

1 **Genomic analysis of the mesophilic Thermotogae genus *Mesotoga* reveals**
2 **phylogeographic structure and genomic determinants of its distinct metabolism**

3 Camilla L. Nesbø^{1,2,3*}, Rhianna Charchuk¹, Stephen M. J. Pollo¹, Karen Budwill⁴, Ilya V.
4 Kublanov⁵, Thomas H.A. Haverkamp^{3,6} and Julia Foght¹

5 1 Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada

6 2 BioZone, Department of Chemical Engineering and Applied Chemistry, Wallberg
7 Building, University of Toronto, Toronto, ON, Canada.

8 3 Centre for Ecological and Evolutionary Synthesis, Department of Biosciences,
9 University of Oslo, Blindern, Oslo, Norway.

10 4 InnoTech Alberta, Edmonton, Alberta, Canada T6N 1E4

11 5 Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology,
12 Russian Academy of Sciences, Moscow, Russia

13 6 Norwegian Veterinary Institute, Oslo, Norway.

14

15 *Corresponding Authors: nesbo@ualberta.ca

16 Department of Biological Sciences, CW 405 Biological Sciences Bldg., 11455
17 Saskatchewan Drive , University of Alberta, Edmonton, Alberta, Canada, T6G 2E9

18

19 Running title: Comparative genomic analysis of *Mesotoga*.

20 Key words: Thermotogae, subsurface, gene recombination, oil reservoir, phylogeny,
21 sulfur metabolism, hydrogenase, anaerobe.

22

23

24 **Originality-Significance Statement**

25 This study comprises one of the first whole-genome-based phylogeographic analyses of
26 anaerobic mesophiles, and our data suggest that such microbes are more restricted by
27 geography than are thermophiles (and mesophilic aerobes). This is likely to be a general
28 trait for similar anaerobic organisms – and therefore broadly relevant to and testable in
29 other environments. Moreover, *Mesotoga* bacteria are part of the largely understudied
30 subsurface ecosystem that has relatively recently been recognized as a new and important
31 biosphere. Understanding the forces responsible for the distribution of organisms in the
32 subsurface, as well as the identification of genes responsible for *Mesotoga*'s distinct
33 metabolism, will contribute to the understanding of these communities.

34

35 **Summary**

36 The genus *Mesotoga*, the only described mesophilic *Thermotogae* lineage, is common in
37 mesothermic anaerobic hydrocarbon-rich environments. Besides mesophily, *Mesotoga*
38 displays lineage-specific phenotypes, such as no or little H₂ production and dependence
39 on sulfur-compound reduction, which may influence its ecological role. We used
40 comparative genomics of 18 *Mesotoga* strains (pairwise 16S rRNA identity > 99%) and a
41 transcriptome of *M. prima* to investigate how life at moderate temperatures affects
42 phylogeography and to interrogate the genomic features of its lineage-specific
43 metabolism. We propose that *Mesotoga* accomplish H₂ oxidation and thiosulfate
44 reduction using a sulfide dehydrogenase and a hydrogenase-complex and that a
45 pyruvate:ferredoxin oxidoreductase acquired from *Clostridia* is responsible for oxidizing
46 acetate. Phylogenetic analysis revealed three distinct *Mesotoga* lineages (89.6-99.9%
47 average nucleotide identity [ANI] within lineages, 79.3-87.6% ANI between lineages)
48 having different geographic distribution patterns and high levels of intra-lineage
49 recombination but little gene flow between lineages. Including data from metagenomes,
50 phylogeographic patterns suggest that geographical separation historically has been more
51 important for *Mesotoga* than hyperthermophilic *Thermotoga* and we hypothesize that
52 distribution of *Mesotoga* is constrained by their anaerobic lifestyle. Our data also suggest
53 that recent anthropogenic activities and environments (e.g., wastewater treatment, oil
54 exploration) have expanded *Mesotoga* habitats and dispersal capabilities.

