
 1 

Phenotype-specific enrichment of Mendelian disorder genes near 
GWAS regions across 62 complex traits 
 
Malika Kumar Freund,1* Kathryn Burch,2 Huwenbo Shi,2 Nicholas Mancuso,3 Gleb 
Kichaev,2 Kristina M. Garske,1 David Z. Pan,2 Päivi Pajukanta,1,2 Bogdan 
Pasaniuc,1,2,3,4,5 and Valerie A. Arboleda3,5** 
 

1 Department of Human Genetics, David Geffen School of Medicine, University of California Los 
Angeles, Los Angeles, California, 90095, USA 
2 Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles 
California, 90095, USA 
3 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, 
University of California Los Angeles, Los Angeles, California, 90095, USA 
4 Department of Biomathematics, David Geffen School of Medicine, University of California Los 
Angeles, Los Angeles, California, 90095, USA 
 
5These authors jointly supervised this work. 
 
Correspondence: * kumarm@ucla.edu (MKF),  ** varboleda@mednet.ucla.edu (VAA) 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/324558doi: bioRxiv preprint 

https://doi.org/10.1101/324558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

 
ABSTRACT 1 

Although recent studies provide evidence for a common genetic basis between complex traits 2 

and Mendelian disorders, a thorough quantification of their overlap in a phenotype-specific 3 

manner remains elusive. Here, we quantify the overlap of genes identified through large-scale 4 

genome-wide association studies (GWAS) for 62 complex traits and diseases with genes known 5 

to cause 20 broad categories of Mendelian disorders. We identify a significant enrichment of 6 

phenotypically-matched Mendelian disorder genes in GWAS gene sets. Further, we observe 7 

elevated GWAS effect sizes near phenotypically-matched Mendelian disorder genes. Finally, we 8 

report examples of GWAS variants localized at the transcription start site or physically 9 

interacting with the promoters of phenotypically-matched Mendelian disorder genes. Our results 10 

are consistent with the hypothesis that genes that are disrupted in Mendelian disorders are 11 

dysregulated by noncoding variants in complex traits, and demonstrate how leveraging findings 12 

from related Mendelian disorders and functional genomic datasets can prioritize genes that are 13 

putatively dysregulated by local and distal non-coding GWAS variants.  14 
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INTRODUCTION 15 

Genetic architectures of human traits have traditionally been classified into two major 16 

categories. Typically, complex traits demonstrate polygenic architectures arising from many low-17 

effect common variants, whereas rare traits tend to have high-effect monogenic determinants1. 18 

The underlying and practical distinction between these classes has historically been based on 19 

the presence of highly penetrant, rare, single-gene disruptive mutations causing recognizable 20 

clinical monogenic diseases (e.g., cystic fibrosis2), and the relative absence of such mutations in 21 

complex diseases such as diabetes and schizophrenia3. Evidence is accumulating that these 22 

two classes of phenotypes may not be as biologically distinct as previously thought4. Multiple 23 

exceptions to the “common disease, common variant” hypothesis1
 have been identified for 24 

complex traits5-8 and their molecular phenotypes9-12, and Mendelian disorders have also been 25 

found to be affected by multiple or common genetic variants 13-16. This suggests that there exists 26 

a spectrum of genetic architectures rather than a dichotomous classification. Accordingly, the 27 

monogenic forms of complex traits (i.e., phenotypically-matched Mendelian disorders) are 28 

increasingly used as a starting point to identify genes relevant to complex traits for further 29 

study17-19. Furthermore, overlap has been identified between genes linked with Mendelian 30 

disorders and genetic determinants of complex traits and diseases such as Parkinson’s 31 

disease20; 21, obesity22, height23, ototoxicity24, and others25. However, the overlap of each of 32 

these complex traits with Mendelian disorders has been examined individually, with different 33 

metrics of overlap. In a large study of patient medical records, Blair et al. identified systematic, 34 

significant comorbidities between Mendelian disorders and complex diseases, and that 35 

association signals from genome-wide association studies (GWAS) for complex diseases were 36 

enriched in genomic regions with known roles in comorbid Mendelian disorders, suggesting a 37 

shared genetic basis26. However, the study focuses on Mendelian disorders comorbid with 38 

complex diseases in the same individual, rather than Mendelian disorders demonstrating similar 39 

phenotypes to complex traits. Furthermore, advances in sequencing technology have greatly 40 
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expanded the phenotypic spectrum in known Mendelian syndromes, allowing for deconstruction 41 

of syndromic diseases into component medical phenotypes. As such, it is now possible to 42 

identify all the component-phenotype consequences of Mendelian disorder genes, allowing for 43 

greater resolution in identifying gene-phenotype relationships. However, to the best of our 44 

knowledge, no study has taken advantage of this to identify genes causing any related 45 

component-phenotype regardless of the Mendelian disorder’s best-known or primary 46 

phenotype. Thus, a thorough quantification of the overlap between genes associated with 47 

complex traits and genes linked to Mendelian disorders in a phenotype-specific manner remains 48 

elusive. 49 

Given that the majority of genome-wide association studies for complex traits and 50 

diseases have identified significant associations in non-coding genomic regions27, we 51 

hypothesize that genes individually involved in Mendelian disease belong to the biological 52 

pathway(s) shared by both complex and Mendelian disease. Specifically, we hypothesize that 53 

large-effect coding variants disrupt individual genes, resulting in severe phenotypes (i.e., 54 

Mendelian disorders), while non-coding variants produce complex traits by collectively 55 

dysregulating expression of these same genes, allowing for nuanced or tissue-specific 56 

phenotypes. Based on this hypothesis, we expect to identify an enrichment of GWAS signal for 57 

a given complex trait near genes linked to Mendelian disorders demonstrating similar 58 

phenotypes, but no enrichment near genes linked to Mendelian disorders with phenotypes 59 

unrelated to the complex trait of interest. To test this hypothesis, we define “Mendelian disorder 60 

genes” as any genes linked to Mendelian disorders in the Online Mendelian Inheritance in Man 61 

(OMIM) database28, and use the well-curated phenotypic breakdown of Mendelian disorders to 62 

identify subsets of these genes linked to particular phenotypes (e.g., growth defects or immune 63 

dysregulation) expressed as part of any Mendelian disorder. We then examined publicly 64 

available GWAS across 62 complex traits (detailed in Table 1) to identify risk genes (here called 65 

“GWAS gene sets”) for each complex trait, and quantified the overlap of each GWAS gene set 66 
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with 20 other sets of Mendelian disorder genes for particular phenotypes (detailed in Table 1). 67 

We find a consistent, significant, and specific enrichment between GWAS gene sets for complex 68 

traits and Mendelian disorder genes for matched and related phenotypes (51/1,240 pairs; e.g., 69 

rheumatoid arthritis and immune dysregulation), supporting our hypothesis of a shared genetic 70 

basis between complex and Mendelian forms of disease. In addition, we observe instances of 71 

enrichments between GWAS gene sets for certain complex traits and Mendelian disorder genes 72 

for unrelated phenotypes (20/1,240 pairs; e.g., systemic lupus erythematosus and mature-onset 73 

diabetes of the young), suggestive of shared biological mechanisms yet to be examined. 74 

