

Phenotype-specific enrichment of Mendelian disorder genes near GWAS regions across 62 complex traits

Malika Kumar Freund,^{1*} Kathryn Burch,² Huwenbo Shi,² Nicholas Mancuso,³ Gleb Kichaev,² Kristina M. Garske,¹ David Z. Pan,² Päivi Pajukanta,^{1,2} Bogdan Pasaniuc,^{1,2,3,4,5} and Valerie A. Arboleda^{3,5**}

¹ Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095, USA

² Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles California, 90095, USA

³ Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095, USA

⁴ Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095, USA

⁵These authors jointly supervised this work.

Correspondence: * kumarm@ucla.edu (MKF), ** varboled@mednet.ucla.edu (VAA)

1 **ABSTRACT**

2 Although recent studies provide evidence for a common genetic basis between complex traits
3 and Mendelian disorders, a thorough quantification of their overlap in a phenotype-specific
4 manner remains elusive. Here, we quantify the overlap of genes identified through large-scale
5 genome-wide association studies (GWAS) for 62 complex traits and diseases with genes known
6 to cause 20 broad categories of Mendelian disorders. We identify a significant enrichment of
7 phenotypically-matched Mendelian disorder genes in GWAS gene sets. Further, we observe
8 elevated GWAS effect sizes near phenotypically-matched Mendelian disorder genes. Finally, we
9 report examples of GWAS variants localized at the transcription start site or physically
10 interacting with the promoters of phenotypically-matched Mendelian disorder genes. Our results
11 are consistent with the hypothesis that genes that are disrupted in Mendelian disorders are
12 dysregulated by noncoding variants in complex traits, and demonstrate how leveraging findings
13 from related Mendelian disorders and functional genomic datasets can prioritize genes that are
14 putatively dysregulated by local and distal non-coding GWAS variants.

15 **INTRODUCTION**

16 Genetic architectures of human traits have traditionally been classified into two major
17 categories. Typically, complex traits demonstrate polygenic architectures arising from many low-
18 effect common variants, whereas rare traits tend to have high-effect monogenic determinants¹.
19 The underlying and practical distinction between these classes has historically been based on
20 the presence of highly penetrant, rare, single-gene disruptive mutations causing recognizable
21 clinical monogenic diseases (e.g., cystic fibrosis²), and the relative absence of such mutations in
22 complex diseases such as diabetes and schizophrenia³. Evidence is accumulating that these
23 two classes of phenotypes may not be as biologically distinct as previously thought⁴. Multiple
24 exceptions to the “common disease, common variant” hypothesis¹ have been identified for
25 complex traits⁵⁻⁸ and their molecular phenotypes⁹⁻¹², and Mendelian disorders have also been
26 found to be affected by multiple or common genetic variants¹³⁻¹⁶. This suggests that there exists
27 a spectrum of genetic architectures rather than a dichotomous classification. Accordingly, the
28 monogenic forms of complex traits (i.e., phenotypically-matched Mendelian disorders) are
29 increasingly used as a starting point to identify genes relevant to complex traits for further
30 study¹⁷⁻¹⁹. Furthermore, overlap has been identified between genes linked with Mendelian
31 disorders and genetic determinants of complex traits and diseases such as Parkinson’s
32 disease^{20; 21}, obesity²², height²³, ototoxicity²⁴, and others²⁵. However, the overlap of each of
33 these complex traits with Mendelian disorders has been examined individually, with different
34 metrics of overlap. In a large study of patient medical records, Blair et al. identified systematic,
35 significant comorbidities between Mendelian disorders and complex diseases, and that
36 association signals from genome-wide association studies (GWAS) for complex diseases were
37 enriched in genomic regions with known roles in comorbid Mendelian disorders, suggesting a
38 shared genetic basis²⁶. However, the study focuses on Mendelian disorders comorbid with
39 complex diseases in the same individual, rather than Mendelian disorders demonstrating similar
40 phenotypes to complex traits. Furthermore, advances in sequencing technology have greatly

41 expanded the phenotypic spectrum in known Mendelian syndromes, allowing for deconstruction
42 of syndromic diseases into component medical phenotypes. As such, it is now possible to
43 identify all the component-phenotype consequences of Mendelian disorder genes, allowing for
44 greater resolution in identifying gene-phenotype relationships. However, to the best of our
45 knowledge, no study has taken advantage of this to identify genes causing any related
46 component-phenotype regardless of the Mendelian disorder's best-known or primary
47 phenotype. Thus, a thorough quantification of the overlap between genes associated with
48 complex traits and genes linked to Mendelian disorders in a phenotype-specific manner remains
49 elusive.

50 Given that the majority of genome-wide association studies for complex traits and
51 diseases have identified significant associations in non-coding genomic regions²⁷, we
52 hypothesize that genes individually involved in Mendelian disease belong to the biological
53 pathway(s) shared by both complex and Mendelian disease. Specifically, we hypothesize that
54 large-effect coding variants disrupt individual genes, resulting in severe phenotypes (i.e.,
55 Mendelian disorders), while non-coding variants produce complex traits by collectively
56 dysregulating expression of these same genes, allowing for nuanced or tissue-specific
57 phenotypes. Based on this hypothesis, we expect to identify an enrichment of GWAS signal for
58 a given complex trait near genes linked to Mendelian disorders demonstrating similar
59 phenotypes, but no enrichment near genes linked to Mendelian disorders with phenotypes
60 unrelated to the complex trait of interest. To test this hypothesis, we define "Mendelian disorder
61 genes" as any genes linked to Mendelian disorders in the Online Mendelian Inheritance in Man
62 (OMIM) database²⁸, and use the well-curated phenotypic breakdown of Mendelian disorders to
63 identify subsets of these genes linked to particular phenotypes (e.g., growth defects or immune
64 dysregulation) expressed as part of any Mendelian disorder. We then examined publicly
65 available GWAS across 62 complex traits (detailed in **Table 1**) to identify risk genes (here called
66 "GWAS gene sets") for each complex trait, and quantified the overlap of each GWAS gene set

67 with 20 other sets of Mendelian disorder genes for particular phenotypes (detailed in **Table 1**).
68 We find a consistent, significant, and specific enrichment between GWAS gene sets for complex
69 traits and Mendelian disorder genes for matched and related phenotypes (51/1,240 pairs; e.g.,
70 rheumatoid arthritis and immune dysregulation), supporting our hypothesis of a shared genetic
71 basis between complex and Mendelian forms of disease. In addition, we observe instances of
72 enrichments between GWAS gene sets for certain complex traits and Mendelian disorder genes
73 for unrelated phenotypes (20/1,240 pairs; e.g., systemic lupus erythematosus and mature-onset
74 diabetes of the young), suggestive of shared biological mechanisms yet to be examined.
75 Furthermore, we find an increase in average effect size of GWAS variants near Mendelian
76 disorder genes for matched phenotypes, and identify examples of associated SNPs found
77 directly at the transcription start sites (TSSs) of these phenotypically-matched Mendelian
78 disorder genes as candidates for functional follow-up. Finally, we report novel examples of
79 significant body mass index (BMI)-associated variants directly interacting with phenotypically-
80 related Mendelian disorder genes *CREBBP* and *CYP19A1*, using human primary white
81 adipocyte-specific Hi-C data²⁹. Leveraging the growing body of well-curated phenotypic data
82 from studies of Mendelian disorders, we provide a phenotype-driven approach to identifying
83 genetic pathways shared by Mendelian diseases and complex traits.

84

85 **MATERIAL AND METHODS**

86 *Gene coordinates and symbols*

87 We downloaded gene body coordinates (NCBI build 37/hg19, UCSC Genes track) from the
88 UCSC Table Browser³⁰ (see Web Resources) using the gene symbol from the *knownGene*
89 table, transcription start and end sites for each gene from the *knownCanonical* table, and the
90 longest transcript from the *knownGene* table for genes where no entry or multiple entries were
91 listed in the *knownCanonical* table. We used these coordinates for all analyses in our study.
92 Since many genes have been renamed over time, we standardized gene symbols across all

93 analyses in our study by downloading a table of approved symbols, previous symbols, and locus
94 group for each gene from HUGO Gene Nomenclature Committee at the European
95 Bioinformatics Institute (HGNC)³¹ (see Web Resources) and renaming any genes identified by
96 previous symbols with approved gene symbols. We restricted all analyses in our study to genes
97 classified as protein-coding according to the HGNC locus group, from chromosomes 1-22.
98 These processing steps resulted in a final single set of coordinates for 17,695 autosomal
99 protein-coding genes (for data access, see Web Resources).

100

101 *Mendelian disorder genes and loss-of-function (LOF) intolerant genes*

102 To identify Mendelian disorder genes, we downloaded the Online Mendelian Inheritance in Man
103 (OMIM) catalogue database²⁸ and identified all genes linked to Mendelian disorders satisfying
104 the following criteria: (1) disorder is Mendelian and fully penetrant, therefore excluding
105 susceptibility phenotypes and (2) molecular basis of the Mendelian disorder is known (i.e.,
106 phenotype mapping key = 3). We defined loss-of-function (LOF) intolerant genes as any gene
107 with greater than 90% probability of being loss-of-function intolerant, according to the pLI score
108 (pLI > 0.9) from the Exome Aggregation Consortium (ExAC)³²; this score is derived from the
109 number of observed versus expected LOF variants in a given gene across approximately
110 60,000 healthy exomes. Following the same restriction and gene symbol standardization criteria
111 described above resulted in a final set of 3,446 Mendelian disorder genes and 2,978 LOF-
112 intolerant genes.

113

114 *Phenotype-specific Mendelian disorder gene sets*

115 To identify subsets of Mendelian disorder genes linked to particular phenotypes, for each
116 complex trait we curated a set of standardized clinical phenotype terms to describe the full
117 range of relevant Mendelian phenotypes. We used these terms to search the OMIM database
118 via API for all Mendelian disorders demonstrating these phenotypes, then extracted the gene(s)

119 linked to each Mendelian disorder. We restricted gene-phenotype associations to those
120 satisfying the same criteria (1) and (2) as described above, and with the following additional
121 criteria: (3) gene-phenotype association description does not contain “genome-wide association
122 study” or other GWAS synonyms unless: the description also contains any of the terms
123 “missense”, “nonsense”, “nonsynonymous”, or “frameshift”; or the gene contains at least one
124 pathogenic or likely pathogenic allele in the ClinVar database³³. We include a full list of
125 phenotype-specific Mendelian disorder gene sets and clinical phenotype terms used in **Table**
126 **S1**.

127 A comparison of all phenotype-specific Mendelian disorder gene sets revealed a high
128 degree of overlap among the gene sets for clinically-related Mendelian phenotypes (**Figure S1**).
129 Accordingly, we clustered gene sets based on pairwise overlap, and intersected gene sets
130 visually clustering together to create a single gene set for the representative group of Mendelian
131 disorders. After combining similar gene sets, a total of 20 non-disjoint phenotype-specific
132 Mendelian disorder gene sets remained with an average of 375 genes per set; we include a
133 description of each cluster in **Table S2**.

134

135 *Complex trait gene sets*

136 We downloaded publicly available summary statistics (per-allele SNP effect sizes, or log-odds
137 ratios for case–control traits, with standard errors³⁴) for large-scale GWAS of 62 traits²⁶ (**Table**
138 **1**; average N=83,170; some GWAS were imputed using the 1000 Genomes Project as a
139 reference panel by their respective consortia while others were not.) For each trait, we
140 identified a gene set by mapping each autosomal genome-wide significant SNP ($p < 5 \times 10^{-8}$) to
141 the closest up- and downstream protein-coding genes as defined above, resulting in a total of
142 62 non-disjoint GWAS gene sets. As GWAS regions often contain multiple genome-wide
143 significant SNPs, and the true causal gene may not lie adjacent to the lead SNP in a region^{35; 36},

144 we defined GWAS gene sets by mapping genes with respect to every genome-wide significant
145 SNP rather than only the index GWAS SNPs at each genomic risk region.

146

147 *Quantifying overlap between complex trait and Mendelian disorder*

148 For each complex trait-Mendelian disorder pair, we compared the GWAS gene set and
149 phenotype-specific Mendelian disorder gene set using a 2x2 contingency table (counting
150 whether each gene was in the GWAS gene set or not, and in the Mendelian disorder gene set
151 or not), with the set of autosomal protein-coding genes (n=17,695) representing the total
152 sample. We used Fisher's Exact Test³⁷ to determine significance. Phenotype-specificity of
153 overlap significance was assessed by comparing the GWAS gene sets for each complex trait
154 (n=62) to all phenotype-specific Mendelian disorder gene sets (n=20), a total of 1,240 pairs.
155 Significance was assessed at a trait-specific Bonferroni-corrected threshold ($p < 0.05/20$) based
156 on the number of phenotype-specific Mendelian disorder gene sets (n=20) being compared to
157 each GWAS gene set. Since not all autosomal protein-coding genes are Mendelian, we also
158 assessed significance in permutations; we drew 10,000 random sets of Mendelian disorder
159 genes and 10,000 random sets of any protein-coding genes with replacement (matching the
160 size of each random gene set to the size of the phenotype-specific Mendelian disorder gene
161 set), and counted the number of times more genes were shared between the GWAS gene set
162 and a random set.

