

1 **Impact of exogenous nitrogen on cyanobacterial abundance and**
2 **community in oil-contaminated sediment mesocosms**

3 Kaikai Sun, Minbo Qi, Panpan Zhu, Haixia Wang, Zhenmei Lu*

4 College of Life Sciences, Zhejiang University, Hangzhou 310058, China

5

6 *For correspondence: Institute of Microbiology, College of Life Science,
7 Zhejiang University, Hangzhou, Zhejiang, 310058, China. E-mail:
8 lzhenmei@zju.edu.cn

9

10 Running Title: Cyanobacteria in oiled sediment mesocosms

11 Keywords: Crude oil, Exogenous nitrogen, Cyanobacteria, 16S rRNA gene
12 sequencing, Metatranscriptomic

13 **ABSTRACT**

14 High concentrations of crude oil are toxic to cyanobacteria but can facilitate the
15 emergence of cyanobacterial aggregation at an appropriate concentration range;
16 however, the exact inducing factor has never been clearly elucidated. We
17 hypothesized that increasing exposure to elevated concentrations of nitrogen would
18 inhibit the accumulation of cyanobacteria in oil-contaminated sediments. To test this
19 hypothesis, we simulated an oil spill in estuarine sediment microcosms with and
20 without the removal of nitrogen limitation by supplementation of exogenous nitrogen.
21 An integrated MiSeq sequencing of 16S rRNA gene analysis along with
22 metatranscriptome sequence was performed to achieve a comprehensive study of
23 cyanobacterial blooms. The number of cyanobacterial sequences increased over time
24 in both oil-contaminated and non-oil-contaminated sediments at different time points
25 after 42 days of incubation. And, supplementation with a nitrogen resource could
26 accelerate cyanobacterial blooms under uncontaminated microcosms but delay the
27 bloom phenomenon and reduce the cyanobacterial abundance to a great degree when
28 exposed to oil. Our results clearly illustrated that nitrogen limitation was a vital driver
29 of the increased abundance of cyanobacteria in oil-contaminated mesocosms. In
30 addition, the abundance and compositions of blooming cyanobacteria varied
31 significantly among the different treatment groups, and *Oscillatoria* may play a
32 potential and non-negligible role in oil-contaminated mesocosms.

34 **IMPORTANCE**

35 Previous research has shown that cyanobacterial blooms do occur in oiled mesocosms
36 and it is still unknown exactly the main driver for the induced cyanobacteria
37 outbreaks. In this study, we investigated the abundance and composition of
38 cyanobacteria in sediment mesocosms with or without supplemented exogenous
39 nitrogen at DNA and RNA level. We revealed an interesting perspective that
40 exogenous nitrogen played an opposite role of inducing cyanobacteria in the presence
41 or absence of crude oil. Furthermore, it was possible to link previous phenomenon to
42 changes of the abundance and compositions of blooming cyanobacteria. This work
43 contributes novel knowledge on the population distributions and the mechanism of
44 cyanobacterial bloom in oiled mesocosms. Moreover, the artificial addition of
45 nitrogen could enhance crude oil degradation and delay accumulation of
46 cyanobacterial harmful algal blooms (CyanoHABs), which might be one of the
47 possible ways to ameliorate the threat of eutrophication in oil-contaminated
48 sediments.

49

50 **Introduction**

51 Cyanobacteria is considered significant contributors to the food chain; as a collective,
52 cyanobacteria have the physiological capacity to occupy all aquatic environments
53 irrespective of salinity: freshwater lakes, estuaries, marine oceans, and hypersaline
54 mats (1). In general, crude oil is toxic to cyanobacteria, but it can stimulate
55 cyanobacterial abundance at low concentrations in some cases (2). It has been
56 reported that cyanobacteria can tolerate and develop in oil-contaminated regions (3, 4);
57 cyanobacterial blooms do occur in oil-contaminated areas at certain concentrations (5,
58 6, 7). Some species of cyanobacteria are thought to participate directly in oil
59 degradation as hydrocarbon degraders (8, 9). Additionally, cyanobacteria can
60 generally perform indirect functions in the metabolism and degradation of different
61 hydrocarbon compounds, for example, providing oxygen-fixing oil degraders to
62 facilitate hydrocarbon metabolism (10, 11). However, a large-scale outbreak of
63 cyanobacteria may cause secondary pollution. A large number of growing
64 phytoplankton or cyanobacteria can seal the surface to produce an anaerobic
65 environment, thus preventing microbial oil degradation. Moreover, some kinds of
66 cyanobacteria produce a series of toxic cyanotoxins, such as microcystin, which harm
67 aquatic animals and ecology systems. Death of cyanobacteria can also release a great
68 quantity of hazardous substances and consume mass (dissolved oxygen).

69 The reasons underlying cyanobacterial blooms in oil-contaminated areas still
70 remain unclear. Nonetheless, crude oil can inhibit the key deposit feeders, which is

71 likely to be a major factor responsible for an increase in cyanobacteria abundance;
72 furthermore, a low nitrogen concentration also presumably selects for cyanobacteria,
73 especially dinitrogen-fixing cyanobacteria (6). N₂ fixation is a key process in
74 photosynthetic microbial mats to support nitrogen demands associated with primary
75 production. In addition, certain cyanobacteria have the capacity to fix atmospheric
76 dinitrogen (N₂) and therefore significantly contribute to biogeochemical cycling of
77 nitrogen in both aquatic and terrestrial ecosystems (12). Increased anthropogenic
78 nutrient addition may alter the biogeochemical coupling between estuarine sediments
79 and waters (13), which can further exacerbate eutrophic conditions (14), change the
80 microbial ecology of the sediment, and in turn, accelerate cyanobacterial blooming
81 process in marine or terrestrial systems. However, how anthropogenic nutrient
82 functions in the whole bacterial or cyanobacterial community in oil-polluted areas
83 when supplied with anthropogenic nitrogen still remains ambiguous.

84 We hypothesize that increasing exposure to an elevated concentration of nitrogen
85 would inhibit the accumulation of cyanobacteria in oil-contaminated sediments.
86 Hence, in this study, we simulated an oil spill in estuarine sediment microcosms with
87 or without exogenous nitrogen supplementation and combined the MiSeq sequencing
88 of 16S rRNA genes and metatranscriptome analysis to address the following questions:
89 (i) What is the key induced factor of cyanobacterial blooms when exposed to crude oil?
90 (ii) How do cyanobacteria function in oil-contaminated microcosms in the presence or
91 absence of exogenous nitrogen? (iii) What are the differences in cyanobacterial

92 (especially nitrogen-fixing cyanobacteria) composition among all the mesocosms?

93

94 **MATERIALS AND METHODS**

95 **Sample collection and processing**

96 Sediments were collected from the estuary of the Yong River (N29°57'56.35",
97 E121°44'6.91"; altitude, 5 m) on October 15, 2016. To recreate oil-contaminated
98 conditions, a simulation system of microcosms was assembled with four containers
99 that were all divided into three equal 20 × 10 × 30 cm (l × w × h) segments. Each
100 reservoir contained 800 g fresh sediment topped with approximately 2 cm filtered
101 seawater. Four treatments were as follows: a crude oil-contaminated microcosm with
102 supplemental nitrogen group (CN), a crude oil-contaminated microcosm without
103 supplemental nitrogen group (CO), an uncontaminated microcosm with supplemental
104 nitrogen group (ON), and an uncontaminated microcosm without supplemental
105 nitrogen group (OO). The crude oil concentration was 30 g kg⁻¹ dry weight (wt.).

106 Nitrogen concentrations were measured every 24 hours, and a ratio of four times
107 exogenous nitrogen to that of the original sediment (OS) was added to reservoirs of
108 the CN and ON groups when their depletion reached the relative lower value. All
109 containers were placed in an illumination incubator with a temperature of 28 °C,
110 relative humidity of 70%, and 3000 lux of illumination intensity. For geochemical and
111 microbiological analyses, samples of the overlying water were collected every 24
112 hours; samples of sediments taken from the top 1.5 cm (days 0, 2, 5, 9, 12, 15, 19, 26,

113 33 and 42) were collected in triplicate: one was dried for sediment characteristic
114 parameter analysis, one was stored at -20 °C in a freezer for DNA extraction, and one
115 stored at -80 °C in a freezer for RNA extraction.

116

117 **Chemical analysis**

118 To analyze ammonium nitrogen (NH_4^+ -N), nitrate nitrogen (NO_3^- -N), nitrite nitrogen
119 (NO_2^- -N) and the pH value of the overlying water (pre-filtered with 0.45- μm pore size
120 filters), samples were taken to the laboratory and analyzed within 24 hours after
121 sampling according to standard methods (EPAC, 2002).

122 The total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) of
123 sediments were measured by the Kjeldahl method, molybdenum blue method and
124 spectrophotometric method with potassium dichromate, respectively.

