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ABSTRACT

Although recent studies provide evidence for a common genetic basis between complex traits
and Mendelian disorders, a thorough quantification of their overlap in a phenotype-specific
manner remains elusive. Here, we quantify the overlap of genes identified through large-scale
genome-wide association studies (GWAS) for 62 complex traits and diseases with genes known
to cause 20 broad categories of Mendelian disorders. We identify a significant enrichment of
phenotypically-matched Mendelian disorder genes in GWAS gene sets. Further, we observe
elevated GWAS effect sizes near phenotypically-matched Mendelian disorder genes. Finally, we
report examples of GWAS variants localized at the transcription start site or physically
interacting with the promoters of phenotypically-matched Mendelian disorder genes. Our results
are consistent with the hypothesis that genes that are disrupted in Mendelian disorders are
dysregulated by noncoding variants in complex traits, and demonstrate how leveraging findings
from related Mendelian disorders and functional genomic datasets can prioritize genes that are

putatively dysregulated by local and distal non-coding GWAS variants.
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INTRODUCTION

Genetic architectures of human traits have traditionally been classified into two major
categories. Typically, complex traits demonstrate polygenic architectures arising from many low-
effect common variants, whereas rare traits tend to have high-effect monogenic determinants®.
The underlying and practical distinction between these classes has historically been based on
the presence of highly penetrant, rare, single-gene disruptive mutations causing recognizable
clinical monogenic diseases (e.qg., cystic fibrosis?), and the relative absence of such mutations in
complex diseases such as diabetes and schizophrenia®. Evidence is accumulating that these
two classes of phenotypes may not be as biologically distinct as previously thought*. Multiple
exceptions to the “common disease, common variant” hypothesis’ have been identified for
complex traits>® and their molecular phenotypes®*?, and Mendelian disorders have also been
found to be affected by multiple or common genetic variants ***°. This suggests that there exists
a spectrum of genetic architectures rather than a dichotomous classification. Accordingly, the
monogenic forms of complex traits (i.e., phenotypically-matched Mendelian disorders) are
increasingly used as a starting point to identify genes relevant to complex traits for further

17-19

study . Furthermore, overlap has been identified between genes linked with Mendelian
disorders and genetic determinants of complex traits and diseases such as Parkinson’s
disease” #', obesity?®, height®®, ototoxicity®*, and others®>. However, the overlap of each of
these complex traits with Mendelian disorders has been examined individually, with different
metrics of overlap. In a large study of patient medical records, Blair et al. identified systematic,
significant comorbidities between Mendelian disorders and complex diseases, and that
association signals from genome-wide association studies (GWAS) for complex diseases were
enriched in genomic regions with known roles in comorbid Mendelian disorders, suggesting a
shared genetic basis®. However, the study focuses on Mendelian disorders comorbid with

complex diseases in the same individual, rather than Mendelian disorders demonstrating similar

phenotypes to complex traits. Furthermore, advances in sequencing technology have greatly
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expanded the phenotypic spectrum in known Mendelian syndromes, allowing for deconstruction
of syndromic diseases into component medical phenotypes. As such, it is now possible to
identify all the component-phenotype consequences of Mendelian disorder genes, allowing for
greater resolution in identifying gene-phenotype relationships. However, to the best of our
knowledge, no study has taken advantage of this to identify genes causing any related
component-phenotype regardless of the Mendelian disorder's best-known or primary
phenotype. Thus, a thorough quantification of the overlap between genes associated with
complex traits and genes linked to Mendelian disorders in a phenotype-specific manner remains
elusive.

Given that the majority of genome-wide association studies for complex traits and
diseases have identified significant associations in non-coding genomic regions®’, we
hypothesize that genes individually involved in Mendelian disease belong to the biological
pathway(s) shared by both complex and Mendelian disease. Specifically, we hypothesize that
large-effect coding variants disrupt individual genes, resulting in severe phenotypes (i.e.,
Mendelian disorders), while non-coding variants produce complex traits by collectively
dysregulating expression of these same genes, allowing for nuanced or tissue-specific
phenotypes. Based on this hypothesis, we expect to identify an enrichment of GWAS signal for
a given complex trait near genes linked to Mendelian disorders demonstrating similar
phenotypes, but no enrichment near genes linked to Mendelian disorders with phenotypes
unrelated to the complex trait of interest. To test this hypothesis, we define “Mendelian disorder
genes” as any genes linked to Mendelian disorders in the Online Mendelian Inheritance in Man
(OMIM) database®®, and use the well-curated phenotypic breakdown of Mendelian disorders to
identify subsets of these genes linked to particular phenotypes (e.g., growth defects or immune
dysregulation) expressed as part of any Mendelian disorder. We then examined publicly
available GWAS across 62 complex traits (detailed in Table 1) to identify risk genes (here called

“GWAS gene sets”) for each complex trait, and quantified the overlap of each GWAS gene set
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with 20 other sets of Mendelian disorder genes for particular phenotypes (detailed in Table 1).
We find a consistent, significant, and specific enrichment between GWAS gene sets for complex
traits and Mendelian disorder genes for matched and related phenotypes (51/1,240 pairs; e.g.,
rheumatoid arthritis and immune dysregulation), supporting our hypothesis of a shared genetic
basis between complex and Mendelian forms of disease. In addition, we observe instances of
enrichments between GWAS gene sets for certain complex traits and Mendelian disorder genes
for unrelated phenotypes (20/1,240 pairs; e.g., systemic lupus erythematosus and mature-onset
diabetes of the young), suggestive of shared biological mechanisms yet to be examined.
Furthermore, we find an increase in average effect size of GWAS variants near Mendelian
disorder genes for matched phenotypes, and identify examples of associated SNPs found
directly at the transcription start sites (TSSs) of these phenotypically-matched Mendelian
disorder genes as candidates for functional follow-up. Finally, we report novel examples of
significant body mass index (BMI)-associated variants directly interacting with phenotypically-
related Mendelian disorder genes CREBBP and CYP19A1, using human primary white
adipocyte-specific Hi-C dataz. Leveraging the growing body of well-curated phenotypic data
from studies of Mendelian disorders, we provide a phenotype-driven approach to identifying

genetic pathways shared by Mendelian diseases and complex traits.