163 To assess the robustness and stability of our SNP-gene mapping approach for complex traits,
164 we performed an overlap quantification with phenotype-specific Mendelian disorder genes using
165 GWAS gene sets derived from two additional SNP-gene mapping methods: by mapping each
166 SNP to all genes within a 50Mb window, and to all genes within a 500Mb window. Comparison
167 of the odds ratios produced by Fisher's Exact Test for the comparisons of GWAS gene sets
168 (derived by each mapping method) and phenotype-specific Mendelian disorder gene sets
169 demonstrates no major difference in outcomes from different mapping methods (**Table S3**).

170

171 *Estimating enrichment of GWAS SNP association signal*

172 We created genomic annotations to capture the regions spanning 50kb upstream through 50kb
173 downstream of gene bodies for four categories of genes: all protein-coding genes (N=17,695),
174 all Mendelian disorder genes (N=3,446), all LOF-intolerant genes (N=2,978), and the
175 phenotype-specific Mendelian disorder gene sets (average N=609). For each complex trait-
176 gene category pair, we computed enrichment of GWAS signal within the category c with respect
177 to the set of all protein-coding genes as

$$a_c = \frac{\frac{1}{N_c} \sum_{j=1}^{N_c} \sum_{i=1}^{M_j} \frac{Z_i^2}{M_j}}{\frac{1}{N_p} \sum_{j=1}^{N_p} \sum_{i=1}^{M_j} \frac{Z_i^2}{M_j}}$$

178 where N_c is the number of genes in category c , M_j is the number of SNPs within 50kb of gene j ,
179 Z_i = GWAS effect size of SNP i divided by standard error, with total number of protein-coding
180 genes N_p . Thus, a_c is the enrichment in average SNP effect size (Z^2) per gene in category
181 (compared to average Z^2 for any protein-coding gene). The percent increase in average SNP
182 effect size per gene for category c , or $(a_c - 1) * 100$, is shown in **Figure 3**. We performed
183 similar comparisons for median SNP effect size per gene for category c , and maximum SNP
184 effect size per gene for category c (**Table S4**).

185 To ensure that this signal was not driven by linkage disequilibrium (LD), minor allele
186 frequency (MAF), or average gene length per category, we compared these three properties
187 across the gene categories for each complex trait. We calculated LD scores³⁸ reflecting the
188 amount of LD tagged by each SNP in the HapMap 3 reference panel³⁹. For each gene category,
189 we averaged the LD scores of SNPs falling within 50kb of each gene, and found no consistent
190 difference across gene sets. Similar analyses were performed to examine average MAF per
191 gene and average gene length per category across each complex trait (**Table S5**); we again
192 found no consistent difference across gene sets.

193

194 *Putative causal mechanisms at GWAS risk regions*

195 We performed statistical fine-mapping of the genome-wide significant regions ($p < 5 \times 10^{-8}$) for
196 each GWAS using fgwas⁴⁰ with no functional annotations and default parameter settings. For
197 each GWAS, we constructed a 95% credible set (defined as the minimum set of SNPs where
198 95% of the probability of causation at a region is accumulated) for each 5kb region (as default
199 assigned by fgwas) containing a significant GWAS association. We achieved this by adding
200 SNPs one at a time with a decreasing posterior probability of causation (posterior probability of
201 association for the SNP, conditioned on there being an association in the region) until a
202 cumulative 95% probability of causation is reached.

203

204 *Identification of candidate regulatory variants*

205 We intersected credible sets for each complex trait with genomic regions 1kb upstream of each
206 phenotypically-relevant Mendelian disorder gene to identify SNPs localizing at the TSS. To
207 identify candidate regulatory variants interacting with promoters of phenotype-matched
208 Mendelian disorder genes, we used interactions from promoter capture Hi-C in human primary
209 white adipocytes²⁹ for each complex trait, and filtered interactions to pairs of interacting regions
210 where at least one region contained a promoter of a phenotype-specific Mendelian disorder
211 gene. We then intersected interaction pairs for each of these regions with credible sets for each
212 complex trait to identify credible SNPs interacting with regions containing promoters of
213 phenotype-specific Mendelian disorder genes.

214

215 **RESULTS**

216 *GWAS risk genes show specific, significant overlap with phenotypically-matched Mendelian
217 disorder genes*

218 We first sought to examine the degree of overlap between phenotype-matched Mendelian
219 disorder genes with risk genes for complex traits as identified through GWAS. For each complex
220 trait, we identified corresponding Mendelian forms, often as familial forms or rare phenotypic
221 extremes, and curated Mendelian disorder gene sets composed of Mendelian disorder genes
222 known to cause those specific phenotypes from the OMIM database²⁸ (see Methods, and
223 **Figure 1**). We combined similar Mendelian disorder gene sets to create one gene set for the
224 representative Mendelian disorder(s) (for a total of 20 Mendelian disorder gene sets). We
225 separately ascertained GWAS gene sets for each complex trait by identifying the closest up-
226 and downstream genes to each GWAS SNP meeting genome-wide significance (see Methods,
227 and **Figure 1**). Overlap between each phenotype-specific Mendelian disorder gene set (n=20)
228 and each GWAS gene set (n=62) was assessed using Fisher's Exact Test, for a total of 1,240
229 comparisons (**Table 1** and **Table S6**). We hypothesized that GWAS gene sets would have a
230 specific significant enrichment of Mendelian disorder genes for matched Mendelian disorders,
231 but no enrichment for unrelated Mendelian disorders. Among all 1,240 pairs of complex and
232 phenotype-specific Mendelian disorder gene sets assessed, we identified 71 pairs with
233 significant overlap at a $p < 0.05/20$ (**Figure 2**). An examination of the log-odds ratios for each
234 overlap comparison revealed more extreme enrichments among phenotypically-matched pairs
235 compared to phenotypically-unmatched pairs (**Table 2**), which is consistent with our hypothesis.
236 51 out of the 71 significantly overlapping pairs showed perfectly matching phenotypes or
237 reflected known shared biology. Specifically, in many of these pairs, monogenic forms of the
238 complex trait have been well established in the genetics literature; examples include Age-
239 related Macular Degeneration (AMD) and cholesterol traits (high-density lipoprotein (HDL), low-
240 density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TG))^{6; 41-44}. We confirmed
241 significant enrichment after trait-specific Bonferroni adjustment (20 comparisons, see Methods)
242 between many of these previously reported pairs such as the complex and monogenic forms of
243 height⁴⁵ (OR=1.39, $p=0.029$) and HDL and Mendelian forms of cardiovascular disease⁴⁶

244 (OR=2.10, p=0.006). We also identified previously unreported enrichments; for example, we find
245 a strong enrichment between inflammatory bowel disease (IBD) and Mendelian forms of
246 immune dysregulation (OR=3.32, p=0.01) and between hemoglobin (HB) and Mendelian
247 hematologic disorders (OR=3.99, p=0.009). The remaining 20 pairs with significant overlap
248 suggested novel shared biological mechanisms between complex traits and Mendelian
249 disorders yet to be established (**Table 3**). For example, we observed an enrichment between
250 height and renal disorders (OR=1.48, p=0.001), and enrichment between Crohn's Disease and
251 mature-onset diabetes of the young (OR=2.69, p=0.005). Of note, the vast majority of complex
252 and Mendelian disorder gene set pairs without perfectly-matched phenotypes (n=1,158 of
253 1,178) did not demonstrate any significant overlap (**Table S6**).

254
255 *SNPs near phenotypically-matched Mendelian disorder genes show increased effect size on*
256 *complex traits*
257 Because Mendelian disorder genes exhibit severe biological effects when either one or both
258 alleles are disrupted, dysregulation of the gene through changes in expression or other
259 mechanisms might have a more significant effect than dysregulation of a non-Mendelian
260 disease gene. We hypothesized that SNPs near these phenotype-specific Mendelian disorder
261 genes have further increased effects on complex traits due to the increased biological relevance
262 of these gene categories. From the publicly available GWAS summary statistics for each
263 complex trait, we computed the average GWAS effect sizes of SNPs falling within each protein-
264 coding gene, and compared the average effect sizes per gene across all Mendelian disorder
265 genes and across phenotypically-relevant Mendelian disorder genes (see Methods). Across
266 complex traits, we found an increased average effect size per gene for all Mendelian disorder
267 genes and a further increased average effect size per gene for phenotypically-relevant
268 Mendelian disorder genes (**Figure 3 and Table S4**). This suggests that the genomic regions
269 containing the most biologically-relevant genes for each trait contribute most significantly to

270 complex trait biology. We also confirmed that loss-of-function (LOF) intolerant genes (as defined
271 by ExAC's pLI score > 0.9, see Methods) demonstrate a higher average effect size across most
272 complex traits examined³². Given the extreme intolerance of deleterious mutations in these
273 genes, it is possible that LOF-intolerant genes demonstrate embryonic lethal mutant
274 phenotypes, and are thus undiscovered as Mendelian disorder genes at this time. We found no
275 significant increase in linkage disequilibrium or decrease in average minor allele frequency
276 (MAF) of the SNPs within each category compared to the SNPs within all protein-coding genes
277 (**Table S5**), suggesting that the observed signal is not driven by any of these confounders. Of
278 note, we did observe a respective increase in average gene length between all protein-coding
279 genes, all Mendelian disorder genes, and LOF-intolerant genes (**Table S5**). Therefore, it is
280 possible that our findings of enriched GWAS signal in these gene categories is due instead to
281 longer genes being more likely to tag causal variation. However, in general we did not observe a
282 significant increase in average gene length for the phenotype-specific Mendelian disorder gene
283 sets as compared to all Mendelian disorder genes (**Table S5**), but still found an increase in
284 enrichment of GWAS signal (**Figure 3**), suggesting that gene length is not significantly
285 confounding our results. The only exceptions to this are the phenotype-specific Mendelian
286 disorder gene sets for neurological phenotypes, for which the average gene length was
287 increased compared to all Mendelian disorder genes; this is consistent with other reported
288 findings about gene length in neurological traits⁴⁷.

289

290 *Examples of credible SNPs for GWAS regions near phenotypically-matched Mendelian disorder
291 genes*

292 We next sought to identify common non-coding variants that may causally impact complex trait
293 phenotypes by dysregulating phenotypically-relevant Mendelian disorder genes. For each
294 complex trait, we performed statistical fine-mapping of significant GWAS regions to construct
295 95% credible sets for each region (see Methods), and identified SNPs from the credible set

296 located at the TSS of a gene from the phenotypically-relevant Mendelian disorder gene set. We
297 found a total of 786 credible set SNPs (out of approximately 3.5 million) localizing at the TSS of
298 a phenotypically-relevant Mendelian disorder gene (an average of 20 SNPs per trait, for 38 traits
299 where at least one such SNP was found; **Tables S7 and S8**), and identified 25 promising
300 candidate SNPs (attaining genome-wide significance in GWAS) at TSSs that could be
301 regulating the proximal Mendelian disorder gene (**Table 4**). We highlight two examples: first, we
302 found a significantly associated SNP from the credible set for coronary artery disease
303 (rs1332327, $Z=6.798$) at the promoter of *LIPA* (MIM# 278000), a Mendelian disorder gene
304 linked to Wolman Disease and Cholestryl Ester Storage Disease (both Lysosomal Acid Lipase
305 Deficiencies, MIM# 278000) causing hypercholesterolemia and hypertriglyceridemia as part of
306 cholestryl ester- and triglyceride-filled macrophage infiltration syndromes (**Figure 4A**). Second,
307 from the credible set for red blood cell count, we found a significantly associated SNP
308 (rs1010222, $Z= -5.961$) at the promoter of *CALR* (MIM# 109091), a Mendelian disorder gene
309 known to cause Myelofibrosis (MIM# 254450) involving generalized bone marrow fibrosis,
310 reduced hemopoiesis, no hemophagocytosis, and myeloproliferative disease (**Figure 4B**). In
311 both cases, the putative causal SNP for the complex trait lies immediately upstream of the TSS
312 of the phenotypically-relevant Mendelian disorder gene, in addition to falling within regions
313 containing by regulatory epigenetic marks.

314
315 *Putative causal SNPs for GWAS regions interacting with promoters of phenotypically-relevant*
316 *Mendelian disorder genes*
317 Functional genomic datasets, such as chromatin interactions identified through Hi-C, can give
318 us insight into the functional interpretation of GWAS variants and how they might regulate
319 Mendelian disorder genes. Examination of chromatin interactions in human primary white
320 adipocytes²⁹ revealed further candidate credible set SNPs for metabolic traits physically
321 interacting with promoters of phenotypically-relevant Mendelian disorder genes (**Table S9**).

322 Specifically, we report that a genome-wide significant SNP for BMI (rs758747, $Z=6.081$)
323 physically interacts with the promoter of *CREBBP*, a gene known to cause Rubinstein-Taybi
324 Syndrome 1 (MIM# 180849) in which obesity is one of the syndromic features²⁸ (**Figure 4C**).
325 These interactions can also identify the relevant isoforms of genes in disease. We identified a
326 cluster of SNPs from the credible set of variants associated with BMI that physically interact with
327 the promoter of a specific isoform of *CYP19A1*, a gene known to cause Aromatase Excess
328 Syndrome (MIM# 139300) involving short stature and excess fat storage in the chest
329 (gynecomastia)²⁸ (**Figure 4D**). Although longer isoforms of *CYP19A1* are by default chosen to
330 represent the gene, our data suggests that the shorter isoform is likely to be more relevant in
331 obesity. Taken together, these results demonstrate examples of GWAS variants localizing in
332 regulatory regions for phenotypically-relevant Mendelian disorder genes, consistent with the
333 hypothesis that low-effect common variants contribute to complex traits by regulating genes
334 known to cause Mendelian disorders.