55

56 **Introduction**

57 The genus *Mesotoga* is the only characterized mesophilic lineage within the otherwise
58 thermophilic bacterial phylum Thermotogae (Pollo *et al.*, 2015). *Mesotoga* spp. have
59 been isolated from and detected in polluted marine sediments, low temperature oil
60 reservoirs, and waste water treatment facilities (Nesbø *et al.*, 2010; Hania *et al.*, 2011;
61 Nesbø *et al.*, 2012; Hania *et al.*, 2013), and are common in anaerobic methanogenic
62 environments (Nesbø *et al.*, 2010) where they may be involved in syntrophic acetate
63 degradation (Nobu *et al.*, 2015). The first described member of this genus, *Mesotoga*
64 *prima* MesG1Ag4.2 (hereafter, *M. prima*), was isolated from a PCB-degrading
65 enrichment culture inoculated with sediments from Baltimore Harbor, Maryland (USA)
66 (Nesbø *et al.*, 2006; 2012). Sequencing the genomes of *M. prima* and the very closely
67 related *M. prima* PhosAc3 (hereafter, PhosAc3) isolated in Tunisia (Hania *et al.*, 2015)
68 revealed larger genomes than in thermophilic Thermotogae, with more genes involved in
69 regulatory functions and interactions with the environment (Zhaxybayeva *et al.*, 2012).

70 Genome size in Thermotogae inversely correlates with optimum growth
71 temperature (Zhaxybayeva *et al.*, 2012; Pollo *et al.*, 2015). However, it is unclear how
72 growth temperature affects other aspects of genome evolution including levels of
73 homologous recombination. Hyperthermophilic *Thermotoga* display extremely high
74 levels of homologous recombination, which could be a side effect of the need for DNA
75 repair at high temperatures (Nesbø *et al.*, 2015). Nesbø *et al.* (2015) also found high
76 levels of gene flow among all *Thermotoga* spp. genomes investigated, and that
77 populations from similar environments have exchanged more genes than geographically
78 close populations from different environments. For instance, *Thermotoga* genomes from

79 oil reservoirs in Japan and in the North Sea, as well as from a continental hot spring in
80 North America, have exchanged more genes through homologous recombination than
81 they have with genomes from geographically closer marine vents. Moreover, the
82 phylogeographic analysis of *Thermotoga* genomes suggested that oil reservoirs were
83 colonized from subsurface populations rather than being buried with the sediments that
84 mature into oil reservoirs reservoirs (a corollary of the paleosterilization hypothesis;
85 (Wilhelms *et al.*, 2001)) (Nesbø *et al.*, 2015). Comparative genomic analyses of
86 mesophilic Thermotogae may shed light on the role of growth temperature on
87 recombination and phyogeography.

88 In addition to lower optimal growth temperature (37°C - 40°C), *Mesotoga*'s core
89 energy metabolism also differs from that of other characterized thermophilic
90 Thermotogae. For instance, while growth of most thermophilic Thermotogae is
91 stimulated by adding sulfur compounds to the medium (Ravot *et al.*, 1995; Boileau *et al.*,
92 2016), reduction of sulfur compounds appears to be essential for growth of *Mesotoga* in
93 pure culture and they produce little or no H₂ (Hania *et al.*, 2011; 2013; Fadhloui *et al.*,
94 2017).

95 Here we compare 18 *Mesotoga* genomes obtained from isolates and single cells
96 originating from six geographically different sites, including three low temperature
97 continental oil reservoirs, in order to elucidate genomic markers of metabolic differences
98 and to investigate how growth temperature influences phyogeography and prevalence of
99 recombination. We also include in our analysis *Mesotoga* sequences from publicly
100 available metagenomes. We compare our findings from the mesophilic *Mesotoga* to the
101 patterns previously observed in the hyperthermophilic *Thermotoga* (Nesbø *et al.*, 2015)

102 and infer that geographic separation has had more influence on the phylogeography of
103 *Mesotoga*, possibly due to selective pressures of dispersal of strict anaerobes through
104 aerobic environments. Finally, we present a model that accounts for *Mesotoga*'s distinct
105 sulfur-dependent metabolism involving a hydrogenase complex.