MATERIAL AND METHODS

Gene coordinates and symbols

We downloaded gene body coordinates (NCBI build 37/hg19, UCSC Genes track) from the
UCSC Table Browser®® (see Web Resources) using the gene symbol from the knownGene
table, transcription start and end sites for each gene from the knownCanonical table, and the
longest transcript from the knownGene table for genes where no entry or multiple entries were
listed in the knownCanonical table. We used these coordinates for all analyses in our study.

Since many genes have been renamed over time, we standardized gene symbols across all
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93 analyses in our study by downloading a table of approved symbols, previous symbols, and locus
94  group for each gene from HUGO Gene Nomenclature Committee at the European
95  Bioinformatics Institute (HGNC)®*' (see Web Resources) and renaming any genes identified by
96 previous symbols with approved gene symbols. We restricted all analyses in our study to genes
97 classified as protein-coding according to the HGNC locus group, from chromosomes 1-22.
98 These processing steps resulted in a final single set of coordinates for 17,695 autosomal
99  protein-coding genes (for data access, see Web Resources).

100

101  Mendelian disorder genes and loss-of-function (LOF) intolerant genes

102  To identify Mendelian disorder genes, we downloaded the Online Mendelian Inheritance in Man

103  (OMIM) catalogue database® and identified all genes linked to Mendelian disorders satisfying

104 the following criteria: (1) disorder is Mendelian and fully penetrant, therefore excluding

105  susceptibility phenotypes and (2) molecular basis of the Mendelian disorder is known (i.e.,

106  phenotype mapping key = 3). We defined loss-of-function (LOF) intolerant genes as any gene

107  with greater than 90% probability of being loss-of-function intolerant, according to the pLI score

108  (pLI > 0.9) from the Exome Aggregation Consortium (EXAC)%; this score is derived from the

109 number of observed versus expected LOF variants in a given gene across approximately

110 60,000 healthy exomes. Following the same restriction and gene symbol standardization criteria

111  described above resulted in a final set of 3,446 Mendelian disorder genes and 2,978 LOF-

112  intolerant genes.

113

114  Phenotype-specific Mendelian disorder gene sets

115 To identify subsets of Mendelian disorder genes linked to particular phenotypes, for each

116  complex trait we curated a set of standardized clinical phenotype terms to describe the full

117  range of relevant Mendelian phenotypes. We used these terms to search the OMIM database

118 via API for all Mendelian disorders demonstrating these phenotypes, then extracted the gene(s)
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119 linked to each Mendelian disorder. We restricted gene-phenotype associations to those
120  satisfying the same criteria (1) and (2) as described above, and with the following additional
121  criteria: (3) gene-phenotype association description does not contain “genome-wide association
122 study” or other GWAS synonyms unless: the description also contains any of the terms

123  “missense”, “nonsense”, “nonsynonymous”, or “frameshift”; or the gene contains at least one
124  pathogenic or likely pathogenic allele in the ClinVar database®. We include a full list of
125  phenotype-specific Mendelian disorder gene sets and clinical phenotype terms used in Table
126  S1.

127 A comparison of all phenotype-specific Mendelian disorder gene sets revealed a high
128  degree of overlap among the gene sets for clinically-related Mendelian phenotypes (Figure S1).
129  Accordingly, we clustered gene sets based on pairwise overlap, and intersected gene sets
130  visually clustering together to create a single gene set for the representative group of Mendelian
131  disorders. After combining similar gene sets, a total of 20 non-disjoint phenotype-specific
132  Mendelian disorder gene sets remained with an average of 375 genes per set; we include a
133  description of each cluster in Table S2.

134

135 Complex trait gene sets

136  We downloaded publicly available summary statistics (per-allele SNP effect sizes, or log-odds
137 ratios for case—control traits, with standard errorss+) for large-scale GWAS of 62 traits?® (Table
138 1; average N=83,170; some GWAS were imputed using the 1000 Genomes Project as a
139 reference panel by their respective consortia while others were not.) For each trait, we
140 identified a gene set by mapping each autosomal genome-wide significant SNP (p < 5x107%) to
141 the closest up- and downstream protein-coding genes as defined above, resulting in a total of
142 62 non-disjoint GWAS gene sets. As GWAS regions often contain multiple genome-wide

143  significant SNPs, and the true causal gene may not lie adjacent to the lead SNP in a region®*,
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144  we defined GWAS gene sets by mapping genes with respect to every genome-wide significant
145  SNP rather than only the index GWAS SNPs at each genomic risk region.

146

147  Quantifying overlap between complex trait and Mendelian disorder

148 For each complex trait-Mendelian disorder pair, we compared the GWAS gene set and
149  phenotype-specific Mendelian disorder gene set using a 2x2 contingency table (counting
150  whether each gene was in the GWAS gene set or not, and in the Mendelian disorder gene set
151 or not), with the set of autosomal protein-coding genes (n=17,695) representing the total
152  sample. We used Fisher's Exact Test” to determine significance. Phenotype-specificity of
153  overlap significance was assessed by comparing the GWAS gene sets for each complex trait
154 (n=62) to all phenotype-specific Mendelian disorder gene sets (n=20), a total of 1,240 pairs.
155  Significance was assessed at a trait-specific Bonferroni-corrected threshold (p < 0.05/20) based
156 on the number of phenotype-specific Mendelian disorder gene sets (n=20) being compared to
157 each GWAS gene set. Since not all autosomal protein-coding genes are Mendelian, we also
158 assessed significance in permutations; we drew 10,000 random sets of Mendelian disorder
159 genes and 10,000 random sets of any protein-coding genes with replacement (matching the
160 size of each random gene set to the size of the phenotype-specific Mendelian disorder gene
161  set), and counted the number of times more genes were shared between the GWAS gene set
162  and a random set.

