest, we compared performance with CPM, a leading alternative
method for phenotypic prediction that is trained on the whole connectome (Shen et
al., 2017). Since the 100-component basis set performed slightly better than the
others in cross-validation within the training dataset, we focused on this basis set
for comparison with CPM in the held out test set.

For each of the 11 phenotypes, we trained both methods in the training dataset and
tested accuracy of phenotypic prediction in the held out test dataset. Results
showed that performance of BBS was comparable to or better than CPM on all 11
phenotypes (comparable to CPM on 8 phenotypes and better than CPM on the other
3 phenotypes; Table 1).

3.1.4 Role of parcellation density

We next examined the robustness of the preceding three analyses to parcellations of
varying densities. We used Craddock et al.’s parcellations derived from a spectral
clustering algorithm with K, the prespecified number of parcels, set from 100 to 900
in increments of 100. While there were some differences observed with the most
sparse parcellation (K=100), for all analyses in which K exceeded 200, the results
were highly stable and broadly similar to what we observed with the Power
parcellation with 264 ROIs (Figure 3).

3.2 Network Structure of Components of Cross-Individual
Connectome Variation
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We next turn to characterizing connectivity patterns in the components themselves.
Figure 5, panels A through C, shows the first three components with nodes
organized by membership in ICN communities (e.g., default network, fronto-parietal
network, etc.) according the node assignments of Power et al. (2011). Qualitatively,
these components appear to exhibit prominent ICN structure: the lines on these
figures, which represent boundaries of ICN-ICN interrelationships, appear to be
highly informative for characterizing connectivity patterns in the components.

To quantitatively assess the presence of ICN-based community structure in these
components, we utilized an SBM-based method as described in Methods (see 2.10)
coupled with permutation tests for statistical significance. We found that for all 809
components, the observed components’ connectivity patterns are highly statistically
significantly more likely under Power ICN community assignments than alternative
randomly shuffled assignments (permutation-based p-values for all components
survive Bonferroni correction for 809 tests with a = 0.05). Additionally, as a
descriptive follow up to quantify the extent of network structure in the components,
we investigated how, for each component, the profile log-likelihood corresponding
to the Power et al. parcellation differed from the median profile log-likelihood
across the permutations (see Figure 6). This analysis suggests that while ICN
structure is significantly present in all components, such structure is most
prominent in early components and plateaus substantially around component 100
to 200.

Given evidence of prominent network structure in the components, especially in
earlier components, we sought to further characterize their patterns of network
interrelationships. Figure 7 shows network-to-network relationships for the first
150 components. Visual network, DMN, and FPN are especially prominent. Of note,
the 150-component basis set is available for viewing and download here:
https://sites.Isa.umich.edu/sripada/data/.

3.3 Test-retest reliability

The preceding analyses suggest that a modest-sized basis set is sufficient to quantify
cross-individual variation across the entire connectome, especially the meaningful
(i.e., phenotypically predictive) aspects of this variation. A further question concerns
the stability of the basis set—or more specifically, subjects’ component expression
scores—across scanning sessions.

To address this question, we examined the intra-class correlation (ICC) of
component expression scores in the 38 HCP test-retest subjects. Components were
generated in the full training dataset, and assessed across the two scanning sessions
of the test-retest dataset, which was not used to generate the components. The
mean ICC for individual edges is .54, similar to values seen in previous studies
(Noble et al.,, 2017). In contrast, the ICC for the components of cross-individual
variation are notably higher. Focusing on the 100-component basis set, which
performed well in phenotypic prediction, the mean ICC is 0.78.

10
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Some of this improvement might be due to aggregation itself, as aggregates tend to
be more stable than the elements that are aggregated. To test this possibility, we
calculated the mean ICC for random permutations of these 100 components (1000
permutations of each component). Mean ICC for permuted components was 0.65, so
the boost in ICC seen in the actually observed 100 components is substantially over
and above what can be explained by simply aggregating random collections of
edges.