125

126 **Nucleic acid extraction**

127 DNA extractions were performed using a Power Soil DNA Isolation Kit (Mo Bio
128 Laboratories, Carlsbad, CA, USA) according to the manufacturer's instructions. An
129 RNA PowerSoil® Total RNA Isolation Kit was used for RNA extraction; 2 g of fresh
130 samples were prepared for total RNA isolation from the organisms in the sediment.
131 DNA and RNA quantity and quality were then measured with a Nanodrop
132 spectrophotometer (Nanodrop ND1000, Wilmington, DE, USA) at a wavelength of

133 260 nm, and the integrity was evaluated via 1% of agarose gel electrophoresis. The
134 RNA quality was also assessed by an Agilent 2100 Bioanalyzer (Agilent Technologies,
135 Palo Alto, CA, USA).

136

137 **MiSeq analysis of the microbial community**

138 Sequencing was performed on an Illumina MiSeq platform. Raw Illumina fastq files
139 were demultiplexed, quality filtered and analyzed using QIIME (v. 1.4.0-dev) 7 (15)
140 according to the standard protocols. Demultiplexed sequences were clustered into
141 operational taxonomic units (OTUs) using the QIIME UCLUST12 wrapper, with a
142 threshold of 97% pairwise nucleotide sequence identity, and the cluster centroid for
143 each OTU was chosen as the OTU representative sequence, with taxonomy assigned
144 to representative OTUs from each cluster using the Ribosomal Database Project
145 classifier in QIIME, trained on the Greengenes database at 97% identity. After
146 taxonomic assignment, variable OTU minimum abundance thresholds were applied to
147 remove any OTU representing fewer sequences than the defined threshold.
148 Representative sequences were aligned using PyNAST15 against a template
149 alignment of the Greengenes database and filtered at 97% identity. To compare the
150 community composition between samples, sequences were aligned using the PyNAST
151 aligner in QIIME. This metric compares samples based on the phylogenetic
152 relatedness (branch lengths) of OTUs in a community while taking into account the

153 relative OTU abundance (16).

154

155 **Metatranscriptome library preparation and sequencing**

156 One microgram of total RNA with an RIN value above 7 was used for the following

157 library preparation. Next-generation sequencing library preparations were constructed

158 according to the manufacturer's protocol (NEBNext® Ultra™ Directional RNA

159 Library Prep Kit for Illumina®). The rRNA was depleted from total RNA using a

160 Ribo-Zero rRNA Removal Kit (Bacteria) (Illumina). The ribosomal-depleted mRNA

161 was then fragmented and reverse-transcribed. First-strand cDNA was synthesized

162 using ProtoScript II Reverse Transcriptase with random primers and actinomycin D.

163 The second-strand cDNA was synthesized using Second Strand Synthesis Enzyme

164 Mix (including dACG-TP/dUTP). The double-stranded cDNA purified by AxyPrep

165 Mag PCR Clean-up (Axygen) was then treated with End Prep Enzyme Mix to repair

166 both ends and to add a dA-tailing in one reaction, followed by T-A ligation to add

167 adaptors to both ends. Size selection of adaptor-ligated DNA was then performed

168 using AxyPrep Mag PCR Clean-up (Axygen), and fragments of ~360 bp (with an

169 approximate insert size of 300 bp) were recovered. The dUTP-marked second strand

170 was digested with the Uracil-Specific Excision Reagent (USER) enzyme (New

171 England Biolabs). Each sample was then amplified by PCR for 11 cycles using P5 and

172 P7 primers, with both primers carrying sequences that can anneal with flow cells to

173 perform bridge PCR and a P7 primer carrying a six-base index allowing for
174 multiplexing. The PCR products were cleaned up using AxyPrep Mag PCR Clean-up
175 (Axygen), validated using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
176 Alto, CA, USA), and quantified by a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA,
177 USA). Then, libraries with different indices were multiplexed and loaded onto an
178 Illumina HiSeq instrument according to the manufacturer's instructions (Illumina, San
179 Diego, CA, USA). Sequencing was carried out using a 2×150 paired-end (PE)
180 configuration; image analysis and base calling were conducted by the HiSeq Control
181 Software (HCS) + OLB + GAPipeline-1.6 (Illumina) on the HiSeq instrument.

182 Raw shotgun sequencing reads were trimmed using cutadapt (v1.9.1) .
183 Low-quality reads, Nrich reads and adapter-polluted reads were removed. Then host
184 contamination reads were removed. rRNA reads were repeatedly removed using
185 SortMeRNA aligning to the SILVA 128 version database. The PE reads were
186 assembled using Trinity. Trinity uses the de *Brujin* graph strategy to assemble the
187 transcriptome. Open reading frames (ORFs) were identified using TransDecoder
188 program, with default parameters. All sequences with a 95 % sequence identity (90%
189 coverage) were clustered as the non-redundant gene catalog by the CD-HIT. BLASTP
190 (Version 2.2.28+) was employed for taxonomic annotations by aligning
191 non-redundant gene catalogs against the NCBI nonredundant (NR) protein database
192 with e-value cutoff of 1e-5. Reads after quality control were mapped to the
193 representative genes with 95% identity and FPKM were evaluated using RSEM.

194

195 **Quantitative analysis of cyanobacterial 16S rRNA genes**

196 PCR amplifications were performed using Rotor-gene Q (QIAGEN, Germany) and
197 carried out in a reaction mixture containing 10 µL of 1× SYBR Premix Ex Taq, 1 µL
198 of forward and reverse primers (10 µM), and 8 µL of DNA template. The DNA
199 template was diluted with sterilized distilled water to make sure that approximately 20
200 ng of DNA was included in each reaction mixture. DNA was obtained from the core
201 on days 0 and 26 (previously used for 16S rRNA gene pyrosequencing analysis).

202 Quantitative real-time PCR (qPCR) analysis of cyanobacteria was carried out
203 using the cyanobacteria-specific primer set Cya359/Cya781A-B (17), and the V6
204 region of the 16S rRNA gene, amplified with primers 984F/1378R, was selected as
205 the reference gene. The qPCR cycling conditions were as follows: initial denaturation
206 at 95°C for 3 min, followed by 40 cycles of denaturation at 95 °C for 10 s, annealing
207 at 57 °C for 10 s and extension at 72 °C for 6 s.

208

209 **Clone libraries of the *nifH* gene**

210 Universal primers for *nifH* (18) were used for amplification of DNA, with an initial
211 denaturation at 94°C for 1 min; followed by 40 cycles of 1 min denaturation at 94°C,
212 2 min annealing at 57°C and 2 min extension at 72°C; with a final step of extension
213 for 5 min. For samples that produced the appropriately sized product, the band was

214 excised and purified with a QIAquick Gel Purification Kit (Qiagen) according to the
215 manufacturer's protocol. Purified PCR products were eluted in 35 μ l of EB buffer,
216 and 2 μ l of the purified product was immediately ligated into the pGEM-T Easy
217 Vector system (Promega, Madison, WI, USA) and transformed into chemically
218 competent *Escherichia coli* cells following the manufacturer's instructions. Cells,
219 approximately 100 positive colonies per ligation, were inoculated into 1 ml of LB
220 buffer overnight at 37°C, and plasmids were purified using a Montáge Plasmid
221 Miniprep96 Kit (Millipore). All sequencing was performed on Applied Biosystems 48
222 capillary 3730 or Applied Biosystems 16 capillary 3100 Genetic Analyzer Systems in
223 one direction with the M13F or M13R primer.

224

225 **Results**

226 **Environmental parameters and degradation of total petroleum hydrocarbons**

227 The variation in NH_4^+ -N, NO_2^- -N, NO_3^- -N in the overlying water was detected during
228 the operation period (Fig. 1). When nitrogen in the system was almost completely
229 consumed resulted from rapid depletion of NH_4^+ -N, NO_2^- -N, NO_3^- -N during the initial
230 five days, additional nitrogen was supplemented to mudflat sediment mesocosms of
231 the CN and ON groups to relieve nitrogen limitation with NH_4Cl , NaNO_3 , and NaNO_2
232 at day 6. After this supplementation, the nitrogen maintained an overall descending
233 trend until it was exhausted. Ammonia consumption in the oil-contaminated groups

234 lagged slightly behind that of the non-oil-contaminated groups, while nitrate and
235 nitrite exhibited opposite results, indicating much greater nitrate and nitrite demand in
236 the oil-contaminated sediments.

237 As for the remaining total petroleum hydrocarbon (TPH) relative to day 0, rapid
238 degradation was shown in the first 19 days in the oil-contaminated sediments, while
239 the degradation of the CO group lagged significantly behind that of the CN group (Fig.
240 S1). In addition, the percentage of TPH remaining in the CO group was 58.76%,
241 while in the CN group, it was 45.11%, indicating an enhanced degradation capacity
242 after nitrogen supplementation in the oil-contaminated sediments.