163  To assess the robustness and stability of our SNP-gene mapping approach for complex traits,
164  we performed an overlap quantification with phenotype-specific Mendelian disorder genes using
165 GWAS gene sets derived from two additional SNP-gene mapping methods: by mapping each
166  SNP to all genes within a 50Mb window, and to all genes within a 500Mb window. Comparison
167  of the odds ratios produced by Fisher's Exact Test for the comparisons of GWAS gene sets
168 (derived by each mapping method) and phenotype-specific Mendelian disorder gene sets

169 demonstrates no major difference in outcomes from different mapping methods (Table S3).
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170

171  Estimating enrichment of GWAS SNP association signal

172  We created genomic annotations to capture the regions spanning 50kb upstream through 50kb
173  downstream of gene bodies for four categories of genes: all protein-coding genes (N=17,695),
174 all Mendelian disorder genes (N=3,446), all LOF-intolerant genes (N=2,978), and the
175  phenotype-specific Mendelian disorder gene sets (average N=609). For each complex trait-
176  gene category pair, we computed enrichment of GWAS signal within the category c with respect
177  to the set of all protein-coding genes as

iZNc My Z}
NC j=1 i=1Mj

1 Ny Mj Zf
N_pzj=12i=1ﬁlj

ac

178  where N, is the number of genes in category c, M; is the number of SNPs within 50kb of gene j,
179  Z; = GWAS effect size of SNP i divided by standard error, with total number of protein-coding
180  genes N,. Thus, a. is the enrichment in average SNP effect size (Z? per gene in category
181  (compared to average Z> for any protein-coding gene). The percent increase in average SNP
182  effect size per gene for category ¢, or (a, — 1) « 100, is shown in Figure 3. We performed
183  similar comparisons for median SNP effect size per gene for category ¢, and maximum SNP
184  effect size per gene for category ¢ (Table S4).

185 To ensure that this signal was not driven by linkage disequilibrium (LD), minor allele
186 frequency (MAF), or average gene length per category, we compared these three properties
187  across the gene categories for each complex trait. We calculated LD scores® reflecting the

|39

188 amount of LD tagged by each SNP in the HapMap 3 reference panel™. For each gene category,
189  we averaged the LD scores of SNPs falling within 50kb of each gene, and found no consistent
190 difference across gene sets. Similar analyses were performed to examine average MAF per

191 gene and average gene length per category across each complex trait (Table S5); we again

192  found no consistent difference across gene sets.
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193

194  Putative causal mechanisms at GWAS risk regions

195  We performed statistical fine-mapping of the genome-wide significant regions (p < 5 x 10®) for
196 each GWAS using fgwas*® with no functional annotations and default parameter settings. For
197 each GWAS, we constructed a 95% credible set (defined as the minimum set of SNPs where
198  95% of the probability of causation at a region is accumulated) for each 5kb region (as default
199 assigned by fgwas) containing a significant GWAS association. We achieved this by adding
200  SNPs one at a time with a decreasing posterior probability of causation (posterior probability of
201 association for the SNP, conditioned on there being an association in the region) until a
202  cumulative 95% probability of causation is reached.

203

204 Identification of candidate regulatory variants

205  We intersected credible sets for each complex trait with genomic regions 1kb upstream of each
206  phenotypically-relevant Mendelian disorder gene to identify SNPs localizing at the TSS. To
207 identify candidate regulatory variants interacting with promoters of phenotype-matched
208 Mendelian disorder genes, we used interactions from promoter capture Hi-C in human primary
209  white adipocytes ?° for each complex trait, and filtered interactions to pairs of interacting regions
210 where at least one region contained a promoter of a phenotype-specific Mendelian disorder
211 gene. We then intersected interaction pairs for each of these regions with credible sets for each
212  complex trait to identify credible SNPs interacting with regions containing promoters of
213  phenotype-specific Mendelian disorder genes.

214
215 RESULTS

216  GWAS risk genes show specific, significant overlap with phenotypically-matched Mendelian

217  disorder genes

10
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218 We first sought to examine the degree of overlap between phenotype-matched Mendelian
219  disorder genes with risk genes for complex traits as identified through GWAS. For each complex
220 trait, we identified corresponding Mendelian forms, often as familial forms or rare phenotypic
221  extremes, and curated Mendelian disorder gene sets composed of Mendelian disorder genes
222 known to cause those specific phenotypes from the OMIM database?® (see Methods, and
223  Figure 1). We combined similar Mendelian disorder gene sets to create one gene set for the
224  representative Mendelian disorder(s) (for a total of 20 Mendelian disorder gene sets). We
225 separately ascertained GWAS gene sets for each complex trait by identifying the closest up-
226  and downstream genes to each GWAS SNP meeting genome-wide significance (see Methods,
227 and Figure 1). Overlap between each phenotype-specific Mendelian disorder gene set (n=20)
228 and each GWAS gene set (n=62) was assessed using Fisher's Exact Test, for a total of 1,240
229  comparisons (Table 1 and Table S6). We hypothesized that GWAS gene sets would have a
230  specific significant enrichment of Mendelian disorder genes for matched Mendelian disorders,
231  but no enrichment for unrelated Mendelian disorders. Among all 1,240 pairs of complex and
232  phenotype-specific Mendelian disorder gene sets assessed, we identified 71 pairs with
233  significant overlap at a p < 0.05/20 (Figure 2). An examination of the log-odds ratios for each
234  overlap comparison revealed more extreme enrichments among phenotypically-matched pairs
235 compared to phenotypically-unmatched pairs (Table 2), which is consistent with our hypothesis.
236 51 out of the 71 significantly overlapping pairs showed perfectly matching phenotypes or
237  reflected known shared biology. Specifically, in many of these pairs, monogenic forms of the
238 complex trait have been well established in the genetics literature; examples include Age-
239  related Macular Degeneration (AMD) and cholesterol traits (high-density lipoprotein (HDL), low-
240  density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TG))® “***. We confirmed
241  significant enrichment after trait-specific Bonferroni adjustment (20 comparisons, see Methods)
242  between many of these previously reported pairs such as the complex and monogenic forms of

243  height® (OR=1.39, p=0.029) and HDL and Mendelian forms of cardiovascular disease®

11
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244  (OR=2.10, p=0.006). We also identified previously unreported enrichments; for example, we find
245 a strong enrichment between inflammatory bowel disease (IBD) and Mendelian forms of
246  immune dysregulation (OR=3.32, p=0.01) and between hemoglobin (HB) and Mendelian
247  hematologic disorders (OR=3.99, p=0.009). The remaining 20 pairs with significant overlap
248  suggested novel shared biological mechanisms between complex traits and Mendelian
249 disorders yet to be established (Table 3). For example, we observed an enrichment between
250  height and renal disorders (OR=1.48, p=0.001), and enrichment between Crohn’s Disease and
251  mature-onset diabetes of the young (OR=2.69, p=0.005). Of note, the vast majority of complex
252 and Mendelian disorder gene set pairs without perfectly-matched phenotypes (n=1,158 of
253  1,178) did not demonstrate any significant overlap (Table S6).