4 Discussion

In resting state fMR], the presence of low-rank structure in intra-individual
variation is well known: a small set of units—ICNs such as DMN and FPN—account
for a sizable portion of variation in the BOLD signal across time within a scanning
session. In this study, we extend the search for useful low-rank structure to inter-
individual connectomic variation. We found convergent evidence that a modest
number of components, roughly 50-150, capture a sizable share of how the resting
state functional connectomes of any two healthy adults differ. Moreover, we found
these components exhibit high levels of network community structure, aiding
interpretability, and they have very good test-retest reliability. We propose that the
connectivity components identified in this study form an effective basis set for
quantifying and interpreting systematic inter-individual connectomic differences,
and for predicting behavioral and clinical phenotypes.

The components of inter-individual connectomic variation reflect ICN structure

A remarkable feature of the connectomic components that emerged in this study is
that they strongly reflect ICN structure. ICN boundaries are determined from a
strictly intra-individual phenomenon: coherence of the resting state blood oxygen
level dependent (BOLD) time series across regions within a person during a
scanning session (Fox et al.,, 2005; Power et al., 2011; Yeo et al, 2011). There is no
necessity that ICNs should be implicated in across-individual differences in
functional connectomes; the set of edges that make individuals different could just
have easily have crossed ICN boundaries freely. That is not what we found, however,
based both on qualitative observation as well as quantitative assessment.

The finding that there is extensive ICN structure in these components jointly helps
to illuminate two issues. First, it helps to explain why we were successful in finding
low-rank structure in the first place. Second, it potentially illuminates the
mechanisms by which the inter-individual differences we observed arose. Both of
these points warrant elaboration.

There is growing understanding of the maturational trajectories of large-scale ICNs

and principles by which they take shape. Resting state imaging studies in fetuses
suggest at least some important ICNs are in a highly immature state in the fetal
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brain with weak intra-network connectivity and low levels of network separation
(van den Heuvel and Thomason, 2016; Grayson and Fair, 2017; Keunen, Counsell
and Benders, 2017). Over the course of childhood to early adolescence, massive
changes occur: integration of connections within ICNs (Fair et al., 2008, 2009),
segregation of default mode network from attention/control networks (Fair et al,,
2007; Anderson et al., 2011; Kessler, Angstadt and Sripada, 2016), and cross-modal
linkages in which structural connections co-develop with functional connections
(Byrge, Sporns and Smith, 2014; Supekar et al., 2010; Goiii et al., 2014; Betzel et al,,
2014). Importantly, there are inter-individual differences in how these
developmental changes in ICN-ICN interconnections unfold (Kessler et al., 2014;
Kessler, Angstadt and Sripada, 2016; Satterthwaite et al., 2013, 2015).

The overall picture, then, involves highly complex and choreographed
developmental processes that shape large populations of interconnections between
ICNs. This picture is well suited for explaining why we observed significant low-
rank structure in inter-individual variation in connectomes, as such structure
necessarily exists if individuals systematically differ at large aggregates of
connections. In addition, the model explains why the connectomic components
themselves exhibit extensive ICN structure, as the presence of such structure
naturally follows if the generative processes that produce inter-individual
connectomic differences impart aggregate intra- and inter-ICN alterations.

In short, then, we propose that adult inter-individual connectomic variation—
especially the meaningful aspects of this variation that is relevant to explaining
neurocognitive and behavioral phenotypes—importantly reflects the legacy of inter-
individual differences in ICN development. This hypothesis invites detailed future
investigation, ideally in longitudinal datasets that permit precise quantification of
ICN maturational trajectories as well as adult connectomic variation.

Success at Phenotypic Prediction and Test-Retest Reliability

The Brain Basis Set (BBS) modeling approach leverages a modest number of
components of inter-individual variation—in this study we focused on a 100-
component basis set. Yet we found this method predicts HCP phenotypic variables
(such as executive functioning, processing speed, and externalizing) just as well, or
in some cases better than, Connectome Predictive Modeling (CPM), an alternative
highly successful method that is trained on every edge of the connectome (Shen et
al, 2017). The most likely explanation for this result is that systematic connectomic
differences across individuals really do have substantial low-rank structure. Thus
restricting one’s predictor set to a modest number of connectomic components,
which is sufficient to capture this structure, yields strong phenotypic prediction.