243

244 **Cyanobacteria bloomed at different times with unequal abundance among all
245 mesocosms**

246 Green mats appeared upon the sediment surface of microcosms at different time
247 points among all treatments during 42 days of incubation. MiSeq analysis of 16S
248 rRNA gene indicated that the number of cyanobacterial sequences increased over time
249 with significant differences in both oil-contaminated and non-oil-contaminated
250 sediments, which may further confirmed that cyanobacteria bloomed on the sediment
251 surfaces (Fig. 2). The relative abundances of cyanobacteria did not change
252 significantly during the initial 9 days, following notably increased relative abundances
253 of cyanobacteria occurred firstly in the non-oil-contaminated microcosms, with

254 samples from the ON group earlier than those from the OO group (on day 12 and day
255 15, respectively). However, the oil-contaminated treatments exhibited different
256 corresponding pathways to the increased concentration of nitrogen. The relative
257 abundance of cyanobacteria dramatically increased in the CO group after 19 days of
258 incubation and subsequently in CN group after 26 days. Overall, the number of
259 cyanobacterial sequences in the non-oil-contaminated sediments was 1.9 times higher
260 than that in the oil-contaminated sediments; and 4.6 times higher in the
261 nitrogen-addition sediments than that in the non-addition sediments meanwhile. For
262 oil-contaminated sediments, the cyanobacterial sequences of the CO group were more
263 abundant than those of the CN group. It is noteworthy that the relative abundance all
264 increased in varying degrees except for the CN group after 42 days of incubation.
265 Cyanobacterial abundance at the transcriptional level showed a similar result, where
266 cyanobacteria comprised 33.58% of the sequencing fragments in the ON group on day
267 26, with 4.14%, 3.63%, 9.00% and 1.56% in the OS, OO, CO and CN groups,
268 respectively (Fig. S2).

269 qPCR was also performed to quantitatively analyze cyanobacterial 16S rRNA
270 genes using their specific primer pair (Fig. S3), and these genes exhibited trends
271 similar to that of phylotype cyanobacterial abundance among all treatment
272 microcosms. The relative abundance of cyanobacterial 16S rRNA genes did not
273 change significantly during the initial incubation period, corresponding to the low
274 abundance of Cyanobacteria from sequencing data. Furthermore, increased relative

275 abundance of cyanobacterial 16S rRNA genes also occurred earlier in
276 non-oil-contaminated microcosms than that in the oil-contaminated microcosms and
277 in samples from the ON group earlier than those from the OO group. However, it
278 seems that cyanobacterial 16S rRNA genes from the oil-contaminated treatments did
279 not show a significant difference in response to an increased concentration of nitrogen.
280 After 42 days of incubation, the cyanobacterial 16S rRNA gene levels all rose rapidly.

281

282 **Detection of nitrogenase genes and phylotypes**

283 Genes coding for nitrogen fixation, such as *nifH*, were well represented in oiled
284 metatranscriptomes, and similar activity was observed in oil-free control microcosms
285 but not in the ON group (Fig. S4). Moreover, the nitrogen-fixation genes in the CO
286 group were far more abundant than those in the other groups. To further verify this
287 finding, a total of 439 clones were obtained from the combined *nifH* clone libraries
288 from the original sediment and sediments on day 26 (Fig. 3), and most of them could
289 be classified using BLASTN. Clone libraries of *nifH* genes revealed that the
290 compositions of nitrogen-fixing bacteria on day 26 were obviously different from
291 those of samples from the original sediment, indicating that crude oil and exogenous
292 nitrogen do radically have a remarkable effect on the diversity of *nifH*-containing
293 microbes. The most notably differences were sequences from cyanobacteria and
294 *Marinobacterium lutimaris*, which were only detected in oil-contaminated mesocosms.

295 Furthermore, the relative proportion of cyanobacteria in the CO group was obviously
296 higher than that in the CN group.

297

298 **The comprehensive cyanobacterial species composition of bloom-forming
299 cyanobacteria**

300 An examination of the cyanobacterial sequences revealed differences in the
301 transcriptionally active cyanobacterial community structures among mesocosms (Fig.
302 4). At the order level, *Oscillatoriales* (~80%) holds an absolutely dominant position in
303 the original sediment, in which most of the sequences were assigned to
304 *Coleofasciculus chthonoplastes*. Apart from the original sediment, genera
305 *Synechococcus*, *Oscillatoria* and *Leptolyngbya* were the most abundant taxa and were
306 present at all four sampling mesocosms. The abundance of *Coleofasciculus*
307 *chthonoplastes* dropped to a low level over time without any extra substance addition,
308 and its predominance was replaced by that of *Synechococcus* and *Leptolyngbya*.
309 *Oscillatoria* and *Synechococcus* were the dominant taxa, comprising 38.2% and 23.8%
310 of the total cyanobacteria, respectively, after nitrogen supplementation. In addition,
311 the relative abundance of *Leptolyngbya* was at a relative lower percentage
312 (approximately 0.9%) in ON mesocosms compared with 24.5% in OO mesocosms,
313 and it was more abundant in the non-oil-contaminated mesocosms than that in
314 oil-contaminated mesocosms. Strains of *Synechococcus* dominated in the ON group

315 and OO group, which also responded negatively to crude oil; besides, the strains of
316 *Oscillatoria* showed a different distribution pattern. In our study, *Oscillatoria*
317 occupied an absolute dominant position in oil-contaminated mesocosms, and the
318 relative abundance of *Oscillatoria* in CO mesocosms was almost double that in CN
319 mesocosms.

320 Redundancy analysis (RDA) was applied to evaluate the potential relationship
321 between environmental variables and cyanobacterial species (Fig. 5). *Synechococcus*,
322 *Synechocystis*, *Scytonema*, *Leptolyngbya*, *Cyanothece*, and *Microcystis* correlated
323 positively with NH_4^+ -N and NO_2^- -N but negatively with pH. *Nostoc*, *Pleurocapsa*,
324 *Pseudanabaena*, *Cyanothece*, *Neosynechococcus*, *Geitlerinema*, *Planktothricoides*,
325 *Oscillatoria* and *Calothrix* correlated positively with TN, TP, TOC and NO_3^- -N but
326 negatively with NH_4^+ -N and NO_2^- -N. The value of environmental variables was listed
327 in the Table S1.

328

329 Discussion

330 Exogenous nitrogen delayed cyanobacterial blooms in oiled mesocosms

331 When nitrogen resources decreased to a very low concentration, cyanobacterial mats
332 appeared on surfaces of both oil-contaminated and non-oil-contaminated sediments.
333 Suitable growth conditions, with intense light, optimum temperature and appropriate
334 humidity, can offer cyanobacteria a relative nutrient-rich environment in

335 non-oil-contaminated microcosms to spur them to bloom (19). In addition, nitrogen
336 supplementation yielded increasing aggravation of water eutrophication in
337 the non-oil-contaminated systems and then induced a more rapid outbreak of
338 cyanobacteria in the ON group compared to the OO group. Furthermore, many studies
339 have proven that high concentrations of crude oil are toxic to cyanobacteria (20) but
340 can facilitate the emergence of cyanobacterial aggregation at an appropriate
341 concentration threshold (5, 6, 7, 21). Additional exogenous nitrogen could accelerate
342 cyanobacterial blooms under uncontaminated microcosms; however, it did not play a
343 similar function in the oil-contaminated systems but inhibited and delayed the
344 enrichment of cyanobacteria no matter at DNA or RNA level in our study. We further
345 explored the relative activity of photosynthesis and photosynthesis-antenna proteins
346 involved in photosystem II operating efficiency (Fig. S5), since cyanobacteria are
347 autotrophic prokaryotes that are capable of oxygenic photosynthesis similar to that of
348 higher plants. On the one hand, it was clear that oil had an inhibitory effect on PS II
349 efficiency at the late stage. Similarly, Pielher et al (22) and Chronopoulou et al (6)
350 also found a reduction in photosynthetic efficiency in samples exposed to oil. On the
351 other hand, nitrogen addition in oil-contaminated microcosms would further
352 exacerbate the inhibitory effect of crude oil on PS II efficiency, which was
353 corresponding to the relative abundance of cyanobacteria to some degree and further
354 confirmed our conclusion.

355 **Reasons for changes in the relative abundance of cyanobacteria caused by**

356 **exogenous nitrogen**

357 Certain cyanobacteria have the capacity to fix atmospheric dinitrogen (N_2) and
358 therefore significantly contribute to the biogeochemical cycling of nitrogen in both
359 aquatic and terrestrial ecosystems (12). In addition, Musat et al (23) demonstrated that
360 cyanobacteria are the most active dinitrogen fixers under oil-contaminated conditions
361 when nitrogen is limited. In some cases, the restriction of nitrogen can be eliminated
362 or can undergo remission by dinitrogen fixation in the process of petroleum
363 hydrocarbon degradation (24, 25). According to our results, artificially removing the
364 nitrogen limitation of oil-contaminated microcosms delayed cyanobacterial blooming,
365 which can confirm the standpoint that nitrogen limitation was a possible driver of the
366 increased abundance of nitrogen-fixing cyanobacteria and changes in the
367 cyanobacterial composition (6). To further verify this finding, genes involved in
368 nitrogen fixation, such as *nifH*, which catalyzes dinitrogen fixation to ammonia, were
369 analyzed. The result indicated that only the microcosms established under oil
370 contamination without nitrogen supplement exhibited significant nitrogenase activity
371 compared to others at day 26 (Fig. S3). It seems that oil was shown to have a driving
372 role in dinitrogen fixation in oil-contaminated sediment microcosms in this study.