335

336
337 **DISCUSSION**
338

339 In this work we used GWAS summary statistics from 62 complex traits and genes linked
340 to specific phenotypes within 20 Mendelian broad disorders to quantify the shared genetic basis
341 of complex traits and Mendelian disorders. We identified a specific enrichment of
342 phenotypically-matched and related Mendelian disorder genes in GWAS regions for complex
343 traits; we also identified fewer pairs of complex traits and phenotypically-unmatched Mendelian
344 disorders with similar significant enrichment. We further found that phenotypically-relevant
345 Mendelian disorder genes are enriched for GWAS signal across complex traits, compared to all
346 Mendelian disorder genes and other protein-coding genes. Finally, we report examples of
347 putative causal SNPs for GWAS regions in potentially regulating phenotypically-relevant
348 Mendelian disorder genes. We conclude with four considerations about how our results

349 contribute to understanding of genetic architectures and biological mechanisms across complex
350 traits and Mendelian disorders.

351 First, our finding of a specific enrichment of phenotypically-matched and related
352 Mendelian disorder genes in GWAS regions for complex traits suggests that, across complex
353 trait architectures, many complex traits share the genetic bases (and by extension, biological
354 mechanisms) with their Mendelian forms. This supports our hypothesis that the same set of
355 genes generally underlie both extreme and common genetic phenotypes, and suggests an
356 important role of gene regulation by non-coding variants in complex traits. However, we note
357 that our findings are limited by the power of each GWAS to detect significant associations. As
358 GWAS become better-powered, we anticipate being able to identify phenotype-specific
359 enrichments of Mendelian disorder genes in GWAS regions for more complex traits.

360 Second, the subset of complex trait-Mendelian disorder pairs with no known shared
361 biology that still demonstrated significant enrichment of Mendelian disorder genes in GWAS
362 regions can offer us novel insight into the biological mechanisms of complex traits and
363 Mendelian disorders. A high degree of co-morbidity between complex traits and Mendelian
364 disorders has been previously observed, regardless of phenotype-similarity²⁶; these findings
365 together suggest that many complex traits and Mendelian disorders may also be linked by the
366 pleiotropic properties of the underlying genes, in addition to regulatory differences. These
367 observations are also consistent with a multigenic or oligogenic architecture of human disease;
368 the pervasive pleiotropic effects that are seen observed across complex traits are consistent
369 with the wide-spread prevalence of multi-system, syndromic phenotypes observed across a
370 majority of Mendelian disorders. We also confirm that LOF-intolerant genes harbor an
371 enrichment of GWAS signal³²; because genes with pLI > 0.9 exhibit extreme intolerance of
372 deleterious mutation, it is possible that these genes demonstrate embryonic lethal mutant
373 phenotypes, and are thus undiscovered as Mendelian disorder genes at this time. Our findings
374 provide further motivation to explore phenotypic consequences of mutations in LOF-intolerant

375 genes (particularly those enriched for GWAS signal for a particular complex trait) for
376 phenotypically-relevant Mendelian disorders.

377 Third, linking Mendelian disorder genes with complex traits can help with
378 characterization of the genetic architecture of complex traits – specifically, with genes and
379 pathways that can be functionally characterized to identify molecular mechanisms⁶. Identifying
380 causal variants from large-scale GWAS studies is particularly challenging given that most
381 GWAS loci lie in non-coding regions of the genome; though thousands of genomic loci have
382 been significantly associated with specific diseases, few causal SNPs have been functionally
383 verified^{48; 49}. Although many approaches have been used to tie a particular variant to a causal
384 gene or genes⁵⁰⁻⁵², including newer methods that directly link gene expression to a trait (e.g.,
385 TWAS³⁵, PrediXcan⁵³), we find that leveraging GWAS findings with functional data to identify
386 candidate regulatory variants for Mendelian disorder genes can potentially lead to better
387 interpretation of relevant genes and isoforms. Here, we demonstrate the heterogeneity of
388 mechanisms potentially underlying causal variation, showing roles for TSS promoter regions of
389 Mendelian disorder genes and long-range interactions involving significant GWAS regions. We
390 expand on recent work showing that BMI-associated variants interact with genes in GWAS
391 regions to demonstrate similar findings for Mendelian disorder genes²⁹. With the appropriate
392 functional data from relevant tissues and cell types, this phenotype-driven approach can identify
393 relevant candidate regulatory variants and their targets. Further, from the perspective of
394 monogenic diseases, identifying common variants that might modify the expressivity of
395 phenotypes can provide novel insights into gene function in addition to putative drug targets.
396 Many drugs approved by the FDA and developed by pharmaceutical companies are targeted
397 towards the treatment of complex traits and diseases; by identifying underlying links between
398 Mendelian disorders and complex traits through their effects on the same biological genes and
399 pathways, we can systematically and rationally target existing drugs for complex traits and

400 diseases towards those with rare Mendelian disorders which largely do not have any rationally
401 targeted treatments⁵⁴⁻⁵⁶.

402 Last, we note that our approach of examining traits and disorders at the component-
403 phenotype level offers us unprecedented resolution into the specific pathways involved the
404 overall trait or disorder. In clinical medicine, genome-wide sequencing has expanded the clinical
405 phenotypic spectrum associated with a gene^{57; 58} through identification of pleiotropic effects due
406 to mutations in specific protein domains^{59; 60}, detected a genetic predisposition for diseases
407 previously considered to be due to environment¹³, uncovered variable penetrance for genetic
408 mutations previously thought to be sufficient to cause disease, and has suggested that genetic
409 background influences the phenotypic variability of monogenic diseases^{61; 62}. The phenotypic
410 characterizations of Mendelian syndromes are deconstructed by expert clinical geneticists into
411 component phenotypes, labeled by standardized clinical terms that identify both the primary
412 phenotypes and phenotypes that have variable penetrance and expressivity^{28; 63}. Recent work
413 has demonstrated that incorporation of such dense phenotype information to rank putative
414 disease-causing genetic mutations improves diagnostic rates in clinical exome sequencing
415 tests^{64; 65}. However, to our knowledge no studies as of yet have taken advantage of component
416 Mendelian phenotypes to identify Mendelian disorders that may be phenotypically-relevant to a
417 variety of complex traits. Ultimately, identification of GWAS-significant regions with biologically
418 relevant genes and pathways will enable effective utilization of GWAS data in medical settings.

419

420 **SUPPLEMENTAL DATA**

421 The supplement contains one figure and ten tables.

422

423 **DECLARATION OF INTERESTS**

424 The authors declare no competing interests.

425

426 **ACKNOWLEDGMENTS**

427 We would like to thank Ruth Johnson, Megan Major, Megan Roytman, Claudia Giambartolomei,
428 Arunabha Majumdar, Jazlyn Mooney, Brendan Freund, Robert Brown, and Robert Smith for
429 helpful discussions. This work was funded by National Institutes of Health (NIH) Training Grant
430 in Genomic Analysis and Interpretation T32HG002536 to MKF; NIH Early Independence Award

431 DP5OD024579 to VAA; National Institute of Mental Health of the NIH grant T32MH073526 to
432 KB; NIH grant F31HL142180 to KMG; NIH-NCI National Cancer Institute grant T32LM012424 to
433 DZP; and NIH grants HL-095056 and HL-28481 to PP.

434

435 **WEB RESOURCES**

436 UCSC Table Browser: <https://genome.ucsc.edu/cgi-bin/hgTables>

437 HGNC: <http://www.genenames.org/cgi-bin/download>

438 Gene sets: https://github.com/bogdanlab/gene_sets

439 OMIM: <https://omim.org/downloads/>

440 ExAC: <http://exac.broadinstitute.org/downloads>

441 ClinVar: ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/gene_specific_summary.txt

442

443

444

445 1. Schork, N.J., Murray, S.S., Frazer, K.A., and Topol, E.J. (2009). Common vs. rare allele
446 hypotheses for complex diseases. *Curr Opin Genet Dev* 19, 212-219.

447 2. Cutting, G.R., Kasch, L.M., Rosenstein, B.J., Zielenski, J., Tsui, L.C., Antonarakis, S.E., and
448 Kazazian, H.H., Jr. (1990). A cluster of cystic fibrosis mutations in the first nucleotide-
449 binding fold of the cystic fibrosis conductance regulator protein. *Nature* 346, 366-369.

450 3. Henriksen, M.G., Nordgaard, J., and Jansson, L.B. (2017). Genetics of Schizophrenia:
451 Overview of Methods, Findings and Limitations. *Front Hum Neurosci* 11, 322.

452 4. Katsanis, N. (2016). The continuum of causality in human genetic disorders. *Genome Biol* 17,
453 233.

454 5. Cohen, J., Pertsemlidis, A., Kotowski, I.K., Graham, R., Garcia, C.K., and Hobbs, H.H.
455 (2005). Low LDL cholesterol in individuals of African descent resulting from frequent
456 nonsense mutations in PCSK9. *Nat Genet* 37, 161-165.

457 6. Tsai, C.W., North, K.E., Tin, A., Haack, K., Franceschini, N., Saroja Voruganti, V., Laston, S.,
458 Zhang, Y., Best, L.G., MacCluer, J.W., et al. (2015). Both rare and common variants in
459 PCSK9 influence plasma low-density lipoprotein cholesterol level in American Indians. *J
460 Clin Endocrinol Metab* 100, E345-349.

461 7. Auer, P.L., Teumer, A., Schick, U., O'Shaughnessy, A., Lo, K.S., Chami, N., Carlson, C., de
462 Denus, S., Dube, M.P., Haessler, J., et al. (2014). Rare and low-frequency coding
463 variants in CXCR2 and other genes are associated with hematological traits. *Nat Genet*
464 46, 629-634.

465 8. Rivas, M.A., Beaudoin, M., Gardet, A., Stevens, C., Sharma, Y., Zhang, C.K., Boucher, G.,
466 Ripke, S., Ellinghaus, D., Burtt, N., et al. (2011). Deep resequencing of GWAS loci
467 identifies independent rare variants associated with inflammatory bowel disease. *Nat
468 Genet* 43, 1066-1073.

469 9. Han, K., Holder, J.L., Jr., Schaaf, C.P., Lu, H., Chen, H., Kang, H., Tang, J., Wu, Z., Hao, S.,
470 Cheung, S.W., et al. (2013). SHANK3 overexpression causes manic-like behaviour with
471 unique pharmacogenetic properties. *Nature* 503, 72-77.

472 10. Sztainberg, Y., and Zoghbi, H.Y. (2016). Lessons learned from studying syndromic autism
473 spectrum disorders. *Nat Neurosci* 19, 1408-1417.

474 11. Lin, A., Ching, C.R.K., Vajdi, A., Sun, D., Jonas, R.K., Jalbrzikowski, M., Kushan-Wells, L.,
475 Pacheco Hansen, L., Krikorian, E., Gutman, B., et al. (2017). Mapping 22q11.2 Gene
476 Dosage Effects on Brain Morphometry. *J Neurosci* 37, 6183-6199.

477 12. Toro, R., Konyukh, M., Delorme, R., Leblond, C., Chaste, P., Fauchereau, F., Coleman, M.,
478 Leboyer, M., Gillberg, C., and Bourgeron, T. (2010). Key role for gene dosage and
479 synaptic homeostasis in autism spectrum disorders. *Trends Genet* 26, 363-372.

480 13. Posey, J.E., Harel, T., Liu, P., Rosenfeld, J.A., James, R.A., Coban Akdemir, Z.H.,
481 Walkiewicz, M., Bi, W., Xiao, R., Ding, Y., et al. (2017). Resolution of Disease
482 Phenotypes Resulting from Multilocus Genomic Variation. *The New England journal of
483 medicine* 376, 21-31.

484 14. Corvol, H., Blackman, S.M., Boelle, P.Y., Gallins, P.J., Pace, R.G., Stonebraker, J.R.,
485 Accurso, F.J., Clement, A., Collaco, J.M., Dang, H., et al. (2015). Genome-wide
486 association meta-analysis identifies five modifier loci of lung disease severity in cystic
487 fibrosis. *Nat Commun* 6, 8382.

488 15. Emond, M.J., Louie, T., Emerson, J., Zhao, W., Mathias, R.A., Knowles, M.R., Wright, F.A.,
489 Rieder, M.J., Tabor, H.K., Nickerson, D.A., et al. (2012). Exome sequencing of extreme
490 phenotypes identifies DCTN4 as a modifier of chronic *Pseudomonas aeruginosa*
491 infection in cystic fibrosis. *Nat Genet* 44, 886-889.

492 16. Dorfman, R., Sandford, A., Taylor, C., Huang, B., Frangolias, D., Wang, Y., Sang, R.,
493 Pereira, L., Sun, L., Berthiaume, Y., et al. (2008). Complex two-gene modulation of lung
494 disease severity in children with cystic fibrosis. *J Clin Invest* 118, 1040-1049.