254

255  SNPs near phenotypically-matched Mendelian disorder genes show increased effect size on
256  complex traits

257 Because Mendelian disorder genes exhibit severe biological effects when either one or both
258 alleles are disrupted, dysregulation of the gene through changes in expression or other
259  mechanisms might have a more significant effect than dysregulation of a non-Mendelian
260 disease gene. We hypothesized that SNPs near these phenotype-specific Mendelian disorder
261  genes have further increased effects on complex traits due to the increased biological relevance
262  of these gene categories. From the publicly available GWAS summary statistics for each
263  complex trait, we computed the average GWAS effect sizes of SNPs falling within each protein-
264 coding gene, and compared the average effect sizes per gene across all Mendelian disorder
265 genes and across phenotypically-relevant Mendelian disorder genes (see Methods). Across
266  complex traits, we found an increased average effect size per gene for all Mendelian disorder
267 genes and a further increased average effect size per gene for phenotypically-relevant
268  Mendelian disorder genes (Figure 3 and Table S4). This suggests that the genomic regions

269  containing the most biologically-relevant genes for each trait contribute most significantly to

12
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270  complex trait biology. We also confirmed that loss-of-function (LOF) intolerant genes (as defined
271 by EXAC'’s pLI score > 0.9, see Methods) demonstrate a higher average effect size across most
272  complex traits examined®. Given the extreme intolerance of deleterious mutations in these
273 genes, it is possible that LOF-intolerant genes demonstrate embryonic lethal mutant
274  phenotypes, and are thus undiscovered as Mendelian disorder genes at this time. We found no
275  significant increase in linkage disequilibrium or decrease in average minor allele frequency
276  (MAF) of the SNPs within each category compared to the SNPs within all protein-coding genes
277  (Table S5), suggesting that the observed signal is not driven by any of these confounders. Of
278 note, we did observe a respective increase in average gene length between all protein-coding
279  genes, all Mendelian disorder genes, and LOF-intolerant genes (Table S5). Therefore, it is
280  possible that our findings of enriched GWAS signal in these gene categories is due instead to
281 longer genes being more likely to tag causal variation. However, in general we did not observe a
282  significant increase in average gene length for the phenotype-specific Mendelian disorder gene
283 sets as compared to all Mendelian disorder genes (Table S5), but still found an increase in
284 enrichment of GWAS signal (Figure 3), suggesting that gene length is not significantly
285  confounding our results. The only exceptions to this are the phenotype-specific Mendelian
286 disorder gene sets for neurological phenotypes, for which the average gene length was
287 increased compared to all Mendelian disorder genes; this is consistent with other reported
288 findings about gene length in neurological traits*’.

289

290 Examples of credible SNPs for GWAS regions near phenotypically-matched Mendelian disorder
291 genes

292  We next sought to identify common non-coding variants that may causally impact complex trait
293  phenotypes by dysregulating phenotypically-relevant Mendelian disorder genes. For each
294  complex trait, we performed statistical fine-mapping of significant GWAS regions to construct

295  95% credible sets for each region (see Methods), and identified SNPs from the credible set

13
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296 located at the TSS of a gene from the phenotypically-relevant Mendelian disorder gene set. We
297  found a total of 786 credible set SNPs (out of approximately 3.5 million) localizing at the TSS of
298  a phenotypically-relevant Mendelian disorder gene (an average of 20 SNPs per trait, for 38 traits
299 where at least one such SNP was found; Tables S7 and S8), and identified 25 promising
300 candidate SNPs (attaining genome-wide significance in GWAS) at TSSs that could be
301 regulating the proximal Mendelian disorder gene (Table 4). We highlight two examples: first, we
302 found a significantly associated SNP from the credible set for coronary artery disease
303  (rs1332327, Z=6.798) at the promoter of LIPA (MIM# 278000), a Mendelian disorder gene
304 linked to Wolman Disease and Cholesteryl Ester Storage Disease (both Lysosomal Acid Lipase
305 Deficiencies, MIM# 278000) causing hypercholesterolemia and hypertriglyceridemia as part of
306 cholesteryl ester- and triglyceride-filled macrophage infiltration syndromes (Figure 4A). Second,
307 from the credible set for red blood cell count, we found a significantly associated SNP
308  (rs1010222, Z= -5.961) at the promoter of CALR (MIM# 109091), a Mendelian disorder gene
309 known to cause Myelofibrosis (MIM# 254450) involving generalized bone marrow fibrosis,
310 reduced hemopoiesis, no hemophagocytosis, and myeloproliferative disease (Figure 4B). In
311  both cases, the putative causal SNP for the complex trait lies immediately upstream of the TSS
312  of the phenotypically-relevant Mendelian disorder gene, in addition to falling within regions
313  containing by regulatory epigenetic marks.

314

315  Putative causal SNPs for GWAS regions interacting with promoters of phenotypically-relevant
316  Mendelian disorder genes

317  Functional genomic datasets, such as chromatin interactions identified through Hi-C, can give
318 us insight into the functional interpretation of GWAS variants and how they might regulate
319 Mendelian disorder genes. Examination of chromatin interactions in human primary white
320 adipocytes® revealed further candidate credible set SNPs for metabolic traits physically

321 interacting with promoters of phenotypically-relevant Mendelian disorder genes (Table S9).
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322  Specifically, we report that a genome-wide significant SNP for BMI (rs758747, Z=6.081)
323  physically interacts with the promoter of CREBBP, a gene known to cause Rubinstein-Taybi
324  Syndrome 1 (MIM# 180849) in which obesity is one of the syndromic features?® (Figure 4C).
325  These interactions can also identify the relevant isoforms of genes in disease. We identified a
326  cluster of SNPs from the credible set of variants associated with BMI that physically interact with
327  the promoter of a specific isoform of CYP19A1, a gene known to cause Aromatase Excess
328 Syndrome (MIM# 139300) involving short stature and excess fat storage in the chest
329  (gynecomastia)®® (Figure 4D). Although longer isoforms of CYP19A1 are by default chosen to
330 represent the gene, our data suggests that the shorter isoform is likely to be more relevant in
331 obesity. Taken together, these results demonstrate examples of GWAS variants localizing in
332  regulatory regions for phenotypically-relevant Mendelian disorder genes, consistent with the
333  hypothesis that low-effect common variants contribute to complex traits by regulating genes

334  known to cause Mendelian disorders.