373 To our surprise, sequences related to *nifH* from cyanobacteria were only
374 amplified from the oil-contaminated microcosms and constituted 11.9% and 5.56% of
375 the CO and CN *nifH* library, respectively (Fig. 3). In addition, the cyanobacterial
376 sequences obtained in these two *nifH* libraries were closely related to those of

377 phylotypes *Leptolyngbya*, which were reported to be diazotrophs in ecological
378 environments (26), and uncultured cyanobacteria. Nevertheless, even though the
379 remaining oil-free samples had more cyanobacterial 16S rRNA gene sequences than
380 the oil-contaminated samples, there was no cyanobacterial *nifH* sequence was
381 detected among them. Therefore, cyanobacteria are the key oil-induced dinitrogen
382 fixers in the oil-contaminated sediments but may play other ecological functions
383 instead of nitrogen fixation in the non-oil-contaminated microcosms. In conclusion,
384 nutrient limitation is a vital factor for stimulating cyanobacterial blooms in the
385 oil-contaminated microcosms but is not a potential factor inducing cyanobacteria
386 blooming in the non-oil-contaminated microcosms.

387 Many oil-degrading bacteria have been shown to carry out dinitrogen fixation
388 (27, 28). Only relatively fewer bacterial species, *Desulfuromonas* and
389 *Marinobacterium lutimaris*, reported to be capable of nitrogen fixation as well as oil
390 degradation, were detected in *nifH* libraries (Fig. 3). However, it seems that the
391 nitrogen-fixing capacity of hydrocarbon-degrading bacteria was not expressed during
392 growth with hydrocarbons but only with polar substrates (29). In addition, several
393 species of cyanobacteria were reported to show a high tolerance to oil and could
394 participate directly in oil degradation as hydrocarbon degraders (8, 9, 27, 30).
395 Therefore, the increased abundance of cyanobacteria may result from the need for
396 hydrocarbon degraders in oil-contaminated mesocosms. However, the relative
397 abundance of cyanobacteria increased at a low speed when rapid hydrocarbon

398 degradation was exhibited during the initial 19 days (Fig. S1). Thus, a correlation
399 between cyanobacterial abundance and hydrocarbon degradation was not observed.
400 Many other studies have revealed that cyanobacteria themselves apparently could not
401 degrade petroleum compounds directly but were more likely to play a significant,
402 indirect role in biodegradation by supporting the growth and activity of symbiotic
403 degraders (11, 31). In conclusion, the demand for hydrocarbon degradation was
404 distinctly possible to be a minor factor for cyanobacterial blooming in
405 oil-contaminated mesocosms.

406 **Comparison of cyanobacterial communities**

407 Previous studies have estimated that populations and communities in the environment
408 might be directly and/or indirectly affected by exposure to crude oil (22, 32, 33, 34).
409 In general, nutrients are thought to be the most important environmental factor
410 influencing the growth of phytoplankton. As above, both crude oil and nitrogen can
411 influence cyanobacterial abundance, but currently, there is little understanding of their
412 potential ability to regulate changes in cyanobacterial community composition. Our
413 previous study showed that the phylotypes *Leptolyngbya*, *Oscillatoria*, *Arthrosphaera*
414 (*Spirulina*), *Geitlerinema* and *Cyanothece* were dominant in the oil-contaminated
415 sediments (21). In this study, the genera *Synechococcus*, *Oscillatoria* and
416 *Leptolyngbya* were the most abundant taxa with high abundance, and these genera
417 were present in all sampling mesocosms in the presence and absence of oil according
418 to metatranscriptome data (Fig. 4). Strains of *Synechococcus*, a globally highly

419 abundant genus, learned to survive in the oil-free groups. However, *Oscillatoria*,
420 typical diazotrophs in ecological environments (26), occupied an absolutely dominant
421 position in oil-contaminated mesocosms, suggesting that *Oscillatoria* may possess
422 high tolerance to oil and play a potential and non-negligible role in oil-contaminated
423 mesocosms. And the relative abundances of *Leptolyngbya* in the oil-contaminated
424 mesocosms were lower than those in the non-oil-contaminated mesocosms, indicating
425 that it may have a preference for a more suitable environment and, thus, likely plays
426 other integral roles. The RDA ordination diagram (Fig. 5) clearly showed that the
427 cyanobacterial community experienced rapid and substantial changes during the study.
428 These changes are statistically related to various water and sediment quality variables,
429 including NH_4^+ -N, TN, TOC and pH. In this study, *Oscillatoria* demonstrated a
430 stronger positive correlation with TN but a negative correlation with NH_4^+ -N, while
431 *Synechococcus* and *Leptolyngbya* showed the opposite result, suggesting that nitrogen
432 supplementation, especially NH_4^+ -N, did change the composition of cyanobacteria.

433 Excessive cyanobacterial (especially harmful algae) abundance has harmful
434 effects on lake ecosystems and water quality, leading to the development of surface
435 blooms and scums, oxygen depletion, and production of highly toxic cyanotoxins,
436 which are extremely harmful to the environment and human health (35). In addition to
437 being important primary producers, providing fixed carbon and nitrogen to higher
438 trophic levels in the ecosystem (36, 37, 38), cyanobacteria can also produce a series of
439 secondary metabolites, some with documented toxicity, such as cyanotoxins (39). In

440 this study, cyanobacterial harmful algal blooms (CyanoHABs), such as typical
441 *Anabaena*, *Planktothrix* and *Microcystis*, exhibited a pattern similar to that of other
442 cyanobacteria, reducing their abundance in response to anthropogenic
443 over-enrichment nitrogen in oil-contaminated sediments (Fig. S6). In part, this
444 relationship was based upon the fact that some common CyanoHAB genera can fix
445 atmospheric N₂ into biologically available NH₃, which could support the nitrogen
446 requirements of blooming populations (40). Therefore, we may conclude that
447 exogenous nitrogen can delay the accumulation of CyanoHABs and prevent
448 secondary pollution under oil spills, to some extent.

449 **Conclusions**

450 We observed large increases in cyanobacterial abundance among all treatment
451 mesocosms but with different distributions between oil-contaminated and
452 non-oil-contaminated mesocosms. Our results indicated that supplementation with a
453 nitrogen resource could accelerate cyanobacterial blooms under non-oil-contaminated
454 microcosms but delay bloom phenomenon and reduce abundance to a great degree
455 when exposed to oil. Nitrogen limitation was an essential driver for the increased
456 abundance of cyanobacteria in oil-contaminated areas. In addition, the anthropochory
457 of extra nitrogen can enhance crude oil degradation capacity and delay the
458 accumulation of CyanoHABs. Therefore, increased exogenous nitrogen input is one
459 of the possible ways to ameliorate the threat of eutrophication in oil-contaminated
460 sediments.

461

462 **ACKNOWLEDGMENTS**

463 This work was financially supported by the National Natural Science Foundation of
464 China (No. 31370151 and 31422003), and the Natural Science Foundation for
465 Distinguished Young Scholars of Zhejiang Province (LR14D030001).

466 **REFERENCES**

467 1. **Nübel U, Garcia-Pichel F, Clavero E, Muyzer G.** 2000. Matching molecular
468 diversity and ecophysiology of benthic cyanobacteria and diatoms in
469 communities along a salinity gradient. *Environ Microbiol* 2: 217-226.

470 2. **Coulon F, Chronopoulou PM, Fahy A, Paisse S, Goni-Urriza M, Peperzak L,**
471 **Alvarez LA, McKew BA, Brussaard CPD, Underwood GJC, Timmis KN,**
472 **Duran R, McGenity TJ.** 2012. Central role of dynamic tidal biofilms dominated
473 by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of
474 hydrocarbons in coastal mudflats. *Appl Environ Microbiol* 78: 3638-3648.

475 3. **Cohen Y.** 2002. Bioremediation of oil by marine microbial mats. *Int Microbiol* 5:
476 189-193.

477 4. **Chaillan F, Gugger M, Saliot A, Coute A, Oudot J.** 2006. Role of
478 cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat.
479 *Chemosphere* 62: 1574-1582.

480 5. **Gilde K, and Pinckney JL.** 2012. Sublethal effects of crude oil on the
481 community structure of estuarine phytoplankton. *Estuar Coast* 35: 853-861.

482 6. **Chronopoulou PM, Fahy A, Coulon F, Paisse S, Goni-Urriza M, Peperzak L,**
483 **Alvarez LA, McKew BA, Lawson T, Timmis KN, Duran R, Underwood GJC,**
484 **McGenity TJ.** 2013. Impact of a simulated oil spill on benthic phototrophs and
485 nitrogen-fixing bacteria in mudflat mesocosms. *Environ Microbiol* 15, 242-252.