Furthermore, we find an increase in average effect size of GWAS variants near Mendelian 75 

disorder genes for matched phenotypes, and identify examples of associated SNPs found 76 

directly at the transcription start sites (TSSs) of these phenotypically-matched Mendelian 77 

disorder genes as candidates for functional follow-up. Finally, we report novel examples of 78 

significant body mass index (BMI)-associated variants directly interacting with phenotypically-79 

related Mendelian disorder genes CREBBP and CYP19A1, using human primary white 80 

adipocyte-specific Hi-C data29. Leveraging the growing body of well-curated phenotypic data 81 

from studies of Mendelian disorders, we provide a phenotype-driven approach to identifying 82 

genetic pathways shared by Mendelian diseases and complex traits.  83 

 84 

MATERIAL AND METHODS 85 

Gene coordinates and symbols 86 

We downloaded gene body coordinates (NCBI build 37/hg19, UCSC Genes track) from the 87 

UCSC Table Browser30 (see Web Resources) using the gene symbol from the knownGene 88 

table, transcription start and end sites for each gene from the knownCanonical table, and the 89 

longest transcript from the knownGene table for genes where no entry or multiple entries were 90 

listed in the knownCanonical table. We used these coordinates for all analyses in our study. 91 

Since many genes have been renamed over time, we standardized gene symbols across all 92 
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analyses in our study by downloading a table of approved symbols, previous symbols, and locus 93 

group for each gene from HUGO Gene Nomenclature Committee at the European 94 

Bioinformatics Institute (HGNC)31 (see Web Resources) and renaming any genes identified by 95 

previous symbols with approved gene symbols. We restricted all analyses in our study to genes 96 

classified as protein-coding according to the HGNC locus group, from chromosomes 1-22. 97 

These processing steps resulted in a final single set of coordinates for 17,695 autosomal 98 

protein-coding genes (for data access, see Web Resources). 99 

 100 

Mendelian disorder genes and loss-of-function (LOF) intolerant genes 101 

To identify Mendelian disorder genes, we downloaded the Online Mendelian Inheritance in Man 102 

(OMIM) catalogue database28 and identified all genes linked to Mendelian disorders satisfying 103 

the following criteria: (1) disorder is Mendelian and fully penetrant, therefore excluding 104 

susceptibility phenotypes and (2) molecular basis of the Mendelian disorder is known (i.e., 105 

phenotype mapping key = 3). We defined loss-of-function (LOF) intolerant genes as any gene 106 

with greater than 90% probability of being loss-of-function intolerant, according to the pLI score 107 

(pLI > 0.9) from the Exome Aggregation Consortium (ExAC)32; this score is derived from the 108 

number of observed versus expected LOF variants in a given gene across approximately 109 

60,000 healthy exomes. Following the same restriction and gene symbol standardization criteria 110 

described above resulted in a final set of 3,446 Mendelian disorder genes and 2,978 LOF-111 

intolerant genes. 112 

 113 

Phenotype-specific Mendelian disorder gene sets  114 

To identify subsets of Mendelian disorder genes linked to particular phenotypes, for each 115 

complex trait we curated a set of standardized clinical phenotype terms to describe the full 116 

range of relevant Mendelian phenotypes. We used these terms to search the OMIM database 117 

via API for all Mendelian disorders demonstrating these phenotypes, then extracted the gene(s) 118 
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linked to each Mendelian disorder. We restricted gene-phenotype associations to those 119 

satisfying the same criteria (1) and (2) as described above, and with the following additional 120 

criteria: (3) gene-phenotype association description does not contain “genome-wide association 121 

study” or other GWAS synonyms unless: the description also contains any of the terms 122 

“missense”, “nonsense”, “nonsynonymous”, or “frameshift”; or the gene contains at least one 123 

pathogenic or likely pathogenic allele in the ClinVar database33. We include a full list of 124 

phenotype-specific Mendelian disorder gene sets and clinical phenotype terms used in Table 125 

S1. 126 

A comparison of all phenotype-specific Mendelian disorder gene sets revealed a high 127 

degree of overlap among the gene sets for clinically-related Mendelian phenotypes (Figure S1). 128 

Accordingly, we clustered gene sets based on pairwise overlap, and intersected gene sets 129 

visually clustering together to create a single gene set for the representative group of Mendelian 130 

disorders. After combining similar gene sets, a total of 20 non-disjoint phenotype-specific 131 

Mendelian disorder gene sets remained with an average of 375 genes per set; we include a 132 

description of each cluster in Table S2. 133 

 134 

Complex trait gene sets 135 

We downloaded publicly available summary statistics (per-allele SNP effect sizes, or log-odds 136 

ratios for case–control traits, with standard errors34) for large-scale GWAS of 62 traits26 (Table 137 

1; average N=83,170; some GWAS were imputed using the 1000 Genomes Project as a 138 

reference panel by their respective consortia while others were not.)  For each trait, we 139 

identified a gene set by mapping each autosomal genome-wide significant SNP (p < 5x10-8) to 140 

the closest up- and downstream protein-coding genes as defined above, resulting in a total of 141 

62 non-disjoint GWAS gene sets. As GWAS regions often contain multiple genome-wide 142 

significant SNPs, and the true causal gene may not lie adjacent to the lead SNP in a region35; 36, 143 
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we defined GWAS gene sets by mapping genes with respect to every genome-wide significant 144 

SNP rather than only the index GWAS SNPs at each genomic risk region. 145 

 146 

Quantifying overlap between complex trait and Mendelian disorder 147 

For each complex trait-Mendelian disorder pair, we compared the GWAS gene set and 148 

phenotype-specific Mendelian disorder gene set using a 2x2 contingency table (counting 149 

whether each gene was in the GWAS gene set or not, and in the Mendelian disorder gene set 150 

or not), with the set of autosomal protein-coding genes (n=17,695) representing the total 151 

sample. We used Fisher’s Exact Test37 to determine significance. Phenotype-specificity of 152 

overlap significance was assessed by comparing the GWAS gene sets for each complex trait 153 

(n=62) to all phenotype-specific Mendelian disorder gene sets (n=20), a total of 1,240 pairs. 154 

Significance was assessed at a trait-specific Bonferroni-corrected threshold (p < 0.05/20) based 155 

on the number of phenotype-specific Mendelian disorder gene sets (n=20) being compared to 156 

each GWAS gene set. Since not all autosomal protein-coding genes are Mendelian, we also 157 

assessed significance in permutations; we drew 10,000 random sets of Mendelian disorder 158 

genes and 10,000 random sets of any protein-coding genes with replacement (matching the 159 

size of each random gene set to the size of the phenotype-specific Mendelian disorder gene 160 

set), and counted the number of times more genes were shared between the GWAS gene set 161 

and a random set. 162 

To assess the robustness and stability of our SNP-gene mapping approach for complex traits, 163 

we performed an overlap quantification with phenotype-specific Mendelian disorder genes using 164 

GWAS gene sets derived from two additional SNP-gene mapping methods: by mapping each 165 

SNP to all genes within a 50Mb window, and to all genes within a 500Mb window. Comparison 166 

of the odds ratios produced by Fisher’s Exact Test for the comparisons of GWAS gene sets 167 

(derived by each mapping method) and phenotype-specific Mendelian disorder gene sets 168 

demonstrates no major difference in outcomes from different mapping methods (Table S3). 169 
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 170 