495 17. Dron, J.S., and Hegele, R.A. (2017). Genetics of Triglycerides and the Risk of
496 Atherosclerosis. *Curr Atheroscler Rep* 19, 31.

497 18. Hegele, R.A. (2018). Learning From Patients With Ultrarare Conditions: Cholesterol Hoof
498 Beats. *J Am Coll Cardiol* 71, 289-291.

499 19. Peltonen, L., Perola, M., Naukkarinen, J., and Palotie, A. (2006). Lessons from studying
500 monogenic disease for common disease. *Hum Mol Genet* 15 Spec No 1, R67-74.

501 20. Petrucci, S., Consoli, F., and Valente, E.M. (2014). Parkinson Disease Genetics: A
502 "Continuum" from Mendelian to Multifactorial Inheritance. *Curr Mol Med* 14, 1079-1088.

503 21. Hernandez, D.G., Reed, X., and Singleton, A.B. (2016). Genetics in Parkinson disease:
504 Mendelian versus non-Mendelian inheritance. *J Neurochem* 139 Suppl 1, 59-74.

505 22. Lim, E.T., Liu, Y.P., Chan, Y., Tiinamaija, T., Karajamaki, A., Madsen, E., Go, T.D.C.,
506 Altshuler, D.M., Raychaudhuri, S., Groop, L., et al. (2014). A novel test for recessive
507 contributions to complex diseases implicates Bardet-Biedl syndrome gene BBS10 in
508 idiopathic type 2 diabetes and obesity. *American journal of human genetics* 95, 509-520.

509 23. Chan, Y., Salem, R.M., Hsu, Y.H., McMahon, G., Pers, T.H., Vedantam, S., Esko, T., Guo,
510 M.H., Lim, E.T., Consortium, G., et al. (2015). Genome-wide Analysis of Body Proportion
511 Classifies Height-Associated Variants by Mechanism of Action and Implicates Genes
512 Important for Skeletal Development. *American journal of human genetics* 96, 695-708.

513 24. Wheeler, H.E., Gamazon, E.R., Frisina, R.D., Perez-Cervantes, C., El Charif, O., Mapes, B.,
514 Fossa, S.D., Feldman, D.R., Hamilton, R.J., Vaughn, D.J., et al. (2017). Variants in
515 WFS1 and Other Mendelian Deafness Genes Are Associated with Cisplatin-Associated
516 Ototoxicity. *Clin Cancer Res* 23, 3325-3333.

517 25. Amininejad, L., Charlotteaux, B., Theatre, E., Liefferinckx, C., Dmitrieva, J., Hayard, P., Muls,
518 V., Maisin, J.M., Schapira, M., Ghislain, J.M., et al. (2018). Analysis of Genes
519 Associated with Monogenic Primary Immunodeficiency Identifies Rare Variants in XIAP
520 in Patients With Crohn's disease. *Gastroenterology*.

521 26. Blair, D.R., Lyttle, C.S., Mortensen, J.M., Bearden, C.F., Jensen, A.B., Khiabanian, H.,
522 Melamed, R., Rabadan, R., Bernstam, E.V., Brunak, S., et al. (2013). A nondegenerate
523 code of deleterious variants in Mendelian loci contributes to complex disease risk. *Cell*
524 155, 70-80.

525 27. Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H., Klemm, A., Flieck,
526 P., Manolio, T., Hindorff, L., et al. (2014). The NHGRI GWAS Catalog, a curated
527 resource of SNP-trait associations. *Nucleic Acids Res* 42, D1001-1006.

528 28. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore,
529 MD. MIM
530 Number: {180849}: {01/18/2018}: Retrieved from <http://www.ncbi.nlm.nih.gov/omim/>
531 . In. (

532 29. Pan, D.Z., Garske, K.M., Alvarez, M., Bhagat, Y.V., Boocock, J., Nikkola, E., Miao, Z.,
533 Raulerson, C.K., Cantor, R.M., Civelek, M., et al. (2018). Integration of human adipocyte
534 chromosomal interactions with adipose gene expression prioritizes obesity-related genes
535 from GWAS. *Nat Commun* 9, 1512.

536 30. Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D., and
537 Kent, W.J. (2004). The UCSC Table Browser data retrieval tool. *Nucleic Acids Res* 32,
538 D493-496.

539 31. HUGO Gene Nomenclature Committee at the European Bioinformatics Institute. In. (

540 32. Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-
541 Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al. (2016). Analysis of protein-
542 coding genetic variation in 60,706 humans. *Nature* 536, 285-291.

543 33. Landrum, M.J., Lee, J.M., Benson, M., Brown, G.R., Chao, C., Chitipiralla, S., Gu, B., Hart,
544 J., Hoffman, D., Jang, W., et al. (2018). ClinVar: improving access to variant
545 interpretations and supporting evidence. *Nucleic Acids Res* 46, D1062-D1067.

546 34. Pasaniuc, B., and Price, A.L. (2017). Dissecting the genetics of complex traits using
547 summary association statistics. *Nat Rev Genet* 18, 117-127.

548 35. Mancuso, N., Shi, H., Goddard, P., Kichaev, G., Gusev, A., and Pasaniuc, B. (2017).
549 Integrating Gene Expression with Summary Association Statistics to Identify Genes
550 Associated with 30 Complex Traits. *American journal of human genetics* 100, 473-487.

551 36. Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W., Jansen, R., de Geus, E.J.,
552 Boomsma, D.I., Wright, F.A., et al. (2016). Integrative approaches for large-scale
553 transcriptome-wide association studies. *Nat Genet* 48, 245-252.

554 37. Fisher, R.A. (1922). On the interpretation of χ^2 from contingency tables, and the calculation
555 of P. *Journal of the Royal Statistical Society* 85.

556 38. Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Schizophrenia Working
557 Group of the Psychiatric Genomics, C., Patterson, N., Daly, M.J., Price, A.L., and Neale,
558 B.M. (2015). LD Score regression distinguishes confounding from polygenicity in
559 genome-wide association studies. *Nat Genet* 47, 291-295.

560 39. International HapMap, C., Altshuler, D.M., Gibbs, R.A., Peltonen, L., Altshuler, D.M., Gibbs,
561 R.A., Peltonen, L., Dermitzakis, E., Schaffner, S.F., Yu, F., et al. (2010). Integrating
562 common and rare genetic variation in diverse human populations. *Nature* 467, 52-58.

563 40. Pickrell, J.K. (2014). Joint analysis of functional genomic data and genome-wide association
564 studies of 18 human traits. *American journal of human genetics* 94, 559-573.

565 41. Fritsche, L.G., Chen, W., Schu, M., Yaspan, B.L., Yu, Y., Thorleifsson, G., Zack, D.J.,
566 Arakawa, S., Cipriani, V., Ripke, S., et al. (2013). Seven new loci associated with age-
567 related macular degeneration. *Nat Genet* 45, 433-439, 439e431-432.

568 42. Helgason, H., Sulem, P., Duvvari, M.R., Luo, H., Thorleifsson, G., Stefansson, H.,
569 Jonsdottir, I., Masson, G., Gudbjartsson, D.F., Walters, G.B., et al. (2013). A rare
570 nonsynonymous sequence variant in C3 is associated with high risk of age-related
571 macular degeneration. *Nat Genet* 45, 1371-1374.

572 43. Brunham, L.R., Singaraja, R.R., and Hayden, M.R. (2006). Variations on a gene: rare and
573 common variants in ABCA1 and their impact on HDL cholesterol levels and
574 atherosclerosis. *Annu Rev Nutr* 26, 105-129.

575 44. Kanoni, S., Masca, N.G., Stirrups, K.E., Varga, T.V., Warren, H.R., Scott, R.A., Southam, L.,
576 Zhang, W., Yaghootkar, H., Muller-Nurasyid, M., et al. (2016). Analysis with the exome
577 array identifies multiple new independent variants in lipid loci. *Hum Mol Genet* 25, 4094-
578 4106.

579 45. Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., Madden,
580 P.A., Heath, A.C., Martin, N.G., Montgomery, G.W., et al. (2010). Common SNPs
581 explain a large proportion of the heritability for human height. *Nat Genet* 42, 565-569.

582 46. Rosenson, R.S., Brewer, H.B., Jr., Barter, P.J., Bjorkegren, J.L.M., Chapman, M.J., Gaudet,
583 D., Kim, D.S., Niesor, E., Rye, K.A., Sacks, F.M., et al. (2018). HDL and atherosclerotic
584 cardiovascular disease: genetic insights into complex biology. *Nat Rev Cardiol* 15, 9-19.

585 47. Zylka, M.J., Simon, J.M., and Philpot, B.D. (2015). Gene length matters in neurons. *Neuron*
586 86, 353-355.

587 48. Sekar, A., Bialas, A.R., de Rivera, H., Davis, A., Hammond, T.R., Kamitaki, N., Tooley, K.,
588 Presumey, J., Baum, M., Van Doren, V., et al. (2016). Schizophrenia risk from complex
589 variation of complement component 4. *Nature* 530, 177-183.

590 49. Smemo, S., Tena, J.J., Kim, K.H., Gamazon, E.R., Sakabe, N.J., Gomez-Marin, C., Aneas,
591 I., Credidio, F.L., Sobreira, D.R., Wasserman, N.F., et al. (2014). Obesity-associated
592 variants within FTO form long-range functional connections with IRX3. *Nature* 507, 371-
593 375.

594 50. Lango Allen, H., Estrada, K., Lettre, G., Berndt, S.I., Weedon, M.N., Rivadeneira, F., Willer,
595 C.J., Jackson, A.U., Vedantam, S., Raychaudhuri, S., et al. (2010). Hundreds of variants
596 clustered in genomic loci and biological pathways affect human height. *Nature* 467, 832-
597 838.

598 51. de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D. (2015). MAGMA: generalized
599 gene-set analysis of GWAS data. *PLoS Comput Biol* 11, e1004219.

600 52. Watanabe, K., Taskesen, E., van Bochoven, A., and Posthuma, D. (2017). Functional
601 mapping and annotation of genetic associations with FUMA. *Nat Commun* 8, 1826.

602 53. Wang, J., Gamazon, E.R., Pierce, B.L., Stranger, B.E., Im, H.K., Gibbons, R.D., Cox, N.J.,
603 Nicolae, D.L., and Chen, L.S. (2016). Imputing Gene Expression in Uncollected Tissues
604 Within and Beyond GTEx. *American journal of human genetics* 98, 697-708.

605 54. Pascual, V., Allantaz, F., Arce, E., Punaro, M., and Banchereau, J. (2005). Role of
606 interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and
607 clinical response to IL-1 blockade. *J Exp Med* 201, 1479-1486.

608 55. Pardoll, D.M. (2012). Immunology beats cancer: a blueprint for successful translation. *Nat*
609 *Immunol* 13, 1129-1132.

610 56. Gerich, M.E., and McGovern, D.P. (2014). Towards personalized care in IBD. *Nat Rev*
611 *Gastroenterol Hepatol* 11, 287-299.

612 57. Chong, J.X., Buckingham, K.J., Jhangiani, S.N., Boehm, C., Sobreira, N., Smith, J.D.,
613 Harrell, T.M., McMillin, M.J., Wiszniewski, W., Gambin, T., et al. (2015). The Genetic
614 Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. *American*
615 *journal of human genetics* 97, 199-215.

616 58. Reuter, C.M., Brimble, E., DeFilippo, C., Dries, A.M., Undiagnosed Diseases, N., Enns,
617 G.M., Ashley, E.A., Bernstein, J.A., Fisher, P.G., and Wheeler, M.T. (2018). A New
618 Approach to Rare Diseases of Children: The Undiagnosed Diseases Network. *J Pediatr*.

619 59. Goudie, D.R., D'Alessandro, M., Merriman, B., Lee, H., Szeverenyi, I., Avery, S., O'Connor,
620 B.D., Nelson, S.F., Coats, S.E., Stewart, A., et al. (2011). Multiple self-healing squamous
621 epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1. *Nat*
622 *Genet* 43, 365-369.

623 60. Arboleda, V.A., Lee, H., Parnaik, R., Fleming, A., Banerjee, A., Ferraz-de-Souza, B., Delot,
624 E.C., Rodriguez-Fernandez, I.A., Braslavsky, D., Bergada, I., et al. (2012). Mutations in
625 the PCNA-binding domain of CDKN1C cause IMAGe syndrome. *Nat Genet* 44, 788-792.

626 61. Born, H.A., Dao, A.T., Levine, A.T., Lee, W.L., Mehta, N.M., Mehra, S., Weeber, E.J., and
627 Anderson, A.E. (2017). Strain-dependence of the Angelman Syndrome phenotypes in
628 Ube3a maternal deficiency mice. *Sci Rep* 7, 8451.

629 62. Hensman Moss, D.J., Pardinas, A.F., Langbehn, D., Lo, K., Leavitt, B.R., Roos, R., Durr, A.,
630 Mead, S., investigators, T.-H., investigators, R., et al. (2017). Identification of genetic
631 variants associated with Huntington's disease progression: a genome-wide association
632 study. *Lancet Neurol* 16, 701-711.