486 7. **Parsons ML, Morrison W, Rabalais NN, Turner RE, Tyre KN.** 2015.
487 Phytoplankton and the Macondo oil spill: A comparison of the 2010
488 phytoplankton assemblage to baseline conditions on the Louisiana shelf. *Environ*
489 *Pollut* 207: 152-160.

490 8. **Raghukumar C, Vipparty V, David J, Chandramohan D.** 2001. Degradation

491 of crude oil by marine cyanobacteria. *Appl Microbiol Biot* 57: 433-436.

492 9. **Xenia ME, Refugio RV.** 2016. Microorganisms metabolism during
493 bioremediation of oil contaminated soils. *J Bioremed Biodegr* 07.

494 10. **De Philippis R, Margheri MC, Materassi R., Vincenzini M.** 1998. Potential of
495 unicellular cyanobacteria from saline environments as exopolysaccharide
496 producers. *Appl Environ Microbiol* 64: 1130-1132.

497 11. **Radwan SS, Al-Hasan RH, Salamah S, Al-Dabbous S.** 2002. Bioremediation
498 of oily sea water by bacteria immobilized in biofilms coating macroalgae. *Int
499 Biodeter Biodegr* 50: 55-59.

500 12. **Falkowski PG.** 1997. Evolution of the nitrogen cycle and its influence on the
501 biological sequestration of CO₂ in the ocean. *Nature* 387: 272-275.

502 13. **Burgin AJ, Hamilton SK.** 2007. Have we overemphasized the role of
503 denitrification in aquatic ecosystems? A review of nitrate removal pathways.
504 *Front Ecol Environ* 5: 89-96.

505 14. **Howarth, R., Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G.**
506 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate
507 estuaries and coastal marine ecosystems. *Front Ecol Environ* 9: 18-26.

508 15. **Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD,
509 Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA,
510 Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D,
511 Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA,
512 Widmann J, Yatsunenko T, Zaneveld J, Knight R.** 2010. QIIME allows
513 analysis of high-throughput community sequencing data. *Nat Methods* 7:
514 335-336.

515 16. **Lozupone C, Knight R.** 2005. UniFrac: a new phylogenetic method for

516 comparing microbial communities. *Appl Environ Microbiol* 71: 8228-8235.

517 17. **Nübel, U, Garcia-Pichel F, Muyzer G.** 1997. PCR primers to amplify 16S rRNA
518 genes from cyanobacteria. *Appl Environ Microbiol* 63(8): 3327-3332.

519 18. **Zehr JP, McREYNOLDS LA.** 1989. Use of degenerate oligonucleotides for
520 amplification of the *nifH* gene from the marine cyanobacterium *Trichodesmium*
521 *thiebautii*. *Appl Environ Microbiol* 55(10): 2522-2526.

522 19. **Viličić D.** 1989. Phytoplankton population density and volume as indicators of
523 eutrophication in the eastern part of the Adriatic Sea. *Hydrobiologia* 174:
524 117-132.

525 20. **Heisler J, Glibert P, Burkholder J, Anderson D, Cochlan W, Dennison W,**
526 **Dortch Q, Gobler CJ, Prouse NJ, Gordon Jr DC, Keizer PD.** 1976. Effects of
527 low concentrations of oil accommodated in sea water on the growth of unicellular
528 marine phytoplankton cultures. *Journal of the Fisheries Research Board of*
529 *Canada* 33: 810-818.

530 21. **Sun KK, Xie CX, Zhang K, Sun YG, Lu ZM.** 2018. Cyanobacterial blooms in
531 oil-contaminated subtidal sediments revealed by integrated approaches. *Environ*
532 *Microbiol Rep.* DOI: 10.1111/1758-2229.12660

533 22. **Piehler MF, Winkelmann V, Twomey LJ, Hall NS, Currin CA, Paerl HW.**
534 **2003.** Impacts of diesel fuel exposure on the microphytobenthic community of an
535 intertidal sand flat. *J Exp Mar Biol Ecol* 297: 219-237.

536 23. **Musat F, Harder J, Widdel F.** 2006. Study of nitrogen fixation in microbial
537 communities of oil-contaminated marine sediment microcosms. *Environ*
538 *Microbiol* 8: 1834-1843.

539 24. **Toccalino PL, Johnson RL, Boone DR.** 1993. Nitrogen limitation and nitrogen
540 fixation during alkane biodegradation in a sandy soil. *Appl Environ Microbiol* 59:

541 2977-2983.

542 25. **Taketani RG, Dos Santos HF, van Elsas JD, Rosado AS.** 2009.
543 Characterisation of the effect of a simulated hydrocarbon spill on diazotrophs in
544 mangrove sediment mesocosm. Anton Leeuw 96: 343-354.

545 26. **Severin I, Stal LJ.** 2010. *NifH* expression by five groups of phototrophs
546 compared with nitrogenase activity in coastal microbial mats. FEMS Microbiol
547 Ecol 73: 55-67.

548 27. **Radwan S, Mahmoud H, Khanafer M, Al-Habib A, Al-Hasan R.** 2010.
549 Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the
550 Arabian Gulf Coasts, and their potential for oil bioremediation without nitrogen
551 supplementation. Microb Ecol 60: 354-363.

552 28. **Do Carmo FL, Dos Santos HF, Martins EF, van Elsas JD, Rosado AS,**
553 **Peixoto, RS.** 2011. Bacterial structure and characterization of plant growth
554 promoting and oil degrading bacteria from the rhizospheres of mangrove plants. J
555 Microbiol 49: 535-543.

556 29. **Eckford R, Cook FD, Saul D, Aislabie J, Foght J.** 2002. Free-living
557 heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic
558 soils. Appl Environ Microbiol 68: 5181-5185.

559 30. **Langlois RJ, LaRoche J, Raab PA.** 2005. Diazotrophic diversity and
560 distribution in the tropical and subtropical Atlantic Ocean. Appl Environ
561 Microbiol 71: 7910-7919.

562 31. **Sorkhoh NA, Al-Hasan RH, Khanafer M, Radwan, SS.** 1995. Establishment of
563 oil-degrading bacteria associated with cyanobacteria in oil-polluted soil. J Appl
564 Bacteriol 78: 194-199.

565 32. **Abed RMM, Safi NMD, Koster J, de Beer D, El-Nahhal Y, Rulkotter J,**

566 **Garcia-Pichel F.** 2002. Microbial diversity of a heavily polluted microbial mat
567 and its community changes following degradation of petroleum compounds. *Appl*
568 *Environ Microbiol* 68: 1674-1683.

569 33. **Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Baelum J, Kimbrel J,**
570 **Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D,**
571 **Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA,**
572 **Jansson JK.** 2014. Metagenomics reveals sediment microbial community
573 response to Deepwater Horizon oil spill. *ISME J* 8: 1464-1475.

574 34. **Rodriguez RL, Overholt WA, Hagan C, Huettel M, Kostka JE,**
575 **Konstantinidis KT.** 2015. Microbial community successional patterns in beach
576 sands impacted by the Deepwater Horizon oil spill. *ISME J* 9: 1928-1940.

577 35. **Paerl HW, Huisman J.** (2009) Climate change: a catalyst for global expansion
578 of harmful cyanobacterial blooms. *Environ Microbiol Rep* 1: 27-37.

579 36. **Ploug H, Adam B, Musat N, Kalvelage T, Lavik G, Wolf-Gladrow D,**
580 **Kuypers MM.** 2011. Carbon, nitrogen and O₂ fluxes associated with the
581 cyanobacterium *Nodularia spumigena* in the Baltic Sea. *ISME J* 5: 1549-1558.

582 37. **Motwani NH, Gorokhova E.** 2013. Mesozooplankton grazing on
583 picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis.
584 *PLoS One* 8: e79230.

585 38. **Hogfors H, Motwani NH, Hajdu S, El-Shehawy R, Holmboe T, Vehmaa A,**
586 **Engström-Öst J, Brutemark A, Gorokhova E.** 2014. Bloom-forming
587 cyanobacteria support copepod reproduction and development in the Baltic Sea.
588 *PLoS One* 9: e112692.

589 39. **Paerl HW, Otten TG.** 2016. Duelling 'CyanoHABs': unravelling the
590 environmental drivers controlling dominance and succession among diazotrophic
591 and non-N₂ -fixing harmful cyanobacteria. *Environ Microbiol* 18: 316-324.

592 40. **Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson**
593 **MJ, Beaty KG, Lyng M, Kasian SEM.** 2008. Eutrophication of lakes cannot be
594 controlled by reducing nitrogen input: results of a 37-year whole-ecosystem
595 experiment. Proc Natl Acad Sci USA 105: 11254-11258.