An additional complementary explanation emphasizes the issue of signal-to-noise
ratio and test-retest reliability. While the inter-session test-retest reliability of
individual edges of the resting state functional connectome has been found to be
only fair (Birn et al,, 2013; Noble et al., 2017), the connectomic components
identified in this study exhibit substantially better reliabilities. This improvement
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arises, most likely, because high eigenvalue components—i.e., components that
explain a large portion of inter-individual connectomic variation—are more likely to
be latching onto “real” brain differences, i.e., stable cross-individual differences that
genuinely exist in nature. In contrast, connectivity features that explain only a tiny
portion of inter-individual variation have a greater probability of reflecting noise,
which, by definition, lacks test-retest reliability. It follows that restricting analysis to
a modest number of high eigenvalue components can boost the signal-to-noise ratio
of the included predictors, contributing to better prediction of unseen data (see
Amico and Goni, 2018 for a related argument).

Uniqueness of the Basis Set

Our primary result concerns the size of the basis set needed to capture meaningful
inter-individual connectomic differences. Resting state connectomes, due to their
massive size, allow for correspondingly massive variability: individuals could
potentially differ in countless ways across tens of thousands of connections. We
have shown, however, that actual inter-individual variability is far more limited and
most of it is accounted for by a modest-sized basis set of roughly 50-150
components.

We wish to emphasize that with respect to representing the subspace of variation,
the connectomic components we identified are not unique. These components are
the basis of a subspace, and any rotation that preserves their linear independence
will result in a new basis that spans the exact same subspace. There is thus some
flexibility in choosing the components with which to characterize the relevant
subspace. Ultimately, the choice of which components to utilize must be guided by
consilience with broader theory: a basis set should be preferred to the extent that
the components that comprise it align with known neurobiological mechanisms and
processes. In this context, it bears notice that the PCA-derived components that
emerged in this study do exhibit a number of neurobiologically interesting
properties. High eigenvalue components, in particular, disproportionately
contribute to phenotypic prediction (Figure 3), and they exhibit higher levels of ICN
structure (Figure 6). This provides initial evidence that that the specific components
found by PCA could potentially have neurobiological meaning.

Implications for connectomic statistical analysis

Our results have broader implications for methods of statistical analyses of
connectomes, especially methods aimed at predicting phenotypic differences across
individuals and between groups (Meskaldji et al., 2013; Varoquaux and Craddock,
2013). A persistent challenge in individual differences research has been the shear
size of functional connectomes (Zalesky et al., 2012). This sometimes forces
researchers to choose between focusing on a small set of “connections of interest” or
else undertake a whole connectome statistical search and pay a substantial price in
terms of multiple comparisons correction. Our results suggest that the tradeoffs
need not be so stark. There is a massive amount of dependence among edges in
connectomes across individuals. Thus a basis set with a modest number of
components allows researchers interested in individual differences to undertake
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whole-connectome inquiry while dramatically reducing the multiple comparison
cost.

More broadly, there is a pressing need to leverage prior knowledge about the
nature, kind, and extent of inter-individual variation in functional connectomes to
further guide and constrain statistical models in neuroimaging individual
differences research. Our observation of extensive low-rank structure, i.e., a modest
number of components account for a sizable portion of cross-individual differences,
represents one kind of prior knowledge. Our observation of prominent ICN
structure within these components, discussed earlier, is also highly relevant in this
context. Future studies should leverage this observation, for example using block
structure-based regularization, to inform and constrain statistical models of inter-
individual differences, and thereby increase the chances of robust out-of-sample
generalization.