633 63. Kohler, S., Doelken, S.C., Mungall, C.J., Bauer, S., Firth, H.V., Bailleul-Forestier, I., Black,
634 G.C., Brown, D.L., Brudno, M., Campbell, J., et al. (2014). The Human Phenotype
635 Ontology project: linking molecular biology and disease through phenotype data. *Nucleic*
636 *Acids Res* 42, D966-974.

637 64. Yang, H., Robinson, P.N., and Wang, K. (2015). Phenolyzer: phenotype-based prioritization
638 of candidate genes for human diseases. *Nat Methods* 12, 841-843.

639 65. Zemojtel, T., Kohler, S., Mackenroth, L., Jager, M., Hecht, J., Krawitz, P., Graul-Neumann,
640 L., Doelken, S., Ehmke, N., Spielmann, M., et al. (2014). Effective diagnosis of genetic
641 disease by computational phenotype analysis of the disease-associated genome. *Sci*
642 *Transl Med* 6, 252ra123.

643 66. Dubois, P.C., Trynka, G., Franke, L., Hunt, K.A., Romanos, J., Curtotti, A., Zhernakova, A.,
644 Heap, G.A., Adany, R., Aromaa, A., et al. (2010). Multiple common variants for celiac
645 disease influencing immune gene expression. *Nat Genet* 42, 295-302.

646 67. Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A., Ripke, S., Lee,
647 J.C., Jostins, L., Shah, T., et al. (2015). Association analyses identify 38 susceptibility
648 loci for inflammatory bowel disease and highlight shared genetic risk across populations.
649 *Nat Genet* 47, 979-986.

650 68. Cordell, H.J., Han, Y., Mells, G.F., Li, Y., Hirschfield, G.M., Greene, C.S., Xie, G., Juran,
651 B.D., Zhu, D., Qian, D.C., et al. (2015). International genome-wide meta-analysis
652 identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. *Nat*
653 *Commun* 6, 8019.

654 69. Okada, Y., Wu, D., Trynka, G., Raj, T., Terao, C., Ikari, K., Kochi, Y., Ohmura, K., Suzuki,
655 A., Yoshida, S., et al. (2014). Genetics of rheumatoid arthritis contributes to biology and
656 drug discovery. *Nature* 506, 376-381.

657 70. International Multiple Sclerosis Genetics, C., Wellcome Trust Case Control, C., Sawcer, S.,
658 Hellenthal, G., Pirinen, M., Spencer, C.C., Patsopoulos, N.A., Moutsianas, L., Dilthey, A.,
659 Su, Z., et al. (2011). Genetic risk and a primary role for cell-mediated immune
660 mechanisms in multiple sclerosis. *Nature* 476, 214-219.

661 71. Consortium., A.S.D.W.G.o.t.P.G. (2015). PGC-ASD summary statistics from a meta-analysis
662 of 5,305 ASD-diagnosed cases and 5,305 pseudocontrols of European descent (based
663 on similarity to CEPH reference genotypes). In. (<http://www.med.unc.edu/pgc/results-anddownloads>).

664 72. van der Harst, P., Zhang, W., Mateo Leach, I., Rendon, A., Verweij, N., Sehmi, J., Paul,
665 D.S., Elling, U., Allayee, H., Li, X., et al. (2012). Seventy-five genetic loci influencing the
666 human red blood cell. *Nature* 492, 369-375.

667 73. Gieger, C., Radhakrishnan, A., Cvejic, A., Tang, W., Porcu, E., Pistis, G., Serbanovic-Canic,
668 J., Elling, U., Goodall, A.H., Labrune, Y., et al. (2011). New gene functions in
669 megakaryopoiesis and platelet formation. *Nature* 480, 201-208.

670 74. Bentham, J., Morris, D.L., Graham, D.S.C., Pinder, C.L., Tombleson, P., Behrens, T.W.,
671 Martin, J., Fairfax, B.P., Knight, J.C., Chen, L., et al. (2015). Genetic association
672 analyses implicate aberrant regulation of innate and adaptive immunity genes in the
673 pathogenesis of systemic lupus erythematosus. *Nat Genet* 47, 1457-1464.

674 75. Horikoshi, M., Beaumont, R.N., Day, F.R., Warrington, N.M., Kooijman, M.N., Fernandez-
675 Tajes, J., Feenstra, B., van Zuydam, N.R., Gaulton, K.J., Grarup, N., et al. (2016).
676 Genome-wide associations for birth weight and correlations with adult disease. *Nature*
677 538, 248-252.

678 76. Wood, A.R., Esko, T., Yang, J., Vedantam, S., Pers, T.H., Gustafsson, S., Chu, A.Y.,
679 Estrada, K., Luan, J., Kutalik, Z., et al. (2014). Defining the role of common variation in
680 the genomic and biological architecture of adult human height. *Nat Genet* 46, 1173-
681 1186.

682 77. Zheng, H.F., Forgetta, V., Hsu, Y.H., Estrada, K., Rosello-Diez, A., Leo, P.J., Dahia, C.L.,
683 Park-Min, K.H., Tobias, J.H., Kooperberg, C., et al. (2015). Whole-genome sequencing
684 identifies EN1 as a determinant of bone density and fracture. *Nature* 526, 112-117.

685 78. Kottgen, A., Albrecht, E., Teumer, A., Vitart, V., Krumsiek, J., Hundertmark, C., Pistis, G.,
686 Ruggiero, D., O'Seaghdha, C.M., Haller, T., et al. (2013). Genome-wide association
687 analyses identify 18 new loci associated with serum urate concentrations. *Nat Genet* 45,
688 145-154.

689 79. Nikpay, M., Goel, A., Won, H.H., Hall, L.M., Willenborg, C., Kanoni, S., Saleheen, D.,
690 Kyriakou, T., Nelson, C.P., Hopewell, J.C., et al. (2015). A comprehensive 1,000
691 Genomes-based genome-wide association meta-analysis of coronary artery disease.
692 *Nat Genet* 47, 1121-1130.

693

694 80. Willer, C.J., Schmidt, E.M., Sengupta, S., Peloso, G.M., Gustafsson, S., Kanoni, S., Ganna, A., Chen, J., Buchkovich, M.L., Mora, S., et al. (2013). Discovery and refinement of loci 695 associated with lipid levels. *Nat Genet* 45, 1274-1283.

696 81. Soranzo, N., Sanna, S., Wheeler, E., Gieger, C., Radke, D., Dupuis, J., Bouatia-Naji, N., 697 Langenberg, C., Prokopenko, I., Stolerman, E., et al. (2010). Common variants at 10 698 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic 699 pathways. *Diabetes* 59, 3229-3239.

700 82. Morris, A.P., Voight, B.F., Teslovich, T.M., Ferreira, T., Segre, A.V., Steinhorsdottir, V., 701 Strawbridge, R.J., Khan, H., Grallert, H., Mahajan, A., et al. (2012). Large-scale 702 association analysis provides insights into the genetic architecture and pathophysiology 703 of type 2 diabetes. *Nat Genet* 44, 981-990.

704 83. Fritsche, L.G., Igl, W., Bailey, J.N., Grassmann, F., Sengupta, S., Bragg-Gresham, J.L., 705 Burdon, K.P., Hebring, S.J., Wen, C., Gorski, M., et al. (2016). A large genome-wide 706 association study of age-related macular degeneration highlights contributions of rare 707 and common variants. *Nat Genet* 48, 134-143.

708 84. Perry, J.R., Day, F., Elks, C.E., Sulem, P., Thompson, D.J., Ferreira, T., He, C., Chasman, 709 D.I., Esko, T., Thorleifsson, G., et al. (2014). Parent-of-origin-specific allelic associations 710 among 106 genomic loci for age at menarche. *Nature* 514, 92-97.

711 85. Day, F.R., Ruth, K.S., Thompson, D.J., Lunetta, K.L., Pervjakova, N., Chasman, D.I., Stolk, 712 L., Finucane, H.K., Sulem, P., Bulik-Sullivan, B., et al. (2015). Large-scale genomic 713 analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility 714 and BRCA1-mediated DNA repair. *Nat Genet* 47, 1294-1303.

715 86. Dupuis, J., Langenberg, C., Prokopenko, I., Saxena, R., Soranzo, N., Jackson, A.U., 716 Wheeler, E., Glazer, N.L., Bouatia-Naji, N., Glyn, A.L., et al. (2010). New genetic loci 717 implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. *Nat 718 Genet* 42, 105-116.

719 87. Teumer, A., Tin, A., Sorice, R., Gorski, M., Yeo, N.C., Chu, A.Y., Li, M., Li, Y., Mijatovic, V., 720 Ko, Y.A., et al. (2016). Genome-wide Association Studies Identify Genetic Loci 721 Associated With Albuminuria in Diabetes. *Diabetes* 65, 803-817.

722 88. Saxena, R., Hivert, M.F., Langenberg, C., Tanaka, T., Pankow, J.S., Vollenweider, P., 723 Lyssenko, V., Bouatia-Naji, N., Dupuis, J., Jackson, A.U., et al. (2010). Genetic variation 724 in GIPR influences the glucose and insulin responses to an oral glucose challenge. *Nat 725 Genet* 42, 142-148.

726 89. Onengut-Gumuscu, S., Chen, W.M., Burren, O., Cooper, N.J., Quinlan, A.R., Mychaleckyj, 727 J.C., Farber, E., Bonnie, J.K., Szpak, M., Schofield, E., et al. (2015). Fine mapping of 728 type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with 729 lymphoid gene enhancers. *Nat Genet* 47, 381-386.

730 90. Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., 731 DeStafano, A.L., Bis, J.C., Beecham, G.W., Grenier-Boley, B., et al. (2013). Meta- 732 analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's 733 disease. *Nat Genet* 45, 1452-1458.

734 91. Otowa, T., Hek, K., Lee, M., Byrne, E.M., Mirza, S.S., Nivard, M.G., Bigdeli, T., Aggen, S.H., 735 Adkins, D., Wolen, A., et al. (2016). Meta-analysis of genome-wide association studies 736 of anxiety disorders. *Mol Psychiatry* 21, 1391-1399.

737 92. Major Depressive Disorder Working Group of the Psychiatric, G.C., Ripke, S., Wray, N.R., 738 Lewis, C.M., Hamilton, S.P., Weissman, M.M., Breen, G., Byrne, E.M., Blackwood, D.H., 739 Boomsma, D.I., et al. (2013). A mega-analysis of genome-wide association studies for 740 major depressive disorder. *Mol Psychiatry* 18, 497-511.

741 93. Okbay, A., Baselmans, B.M., De Neve, J.E., Turley, P., Nivard, M.G., Fontana, M.A., 742 Meddents, S.F., Linner, R.K., Rietveld, C.A., Derringer, J., et al. (2016). Genetic variants 743

associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. *Nat Genet* 48, 624-633.

94. Psychiatric, G.C.B.D.W.G. (2011). Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. *Nat Genet* 43, 977-983.

95. Schizophrenia Working Group of the Psychiatric Genomics, C. (2014). Biological insights from 108 schizophrenia-associated genetic loci. *Nature* 511, 421-427.

96. Pattaro, C., Teumer, A., Gorski, M., Chu, A.Y., Li, M., Mijatovic, V., Garnaas, M., Tin, A., Sorice, R., Li, Y., et al. (2016). Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. *Nat Commun* 7, 10023.

97. Eppinga, R.N., Hagemeijer, Y., Burgess, S., Hinds, D.A., Stefansson, K., Gudbjartsson, D.F., van Veldhuisen, D.J., Munroe, P.B., Verweij, N., and van der Harst, P. (2016). Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality. *Nat Genet* 48, 1557-1563.

98. Barban, N., Jansen, R., de Vlaming, R., Vaez, A., Mandemakers, J.J., Tropf, F.C., Shen, X., Wilson, J.F., Chasman, D.I., Nolte, I.M., et al. (2016). Genome-wide analysis identifies 12 loci influencing human reproductive behavior. *Nat Genet* 48, 1462-1472.

99. Rietveld, C.A., Medland, S.E., Derringer, J., Yang, J., Esko, T., Martin, N.W., Westra, H.J., Shakhbazov, K., Abdellaoui, A., Agrawal, A., et al. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. *Science* 340, 1467-1471.

100. Okbay, A., Beauchamp, J.P., Fontana, M.A., Lee, J.J., Pers, T.H., Rietveld, C.A., Turley, P., Chen, G.B., Emilsson, V., Meddens, S.F., et al. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. *Nature* 533, 539-542.

101. Lu, Y., Day, F.R., Gustafsson, S., Buchkovich, M.L., Na, J., Bataille, V., Cousminer, D.L., Dastani, Z., Drong, A.W., Esko, T., et al. (2016). New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. *Nat Commun* 7, 10495.

102. Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H., Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., Yang, J., et al. (2015). Genetic studies of body mass index yield new insights for obesity biology. *Nature* 518, 197-206.

103. Felix, J.F., Bradfield, J.P., Monnereau, C., van der Valk, R.J., Stergiakouli, E., Chesi, A., Gaillard, R., Feenstra, B., Thiering, E., Kreiner-Moller, E., et al. (2016). Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. *Hum Mol Genet* 25, 389-403.