Estimating enrichment of GWAS SNP association signal 171 

We created genomic annotations to capture the regions spanning 50kb upstream through 50kb 172 

downstream of gene bodies for four categories of genes: all protein-coding genes (N=17,695), 173 

all Mendelian disorder genes (N=3,446), all LOF-intolerant genes (N=2,978), and the 174 

phenotype-specific Mendelian disorder gene sets (average N=609). For each complex trait-175 

gene category pair, we computed enrichment of GWAS signal within the category � with respect 176 

to the set of all protein-coding genes as 177 

�� �
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where �� is the number of genes in category �, �� is the number of SNPs within 50kb of gene 	, 178 

�� = GWAS effect size of SNP 
 divided by standard error, with total number of protein-coding 179 

genes �	. Thus, ��  is the enrichment in average SNP effect size (Z2) per gene in category 180 

(compared to average Z2 for any protein-coding gene). The percent increase in average SNP 181 

effect size per gene for category �, or ��� � 1
 � 100, is shown in Figure 3. We performed 182 

similar comparisons for median SNP effect size per gene for category �, and maximum SNP 183 

effect size per gene for category � (Table S4). 184 

To ensure that this signal was not driven by linkage disequilibrium (LD), minor allele 185 

frequency (MAF), or average gene length per category, we compared these three properties 186 

across the gene categories for each complex trait. We calculated LD scores38 reflecting the 187 

amount of LD tagged by each SNP in the HapMap 3 reference panel39. For each gene category, 188 

we averaged the LD scores of SNPs falling within 50kb of each gene, and found no consistent 189 

difference across gene sets. Similar analyses were performed to examine average MAF per 190 

gene and average gene length per category across each complex trait (Table S5); we again 191 

found no consistent difference across gene sets. 192 
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 193 

Putative causal mechanisms at GWAS risk regions  194 

We performed statistical fine-mapping of the genome-wide significant regions (p < 5 x 10-8) for 195 

each GWAS using fgwas40 with no functional annotations and default parameter settings. For 196 

each GWAS, we constructed a 95% credible set (defined as the minimum set of SNPs where 197 

95% of the probability of causation at a region is accumulated) for each 5kb region (as default 198 

assigned by fgwas) containing a significant GWAS association. We achieved this by adding 199 

SNPs one at a time with a decreasing posterior probability of causation (posterior probability of 200 

association for the SNP, conditioned on there being an association in the region) until a 201 

cumulative 95% probability of causation is reached. 202 

 203 

Identification of candidate regulatory variants 204 

We intersected credible sets for each complex trait with genomic regions 1kb upstream of each 205 

phenotypically-relevant Mendelian disorder gene to identify SNPs localizing at the TSS. To 206 

identify candidate regulatory variants interacting with promoters of phenotype-matched 207 

Mendelian disorder genes, we used interactions from promoter capture Hi-C in human primary 208 

white adipocytes 29 for each complex trait, and filtered interactions to pairs of interacting regions 209 

where at least one region contained a promoter of a phenotype-specific Mendelian disorder 210 

gene. We then intersected interaction pairs for each of these regions with credible sets for each 211 

complex trait to identify credible SNPs interacting with regions containing promoters of 212 

phenotype-specific Mendelian disorder genes. 213 

 214 

RESULTS 215 

GWAS risk genes show specific, significant overlap with phenotypically-matched Mendelian 216 

disorder genes 217 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/324558doi: bioRxiv preprint 

https://doi.org/10.1101/324558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

We first sought to examine the degree of overlap between phenotype-matched Mendelian 218 

disorder genes with risk genes for complex traits as identified through GWAS. For each complex 219 

trait, we identified corresponding Mendelian forms, often as familial forms or rare phenotypic 220 

extremes, and curated Mendelian disorder gene sets composed of Mendelian disorder genes 221 

known to cause those specific phenotypes from the OMIM database28 (see Methods, and 222 

Figure 1). We combined similar Mendelian disorder gene sets to create one gene set for the 223 

representative Mendelian disorder(s) (for a total of 20 Mendelian disorder gene sets). We 224 

separately ascertained GWAS gene sets for each complex trait by identifying the closest up- 225 

and downstream genes to each GWAS SNP meeting genome-wide significance (see Methods, 226 

and Figure 1). Overlap between each phenotype-specific Mendelian disorder gene set (n=20) 227 

and each GWAS gene set (n=62) was assessed using Fisher’s Exact Test, for a total of 1,240 228 

comparisons (Table 1 and Table S6). We hypothesized that GWAS gene sets would have a 229 

specific significant enrichment of Mendelian disorder genes for matched Mendelian disorders, 230 

but no enrichment for unrelated Mendelian disorders. Among all 1,240 pairs of complex and 231 

phenotype-specific Mendelian disorder gene sets assessed, we identified 71 pairs with 232 

significant overlap at a p < 0.05/20 (Figure 2). An examination of the log-odds ratios for each 233 

overlap comparison revealed more extreme enrichments among phenotypically-matched pairs 234 

compared to phenotypically-unmatched pairs (Table 2), which is consistent with our hypothesis. 235 

51 out of the 71 significantly overlapping pairs showed perfectly matching phenotypes or 236 

reflected known shared biology. Specifically, in many of these pairs, monogenic forms of the 237 

complex trait have been well established in the genetics literature; examples include Age-238 

related Macular Degeneration (AMD) and cholesterol traits (high-density lipoprotein (HDL), low-239 

density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TG))6; 41-44. We confirmed 240 

significant enrichment after trait-specific Bonferroni adjustment (20 comparisons, see Methods) 241 

between many of these previously reported pairs such as the complex and monogenic forms of 242 

height45 (OR=1.39, p=0.029) and HDL and Mendelian forms of cardiovascular disease46  243 
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(OR=2.10, p=0.006). We also identified previously unreported enrichments; for example, we find 244 

a strong enrichment between inflammatory bowel disease (IBD) and Mendelian forms of 245 

immune dysregulation (OR=3.32, p=0.01) and between hemoglobin (HB) and Mendelian 246 

hematologic disorders (OR=3.99, p=0.009). The remaining 20 pairs with significant overlap 247 

suggested novel shared biological mechanisms between complex traits and Mendelian 248 

disorders yet to be established (Table 3). For example, we observed an enrichment between 249 

height and renal disorders (OR=1.48, p=0.001), and enrichment between Crohn’s Disease and 250 

mature-onset diabetes of the young (OR=2.69, p=0.005).  Of note, the vast majority of complex 251 

and Mendelian disorder gene set pairs without perfectly-matched phenotypes (n=1,158 of 252 

1,178) did not demonstrate any significant overlap (Table S6).  253 

 254 

SNPs near phenotypically-matched Mendelian disorder genes show increased effect size on 255 

complex traits 256 

Because Mendelian disorder genes exhibit severe biological effects when either one or both 257 

alleles are disrupted, dysregulation of the gene through changes in expression or other 258 

mechanisms might have a more significant effect than dysregulation of a non-Mendelian 259 

disease gene. We hypothesized that SNPs near these phenotype-specific Mendelian disorder 260 

genes have further increased effects on complex traits due to the increased biological relevance 261 

of these gene categories. From the publicly available GWAS summary statistics for each 262 

complex trait, we computed the average GWAS effect sizes of SNPs falling within each protein-263 

coding gene, and compared the average effect sizes per gene across all Mendelian disorder 264 

genes and across phenotypically-relevant Mendelian disorder genes (see Methods). Across 265 

complex traits, we found an increased average effect size per gene for all Mendelian disorder 266 

genes and a further increased average effect size per gene for phenotypically-relevant 267 