335

336

337 DISCUSSION

338

339 In this work we used GWAS summary statistics from 62 complex traits and genes linked

340  to specific phenotypes within 20 Mendelian broad disorders to quantify the shared genetic basis
341 of complex traits and Mendelian disorders. We identified a specific enrichment of
342  phenotypically-matched and related Mendelian disorder genes in GWAS regions for complex
343 traits; we also identified fewer pairs of complex traits and phenotypically-unmatched Mendelian
344  disorders with similar significant enrichment. We further found that phenotypically-relevant
345  Mendelian disorder genes are enriched for GWAS signal across complex traits, compared to all
346 Mendelian disorder genes and other protein-coding genes. Finally, we report examples of
347 putative causal SNPs for GWAS regions in potentially regulating phenotypically-relevant

348 Mendelian disorder genes. We conclude with four considerations about how our results
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349  contribute to understanding of genetic architectures and biological mechanisms across complex
350 traits and Mendelian disorders.

351 First, our finding of a specific enrichment of phenotypically-matched and related
352  Mendelian disorder genes in GWAS regions for complex traits suggests that, across complex
353 trait architectures, many complex traits share the genetic bases (and by extension, biological
354  mechanisms) with their Mendelian forms. This supports our hypothesis that the same set of
355 genes generally underlie both extreme and common genetic phenotypes, and suggests an
356 important role of gene regulation by non-coding variants in complex traits. However, we note
357 that our findings are limited by the power of each GWAS to detect significant associations. As
358 GWAS become better-powered, we anticipate being able to identify phenotype-specific
359  enrichments of Mendelian disorder genes in GWAS regions for more complex traits.

360 Second, the subset of complex trait-Mendelian disorder pairs with no known shared
361 biology that still demonstrated significant enrichment of Mendelian disorder genes in GWAS
362 regions can offer us novel insight into the biological mechanisms of complex traits and
363 Mendelian disorders. A high degree of co-morbidity between complex traits and Mendelian
364 disorders has been previously observed, regardless of phenotype-similarity®®; these findings
365  together suggest that many complex traits and Mendelian disorders may also be linked by the
366 pleiotropic properties of the underlying genes, in addition to regulatory differences. These
367 observations are also consistent with a multigenic or oligogenic architecture of human disease;
368 the pervasive pleiotropic effects that are seen observed across complex traits are consistent
369  with the wide-spread prevalence of multi-system, syndromic phenotypes observed across a
370  majority of Mendelian disorders. We also confirm that LOF-intolerant genes harbor an
371  enrichment of GWAS signal®?; because genes with pLI > 0.9 exhibit extreme intolerance of
372  deleterious mutation, it is possible that these genes demonstrate embryonic lethal mutant
373  phenotypes, and are thus undiscovered as Mendelian disorder genes at this time. Our findings

374  provide further motivation to explore phenotypic consequences of mutations in LOF-intolerant
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375 genes (particularly those enriched for GWAS signal for a particular complex trait) for
376  phenotypically-relevant Mendelian disorders.

377 Third, linking Mendelian disorder genes with complex traits can help with
378 characterization of the genetic architecture of complex traits — specifically, with genes and
379 pathways that can be functionally characterized to identify molecular mechanisms®. Identifying
380 causal variants from large-scale GWAS studies is particularly challenging given that most
381 GWAS loci lie in non-coding regions of the genome; though thousands of genomic loci have
382  been significantly associated with specific diseases, few casual SNPs have been functionally
383  verified®® “°. Although many approaches have been used to tie a particular variant to a causal
384 gene or genes®*? including newer methods that directly link gene expression to a trait (e.g.,
385 TWAS®, PrediXcan®®), we find that leveraging GWAS findings with functional data to identify
386 candidate regulatory variants for Mendelian disorder genes can potentially lead to better
387 interpretation of relevant genes and isoforms. Here, we demonstrate the heterogeneity of
388  mechanisms potentially underlying causal variation, showing roles for TSS promoter regions of
389  Mendelian disorder genes and long-range interactions involving significant GWAS regions. We
390 expand on recent work showing that BMI-associated variants interact with genes in GWAS
391 regions to demonstrate similar findings for Mendelian disorder genes®. With the appropriate
392  functional data from relevant tissues and cell types, this phenotype-driven approach can identify
393 relevant candidate regulatory variants and their targets. Further, from the perspective of
394 monogenic diseases, identifying common variants that might modify the expressivity of
395 phenotypes can provide novel insights into gene function in addition to putative drug targets.
396 Many drugs approved by the FDA and developed by pharmaceutical companies are targeted
397 towards the treatment of complex traits and diseases; by identifying underlying links between
398 Mendelian disorders and complex traits through their effects on the same biological genes and

399 pathways, we can systematically and rationally target existing drugs for complex traits and
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400 diseases towards those with rare Mendelian disorders which largely do not have any rationally
401 targeted treatments®*®°.

402 Last, we note that our approach of examining traits and disorders at the component-
403  phenotype level offers us unprecedented resolution into the specific pathways involved the
404  overall trait or disorder. In clinical medicine, genome-wide sequencing has expanded the clinical

405  phenotypic spectrum associated with a gene > *®

through identification of pleiotropic effects due
406 to mutations in specific protein domains® ®, detected a genetic predisposition for diseases
407  previously considered to be due to environment®®, uncovered variable penetrance for genetic
408 mutations previously thought to be sufficient to cause disease, and has suggested that genetic
409  background influences the phenotypic variability of monogenic diseases® 2. The phenotypic
410 characterizations of Mendelian syndromes are deconstructed by expert clinical geneticists into
411 component phenotypes, labeled by standardized clinical terms that identify both the primary
412  phenotypes and phenotypes that have variable penetrance and expressivity?® ®. Recent work
413  has demonstrated that incorporation of such dense phenotype information to rank putative
414 disease-causing genetic mutations improves diagnostic rates in clinical exome sequencing
415  tests® ®. However, to our knowledge no studies as of yet have taken advantage of component
416  Mendelian phenotypes to identify Mendelian disorders that may be phenotypically-relevant to a
417  variety of complex traits. Ultimately, identification of GWAS-significant regions with biologically
418 relevant genes and pathways will enable effective utilization of GWAS data in medical settings.
419
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785 FIGURE TITLES AND LEGENDS:

786  Figure 1. GWAS gene sets and phenotype-specific Mendelian disorder gene sets. For
787 each complex trait (e.g., height), we first identified matched Mendelian phenotypes (e.g.,
788  undergrowth, short stature; Table S9). Using publicly available GWAS data, we defined the
789  “GWAS genes” for a given complex trait to be the closest upstream and closest downstream
790  protein-coding gene for every genome-wide significant variant in the GWAS. We selected
791  phenotype-matched Mendelian disorder genes by first identifying Mendelian disorders
792  expressing any of the matched Mendelian phenotypes, and then identifying all genes causing
793  any of those disorders.