104. Kilpelainen, T.O., Carli, J.F., Skowronski, A.A., Sun, Q., Kriebel, J., Feitosa, M.F., Hedman, A.K., Drong, A.W., Hayes, J.E., Zhao, J., et al. (2016). Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. *Nat Commun* 7, 10494.

105. Shungin, D., Winkler, T.W., Croteau-Chonka, D.C., Ferreira, T., Locke, A.E., Magi, R., Strawbridge, R.J., Pers, T.H., Fischer, K., Justice, A.E., et al. (2015). New genetic loci link adipose and insulin biology to body fat distribution. *Nature* 518, 187-196.

785 **FIGURE TITLES AND LEGENDS:**

786 **Figure 1: GWAS gene sets and phenotype-specific Mendelian disorder gene sets.** For
787 each complex trait (e.g., height), we first identified matched Mendelian phenotypes (e.g.,
788 undergrowth, short stature; **Table S9**). Using publicly available GWAS data, we defined the
789 “GWAS genes” for a given complex trait to be the closest upstream and closest downstream
790 protein-coding gene for every genome-wide significant variant in the GWAS. We selected
791 phenotype-matched Mendelian disorder genes by first identifying Mendelian disorders
792 expressing any of the matched Mendelian phenotypes, and then identifying all genes causing
793 any of those disorders.

794
795 **Figure 2: Overlap of GWAS genes with unrelated Mendelian disorder genes demonstrates**
796 **trait-specificity.** Significant overlaps from phenotypically-matched pairs of complex traits and
797 Mendelian disorders (blue) and pairs with unrelated phenotypes (grey) are shown.
798 Phenotypically-matched pairs are subdivided into pairs with perfectly-matched phenotypes (light
799 blue) and pairs with related phenotypes (dark blue). Traits with no significant overlaps are
800 excluded. Significance was assessed at a threshold for each complex trait ($p < 0.05/20$) based
801 on the number of Mendelian disorder gene sets ($n=20$) compared to each GWAS gene set.
802

803 **Figure 3: Effect sizes for SNPs on complex traits from GWAS are increased for genes**
804 **that are loss-of-function intolerant and for phenotypically-relevant Mendelian disorder**
805 **genes.**

806
807 The increase in average SNP effect size per gene across four gene categories. We averaged
808 effect size (Z^2) across all SNPs falling within 50kb of a gene to obtain an average SNP effect
809 size per gene, and averaged across all genes in each category (all protein coding genes, all
810 Mendelian disorder genes, all LOF-intolerant genes, and all phenotypically-relevant Mendelian
811 disorder genes for each trait). We normalized these averages to the average SNP effect per
812 gene for any protein coding genes. The box plots represent the distribution of increase in
813 average effect size per gene across all traits.
814

815 **Figure 4: Candidate regulatory SNPs fall at transcription start sites and long-range**
816 **promoters of phenotypically-relevant Mendelian disorder genes**

817 **A, B)** Shown here are two examples of putative causal SNPs localizing at a TSS of a
818 phenotypically-relevant Mendelian disorder gene. **A)** Putative causal SNP rs1332327,
819 associated with coronary artery disease ($Z = -5.961$), lies at the TSS of *LIPA*. **B)** Putative causal
820 SNP rs1010222, associated with red blood cell count with a Z-score of -5.961, lies at the TSS of
821 *CALR*. **C, D)** Shown here are two representations of chromatin interactions in white adipose
822 tissue. **C)** A cluster of SNPs from the credible set of variants associated with BMI (Z-score
823 plotted in orange and blue) physically interacts with the promoter of a particular isoform of
824 *CYP19A1*. **D)** A single SNP (rs758747) from the credible set, associated with BMI ($Z = 6.081$),
825 physically interacts with the promoter of a distant gene *CREBBP*.
826

827 **TABLES:**

828 **Table 1: Complex Traits and corresponding Mendelian disorders.** This table details the
 829 phenotypically-matched pairs of complex traits (N=62) and groups of Mendelian disorders
 830 (N=20) examined in our study. Mean GWAS Sample Size and Number of Significant GWAS
 831 Loci are reported from original GWAS publications for each complex trait. Significant GWAS
 832 SNPs are all SNPs from the publicly available summary statistics meeting genome-wide
 833 significance at a threshold of $p < 5 \times 10^{-8}$. GWAS genes for each complex trait were identified
 834 using the mapping approach described in Methods.

Complex Trait	Abbrev.	Mean GWAS Sample Size	Number of Significant GWAS Loci Reported	Number of Significant GWAS SNPs	Number of GWAS Genes	Matched Mendelian Disorder(s)
Celiac Disease ⁶⁶	CEL	15283	13	54	34	Immune Dysregulation
Crohn's Disease ⁶⁷	CD	27726	231 total	4381	239	
Inflammatory Bowel Disease ⁶⁷	IBD	34694		7738	368	
Ulcerative Colitis ⁶⁷	UC	28738		4239	202	
Primary Biliary Cirrhosis ⁶⁸	PBC	13239	28	704	149	
Rheumatoid Arthritis (European) ⁶⁹	RA	58284	101	16502	297	
Multiple Sclerosis ⁷⁰	MS	27148	52	487	160	
Autism ⁷¹	AUT	10610	2	2	2	Monogenic Autism
Hemoglobin ⁷²	HB	51255.8	11	325	89	Hematologic Disorders
Mean Cell Hemoglobin ⁷²	MCH	43553.6	19	1188	164	
Mean Cell Hemoglobin Concentration ⁷²	MCHC	46953.9	8	8	12	
Mean Corpuscular Volume ⁷²	MCV	48472.8	23	1237	180	
Mean Platelet Volume ⁷³	MPV	16843	25	705	102	
Red Blood Cell Count ⁷²	RBC	45304.4	10	908	107	
Systemic Lupus Erythematosus ⁷⁴	SLE	23210	43	4983	286	
Birthweight ⁷⁵	BW	110054.6	60	1978	179	Growth Defects
Height ⁷⁶	HGT	239338.3	423	22807	2361	
Femoral Neck Bone Mineral	FN	53236	14	788	58	Bone and Uric Acid Disorders

Density ⁷⁷						
Forearm Bone Mineral Density ⁷⁷	FA	53236	3	136	8	
Lumbar Spine Bone Mineral Density ⁷⁷	LS	53236	19	998	67	
Serum Urate Concentration ⁷⁸	URT	107026	28	1991	161	
Packed Cell Volume ⁷²	PCV	44925.9	4	141	53	Disorders of Platelet Function
Platelet Count ⁷³	PLT	66867	43	801	134	
Coronary Artery Disease ⁷⁹	CAD	184305	46	1709	132	Cardiovascular Disease
High Density Lipoprotein ⁸⁰	HDL	95422	157 total	3131	464	
Low Density Lipoprotein ⁸⁰	LDL	90686.4		2796	370	
Total Cholesterol ⁸⁰	TC	95651.5		3803	500	
Triglycerides ⁸⁰	TG	91882.3		2965	354	
Hemoglobin A1C ⁸¹	HBA	46368	10	174	33	Monogenic Diabetes
Type 2 Diabetes ⁸²	T2D	61857.4	10	191	28	
Age-related Macular Degeneration ⁸³	AMD	33975.1	34	4087	215	Monogenic AMD
Age at Menarche ⁸⁴	MNR	182416	106	2011	207	Female Reproductive Disorders
Age at Menopause ⁸⁵	MNP	70000	44	1656	316	
Fasting Glucose ⁸⁶	FG	46186	16 total	231	39	Insulin Disorders
HOMA-B ⁸⁶	HMB	46186		95	12	
HOMA-IR ⁸⁶	HMIR	46186		1	0	
Micro-albuminuria ⁸⁷	MA	52988.4	1	4	2	Microalbumin Disorders
Fasting Insulin ⁸⁶	FI	108557	1	43	23	Mature-onset Diabetes of the Young
Two-hour Glucose ⁸⁸	2HG	15234	3	4	2	
Type 1 Diabetes ⁸⁹	T1D	24341	42	1447	144	
Alzheimer's Disease ⁹⁰	ALZ	54162	19	813	58	Neurologic Disease
Anxiety Disorders (Case-control) ⁹¹	ANXC	14643.1	1	8	2	
Anxiety Disorders	ANXF	16218.2	1	43	3	

(Factor score) ⁹¹						
Major Depressive Disorder ⁹²	MDD	10610	1	5	4	
Depressive Symptoms ⁹³	DS	161460	2	28	10	
Neuroticism ⁹³	NRT	170911	11	1933	82	
Bipolar Disorder ⁹⁴	BIP	16731	4	39	8	Psychiatric Disease
Schizophrenia ⁹⁵	SCZ	150064	108	6808	479	
Chronic Kidney Disease ⁹⁶	CKD	117340	4	107	16	Renal Disorders
Glomerular Filtration Rate (CRN) ⁹⁶	EGFR	132725.4	43	1401	162	
Urine Albumin-to-Creatinine Ratio ⁸⁷	UACR	53343.1	1	4	2	
Resting Heart Rate ⁹⁷	RHR	265046	64	4568	304	Arrhythmias
Age at First Birth ⁹⁸	AFB	251151	12	238	45	
College ⁹⁹	COL	126559	3	71	12	Education and Development Disorders
Education Years ¹⁰⁰	EY	293723	74	6537	554	
Subjective Well-being ⁹³	SWB	298420	3	37	9	Positive Mood Disorders
Body Fat Percentage ¹⁰¹	BFP	57721.7	12	196	22	Body Mass Disorders
Body Mass Index ¹⁰²	BMI	224996	97	1585	231	
Childhood BMI ¹⁰³	CBMI	28964.1	15	438	49	
Leptin, adjusted for BMI ¹⁰⁴	LEPB	30202	5 total	8	5	
Leptin, not adjusted for BMI ¹⁰⁴	LEP	30507.6		1	0	
Waist-to-Hip Ratio ¹⁰⁵	WHR	139559.2	49	424	74	

835

836

Table 2: Overlap of GWAS genes and phenotypically-matched Mendelian disorder genes.

837

838

839

840

841

842

843

For each pair of complex trait and Mendelian disorder, Fisher's exact test was used to quantify the enrichment of shared genes with an odds ratio and p-value (see Methods). Significance was assessed at a threshold of $p < (0.05/20)$ correcting for the number of Mendelian disorder gene sets compared to each complex trait gene set. This table lists pairs of complex traits and phenotypically-matched or related Mendelian disorders with significant overlap. For comparison, the average odds ratio for pairings of each complex trait with all unrelated Mendelian disorder gene sets is included.

Complex	Matched or Related	Number of	Odds Ratio	P-value	Average Odds
---------	--------------------	-----------	------------	---------	--------------

Trait	Mendelian Disorder(s)	Shared Genes	for Matched Pair (CI)			Ratio across Unmatched Pairs
AMD	Monogenic AMD	9	7.99 (3.50, 16.11)	9.88E-05	*	2.06
AMD	Immune Dysregulation		2.73 (1.55, 4.52)	8.27E-03	*	
BFP	Body Mass Disorders	3	22.14 (4.14, 76.70)	1.03E-02	*	4.24
BFP	Monogenic Diabetes		15.42 (2.90, 53.04)	2.85E-02	*	
BW	Mature-onset Diabetes of the Young	16	3.06 (1.69, 5.16)	3.81E-03	*	1.99
BW	Body Mass Disorders		4.94 (1.76, 11.29)	3.86E-02	*	
CAD	Cardiovascular Disease	13	3.17 (1.63, 5.67)	1.07E-02	*	2.23
CAD	Insulin Disorders		3.04 (1.56, 5.43)	1.57E-02	*	
CBMI	Body Mass Disorders	5	16.18 (4.92, 41.63)	5.41E-04	*	2.65
CBMI	Insulin Disorders		4.61 (1.74, 10.41)	3.08E-02	*	
CD	Immune Dysregulation	23	3.42 (2.10, 5.32)	3.39E-05	*	1.65
EY	Positive Mood Disorders		4.70 (2.04, 9.59)	5.76E-03	*	
EY	Psychiatric Disease	19	2.45 (1.44, 3.95)	1.79E-02	*	1.07
FN	Bone and Uric Acid Disorders		7.64 (2.36, 19.24)	1.52E-02	*	
HB	Disorders of Platelet Function	12	6.21 (3.05, 11.59)	4.34E-05	*	2.66
HB	Hematologic Disorders		3.99 (1.83, 7.79)	8.84E-03	*	
HDL	Monogenic Diabetes	15	3.41 (1.85, 5.85)	1.87E-03	*	1.48
HDL	Body Mass Disorders		3.92 (1.95, 7.17)	2.78E-03	*	
HDL	Cardiovascular Disease	31	2.10 (1.40, 3.06)	6.89E-03	*	1.47
HGT	Female Reproductive Disorders	61	1.76 (1.30, 2.36)	4.36E-03	*	1.33
HGT	Growth Defects		1.39 (1.13, 1.70)	2.85E-02	*	
IBD	Immune Dysregulation	34	3.32 (2.23, 4.79)	3.15E-07	*	1.47
LDL	Cardiovascular Disease		2.70 (1.79, 3.95)	6.90E-05	*	