In sum, in this study, we identified a parsimonious basis set for inter-individual
differences in resting state functional connectomes, one that facilitates
interpretation of connectomic differences and prediction of phenotypes of interest.
Our results invite further research into the neurodevelopmental processes that
shape ICNs, which could help to explain why adult inter-individual connectomic
differences take a modest set of characteristic forms.
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Figure 1: Percent Variance Explained For Components Derived From Actual
Versus Random Data. For observed components (blue), percent variance explained
of early components is much larger than mean percent variance explained of
components derived from random data (red). This pattern is suggestive of
substantial low-rank structure in observed connectomes.
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Figure 2: Out of Sample Reconstruction of Connectomes. With 100 components
(dashed line), the correlation between actual and reconstructed connectomes is
0.50. Importantly, this correlation is only 0.68 using all 809 components, so a basis
set consisting of 100 components achieves roughly three fourths of the “ceiling”
correlation that is achievable.
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Figure 3: Phenotype Predictive Accuracy as a Function of Basis Set Size. For
most phenotypes, there is a plateau after 50 to 100 components (dotted line) after
which adding further components to the prediction model basis set does not
appreciably improve performance.
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Figure 4: Assessing Role of Parcellation Density. Three methods for identifying
low-rank structure yielded stable results across parcellations of varying density.
Panel A: Estimation of intrinsic dimensionality with the method of Levina and Bickel,
2004. Panel B: Out-of-sample reconstruction. Panels C and D: Predictive accuracy
with respect to 11 HCP phenotypes. Panels B through D used a 100-component basis
set.
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Figure 5: Components 1, 2, and 3. The first three components of inter-individual
connectomic variation are displayed, with nodes organized by membership in 13
ICNs according to assignments of Power et al., 2011. The boundaries of ICNs are
determined from a strictly intra-individual phenomenon: coherence of the BOLD
time series within a person across time. It is notable, then, that inter-individual
connectomic differences clearly involve substantial ICN structure (which we further
corroborate utilizing a novel quantitative approach based on stochastic block
modeling). 1=Somatomotor-hand; 2=Somatomotor-faces; 3=Cingulo-opercular;
4=Auditory; 5=Default; 6=Memory retrieval; 7=Visual; 8=Fronto-parietal;
9=Salience; 10=Subcortical; 11=Ventral Attention; 12=Dorsal Attention;
13=Cerebellum
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Figure 6: Profile log-likelihood of ICN-based community structure in each
component. This statistic serves to quantify presence of ICN structure in each
component using a stochastic block model (SBM) framework. The red trace is the
profile log-likelihood from the SBM according to the community assignments given
in Power et al.,, 2011. The blue trace is the median profile log-likelihood across many
shufflings of the community assignments. See Supplementary Methods for details.
ICN structure is most prominent in early (high eigenvalue) components.
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Figure 7: Network Structure of the Connectomic Components. For the first 150
components, altered connectivity patterns are shown using colored squares. Each
square represents altered mean connectivity among connections linking pairs of
networks. 1=Somatomotor-hand; 2= Somatomotor-faces; 3=Cingulo-opercular;
4=Auditory; 5=Default; 6=Memory retrieval; 7=Visual; 8=Fronto- parietal;
9=Salience; 10=Subcortical; 11=Ventral Attention; 12=Dorsal Attention;
13=Cerebellum.
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Tables

Phenotype BBS CPM
General Executive 0.44 0.42
Processing Speed 0.39* 0.23
Penn Progressive 0.30 0.32
Matrices

ASR Externalizing 0.24* 0.03
ASR Internalizing 0.20 0.04
ASR Attention 0.15* 0.00
NEO-Openness 0.18 0.11
NEO-Conscientiousness | 0.19 0.15
NEO-Extroversion 0.13 0.04
NEO-Agreeableness 0.19 0.10
NEO-Neuroticism 0.00 0.05

Table 1: Pearson’s correlations between actual and predicted phenotypes for
two different predictive modeling approaches. BBS = Brain Basis Set Modeling
(with 100 component basis set); CPM = Connectome Predictive Modeling (Shen et al.,
2017). *=statistically significant difference at p<0.05.
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Supplementary Methods

Chandra Sripada!, Mike Angstadt®, Saige Rutherford!, Daniel
Kessler?, Yura Kim?, Mike Yee!, and Liza Levina?

!Department of Psychiatry, University of Michigan, Ann Arbor, MI
2Department of Statistics, University of Michigan, Ann Arbor, MI

1 Details Regarding Assessment of Community
Structure

1.1 The Stochastic Block Model

The SBM [1] is a well-established generative model for networks with commu-
nities. Under the SBM, each of the n nodes is independently assigned to one
of K communities, with probability of assignment to community k given by
Tl Zfil m = 1. Given a realization of the community assignments vector c,
where ¢; is the community label of node i, the SBM generates edge weights
A;; between nodes ¢ and j independently, from a distribution depending only
on the community labels ¢; and c;. If the distribution is parameterized by a
parameter 0, .., the distribution of the entire network is determined by the set
of parameters 0, k,l =1,..., K, with 0, = 6, if the network is symmetric, as
it is in our case. In the classical formulation of the SBM, the adjacency matrix
is assumed to be binary, in which case the distribution of A;; is Bernoulli and
O, = P(Ai; = 1|e; = k,c; =1). In our case, because we work with weighted
matrices and the weights are Fisher-transformed correlations, we model the dis-
tribution of A;; as normal, determined by parameters 0y = (g, ail).