106

107 **Results**

108 **Genome sequences**

109 We generated draft genomes for eight newly isolated *Mesotoga* strains from two oil
110 reservoirs (H and B) in Alberta Canada and one *Mesotoga* strain from a PCB-degrading
111 enrichment culture from Baltimore Harbor, Maryland USA (Table 1). Seven partial single
112 cell amplified genomes (SAGs) were obtained from cells sorted from produced water
113 from an Albertan oil reservoir (PW), a naphtha-degrading enrichment culture inoculated
114 with sediments from an Albertan oil sands tailings pond (NAPDC), and a toluene-
115 degrading enrichment culture inoculated with sediments from a contaminated aquifer in
116 Colorado USA (TOLDC). We also included in our analyses the draft genome of PhosAc3,
117 previously isolated in Tunisia (Hania *et al.*, 2015) and the closed genome of *M. prima*
118 (Zhaxybayeva *et al.*, 2012) from Baltimore Harbor.

119

120 Table 1

121 The pan-genome of the *Mesotoga* isolate genomes was estimated to be 7,452,537 bp with
122 an accessory genome of 5,664,475 bp; each genome contained a considerable amount of
123 lineage-specific DNA (Fig. S1; see Supporting Information for additional details of the

124 pan-genome and within-sample site diversity). In pairwise comparisons, the genomes
125 shared on average 77% of their genes (Supporting Table S1).

126

127 **Phylogenetic analysis reveals three distinct *Mesotoga* lineages.**

128 The 16S rRNA genes of all 17 genomes had $\geq 99\%$ identity to *M. prima*; phylogenetic
129 trees revealed three distinct lineages (Fig. 1a). Genome networks based on core single
130 nucleotide polymorphisms (SNPs) also had topologies consistent with the 16S rRNA
131 gene phylogeny, with three distinct lineages being evident (Fig. 1b). Two lineages have a
132 widespread geographical distribution: the World lineage (W; found in all regions
133 represented) and the US lineage found in Baltimore Harbor and Colorado in the USA.
134 The Alberta (A) lineage was observed in the Albertan samples only. Interestingly, *M.*
135 *prima* has one 16S rRNA gene from the W lineage and one from the US lineage,
136 suggesting one copy has been acquired laterally.

137

138 Figure 1

139

140 Very little reticulate evolution was observed among the three groups (Fig. 1b),
141 and the A lineage in particular showed very little connection with the other two groups,
142 suggesting that the three lineages have evolved independently for a relatively long time.
143 In agreement with this, the ANI within groups ranged from 89.6-99.9%, while ANI
144 between lineages ranged from 79.3-87.6% (Supporting Table S2). The same pattern was
145 observed for the pangenome, with most lateral connections occurring within groups (Fig.
146 1c). Moreover, genomes from isolates of the same lineages share more genes in

147 comparative analyses: average 86% within W and 92% within A (Supporting Table S1).

148 Comparing genomes from different lineages, the US lineage had an intermediate position,

149 sharing more genes with the A and W lineages: on average, genomes from A and W share

150 70% of genes, W and US share 76%, and A and US share 75% of their genes.

151 A high level of recombination was detected, with the majority (> 200) of

152 recombination events involving genomes from the same lineage (Fig. S2). For the W and

153 A lineages, respectively, the average recombination tract length was estimated to be

154 36,000 – 56,000 bp and 17,000–23,000 bp; the population mutation rate (θ) was

155 estimated to be 0.022 and 0.013, and the population recombination rate (γ) to be 1.8

156 (range 1.5–2.2) and 1.5 (1.3–1.7). The resulting high γ/θ ratios of ~82–115 indicate high

157 levels of recombination and are similar to estimates for *Thermotoga* spp. (Nesbø *et al.*,

158 2015).

159 Phylogenetic analysis identified 52 regions where recombination likely occurred

160 between lineages: 39 regions showed evidence of recombination between *Mesotoga* sp.