794

795  Figure 2: Overlap of GWAS genes with unrelated Mendelian disorder genes demonstrates
796 trait-specificity. Significant overlaps from phenotypically-matched pairs of complex traits and
797  Mendelian disorders (blue) and pairs with unrelated phenotypes (grey) are shown.

798  Phenotypically-matched pairs are subdivided into pairs with perfectly-matched phenotypes (light
799  blue) and pairs with related phenotypes (dark blue). Traits with no significant overlaps are

800 excluded. Significance was assessed at a threshold for each complex trait (p < 0.05/20) based
801  on the number of Mendelian disorder gene sets (n=20) compared to each GWAS gene set.

802

803  Figure 3: Effect sizes for SNPs on complex traits from GWAS are increased for genes
804 that are loss-of-function intolerant and for phenotypically-relevant Mendelian disorder
805 genes.

806

807 The increase in average SNP effect size per gene across four gene categories. We averaged
808 effect size (Z%) across all SNPs falling within 50kb of a gene to obtain an average SNP effect
809  size per gene, and averaged across all genes in each category (all protein coding genes, all
810  Mendelian disorder genes, all LOF-intolerant genes, and all phenotypically-relevant Mendelian
811 disorder genes for each trait). We normalized these averages to the average SNP effect per
812  gene for any protein coding genes. The box plots represent the distribution of increase in
813  average effect size per gene across all traits.

814

815  Figure 4: Candidate regulatory SNPs fall at transcription start sites and long-range

816 promoters of phenotypically-relevant Mendelian disorder genes

817 A, B) Shown here are two examples of putative causal SNPs localizing at a TSS of a

818  phenotypically-relevant Mendelian disorder gene. A) Putative causal SNP rs1332327,

819  associated with coronary artery disease (Z = -5.961), lies at the TSS of LIPA. B) Putative causal
820  SNP rs1010222, associated with red blood cell count with a Z-score of -5.961, lies at the TSS of
821 CALR. C, D) Shown here are two representations of chromatin interactions in white adipose
822  tissue. C) A cluster of SNPs from the credible set of variants associated with BMI (Z-score

823  plotted in orange and blue) physically interacts with the promoter of a particular isoform of

824  CYP19ALl. D) A single SNP (rs758747) from the credible set, associated with BMI (Z = 6.081),
825  physically interacts with the promoter of a distant gene CREBBP.

826
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Table 1: Complex Traits and corresponding Mendelian disorders. This table details the
phenotypically-matched pairs of complex traits (N=62) and groups of Mendelian disorders
(N=20) examined in our study. Mean GWAS Sample Size and Number of Significant GWAS
Loci are reported from original GWAS publications for each complex trait. Significant GWAS
SNPs are all SNPs from the publicly available summary statistics meeting genome-wide
significance at a threshold of p < 5x10®. GWAS genes for each complex trait were identified
using the mapping approach described in Methods.

Complex Trait Abbrev. | Mean Number Number Number of | Matched
GWAS of of GWAS Mendelian
Sample Significant | Significant | Genes Disorder(s)
Size GWAS GWAS
Loci SNPs
Reported
Celiac Disease® | CEL 15283 13 54 34 Immune
Crohn's CD 27726 4381 239 Dysregulation
Disease®’ 231 total
Inflammatory IBD 34694 7738 368
Bowel Disease®’
Ulcerative ucC 28738 4239 202
Colitis®’
Primary Biliary PBC 13239 28 704 149
Cirrhosis®
Rheumatoid RA 58284 101 16502 297
Arthritis
(European)®
Multiple MS 27148 52 487 160
Sclerosis®
Autism* AUT 10610 2 2 2 Monogenic
Autism
Hemoglobin” HB 51255.8 11 325 89
Mean Cell MCH 43553.6 19 1188 164 Hematologic
Hemoglobin Disorders
Mean Cell MCHC | 46953.9 8 8 12
Hemoglobin
Concentration
Mean MCV 48472.8 23 1237 180
Corpuscular
Volume™
Mean Platelet MPV 16843 25 705 102
Volume™
Red Blood Cell | RBC 45304.4 10 908 107
Count’?
Systemic Lupus | SLE 23210 43 4983 286
Erythematosus’
Birthweight" BW 110054.6 | 60 1978 179 Growth Defects
Height"® HGT 239338.3 | 423 22807 2361
Femoral Neck FN 53236 14 788 58 Bone and Uric
Bone Mineral Acid Disorders
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Density”’

Forearm Bone FA 53236 3 136 8

Mineral

Density’’

Lumbar Spine LS 53236 19 998 67

Bone Mineral

Density”’

Serum Urate URT 107026 28 1991 161

Concentration’®

Packed Cell PCV 44925.9 4 141 53 Disorders of
Volume’ Platelet
Platelet Count” | PLT 66867 43 801 134 Function
Coronary Artery | CAD 184305 46 1709 132 Cardiovascular
Disease’® Disease
High Density HDL 95422 157 total | 3131 464

Lipoprotein®

Low Density LDL 90686.4 2796 370

Lipoprotein®

Total TC 95651.5 3803 500

Cholesterol®

Triglycerides® | TG 91882.3 2965 354

Hemoglobin HBA 46368 10 174 33 Monogenic
AlC® Diabetes
Type 2 T2D 61857.4 10 191 28

Diabetes®

Age-related AMD 33975.1 34 4087 215 Monogenic AMD
Macular

Degeneration®

Age at MNR 182416 106 2011 207 Female
Menarche®* Reproductive
Age at MNP 70000 44 1656 316 Disorders
Menopause®

Fasting FG 46186 16 total 231 39 Insulin
Glucose® Disorders
HOMA-B® HMB 46186 95 12

HOMA-IR®® HMIR | 46186 1 1 0

Micro- MA 52988.4 1 4 2 Microalbumin
albuminuria®’ Disorders
Fasting Insulin®® | FI 108557 1 43 23 Mature-onset
Two-hour 2HG 15234 3 4 2 Diabetes of the
Glucose® Young

Type 1 T1D 24341 42 1447 144

Diabetes®

Alzheimer's ALZ 54162 19 813 58 Neurologic
Disease® Disease
Anxiety ANXC 14643.1 1 8 2

Disorders

(Case-control)®*

Anxiety ANXF 16218.2 1 43 3

Disorders
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(Factor score)®*

Major MDD 10610 1 5 4

Depressive

Disorder®?