596 **FIGURE LEGENDS**

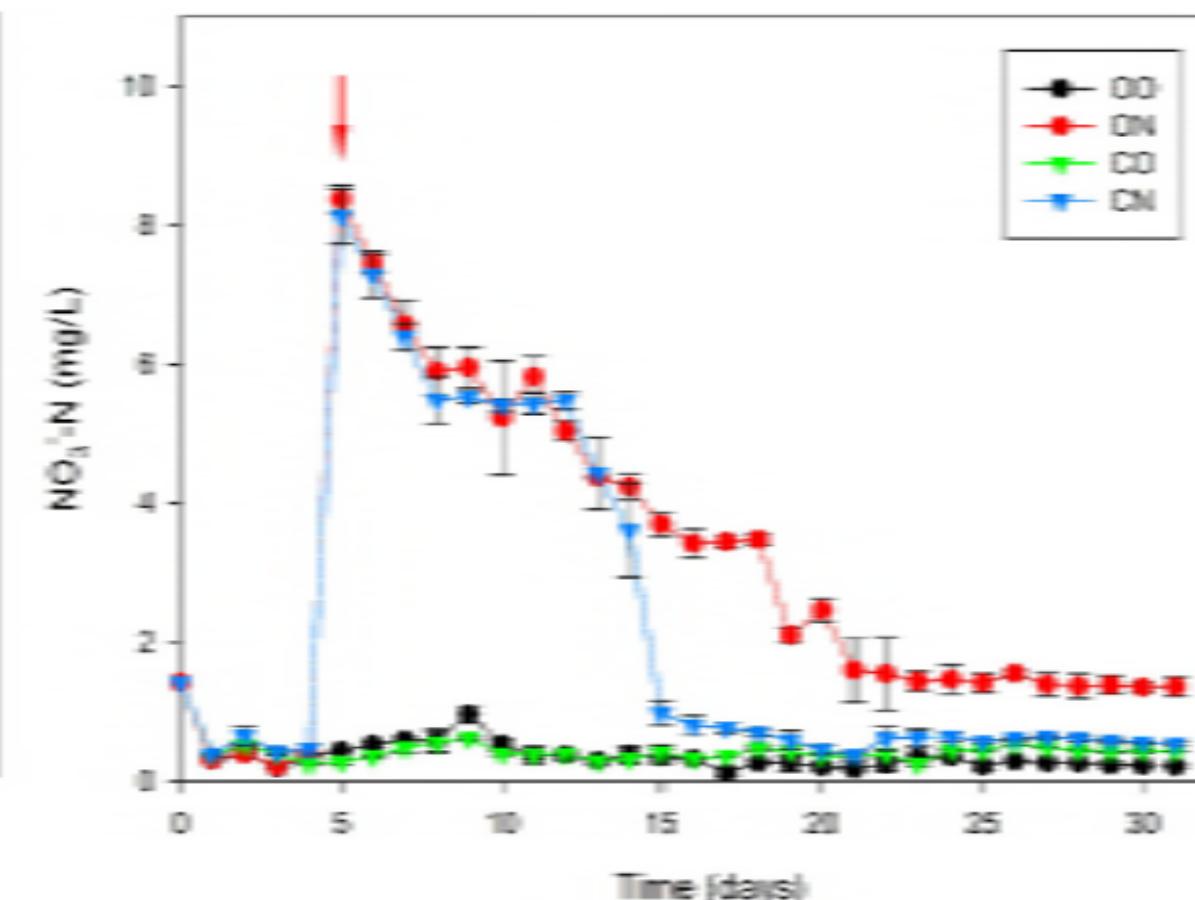
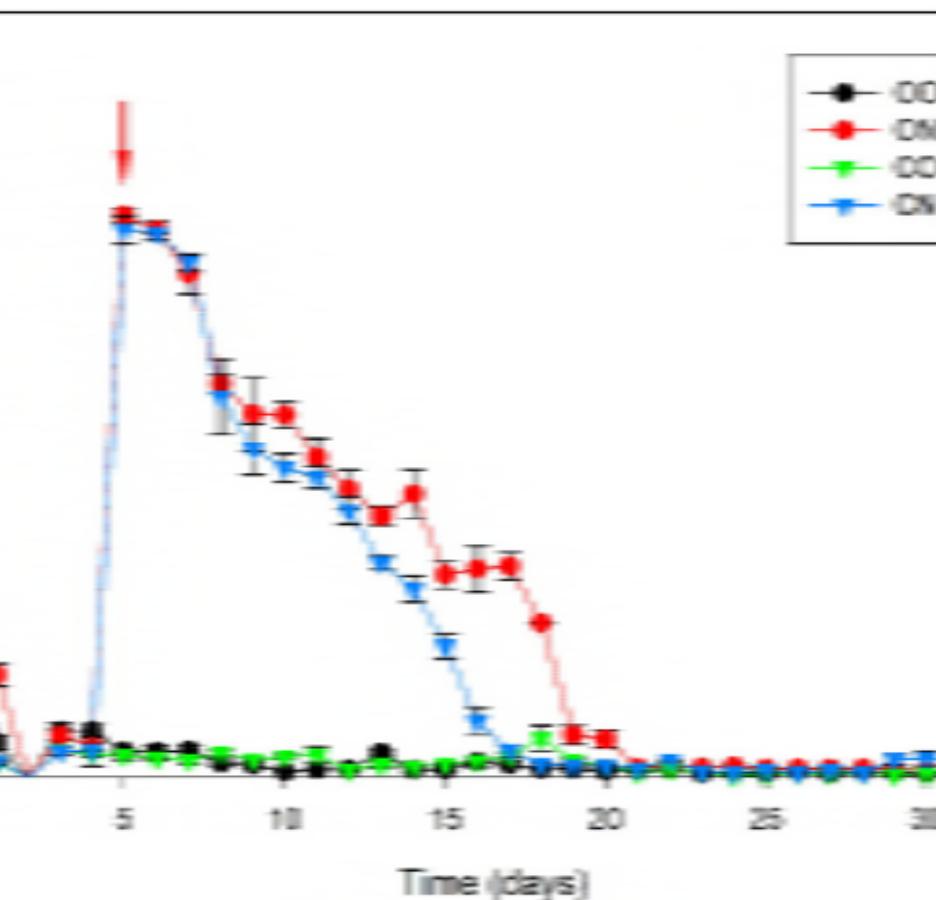
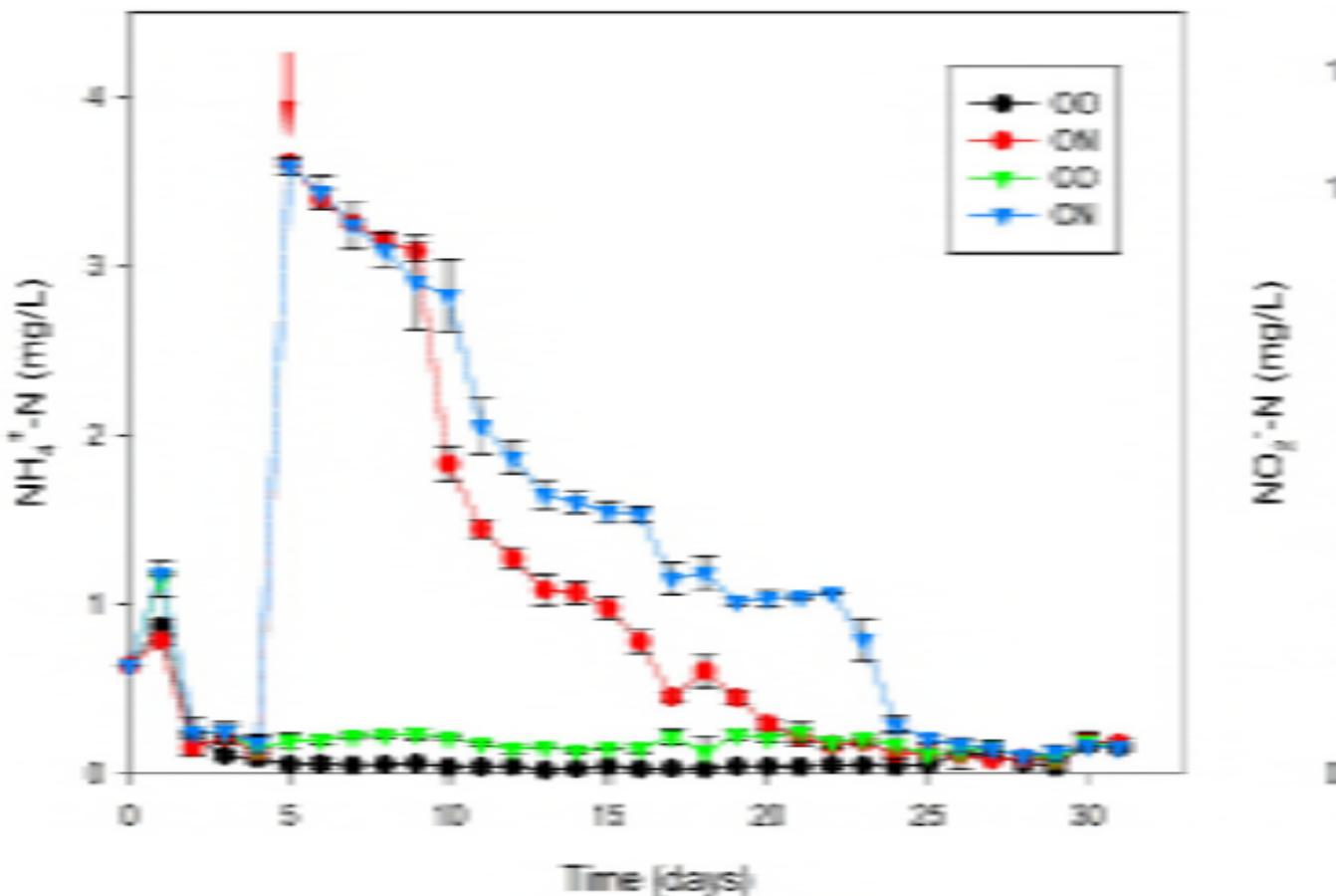
597