1.2 Calculating profile likelihood under the SBM

In our setting, we have an a priori community membership as given by the
Power et al. parcellation [2]. The log-likelihood of the observed weights for a
given community assignment, ¢, is given by

n i—1

klOg 7Tk +2210gf i Clc])

=1 j=1

n i—1 (Aij — M, e )2
klog ) + ZZ —flog (2m) —logoc,e; — —F5 5,
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where ny, is the number of nodes in community &, and f(; 6x;) is the probability
density function of N (ug, 0%;).

Maximizing the likelihood of the SBM over community assignments is an
NP-hard problem, but for a given ¢, maximizing over m and 6 is easy and
there is a closed form solution. Let Sk; denote the set of node pairs connecting
community k to community [, Sy = {i < j : ¢; = k,¢; = I}, and let ny = | S|
denote the number of such pairs. Then the maximum likelihood estimates of
parameters for a given ¢ are

~ ng
T = —
n

. 1

el = — Z ij
(1,7)€Skz

~2

Okt = Z — ),
('LJ)ESM

the usual MLEs under the normal distribution. Plugging in these values into
the profile likelihood gives the maximized profile likelihood, which we use as the
test statistic.

To carry out the test, we need to compare the value of the observed pro-
file log-likelihood, [, to the distribution of profile log-likelihoods under the null
hypothesis of no community structure in the data. We obtain this distribution
empirically, shuffling the labels of the given parcellation ¢ randomly and recom-
puting the profile log-likelihood in the same way, m = 20,000 times in total,
to obtain the values l;, 7 = 1,...,m. Finally, we estimated empirically the
probability that a profile log-likelihood L sampled from this null distribution
will exceed f, as

P(LEZ):maX< %Zm: Zi)

where [ is the indicator function.

Note that permutation of the labels does not change the number of nodes in
each community, so the terms involving 7;’s can omitted.

This procedure is repeated for each of the 809 components of interest, and
the resulting 809 p-values are Bonferroni-corrected for multiple comparisons.
The number of permutations was selected such that it would be mathematically
possible to achieve Bonferroni-corrected significance at o = .05.

In addition, for each component we retained both the profile log-likelihood
under the Power et al. parcellation [2] and the median profile log-likelihood
across the m shufflings, and plotted these as a function of the component num-
ber (see Figure XXX). Because of the use of logs, the ratio of likelihoods is
proportional to the difference of log-likelihoods, and one may descriptively in-
terpret the “gap” between the two traces as some indication of the magnitude
of the divergence from the null.
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Supplementary Table

Phenotype BBS-50 | BBS-100 BBS-150 | CPM Pos | CPM Neg | BBS-100
covariate
corrected

General Executive 0.43 0.44 0.37 0.42 0.32 0.39

Processing Speed 0.17 0.39 0.33 0.23 0.24 0.43

Penn Progressive 0.31 0.30 0.23 0.32 0.30 0.23

Matrices

ASR Externalizing 0.20 0.24 0.17 0.03 0.06 0.25

ASR Internalizing 0.15 0.20 0.15 0.04 -0.04 0.19

ASR Attention 0.14 0.21 0.07 0.00 -0.02 0.20

NEO-Openness 0.14 0.18 0.23 0.11 0.07 0.14

NEO- 0.17 0.19 0.16 0.15 0.13 0.11

Conscientiousness

NEO-Extroversion 0.20 0.14 0.12 0.04 0.15 0.18

NEO-Agreeableness | 0.19 0.19 0.26 0.10 0.06 0.08

NEO-Neuroticism -0.02 -0.01 -0.03 0.05 -0.01 -0.09

Table S1: Pearson’s correlations between actual and predicted phenotypes across several
predictive models. BBS = Connectome Basis Set, number following hyphen indicates number of
components in basis set; CPM = Connectome Predictive Modeling, pos = positive edges, neg =
negative edges (Shen et al. 2017).
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