Mendelian disorder genes (Figure 3 and Table S4). This suggests that the genomic regions 268 

containing the most biologically-relevant genes for each trait contribute most significantly to 269 
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complex trait biology. We also confirmed that loss-of-function (LOF) intolerant genes (as defined 270 

by ExAC’s pLI score > 0.9, see Methods) demonstrate a higher average effect size across most 271 

complex traits examined32. Given the extreme intolerance of deleterious mutations in these 272 

genes, it is possible that LOF-intolerant genes demonstrate embryonic lethal mutant 273 

phenotypes, and are thus undiscovered as Mendelian disorder genes at this time. We found no 274 

significant increase in linkage disequilibrium or decrease in average minor allele frequency 275 

(MAF) of the SNPs within each category compared to the SNPs within all protein-coding genes 276 

(Table S5), suggesting that the observed signal is not driven by any of these confounders. Of 277 

note, we did observe a respective increase in average gene length between all protein-coding 278 

genes, all Mendelian disorder genes, and LOF-intolerant genes (Table S5). Therefore, it is 279 

possible that our findings of enriched GWAS signal in these gene categories is due instead to 280 

longer genes being more likely to tag causal variation. However, in general we did not observe a 281 

significant increase in average gene length for the phenotype-specific Mendelian disorder gene 282 

sets as compared to all Mendelian disorder genes (Table S5), but still found an increase in 283 

enrichment of GWAS signal (Figure 3), suggesting that gene length is not significantly 284 

confounding our results. The only exceptions to this are the phenotype-specific Mendelian 285 

disorder gene sets for neurological phenotypes, for which the average gene length was 286 

increased compared to all Mendelian disorder genes; this is consistent with other reported 287 

findings about gene length in neurological traits47. 288 

 289 

Examples of credible SNPs for GWAS regions near phenotypically-matched Mendelian disorder 290 

genes 291 

We next sought to identify common non-coding variants that may causally impact complex trait 292 

phenotypes by dysregulating phenotypically-relevant Mendelian disorder genes. For each 293 

complex trait, we performed statistical fine-mapping of significant GWAS regions to construct 294 

95% credible sets for each region (see Methods), and identified SNPs from the credible set 295 
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located at the TSS of a gene from the phenotypically-relevant Mendelian disorder gene set. We 296 

found a total of 786 credible set SNPs (out of approximately 3.5 million) localizing at the TSS of 297 

a phenotypically-relevant Mendelian disorder gene (an average of 20 SNPs per trait, for 38 traits 298 

where at least one such SNP was found; Tables S7 and S8), and identified 25 promising 299 

candidate SNPs (attaining genome-wide significance in GWAS) at TSSs that could be 300 

regulating the proximal Mendelian disorder gene (Table 4). We highlight two examples: first, we 301 

found a significantly associated SNP from the credible set for coronary artery disease 302 

(rs1332327, Z=6.798) at the promoter of LIPA (MIM# 278000), a Mendelian disorder gene 303 

linked to Wolman Disease and Cholesteryl Ester Storage Disease (both Lysosomal Acid Lipase 304 

Deficiencies, MIM# 278000) causing hypercholesterolemia and hypertriglyceridemia as part of 305 

cholesteryl ester- and triglyceride-filled macrophage infiltration syndromes (Figure 4A). Second, 306 

from the credible set for red blood cell count, we found a significantly associated SNP 307 

(rs1010222, Z= -5.961) at the promoter of CALR (MIM# 109091), a Mendelian disorder gene 308 

known to cause Myelofibrosis (MIM# 254450) involving generalized bone marrow fibrosis, 309 

reduced hemopoiesis, no hemophagocytosis, and myeloproliferative disease (Figure 4B). In 310 

both cases, the putative causal SNP for the complex trait lies immediately upstream of the TSS 311 

of the phenotypically-relevant Mendelian disorder gene, in addition to falling within regions 312 

containing by regulatory epigenetic marks. 313 

 314 

Putative causal SNPs for GWAS regions interacting with promoters of phenotypically-relevant 315 

Mendelian disorder genes 316 

Functional genomic datasets, such as chromatin interactions identified through Hi-C, can give 317 

us insight into the functional interpretation of GWAS variants and how they might regulate 318 

Mendelian disorder genes. Examination of chromatin interactions in human primary white 319 

adipocytes29 revealed further candidate credible set SNPs for metabolic traits physically 320 

interacting with promoters of phenotypically-relevant Mendelian disorder genes (Table S9). 321 
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Specifically, we report that a genome-wide significant SNP for BMI (rs758747, Z=6.081) 322 

physically interacts with the promoter of CREBBP, a gene known to cause Rubinstein-Taybi 323 

Syndrome 1 (MIM# 180849) in which obesity is one of the syndromic features28 (Figure 4C). 324 

These interactions can also identify the relevant isoforms of genes in disease. We identified a 325 

cluster of SNPs from the credible set of variants associated with BMI that physically interact with 326 

the promoter of a specific isoform of CYP19A1, a gene known to cause Aromatase Excess 327 

Syndrome (MIM# 139300) involving short stature and excess fat storage in the chest 328 

(gynecomastia)28 (Figure 4D). Although longer isoforms of CYP19A1 are by default chosen to 329 

represent the gene, our data suggests that the shorter isoform is likely to be more relevant in 330 

obesity. Taken together, these results demonstrate examples of GWAS variants localizing in 331 

regulatory regions for phenotypically-relevant Mendelian disorder genes, consistent with the 332 

hypothesis that low-effect common variants contribute to complex traits by regulating genes 333 

known to cause Mendelian disorders.  334 

 335 

 336 

DISCUSSION 337 

 338 

In this work we used GWAS summary statistics from 62 complex traits and genes linked 339 

to specific phenotypes within 20 Mendelian broad disorders to quantify the shared genetic basis 340 

of complex traits and Mendelian disorders. We identified a specific enrichment of 341 

phenotypically-matched and related Mendelian disorder genes in GWAS regions for complex 342 

traits; we also identified fewer pairs of complex traits and phenotypically-unmatched Mendelian 343 

disorders with similar significant enrichment. We further found that phenotypically-relevant 344 

Mendelian disorder genes are enriched for GWAS signal across complex traits, compared to all 345 

Mendelian disorder genes and other protein-coding genes. Finally, we report examples of 346 

putative causal SNPs for GWAS regions in potentially regulating phenotypically-relevant 347 

Mendelian disorder genes. We conclude with four considerations about how our results 348 
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contribute to understanding of genetic architectures and biological mechanisms across complex 349 

traits and Mendelian disorders.   350 

 First, our finding of a specific enrichment of phenotypically-matched and related 351 

Mendelian disorder genes in GWAS regions for complex traits suggests that, across complex 352 

trait architectures, many complex traits share the genetic bases (and by extension, biological 353 

mechanisms) with their Mendelian forms. This supports our hypothesis that the same set of 354 

genes generally underlie both extreme and common genetic phenotypes, and suggests an 355 

important role of gene regulation by non-coding variants in complex traits. However, we note 356 

that our findings are limited by the power of each GWAS to detect significant associations. As 357 