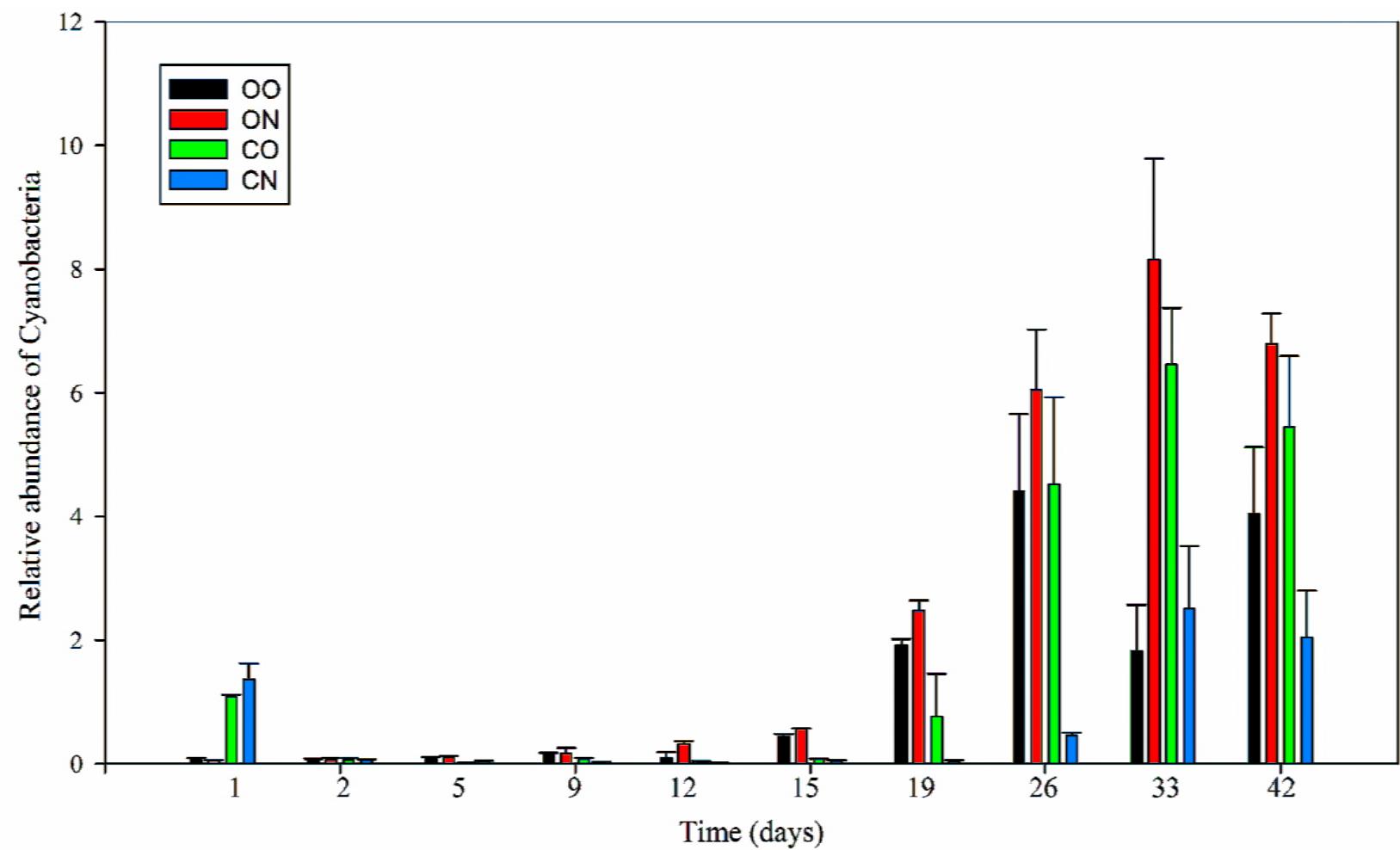
598 Fig. 1 Changes in the physical and chemical properties in the overlying water column
599 for the different groups. Error bars represent standard deviations based on analysis of
600 three replicates for each sample. The red arrows indicate supplementation with
601 exogenous nitrogen. OO, the uncontaminated microcosm without supplemental
602 nitrogen group; ON, the uncontaminated microcosm with supplemental nitrogen
603 group; CO, the crude oil-contaminated microcosm without supplemental nitrogen
604 group; CN, the crude oil-contaminated microcosm with supplemental nitrogen group.