161 BH458 and the W lineage, eight regions suggested recombination between *Mesotoga* sp.

162 BH458 and the A lineage, and only five regions showed possible recombination between

163 A- and W-lineage genomes (Fig. 2). The regions with recombination involving the A

164 lineage were short (range 230–530 bp) and the sequences more divergent, whereas

165 several of the fragments involving the W lineage and *Mesotoga* sp. BH458 were > 5 kb

166 (average 3000 bp, range 260–20,000). Multiple recombination events in the same locus

167 will eventually result in shorter recombinant fragments being detected (see, e.g. (Mau *et*

168 *al.*, 2006)). Taken together with the >10 kb length of the recombinant fragments detected

169 in the within-lineage analysis, this difference in recombinant-fragment-length suggests

170 that recombination events between the W lineage and *Mesotoga* sp. BH458 are more
171 recent than those involving the A lineage. Very high levels of recombination were
172 observed for a few genes. Among these is Theba_0319 in *M. prima*, the fourth most
173 highly expressed gene (Supporting Table S3) that encodes the OmpB protein (Petrus *et*
174 *al.*, 2012), a major component of the toga structure of Thermotogae.

175

176 Figure 2

177

178 **Comparison to metagenomes and phylogeographic patterns of the three *Mesotoga***
179 **lineages**

180 We expanded the *Mesotoga* sequence dataset by searching IMG/M (in JGI) and SRA (in
181 NCBI) databases for metagenomes containing *Mesotoga* spp. sequences. Fifteen
182 metagenomes containing sequences closely related to the *Mesotoga* genomes investigated
183 here were identified, arising from two environments already described (tailings pond and
184 oil reservoir in Alberta), as well as oil reservoirs, contaminated sediments, wastewaters
185 and hotspring sediments across the continental USA, and wastewaters in China (Table 2
186 and Supporting Information).

187

188 Table 2

189

190 **Recent range expansion of the W-lineage:** *Mesotoga* sequences with high similarity to
191 the W lineage were identified using BLASTN searches in several wastewater treatment
192 systems confirming its wide distribution in these environments (Table 2). A network

193 including population genomes (PGs) of *Mesotoga* contigs (with > 90% sequence identity
194 to W isolate genome) from three metagenomes dominated by W lineage sequences (Long
195 Beach, Boston and Hong Kong, Table 2) revealed no geographical structuring.

196 ***Isolation by distance can explain the distribution of US genomes:*** The
197 metagenome data expanded the observed distribution of the US lineage. As expected,
198 metagenome IMG 15764 from Albertan oil reservoir E (the source of *Mesotoga* sp.
199 SC_PW1-3) contained sequences with high identity to the A lineage. However, it also
200 contained many sequences with high identity to the US lineage (Table 2), and sequence
201 binning yielded two *Mesotoga* metagenome-assembled genomes (MAGs): one most
202 similar to US-genomes (Fig. S3b) and one with a mix of sequences from the A lineage
203 and US lineage (not shown).

204 The network of US-*Mesotoga* including PGs composed of contigs from
205 metagenomes in Table 2 (with sequence identity > 80% to US-isolate genomes) revealed
206 three groups (Fig. S3b) where PGs from New York and Blank Spring (California) form a
207 cluster that does not contain any of the genomes sequenced in this study (Table 1). The
208 clustering of remaining genomes correlates with both geography and environment type:
209 the MAG assembled from oil reservoir E (Alberta), two MAGs from an Alaskan oil
210 reservoir (Hu *et al.*, 2016), and the *Mesotoga* sequences from Alameda (California)
211 clustered with SC_TOLDC from Colorado (western North America), while the *Mesotoga*
212 sequences from New Jersey clustered with *Mesotoga* sp. BH458 from Baltimore Harbor
213 (eastern North America). We therefore suggest that the divergence patterns seen for this
214 lineage can be explained at least partly by an isolation-by-distance model.