GWAS become better-powered, we anticipate being able to identify phenotype-specific 358 

enrichments of Mendelian disorder genes in GWAS regions for more complex traits.  359 

Second, the subset of complex trait-Mendelian disorder pairs with no known shared 360 

biology that still demonstrated significant enrichment of Mendelian disorder genes in GWAS 361 

regions can offer us novel insight into the biological mechanisms of complex traits and 362 

Mendelian disorders. A high degree of co-morbidity between complex traits and Mendelian 363 

disorders has been previously observed, regardless of phenotype-similarity26; these findings 364 

together suggest that many complex traits and Mendelian disorders may also be linked by the 365 

pleiotropic properties of the underlying genes, in addition to regulatory differences. These 366 

observations are also consistent with a multigenic or oligogenic architecture of human disease; 367 

the pervasive pleiotropic effects that are seen observed across complex traits are consistent 368 

with the wide-spread prevalence of multi-system, syndromic phenotypes observed across a 369 

majority of Mendelian disorders. We also confirm that LOF-intolerant genes harbor an 370 

enrichment of GWAS signal32; because genes with pLI > 0.9 exhibit extreme intolerance of 371 

deleterious mutation, it is possible that these genes demonstrate embryonic lethal mutant 372 

phenotypes, and are thus undiscovered as Mendelian disorder genes at this time. Our findings 373 

provide further motivation to explore phenotypic consequences of mutations in LOF-intolerant 374 
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genes (particularly those enriched for GWAS signal for a particular complex trait) for 375 

phenotypically-relevant Mendelian disorders.  376 

Third, linking Mendelian disorder genes with complex traits can help with 377 

characterization of the genetic architecture of complex traits – specifically, with genes and 378 

pathways that can be functionally characterized to identify molecular mechanisms6. Identifying 379 

causal variants from large-scale GWAS studies is particularly challenging given that most 380 

GWAS loci lie in non-coding regions of the genome; though thousands of genomic loci have 381 

been significantly associated with specific diseases, few casual SNPs have been functionally 382 

verified48; 49. Although many approaches have been used to tie a particular variant to a causal 383 

gene or genes50-52, including newer methods that directly link gene expression to a trait (e.g., 384 

TWAS35, PrediXcan53), we find that leveraging GWAS findings with functional data to identify 385 

candidate regulatory variants for Mendelian disorder genes can potentially lead to better 386 

interpretation of relevant genes and isoforms. Here, we demonstrate the heterogeneity of 387 

mechanisms potentially underlying causal variation, showing roles for TSS promoter regions of 388 

Mendelian disorder genes and long-range interactions involving significant GWAS regions. We 389 

expand on recent work showing that BMI-associated variants interact with genes in GWAS 390 

regions to demonstrate similar findings for Mendelian disorder genes29. With the appropriate 391 

functional data from relevant tissues and cell types, this phenotype-driven approach can identify 392 

relevant candidate regulatory variants and their targets. Further, from the perspective of 393 

monogenic diseases, identifying common variants that might modify the expressivity of 394 

phenotypes can provide novel insights into gene function in addition to putative drug targets. 395 

Many drugs approved by the FDA and developed by pharmaceutical companies are targeted 396 

towards the treatment of complex traits and diseases; by identifying underlying links between 397 

Mendelian disorders and complex traits through their effects on the same biological genes and 398 

pathways, we can systematically and rationally target existing drugs for complex traits and 399 
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diseases towards those with rare Mendelian disorders which largely do not have any rationally 400 

targeted treatments54-56. 401 

Last, we note that our approach of examining traits and disorders at the component-402 

phenotype level offers us unprecedented resolution into the specific pathways involved the 403 

overall trait or disorder. In clinical medicine, genome-wide sequencing has expanded the clinical 404 

phenotypic spectrum associated with a gene 57; 58 through identification of pleiotropic effects due 405 

to mutations in specific protein domains59; 60, detected a genetic predisposition for diseases 406 

previously considered to be due to environment13, uncovered variable penetrance for genetic 407 

mutations previously thought to be sufficient to cause disease, and has suggested that genetic 408 

background influences the phenotypic variability of monogenic diseases61; 62. The phenotypic 409 

characterizations of Mendelian syndromes are deconstructed by expert clinical geneticists into 410 

component phenotypes, labeled by standardized clinical terms that identify both the primary 411 

phenotypes and phenotypes that have variable penetrance and expressivity28; 63. Recent work 412 

has demonstrated that incorporation of such dense phenotype information to rank putative 413 

disease-causing genetic mutations improves diagnostic rates in clinical exome sequencing 414 

tests64; 65. However, to our knowledge no studies as of yet have taken advantage of component 415 

Mendelian phenotypes to identify Mendelian disorders that may be phenotypically-relevant to a 416 

variety of complex traits. Ultimately, identification of GWAS-significant regions with biologically 417 

relevant genes and pathways will enable effective utilization of GWAS data in medical settings. 418 

 419 
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FIGURE TITLES AND LEGENDS: 785 

Figure 1: GWAS gene sets and phenotype-specific Mendelian disorder gene sets. For 786 

each complex trait (e.g., height), we first identified matched Mendelian phenotypes (e.g., 787 

undergrowth, short stature; Table S9). Using publicly available GWAS data, we defined the 788 

“GWAS genes” for a given complex trait to be the closest upstream and closest downstream 789 

protein-coding gene for every genome-wide significant variant in the GWAS. We selected 790 

phenotype-matched Mendelian disorder genes by first identifying Mendelian disorders 791 

expressing any of the matched Mendelian phenotypes, and then identifying all genes causing 792 

any of those disorders. 793 

 794 

Figure 2: Overlap of GWAS genes with unrelated Mendelian disorder genes demonstrates 795 

trait-specificity. Significant overlaps from phenotypically-matched pairs of complex traits and 796 

Mendelian disorders (blue) and pairs with unrelated phenotypes (grey) are shown. 797 

Phenotypically-matched pairs are subdivided into pairs with perfectly-matched phenotypes (light 798 

blue) and pairs with related phenotypes (dark blue). Traits with no significant overlaps are 799 

excluded. Significance was assessed at a threshold for each complex trait (p < 0.05/20) based 800 

on the number of Mendelian disorder gene sets (n=20) compared to each GWAS gene set. 801 

 802 

Figure 3: Effect sizes for SNPs on complex traits from GWAS are increased for genes 803 

that are loss-of-function intolerant and for phenotypically-relevant Mendelian disorder 804 

genes. 805 

 806 

The increase in average SNP effect size per gene across four gene categories. We averaged 807 

effect size (Z2) across all SNPs falling within 50kb of a gene to obtain an average SNP effect 808 

size per gene, and averaged across all genes in each category (all protein coding genes, all 809 

Mendelian disorder genes, all LOF-intolerant genes, and all phenotypically-relevant Mendelian 810 

disorder genes for each trait). We normalized these averages to the average SNP effect per 811 

gene for any protein coding genes. The box plots represent the distribution of increase in 812 

average effect size per gene across all traits. 813 

 814 

Figure 4: Candidate regulatory SNPs fall at transcription start sites and long-range 815 

promoters of phenotypically-relevant Mendelian disorder genes 816 

A, B) Shown here are two examples of putative causal SNPs localizing at a TSS of a 817 

phenotypically-relevant Mendelian disorder gene. A) Putative causal SNP rs1332327, 818 

associated with coronary artery disease (Z = -5.961), lies at the TSS of LIPA. B) Putative causal 819 