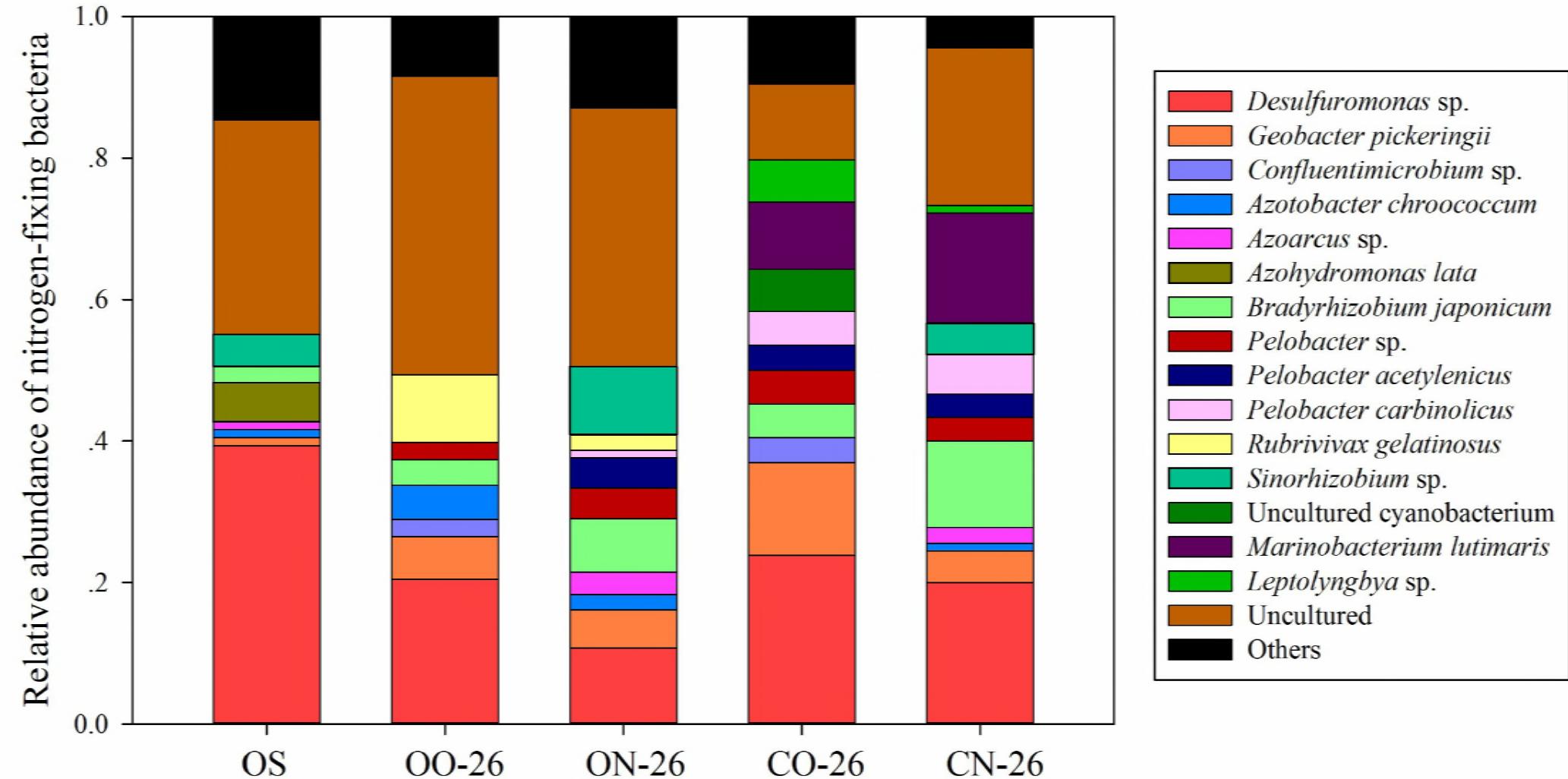
605

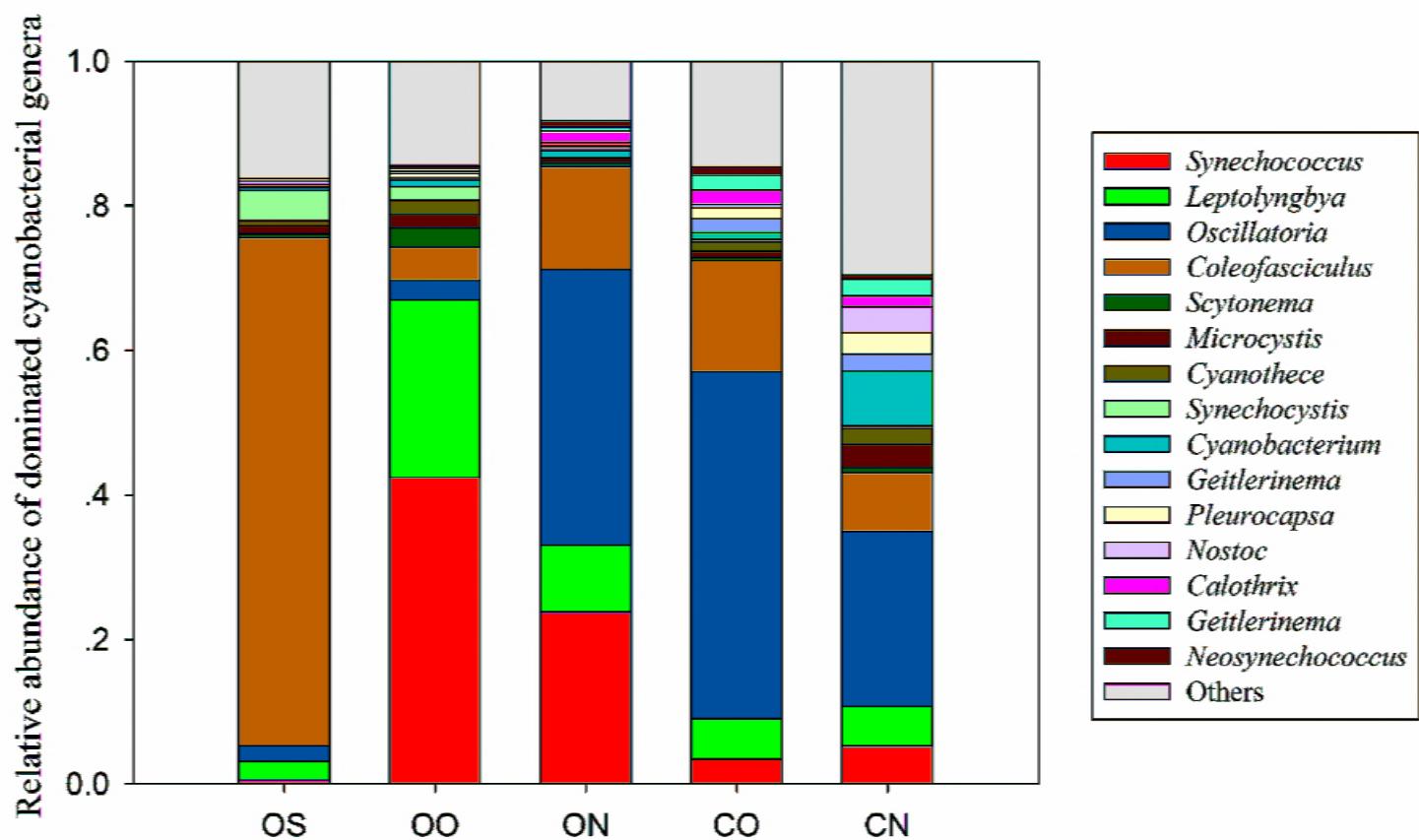
606 Fig. 2 The relative abundance of cyanobacteria in the different groups as determined
607 by MiSeq sequencing. Error bars represent standard deviations based on analysis of
608 three replicates for each sample.

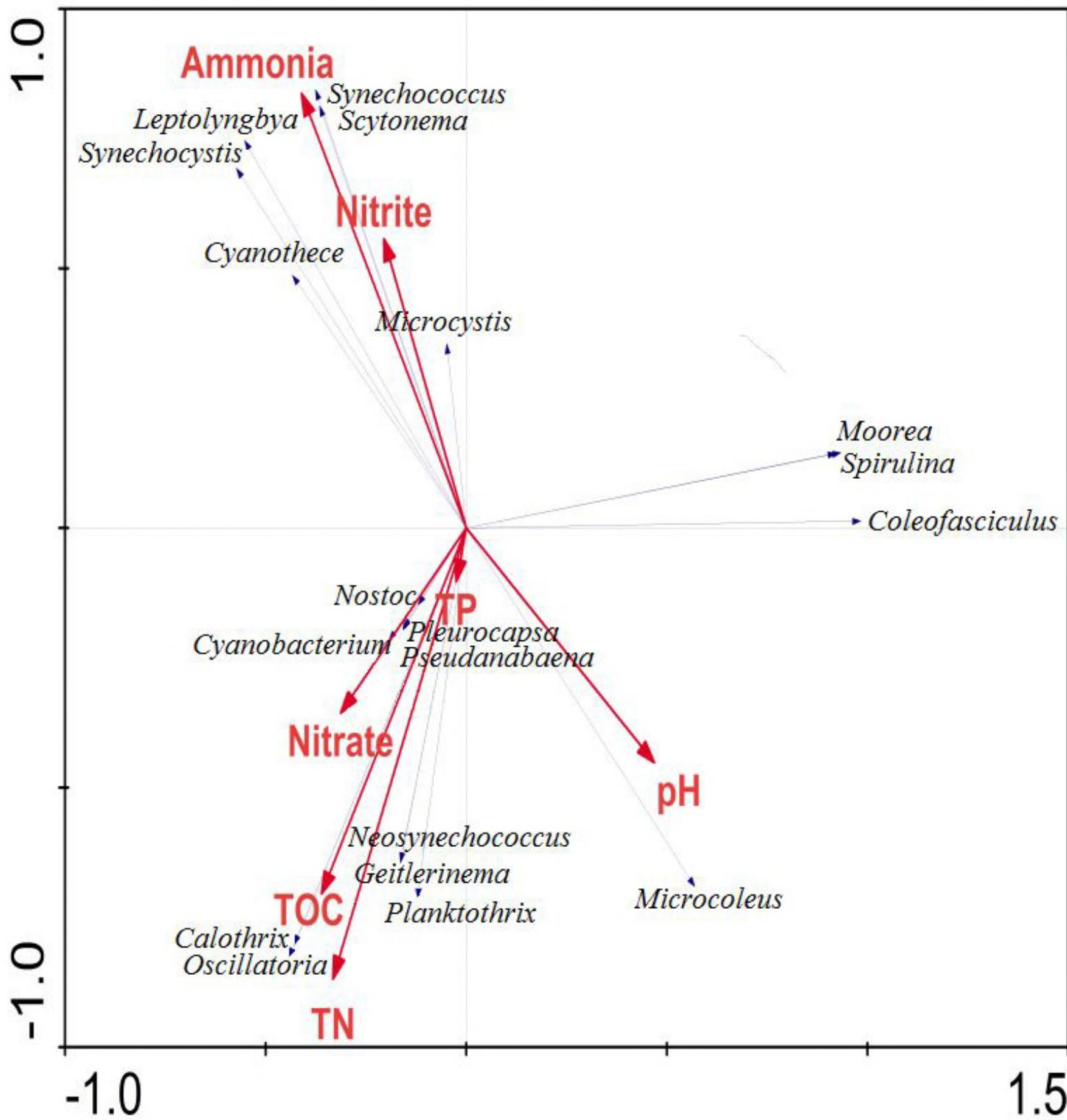
609




610 Fig. 3 The relative abundance of nitrogen-fixing bacteria in the original sediment and
611 on day 26. Less-abundant phyla are grouped under the category 'others.' OS were
612 derived from the original sediment. OO-26, ON-26, CO-26, and CN-26 were derived
613 from the uncontaminated microcosm without supplemental nitrogen group, the
614 uncontaminated microcosm with supplemental nitrogen group, the crude
615 oil-contaminated microcosm without supplemental nitrogen group, and the crude
616 oil-contaminated microcosm with supplemental nitrogen group on day 26,
617 respectively.


618


619 Fig. 4 The relative abundances of the dominant cyanobacteria genera in different
620 groups as determined by metatranscriptome sequencing. Less-abundant phyla are
621 grouped under the category 'others'.


622


623 Fig. 5 RDA ordination diagram of the data, with environmental variables represented
624 by red arrows and cyanobacterial genera abundance represented by gray arrows.
625 Correlations between environmental variables and RDA axes are represented by the
626 length and angle of the arrows.