215 ***Evolution of the A-lineage in isolation in North-American oil reservoirs:*** The

216 metagenome sequences revealed that the A lineage is not restricted to Alberta, nor is it
217 specific to oil reservoirs (Table 2), having substantial numbers of A-lineage sequences
218 detected in wastewater metagenomes. For this lineage, MAGs were available from the
219 same oil reservoir in Alaska where we observed the US-lineage (Hu *et al.*, 2016), an
220 anaerobic wastewater digester in Oakland (California), and one, assembled by us, from a
221 PCB-fed culture inoculated with sediments from Liangjiang River, China (Wang and He,
222 2013). Network analysis revealed that the genome from the Alaskan oil reservoir is most
223 similar to those from the Albertan oil reservoir B, whereas the genomes from China and
224 California show high similarity (> 99%) to each other and to *Mesotoga* sp. SC_NapDC
225 from a northern Albertan oil sands tailings pond (Fig. S3c).

226

227 **Distinct metabolism in mesophilic Thermotogae**

228 We also examined the newly available genomes for metabolic insights, which may be
229 linked to *Mesotoga*'s lower growth temperatures and may influence the role(s) *Mesotoga*
230 play in their environments.

231 ***Mesotoga*-specific genes:** Comparison of the *Mesotoga* isolate genomes to other
232 Thermotogae genomes in IMG revealed 200 *M. prima* genes found in all *Mesotoga*
233 genomes (including the more distantly related *Mesotoga infera* not included in the
234 phylogenomic analyses), but in no other Thermotogae genomes. The majority of these
235 genes were hypothetical proteins (N=119, Supporting Table S3). When *Mesotoga*-
236 specific genes with a predicted function were classified according to Clusters of
237 Orthologous Groups (COG) categories, the largest category was 'Amino Acid

238 metabolism and transport' with 11 genes, most of which were dipeptidases (COG4690,
239 N=6).

240 ***Mesotoga*-specific genes related to O₂ exposure:** Several *Mesotoga*-specific
241 genes are predicted to be involved in oxygen radical defense (Supporting Table S4). One
242 of the most highly conserved genes across all the *Mesotoga* genomes (Theba_1553;
243 average pairwise identity 96.3%) shows similarity to peroxiredoxin and alkyl
244 hydroperoxide reductase domain-encoding genes. Moreover, a catalase gene
245 (Theba_0075) is found in all isolate genomes except those from oil reservoir H.

246 ***Reducing equivalents and thiosulfate reduction:*** *Mesotoga*'s core metabolism
247 differs from that of other characterized Thermotogae. While growth of most Thermotogae
248 is stimulated by, but not dependent upon, the presence of thiosulfate, sulfur, or other
249 reduced sulfur compounds in laboratory medium (Ravot *et al.*, 1995; Boileau *et al.*, 2016),
250 reduction of sulfur compounds appears to be essential for growth of *Mesotoga* in pure
251 culture (Hania *et al.*, 2011; 2013; Fadhloui *et al.*, 2017). The first description of *M.*
252 *prima* (Nesbø *et al.*, 2012) reported that growth was only slightly stimulated by the
253 presence of thiosulfate or sulfur. However, here we observed growth of this isolate only
254 in the presence of sulfur or thiosulfate (Supporting Table S5 and Table S6), confirming
255 that this is a general trait of *Mesotoga* spp. Additionally, while other Thermotogae
256 produce H₂ (and H₂S if grown with partially reduced sulfur compounds), *Mesotoga* spp.
257 produce large amounts of H₂S and no or little H₂ (Supporting Table S5).