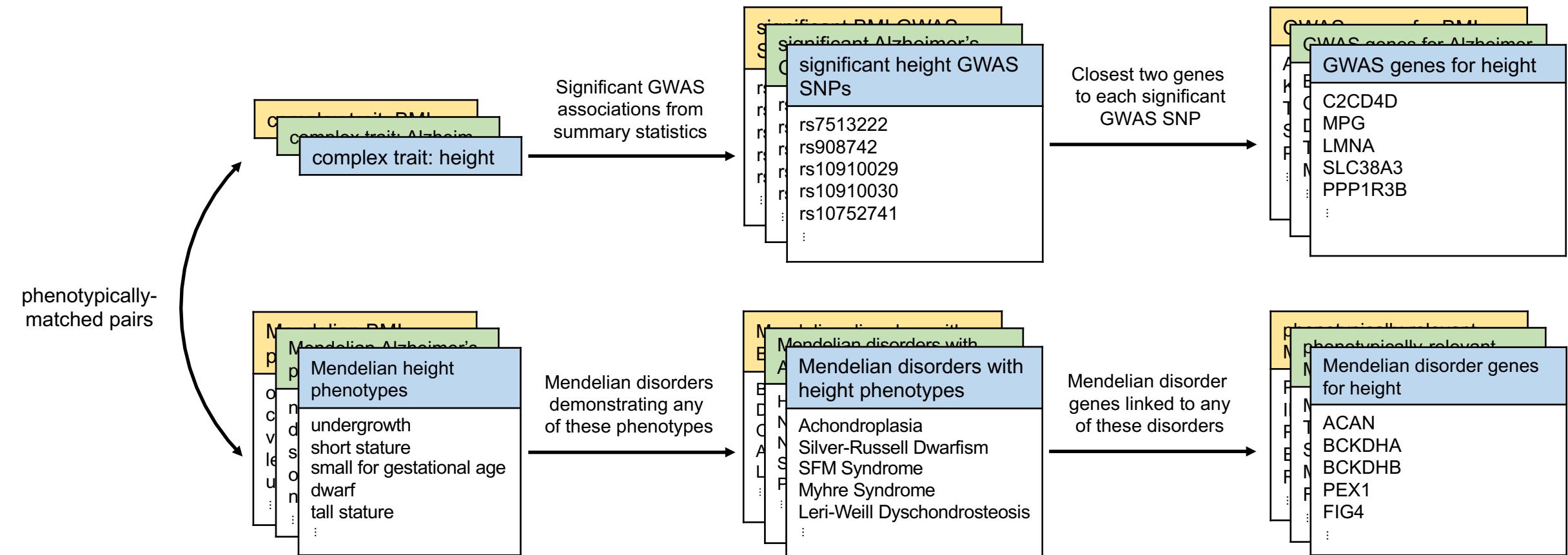
LDL	Mature-onset Diabetes of the Young	24	2.17 (1.36, 3.32)	1.71E-02	*	
LS	Bone and Uric Acid Disorders	6	8.00 (2.80, 18.72)	3.66E-03	*	2.80
MCH	Hematologic Disorders	15	3.19 (1.73, 5.48)	3.85E-03	*	1.71
MCV	Hematologic Disorders	20	4.00 (2.36, 6.44)	1.78E-05	*	1.73
MNR	Body Mass Disorders	7	5.02 (1.95, 10.86)	1.55E-02	*	0.93
PBC	Immune Dysregulation	13	3.03 (1.56, 5.40)	1.55E-02	*	1.17
PCV	Disorders of Platelet Function	10	9.24 (4.11, 18.83)	1.30E-05	*	4.53
PCV	Hematologic Disorders	8	5.60 (2.27, 12.08)	4.33E-03	*	
PCV	Arrhythmias	5	6.70 (2.07, 16.94)	2.73E-02	*	
PCV	Cardiovascular Disease	7	4.39 (1.66, 9.84)	3.89E-02	*	
PLT	Disorders of Platelet Function	12	3.91 (1.95, 7.15)	2.80E-03	*	1.55
PLT	Cardiovascular Disease	12	2.85 (1.42, 5.20)	3.95E-02	*	
RA	Immune Dysregulation	25	2.95 (1.86, 4.50)	1.36E-04	*	0.94
RBC	Hematologic Disorders	14	4.78 (2.50, 8.50)	1.16E-04	*	2.93
RBC	Disorders of Platelet Function	12	5.03 (2.49, 9.29)	3.02E-04	*	
RBC	Cardiovascular Disease	13	4.02 (2.05, 7.26)	1.30E-03	*	
RHR	Arrhythmias	17	3.93 (2.23, 6.53)	1.17E-04	*	1.50
RHR	Cardiovascular Disease	26	2.75 (1.75, 4.16)	2.94E-04	*	
SCZ	Positive Mood Disorders	9	5.47 (2.37, 11.19)	1.94E-03	*	0.99
SLE	Immune Dysregulation	24	2.94 (1.83, 4.52)	2.18E-04	*	1.41
T2D	Body Mass Disorders	4	23.55 (5.85, 69.99)	9.35E-04	*	1.72
TC	Cardiovascular Disease	38	2.44 (1.69, 3.45)	6.91E-05	*	1.45
TC	Hematologic Disorders	32	2.20 (1.47, 3.18)	2.36E-03	*	
TG	Monogenic Diabetes	12	3.54 (1.78, 6.43)	6.20E-03	*	1.55
TG	Cardiovascular	25	2.22 (1.41,	1.01E-	*	

	Disease		3.38)	02		
TG	Body Mass Disorders	9	3.77 (1.67, 7.49)	2.19E-02	*	
UC	Immune Dysregulation	21	3.72 (2.23, 5.92)	2.77E-05	*	1.56
WHR	Insulin Disorders	9	3.83 (1.67, 7.78)	2.25E-02	*	2.12

844

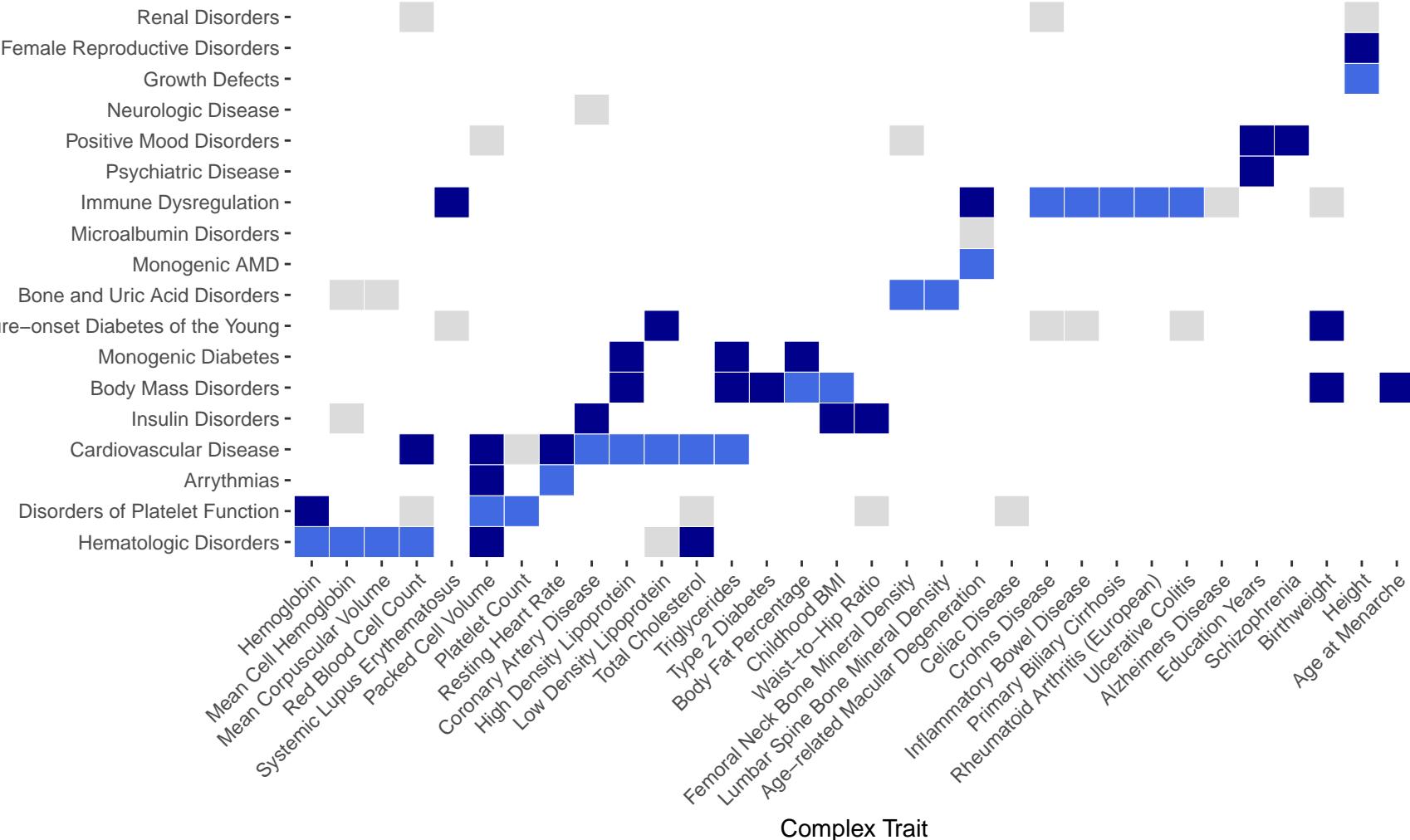
845 **Table 3: Instances of significant overlap of GWAS genes and unrelated Mendelian**
 846 **disorder genes.** As in Table 2, Fisher's exact test was used to quantify the enrichment of
 847 shared genes between complex traits and Mendelian disorders with an odds ratio and p-value
 848 (see Methods). Significance was assessed at a threshold of $p < (0.05/20)$ correcting for the
 849 number of Mendelian disorder gene sets compared to each complex trait gene set. This table
 850 lists pairs of complex traits and phenotypically-unrelated Mendelian disorders that demonstrated
 851 significant overlap.

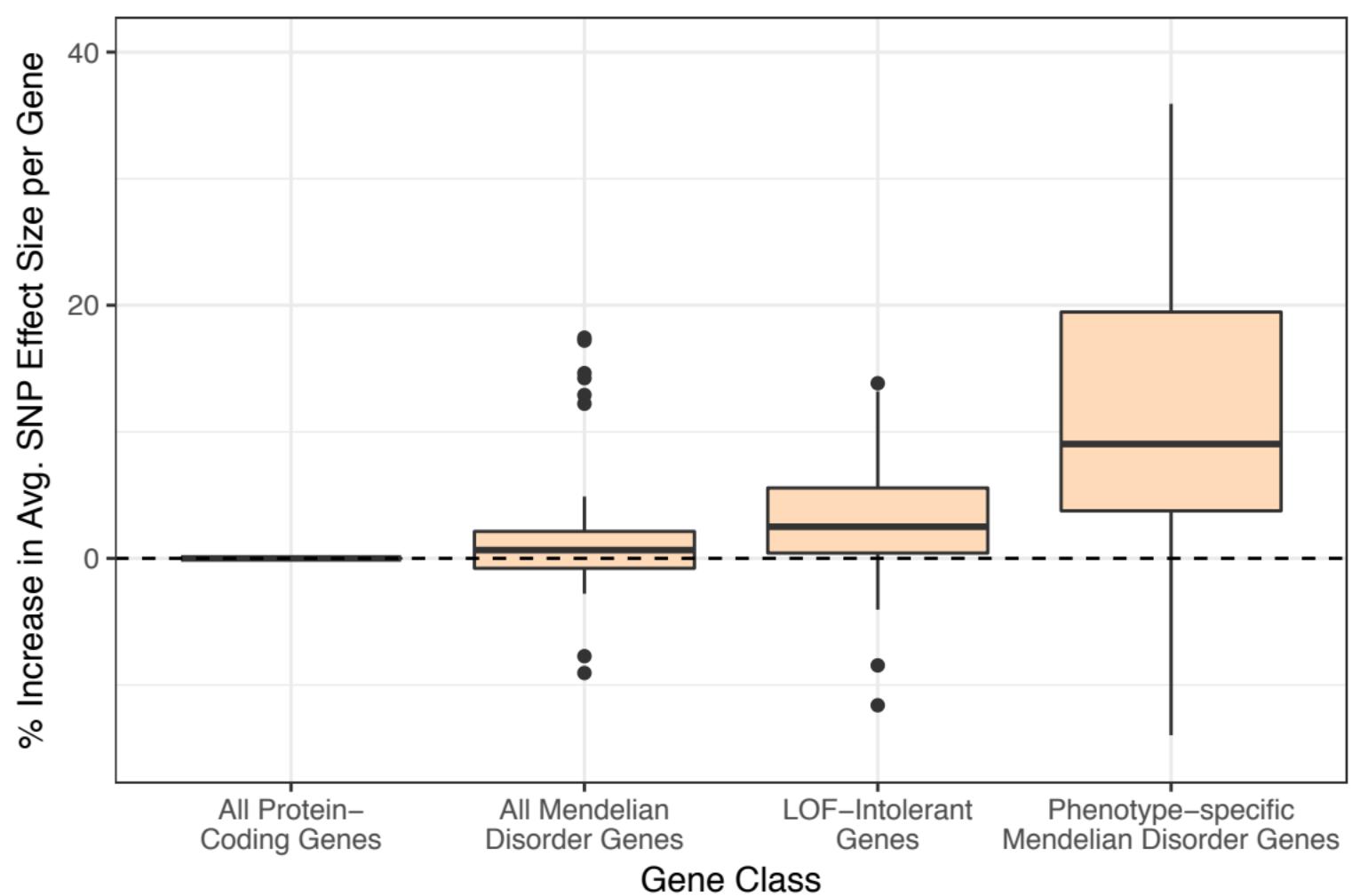
Complex Trait	Mendelian Disorder(s)	Number of Shared Genes	Odds Ratio (CI)	P-value	
IBD	Mature-onset Diabetes of the Young	30	2.81 (1.85, 4.13)	4.81E-05	*
RBC	Renal Disorders	18	4.14 (2.33, 6.96)	5.21E-05	*
UC	Mature-onset Diabetes of the Young	19	3.25 (1.90, 5.27)	4.88E-04	*
HGT	Renal Disorders	153	1.48 (1.23, 1.78)	7.51E-04	*
SLE	Mature-onset Diabetes of the Young	22	2.61 (1.59, 4.07)	2.47E-03	*
CD	Mature-onset Diabetes of the Young	19	2.69 (1.58, 4.35)	4.64E-03	*
LDL	Hematologic Disorders	25	2.31 (1.46, 3.51)	7.01E-03	*
MCH	Insulin Disorders	15	2.80 (1.52, 4.81)	1.40E-02	*
AMD	Microalbumin Disorders	8	4.43 (1.86, 9.13)	1.47E-02	*
MCH	Bone and Uric Acid Disorders	8	4.19 (1.75, 8.61)	2.09E-02	*
TC	Disorders of Platelet Function	25	2.11 (1.34, 3.20)	2.25E-02	*
CD	Renal Disorders	23	2.17 (1.34, 3.37)	2.26E-02	*
PCV	Positive Mood Disorders	3	15.97 (3.11, 51.37)	2.31E-02	*
CAD	Neurologic Disease	7	4.52 (1.76, 9.75)	2.79E-02	*
BW	Immune Dysregulation	14	2.69 (1.43, 4.68)	2.89E-02	*
CEL	Disorders of Platelet Function	5	6.78 (2.04, 17.83)	2.94E-02	*
FN	Positive Mood Disorders	3	14.51 (2.83,	3.00E-	*