SNP rs1010222, associated with red blood cell count with a Z-score of -5.961, lies at the TSS of 820 

CALR. C, D) Shown here are two representations of chromatin interactions in white adipose 821 

tissue. C) A cluster of SNPs from the credible set of variants associated with BMI (Z-score 822 

plotted in orange and blue) physically interacts with the promoter of a particular isoform of 823 

CYP19A1. D) A single SNP (rs758747) from the credible set, associated with BMI (Z = 6.081), 824 

physically interacts with the promoter of a distant gene CREBBP. 825 
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TABLES: 827 

Table 1: Complex Traits and corresponding Mendelian disorders. This table details the 828 

phenotypically-matched pairs of complex traits (N=62) and groups of Mendelian disorders 829 

(N=20) examined in our study. Mean GWAS Sample Size and Number of Significant GWAS 830 

Loci are reported from original GWAS publications for each complex trait. Significant GWAS 831 

SNPs are all SNPs from the publicly available summary statistics meeting genome-wide 832 

significance at a threshold of p < 5x10-8. GWAS genes for each complex trait were identified 833 

using the mapping approach described in Methods. 834 

Complex Trait Abbrev. Mean 
GWAS 
Sample 
Size 

Number 
of 
Significant 
GWAS 
Loci 
Reported 

Number 
of 
Significant 
GWAS 
SNPs 

Number of 
GWAS 
Genes 

Matched 
Mendelian 
Disorder(s) 

Celiac Disease66 CEL 15283 13 54 34 Immune 
Dysregulation Crohn's 

Disease67 
CD 27726   

231 total 
  

4381 239 

Inflammatory 
Bowel Disease67  

IBD 34694 7738 368 

Ulcerative 
Colitis67 

UC 28738 4239 202 

Primary Biliary 
Cirrhosis68 

PBC 13239 28 704 149 

Rheumatoid 
Arthritis 
(European)69 

RA 58284 101 16502 297 

Multiple 
Sclerosis70 

MS 27148 52 487 160 

Autism71 AUT 10610 2 2 2 Monogenic 
Autism 

Hemoglobin72 HB 51255.8 11 325 89 i   
Hematologic 
Disorders 

Mean Cell 
Hemoglobin72 

MCH 43553.6 19 1188 164 

Mean Cell 
Hemoglobin 
Concentration72 

MCHC 46953.9 8 8 12 

Mean 
Corpuscular 
Volume72 

MCV 48472.8 23 1237 180 

Mean Platelet 
Volume73 

MPV 16843 25 705 102 

Red Blood Cell 
Count72 

RBC 45304.4 10 908 107 

Systemic Lupus 
Erythematosus74 

SLE 23210 43 4983 286 

Birthweight75 BW 110054.6 60 1978 179 Growth Defects 
Height76 HGT 239338.3 423 22807 2361 
Femoral Neck 
Bone Mineral 

FN 53236 14 788 58 Bone and Uric 
Acid Disorders 
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Density77 
Forearm Bone 
Mineral 
Density77 

FA 53236 3 136 8 

Lumbar Spine 
Bone Mineral 
Density77 

LS 53236 19 998 67 

Serum Urate 
Concentration78 

URT 107026 28 1991 161  

Packed Cell 
Volume72 

PCV 44925.9 4 141 53 Disorders of 
Platelet 
Function Platelet Count73 PLT 66867 43 801 134 

Coronary Artery 
Disease79 

CAD 184305 46 1709 132 Cardiovascular 
Disease 

High Density 
Lipoprotein80 

HDL 95422 157 total 3131 464 

Low Density 
Lipoprotein80 

LDL 90686.4 2796 370 

Total 
Cholesterol80 

TC 95651.5 3803 500 

Triglycerides80 TG 91882.3 2965 354 
Hemoglobin 
A1C81 

HBA 46368 10 174 33 Monogenic 
Diabetes 

Type 2 
Diabetes82 

T2D 61857.4 10 191 28 

Age-related 
Macular 
Degeneration83 

AMD 33975.1 34 4087 215 Monogenic AMD 

Age at 
Menarche84 

MNR 182416 106 2011 207 Female 
Reproductive 
Disorders Age at 

Menopause85 
MNP 70000 44 1656 316 

Fasting 
Glucose86 

FG 46186 16 total 231 39 Insulin 
Disorders 

HOMA-B86 HMB 46186 95 12 
HOMA-IR86 HMIR 46186 1 1 0 
Micro-
albuminuria87 

MA 52988.4 1 4 2 Microalbumin 
Disorders 

Fasting Insulin86 FI 108557 1 43 23 Mature-onset 
Diabetes of the 
Young 

Two-hour 
Glucose88 

2HG 15234 3 4 2 

Type 1 
Diabetes89 

T1D 24341 42 1447 144 

Alzheimer's 
Disease90 

ALZ 54162 19 813 58 Neurologic 
Disease 

Anxiety 
Disorders 
(Case-control)91 

ANXC 14643.1 1 8 2 

Anxiety 
Disorders 

ANXF 16218.2 1 43 3 
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(Factor score)91 
Major 
Depressive 
Disorder92 

MDD 10610 1 5 4 

Depressive 
Symptoms93 

DS 161460 2 28 10 

Neuroticism93 NRT 170911 11 1933 82  
Bipolar 
Disorder94 

BIP 16731 4 39 8 Psychiatric 
Disease 

Schizophrenia95 SCZ 150064 108 6808 479 
Chronic Kidney 
Disease96 

CKD 117340 4 107 16 Renal Disorders 

Glomerular 
Filtration Rate 
(CRN)96 

EGFR 132725.4 43 1401 162 

Urine Albumin-
to-Creatinine 
Ratio87 

UACR 53343.1 1 4 2 

Resting Heart 
Rate97 

RHR 265046 64 4568 304 Arrythmias 

Age at First 
Birth98 

AFB 251151 12 238 45 Education and 
Development 
Disorders College99 COL 126559 3 71 12 

Education 
Years100 

EY 293723 74 6537 554 

Subjective Well-
being93 

SWB 298420 3 37 9 Positive Mood 
Disorders 

Body Fat 
Percentage101 

BFP 57721.7 12 196 22 Body Mass 
Disorders 

Body Mass 
Index102 

BMI 224996 97 1585 231 

Childhood 
BMI103 

CBMI 28964.1 15 438 49 

Leptin, adjusted 
for BMI104 

LEPB 30202 5 total 8 5 

Leptin, not 
adjusted for 
BMI104 

LEP 30507.6 1 0 

Waist-to-Hip 
Ratio105 

WHR 139559.2 49 424 74 

 835 

Table 2: Overlap of GWAS genes and phenotypically-matched Mendelian disorder genes. 836 

For each pair of complex trait and Mendelian disorder, Fisher’s exact test was used to quantify 837 

the enrichment of shared genes with an odds ratio and p-value (see Methods).  Significance 838 

was assessed at a threshold of p < (0.05/20) correcting for the number of Mendelian disorder 839 

gene sets compared to each complex trait gene set. This table lists pairs of complex traits and 840 

phenotypically-matched or related Mendelian disorders with significant overlap. For comparison, 841 

the average odds ratio for pairings of each complex trait with all unrelated Mendelian disorder 842 

gene sets is included. 843 

Complex Matched or Related Number of Odds Ratio P-value Average Odds 
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Trait Mendelian 
Disorder(s) 