Depressive DS 161460 2 28 10

Symptoms®®

Neuroticism®® NRT 170911 11 1933 82

Bipolar BIP 16731 4 39 8 Psychiatric

Disorder®* Disease

Schizophrenia® | SCZ 150064 108 6808 479

Chronic Kidney | CKD 117340 4 107 16 Renal Disorders

Disease®®

Glomerular EGFR | 132725.4 43 1401 162

Filtration Rate

(CRN)*®

Urine Albumin- | UACR | 53343.1 1 4 2

to-Creatinine

Ratio®’

Resting Heart RHR 265046 64 4568 304 Arrythmias

Rate®’

Age at First AFB 251151 12 238 45 Education and

Birth®® Development

College™ COL 126559 3 71 12 Disorders

Education EY 293723 74 6537 554

Years'®

Subjective Well- | SWB 298420 3 37 9 Positive Mood

being®® Disorders

Body Fat BFP 57721.7 12 196 22 Body Mass

Percentage™® Disorders

Body Mass BMI 224996 97 1585 231

Index"%?

Childhood CcBMI 28964.1 15 438 49

BMI103

Leptin, adjusted | LEPB 30202 5 total 8 5

for BMI**

Leptin, not LEP 30507.6 1 0

adjusted for

BM|104

Waist-to-Hip WHR 139559.2 49 424 74

Ratio'®
835
836 Table 2: Overlap of GWAS genes and phenotypically-matched Mendelian disorder genes.
837  For each pair of complex trait and Mendelian disorder, Fisher's exact test was used to quantify
838  the enrichment of shared genes with an odds ratio and p-value (see Methods). Significance
839 was assessed at a threshold of p < (0.05/20) correcting for the number of Mendelian disorder
840 gene sets compared to each complex trait gene set. This table lists pairs of complex traits and
841  phenotypically-matched or related Mendelian disorders with significant overlap. For comparison,
842  the average odds ratio for pairings of each complex trait with all unrelated Mendelian disorder
843 gene sets is included.

| Complex | Matched or Related | Number of | Odds Ratio

| P-value

| Average Odds |
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Trait Mendelian Shared for Matched Ratio across
Disorder(s) Genes Pair (CI) Unmatched Pairs
7.99 (3.50, 9.88E-
AMD Monogenic AMD 9 16.11) 05 206
Immune 2.73 (1.55, 8.27E- '
AMD Dysregulation 17 4.52) 03
Body Mass 22.14 (4.14, | 1.03E-
BFP Disorders 3 76.70) 02 4.94
15.42 (2.90, | 2.85E- '
BFP Monogenic Diabetes | 3 53.04) 02
Mature-onset
Diabetes of the 3.06 (1.69, 3.81E-
BW Young 16 5.16) 03 1.99
Body Mass 4.94 (1.76, 3.86E-
BW Disorders 6 11.29) 02
Cardiovascular 3.17 (1.63, 1.07E-
CAD Disease 13 5.67) 02 293
3.04 (1.56, 1.57E- '
CAD Insulin Disorders 13 5.43) 02
Body Mass 16.18 (4.92, | 5.41E-
CBMI Disorders 5 41.63) 04 2 65
4.61 (1.74, 3.08E- '
CBMI Insulin Disorders 7 10.41) 02
Immune 3.42 (2.10, 3.39E- 165
CD Dysregulation 23 5.32) 05 '
Positive Mood 4.70 (2.04, 5.76E-
EY Disorders 9 9.59) 03 107
2.45 (1.44, 1.79E- '
EY Psychiatric Disease | 19 3.95) 02
Bone and Uric Acid 7.64 (2.36, 1.52E- 3.98
FN Disorders 5 19.24) 02 '
Disorders of Platelet 6.21 (3.05, 4.34E-
HB Function 12 11.59) 05 2 66
Hematologic 3.99 (1.83, 8.84E- '
HB Disorders 10 7.79) 03
3.41 (1.85, 1.87E-
HDL Monogenic Diabetes | 15 5.85) 03
Body Mass 3.92 (1.95, 2.78E- 1.48
HDL Disorders 12 7.17) 03 ’
Cardiovascular 2.10 (1.40, 6.89E-
HDL Disease 31 3.06) 03
Female
Reproductive 1.76 (1.30, 4.36E-
HGT Disorders 61 2.36) 03 1.33
1.39 (1.13, 2.85E-
HGT Growth Defects 126 1.70) 02
Immune 3.32 (2.23, 3.15E- 147
IBD Dysregulation 34 4.79) 07 '
Cardiovascular 2.70 (1.79, 6.90E- 1.74
LDL Disease 31 3.95) 05 )
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Mature-onset
Diabetes of the 2.17 (1.36, 1.71E-
LDL Young 24 3.32) 02
Bone and Uric Acid 8.00 (2.80, 3.66E- 280
LS Disorders 6 18.72) 03 )
Hematologic 3.19 (1.73, 3.85E- 171
MCH Disorders 15 5.48) 03 '
Hematologic 4.00 (2.36, 1.78E- 173
MCV Disorders 20 6.44) 05 )
Body Mass 5.02 (1.95, 1.55E- 0.93
MNR Disorders 7 10.86) 02 '
Immune 3.03 (1.56, 1.55E- 117
PBC Dysregulation 13 5.40) 02 '
Disorders of Platelet 9.24 (4.11, 1.30E-
PCV Function 10 18.83) 05
Hematologic 5.60 (2.27, 4.33E-
PCV Disorders 8 12.08) 03 453
6.70 (2.07, 2.73E- '
PCV Arrythmias 5 16.94) 02
Cardiovascular 4.39 (1.66, 3.89E-
PCV Disease 7 9.84) 02
Disorders of Platelet 3.91 (1.95, 2.80E-
PLT Function 12 7.15) 03 155
Cardiovascular 2.85(1.42, 3.95E- '
PLT Disease 12 5.20) 02
Immune 2.95 (1.86, 1.36E- 0.94
RA Dysregulation 25 4.50) 04 )
Hematologic 4.78 (2.50, 1.16E-
RBC Disorders 14 8.50) 04
Disorders of Platelet 5.03 (2.49, 3.02E- 293
RBC Function 12 9.29) 04 '
Cardiovascular 4.02 (2.05, 1.30E-
RBC Disease 13 7.26) 03
3.93 (2.23, 1.17E-
RHR Arrythmias 17 6.53) 04 150
Cardiovascular 2.75 (1.75, 2.94E- '
RHR Disease 26 4.16) 04
Positive Mood 5.47 (2.37, 1.94E- 0.99
SCZ Disorders 9 11.19) 03 )
Immune 2.94 (1.83, 2.18E- 1.41
SLE Dysregulation 24 4.52) 04 ]
Body Mass 23.55 (5.85, | 9.35E- 172
T2D Disorders 4 69.99) 04 '
Cardiovascular 2.44 (1.69, 6.91E-
TC Disease 38 3.45) 05 145
Hematologic 2.20 (1.47, 2.36E- '
TC Disorders 32 3.18) 03
3.54 (1.78, 6.20E-
TG Monogenic Diabetes | 12 6.43) 03 1.55
TG Cardiovascular 25 2.22 (1.41, 1.01E-
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Disease 3.38) 02
Body Mass 3.77 (1.67, 2.19E-
TG Disorders 9 7.49) 02
Immune 3.72 (2.23, 2.77E- 156
ucC Dysregulation 21 5.92) 05 )
3.83(1.67, 2.25E- 912
WHR Insulin Disorders 9 7.78) 02 '