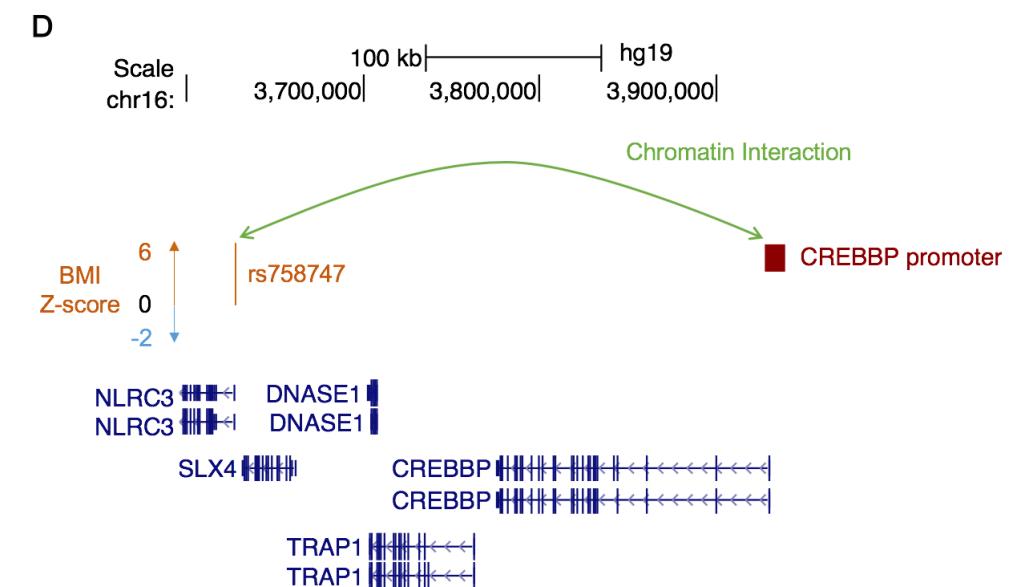
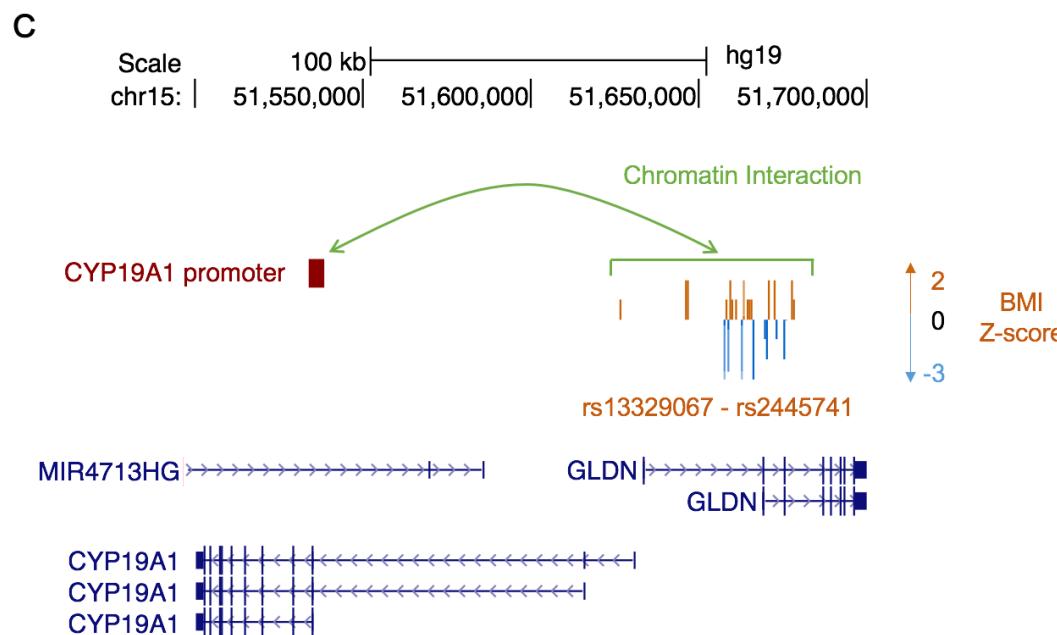
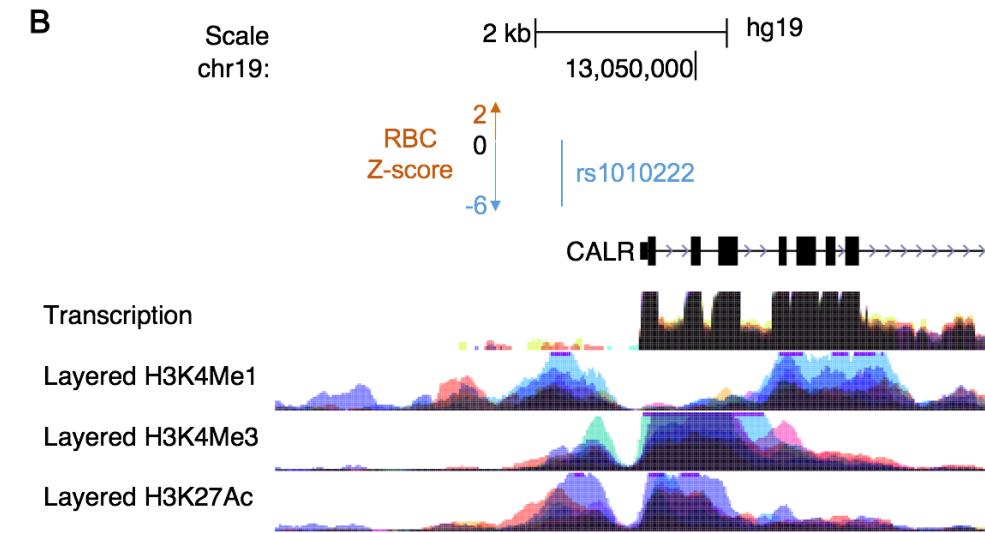
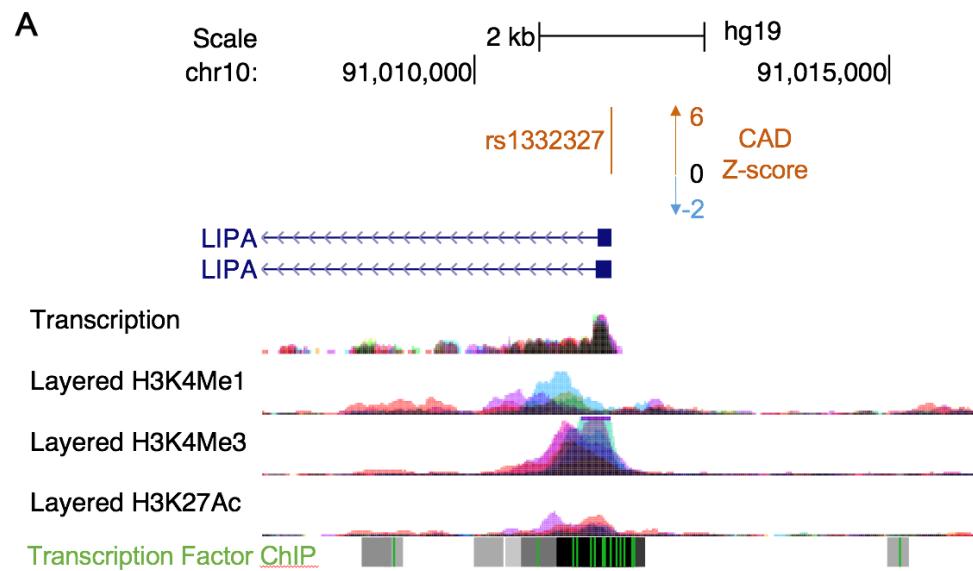

			46.53)	02	
MCV	Bone and Uric Acid Disorders	8	3.80 (1.59, 7.79)	3.78E-02	*
ALZ	Immune Dysregulation	7	4.32 (1.65, 9.62)	4.11E-02	*
WHR	Disorders of Platelet Function	7	4.12 (1.59, 9.03)	4.99E-02	*

852

853 **Table 4: Genome-wide significant SNPs localizing at TSS of phenotypically-relevant**
 854 **Mendelian disorder genes.** GWAS SNPs from the credible set for each complex trait were
 855 intersected with transcription start site (TSS) regions 1kb upstream of phenotypically-matched
 856 Mendelian disorder genes. This table lists all genome-wide significant SNPs ($p < 5 \times 10^{-8}$ from
 857 GWAS, with chromosomal location) from all complex traits localizing at the TSS of a
 858 phenotypically-matched Mendelian disorder gene (italicized).


Complex Trait	SNP ID	Chr	Position	Z score	Gene	Strand
PBC	rs13239597	chr7	128695983	9.85309	<i>TNPO3</i>	-
HGT	rs8028537	chr15	89345947	-9.333	<i>ACAN</i>	+
HGT	rs10853751	chr19	41903220	8.71	<i>BCKDHA</i>	+
CD	rs59283234	chr5	150225587	-8.454	<i>IRGM</i>	+
CD	rs751627	chr5	150225113	-8.451	<i>IRGM</i>	+
CD	rs35707106	chr5	150225377	-8.332	<i>IRGM</i>	+
HGT	rs2298307	chr6	80816296	8.276	<i>BCKDHB</i>	+
HGT	rs12386601	chr7	92157886	8.2	<i>PEX1</i>	-
BMI	rs17066842	chr18	58040624	-7.542	<i>MC4R</i>	-
HGT	rs12192268	chr6	110011458	-7	<i>FIG4</i>	+
CAD	rs1332327	chr10	91011681	6.798	<i>LIPA</i>	-
RA	rs13239597	chr7	128695983	6.65672	<i>TNPO3</i>	-
IBD	rs59283234	chr5	150225587	6.51	<i>IRGM</i>	+
IBD	rs751627	chr5	150225113	6.507	<i>IRGM</i>	+
HGT	rs7592246	chr2	219926221	6.452	<i>IHH</i>	-
IBD	rs34005003	chr5	150225199	6.427	<i>IRGM</i>	+
IBD	rs35707106	chr5	150225377	6.326	<i>IRGM</i>	+
MNR	rs3775971	chr4	104641920	6.20413	<i>TACR3</i>	-
IBD	rs27741	chr16	28504181	6.109	<i>CLN3</i>	-
HGT	rs4244808	chr11	2163110	6.061	<i>IGF2</i>	-
RBC	rs1010222	chr19	13048608	-5.96154	<i>CALR</i>	+
CD	rs27741	chr16	28504181	-5.866	<i>CLN3</i>	-
HGT	rs613924	chr11	65769295	-5.862	<i>BANF1</i>	+
AFB	rs4845357	chr1	153896212	-5.775	<i>GATAD2B</i>	-
HGT	rs6591226	chr11	66675990	5.517	<i>PC</i>	-


859

Pairs with Significant Enrichment: unrelated phenotypes related phenotypes perfectly-matched phenotypes

Mendelian Disorder