Shared 
Genes 

for Matched 
Pair (CI) 

Ratio across 
Unmatched Pairs 

AMD Monogenic AMD 9 
7.99 (3.50, 
16.11) 

9.88E-
05 * 

2.06 

AMD 
Immune 
Dysregulation 17 

2.73 (1.55, 
4.52) 

8.27E-
03 * 

BFP 
Body Mass 
Disorders 3 

22.14 (4.14, 
76.70) 

1.03E-
02 * 

4.24 

BFP Monogenic Diabetes 3 
15.42 (2.90, 
53.04) 

2.85E-
02 * 

BW 

Mature-onset 
Diabetes of the 
Young 16 

3.06 (1.69, 
5.16) 

3.81E-
03 * 1.99 

BW 
Body Mass 
Disorders 6 

4.94 (1.76, 
11.29) 

3.86E-
02 * 

CAD 
Cardiovascular 
Disease 13 

3.17 (1.63, 
5.67) 

1.07E-
02 * 

2.23 

CAD Insulin Disorders 13 
3.04 (1.56, 
5.43) 

1.57E-
02 * 

CBMI 
Body Mass 
Disorders 5 

16.18 (4.92, 
41.63) 

5.41E-
04 * 

2.65 

CBMI Insulin Disorders 7 
4.61 (1.74, 
10.41) 

3.08E-
02 * 

CD 
Immune 
Dysregulation 23 

3.42 (2.10, 
5.32) 

3.39E-
05 * 1.65 

EY 
Positive Mood 
Disorders 9 

4.70 (2.04, 
9.59) 

5.76E-
03 * 

1.07 

EY Psychiatric Disease 19 
2.45 (1.44, 
3.95) 

1.79E-
02 * 

FN 
Bone and Uric Acid 
Disorders 5 

7.64 (2.36, 
19.24) 

1.52E-
02 * 3.98 

HB 
Disorders of Platelet 
Function 12 

6.21 (3.05, 
11.59) 

4.34E-
05 * 

2.66 

HB 
Hematologic 
Disorders 10 

3.99 (1.83, 
7.79) 

8.84E-
03 * 

HDL Monogenic Diabetes 15 
3.41 (1.85, 
5.85) 

1.87E-
03 * 

1.48 HDL 
Body Mass 
Disorders 12 

3.92 (1.95, 
7.17) 

2.78E-
03 * 

HDL 
Cardiovascular 
Disease 31 

2.10 (1.40, 
3.06) 

6.89E-
03 * 

HGT 

Female 
Reproductive 
Disorders 61 

1.76 (1.30, 
2.36) 

4.36E-
03 * 1.33 

HGT Growth Defects 126 
1.39 (1.13, 
1.70) 

2.85E-
02 * 

IBD 
Immune 
Dysregulation 34 

3.32 (2.23, 
4.79) 

3.15E-
07 * 1.47 

LDL 
Cardiovascular 
Disease 31 

2.70 (1.79, 
3.95) 

6.90E-
05 * 1.74 
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LDL 

Mature-onset 
Diabetes of the 
Young 24 

2.17 (1.36, 
3.32) 

1.71E-
02 * 

LS 
Bone and Uric Acid 
Disorders 6 

8.00 (2.80, 
18.72) 

3.66E-
03 * 2.80 

MCH 
Hematologic 
Disorders 15 

3.19 (1.73, 
5.48) 

3.85E-
03 * 1.71 

MCV 
Hematologic 
Disorders 20 

4.00 (2.36, 
6.44) 

1.78E-
05 * 1.73 

MNR 
Body Mass 
Disorders 7 

5.02 (1.95, 
10.86) 

1.55E-
02 * 0.93 

PBC 
Immune 
Dysregulation 13 

3.03 (1.56, 
5.40) 

1.55E-
02 * 1.17 

PCV 
Disorders of Platelet 
Function 10 

9.24 (4.11, 
18.83) 

1.30E-
05 * 

4.53 
PCV 

Hematologic 
Disorders 8 

5.60 (2.27, 
12.08) 

4.33E-
03 * 

PCV Arrythmias 5 
6.70 (2.07, 
16.94) 

2.73E-
02 * 

PCV 
Cardiovascular 
Disease 7 

4.39 (1.66, 
9.84) 

3.89E-
02 * 

PLT 
Disorders of Platelet 
Function 12 

3.91 (1.95, 
7.15) 

2.80E-
03 * 

1.55 

PLT 
Cardiovascular 
Disease 12 

2.85 (1.42, 
5.20) 

3.95E-
02 * 

RA 
Immune 
Dysregulation 25 

2.95 (1.86, 
4.50) 

1.36E-
04 * 0.94 

RBC 
Hematologic 
Disorders 14 

4.78 (2.50, 
8.50) 

1.16E-
04 * 

2.93 RBC 
Disorders of Platelet 
Function 12 

5.03 (2.49, 
9.29) 

3.02E-
04 * 

RBC 
Cardiovascular 
Disease 13 

4.02 (2.05, 
7.26) 

1.30E-
03 * 

RHR Arrythmias 17 
3.93 (2.23, 
6.53) 

1.17E-
04 * 

1.50 

RHR 
Cardiovascular 
Disease 26 

2.75 (1.75, 
4.16) 

2.94E-
04 * 

SCZ 
Positive Mood 
Disorders 9 

5.47 (2.37, 
11.19) 

1.94E-
03 * 0.99 

SLE 
Immune 
Dysregulation 24 

2.94 (1.83, 
4.52) 

2.18E-
04 * 1.41 

T2D 
Body Mass 
Disorders 4 

23.55 (5.85, 
69.99) 

9.35E-
04 * 1.72 

TC 
Cardiovascular 
Disease 38 

2.44 (1.69, 
3.45) 

6.91E-
05 * 

1.45 

TC 
Hematologic 
Disorders 32 

2.20 (1.47, 
3.18) 

2.36E-
03 * 

TG Monogenic Diabetes 12 
3.54 (1.78, 
6.43) 

6.20E-
03 * 1.55 

TG Cardiovascular 25 2.22 (1.41, 1.01E- * 
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Disease 3.38) 02 

TG 
Body Mass 
Disorders 9 

3.77 (1.67, 
7.49) 

2.19E-
02 * 

UC 
Immune 
Dysregulation 21 

3.72 (2.23, 
5.92) 

2.77E-
05 * 1.56 

WHR Insulin Disorders 9 
3.83 (1.67, 
7.78) 

2.25E-
02 * 2.12 

 844 

Table 3: Instances of significant overlap of GWAS genes and unrelated Mendelian 845 

disorder genes. As in Table 2, Fisher’s exact test was used to quantify the enrichment of 846 

shared genes between complex traits and Mendelian disorders with an odds ratio and p-value 847 

(see Methods). Significance was assessed at a threshold of p < (0.05/20) correcting for the 848 

number of Mendelian disorder gene sets compared to each complex trait gene set. This table 849 

lists pairs of complex traits and phenotypically-unrelated Mendelian disorders that demonstrated 850 

significant overlap. 851 

Complex 
Trait Mendelian Disorder(s) Number of Shared 

Genes 
Odds Ratio 
(CI) P-value 

IBD Mature-onset Diabetes of 
the Young 30 2.81 (1.85, 

4.13) 
4.81E-
05 * 

RBC Renal Disorders 18 
4.14 (2.33, 
6.96) 