Table 3: Instances of significant overlap of GWAS genes and unrelated Mendelian
disorder genes. As in Table 2, Fisher's exact test was used to quantify the enrichment of
shared genes between complex traits and Mendelian disorders with an odds ratio and p-value
(see Methods). Significance was assessed at a threshold of p < (0.05/20) correcting for the
number of Mendelian disorder gene sets compared to each complex trait gene set. This table

lists pairs of complex traits and phenotypically-unrelated Mendelian disorders that demonstrated

significant overlap.

Complex : . Number of Shared | Odds Ratio
Trait Mendelian Disorder(s) Genes (Cl) P-value
IBD Mature-onset Diabetes of 30 2.81 (1.85, 4.81E-
the Young 4.13) 05
4.14 (2.33, 5.21E-
RBC Renal Disorders 18 6.96) 05
uc Mature-onset Diabetes of 19 3.25 (1.90, 4.88E-
the Young 5.27) 04
1.48 (1.23, 7.51E-
HGT Renal Disorders 153 1.78) 04
SLE Mature-onset Diabetes of 22 2.61 (1.59, 2.47E-
the Young 4.07) 03
cD Mature-onset Diabetes of 19 2.69 (1.58, 4.64E-
the Young 4.35) 03
2.31 (1.46, 7.01E-
LDL Hematologic Disorders 25 3.51) 03
2.80 (1.52, 1.40E-
MCH Insulin Disorders 15 4.81) 02
4.43 (1.86, 1.47E-
AMD Microalbumin Disorders 8 9.13) 02
Bone and Uric Acid 4.19 (1.75, 2.09E-
MCH Disorders 8 8.61) 02
TC Disorders of Platelet o5 2.11 (1.34, 2.25E-
Function 3.20) 02
2.17 (1.34, 2.26E-
CD Renal Disorders 23 3.37) 02
15.97 (3.11, 2.31E-
PCV Positive Mood Disorders 3 51.37) 02
4.52 (1.76, 2.79E-
CAD Neurologic Disease / 9.75) 02
2.69 (1.43, 2.89E-
BW Immune Dysregulation 14 4.68) 02
CEL Disorders of Platelet 6.78 (2.04, 2.94E-
Function 17.83) 02
FN Positive Mood Disorders 3 14.51 (2.83, 3.00E-
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' ' 46.53) 02
MCV [B)ciasr:)erdaerlcsi Uric Acid 8 3238)(1.59, 8.278E— .
ALz Immune Dysregulation ! gzgg)(l.as, géllE- *
WHR l[:)LljsnoCrt(ijgr:s of Platelet 7 g:ég)(l.SQ, 3.299E- .

852

853 Table 4: Genome-wide significant SNPs localizing at TSS of phenotypically-relevant
854 Mendelian disorder genes. GWAS SNPs from the credible set for each complex trait were
855 intersected with transcription start site (TSS) regions 1kb upstream of phenotypically-matched
856  Mendelian disorder genes. This table lists all genome-wide significant SNPs (p < 5x10°® from
857 GWAS, with chromosomal location) from all complex traits localizing at the TSS of a

858  phenotypically-matched Mendelian disorder gene (italicized).

Complex Trait | SNP ID Chr Position Zscore | Gene Strand
PBC rs13239597 | chr7 | 128695983 | 9.85309 | TNPO3 -
HGT rs8028537 | chrl5 | 89345947 | -9.333 ACAN +
HGT rs10853751 | chrl9 | 41903220 | 8.71 BCKDHA | +
CD rs59283234 | chr5 | 150225587 | -8.454 IRGM +
CD rs751627 chr5 | 150225113 | -8.451 IRGM +
CD rs35707106 | chr5 | 150225377 | -8.332 IRGM +
HGT rs2298307 | chr6 | 80816296 | 8.276 BCKDHB | +
HGT rs12386601 | chr7 | 92157886 | 8.2 PEX1 -
BMI rs17066842 | chrl8 | 58040624 | -7.542 MC4R -
HGT rs12192268 | chr6 | 110011458 | -7 FIG4 +
CAD rs1332327 | chrl0 | 91011681 | 6.798 LIPA -
RA rs13239597 | chr7 | 128695983 | 6.65672 | TNPO3 -
IBD rs59283234 | chr5 | 150225587 | 6.51 IRGM +
IBD rs751627 chr5 | 150225113 | 6.507 IRGM +
HGT rs7592246 | chr2 | 219926221 | 6.452 IHH -
IBD rs34005003 | chr5 | 150225199 | 6.427 IRGM +
IBD rs35707106 | chr5 | 150225377 | 6.326 IRGM +
MNR rs3775971 | chr4 | 104641920 | 6.20413 | TACR3 -
IBD rs27741 chrl6é | 28504181 | 6.109 CLN3 -
HGT rs4244808 | chrll | 2163110 6.061 IGF2 -
RBC rs1010222 | chrl9 | 13048608 | -5.96154 | CALR +
CD rs27741 chrl6é | 28504181 | -5.866 CLN3 -
HGT rs613924 chrll | 65769295 | -5.862 BANF1 +
AFB rs4845357 | chrl 153896212 | -5.775 GATADZB | -
HGT rs6591226 | chrll | 66675990 | 5.517 PC -

859
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