5.21E-
05 * 

UC Mature-onset Diabetes of 
the Young 19 3.25 (1.90, 

5.27) 
4.88E-
04 * 

HGT Renal Disorders 153 1.48 (1.23, 
1.78) 

7.51E-
04 * 

SLE Mature-onset Diabetes of 
the Young 

22 2.61 (1.59, 
4.07) 

2.47E-
03 * 

CD Mature-onset Diabetes of 
the Young 19 2.69 (1.58, 

4.35) 
4.64E-
03 * 

LDL Hematologic Disorders 25 2.31 (1.46, 
3.51) 

7.01E-
03 * 

MCH 
Insulin Disorders 

15 2.80 (1.52, 
4.81) 

1.40E-
02 * 

AMD Microalbumin Disorders 8 4.43 (1.86, 
9.13) 

1.47E-
02 * 

MCH Bone and Uric Acid 
Disorders 8 4.19 (1.75, 

8.61) 
2.09E-
02 * 

TC Disorders of Platelet 
Function 

25 2.11 (1.34, 
3.20) 

2.25E-
02 * 

CD Renal Disorders 23 2.17 (1.34, 
3.37) 

2.26E-
02 * 

PCV Positive Mood Disorders 3 15.97 (3.11, 
51.37) 

2.31E-
02 * 

CAD 
Neurologic Disease 

7 4.52 (1.76, 
9.75) 

2.79E-
02 * 

BW Immune Dysregulation 14 2.69 (1.43, 
4.68) 

2.89E-
02 * 

CEL Disorders of Platelet 
Function 5 6.78 (2.04, 

17.83) 
2.94E-
02 * 

FN Positive Mood Disorders 3 14.51 (2.83, 3.00E- * 
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46.53) 02 

MCV Bone and Uric Acid 
Disorders 8 3.80 (1.59, 

7.79) 
3.78E-
02 * 

ALZ Immune Dysregulation 7 4.32 (1.65, 
9.62) 

4.11E-
02 * 

WHR 
Disorders of Platelet 
Function 7 

4.12 (1.59, 
9.03) 

4.99E-
02 * 

 852 

Table 4: Genome-wide significant SNPs localizing at TSS of phenotypically-relevant 853 

Mendelian disorder genes. GWAS SNPs from the credible set for each complex trait were 854 

intersected with transcription start site (TSS) regions 1kb upstream of phenotypically-matched 855 

Mendelian disorder genes. This table lists all genome-wide significant SNPs (p < 5x10-8 from 856 

GWAS, with chromosomal location) from all complex traits localizing at the TSS of a 857 

phenotypically-matched Mendelian disorder gene (italicized). 858 

Complex Trait SNP ID Chr Position Z score Gene Strand 
PBC rs13239597 chr7 128695983 9.85309 TNPO3 - 
HGT rs8028537 chr15 89345947 -9.333 ACAN + 
HGT rs10853751 chr19 41903220 8.71 BCKDHA + 
CD rs59283234 chr5 150225587 -8.454 IRGM + 
CD rs751627 chr5 150225113 -8.451 IRGM + 
CD rs35707106 chr5 150225377 -8.332 IRGM + 
HGT rs2298307 chr6 80816296 8.276 BCKDHB + 
HGT rs12386601 chr7 92157886 8.2 PEX1 - 
BMI rs17066842 chr18 58040624 -7.542 MC4R - 
HGT rs12192268 chr6 110011458 -7 FIG4 + 
CAD rs1332327 chr10 91011681 6.798 LIPA - 
RA rs13239597 chr7 128695983 6.65672 TNPO3 - 
IBD rs59283234 chr5 150225587 6.51 IRGM + 
IBD rs751627 chr5 150225113 6.507 IRGM + 
HGT rs7592246 chr2 219926221 6.452 IHH - 
IBD rs34005003 chr5 150225199 6.427 IRGM + 
IBD rs35707106 chr5 150225377 6.326 IRGM + 
MNR rs3775971 chr4 104641920 6.20413 TACR3 - 
IBD rs27741 chr16 28504181 6.109 CLN3 - 
HGT rs4244808 chr11 2163110 6.061 IGF2 - 
RBC rs1010222 chr19 13048608 -5.96154 CALR + 
CD rs27741 chr16 28504181 -5.866 CLN3 - 
HGT rs613924 chr11 65769295 -5.862 BANF1 + 
AFB rs4845357 chr1 153896212 -5.775 GATAD2B - 
HGT rs6591226 chr11 66675990 5.517 PC - 
 859 
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Mendelian disorders with
BMI phenotypes

Bchondroplasia
Dilver-Russell Dwarfism
OFM Syndrome
Ayhre Syndrome
Leri-Weill Dyschondrosteosis
⋮

Mendelian disorders with
Alzheimer’s phenotypes

Hchondroplasia
Nilver-Russell Dwarfism
NFM Syndrome
Syhre Syndrome
Peri-Weill Dyschondrosteosis
⋮

Mendelian BMI 
phenotypes

overweight
central obesity
visceral fat
leanness
undergrowthature
⋮

phenotypically-relevant 
Mendelian disorder genes

PRDM16
IFT27
PRKACA
ENPP1
RNF125
⋮

significant BMI GWAS 
SNPs

rs7513222
rs908742
rs10910029
rs10910030
rs10752741
⋮

GWAS genes for BMI

ALDOA
KIAA0355
TGFB1I1
STRN4
PACSIN1
⋮

complex trait: BMI

Mendelian Alzheimer’s
phenotypes

neurodegeneration
depression
senile dementia
oresenile dementia
neurofibrillary tangle
⋮

phenotypically-relevant 
Mendelian disorder genes

MYL3
TGFB1
SPAST
MTOR
FA2H
⋮

significant Alzheimer’s 
GWAS SNPs

rs7513222
rs908742
rs10910029
rs10910030
rs10752741
⋮

GWAS genes for Alzheimer

BNIP3L
C6orf48
DSC3
TDRD6
MS4A6E
⋮

complex trait: Alzheim.

Mendelian height
phenotypes

undergrowth
short stature
small for gestational age
dwarf
tall stature
⋮

Mendelian disorder genes 
for height

ACAN
BCKDHA
BCKDHB
PEX1
FIG4
⋮

significant height GWAS 
SNPs

rs7513222
rs908742
rs10910029
rs10910030
rs10752741
⋮

GWAS genes for height

C2CD4D
MPG
LMNA
SLC38A3
PPP1R3B
⋮

complex trait: height

Mendelian disorders with
height phenotypes
Achondroplasia
Silver-Russell Dwarfism
SFM Syndrome
Myhre Syndrome
Leri-Weill Dyschondrosteosis
⋮

Mendelian disorders
demonstrating any 
of these phenotypes

Significant GWAS
associations from
summary statistics

Mendelian disorder 
genes linked to any
of these disorders

Closest two genes 
to each significant

GWAS SNP

phenotypically-
matched pairs
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Body Mass Disorders

Monogenic Diabetes

Mature−onset Diabetes of the Young

Bone and Uric Acid Disorders

Monogenic AMD

Microalbumin Disorders
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