258 To reconcile these observations with genomic data, transcriptome analysis was
259 performed using a culture of *M. prima* grown with 0.5% yeast extract, xylose and
260 thiosulfate. RNAseq analysis revealed high expression of Theba_0443 (RPKM of 3650;

261 Supporting Tables S3 and S4) encoding a Fe-hydrogenase homologous to the one used by
262 *Kosmotoga olearia* (Kole_0172). Hydrogenases are indeed essential in Thermotogae for
263 recycling of ferredoxins (Schut *et al.*, 2013); therefore, finding the same hydrogenase to
264 be highly expressed in *M. prima* and *K. olearia*, and conserved in all *Mesotoga* genomes
265 investigated here, suggests that *Mesotoga* possesses a mechanism relying on oxidized
266 sulfur compounds, efficiently converting all intracellularly produced H₂ to H₂S. Notably,
267 there was no change in the culture headspace gas H₂:N₂ ratio after incubating *Mesotoga*
268 spp. in a 1:9 H₂:N₂ atmosphere for > 5 months (Supporting Table S5), suggesting that
269 *Mesotoga* neither produces nor takes up externally supplied H₂.

270 No homologs of characterized thiosulfate reductases were identified, although the
271 *Mesotoga* genomes carry homologs (Theba_0076; Theba_0077 in *M. prima*) of an
272 archaeal intracellular ferredoxin:NADP oxidoreductase (SudAB; (Hagen *et al.*, 2000))
273 capable of acting as a sulfide dehydrogenase in the presence of elemental sulfur or
274 polysulfide (Fig. 3). Both genes were transcribed at moderate levels in *M. prima* grown
275 with thiosulfate (RPKM 341 and 243, respectively), whereas the *K. olearia* homologs
276 (Kole_1827, Kole_1828) were highly expressed under similar conditions (RPKM > 1000,
277 (Pollo *et al.*, 2017). SudAB complexes, however, are not known to be involved in
278 thiosulfate reduction. This is probably due to an unfavorable $E^\circ = 82$ mV for the reaction
279 when NADH acts as electron donor: $E^\circ [S_2O_3^{2-}/HS^- + SO_3^{2-}] = -402$ mV and E°
280 $[NAD+/NADH] = -320$ mV. The E° of $[Fd_{Ox}/Fd_{Red}]$ is similarly high at -390 mV.
281 Comparable endergonic reactions are catalyzed by the *Salmonella enterica* thiosulfate
282 reductase (Phs) by utilizing proton-motive force (Stoffels *et al.*, 2012). However, the
283 cytoplasmic SudAB complex cannot couple proton-motive force and reduction of an

284 external electron acceptor. Thus, neither NADH nor Fd_{Red} can function as electron donors
285 for thiosulfate reduction by *M. prima*. Instead molecular H_2 with $E^{\circ\wedge}$ $[\text{H}^+ / \text{H}_2] = -410$
286 mV appears to be a thermodynamically preferable electron donor for thiosulfate reduction.
287 The only hydrogenase present in the *M. prima* genome is the highly expressed FeFe-
288 hydrogenase (Theba_0443), which usually is involved in Fd -dependent H_2 production
289 (Vignais and Billoud, 2007). However, a cluster of five highly transcribed genes
290 (Theba_0461 – 0465, RPKM 1203-3697, Supporting Table S4) encodes proteins
291 homologous to all subunits of the NADP-reducing hydrogenase Hnd of *Desulfovibrio*
292 *fructosovorans* (Nouailler *et al.*, 2006) except the catalytic subunit (HndD). These
293 proteins may work together with Theba_0443 to form a FeFe-hydrogenase complex (Fig.
294 3). We hypothesize that this complex is involved in intracellular synthesis of molecular
295 hydrogen for thiosulfate reduction by SudAB coupled to NADH oxidation (formed by
296 Mbx and/or Rnf complexes, see below and Fig. 3). The Hnd genes have homologs in
297 other Thermotogae, however, similar genomic context is observed only in genomes of
298 other *Mesotoga* and *Kosmotoga* spp. (Supporting Table S7).

299

300 Figure 3

301

302 *Mesotoga* cells require enzymes that re-oxidize Fd_{red} formed during sugar
303 oxidation. This might be carried out by either the NADP:ferredoxin oxidoreductase
304 complex (Mbx; Theba_1796-1808 in *M. prima*, (Schut *et al.*, 2013)) or the Rnf ion-
305 motive electron transport complex (Theba_1343-1348; (Müller *et al.*, 2008). Conserved
306 motifs (Mulkidjanian *et al.*, 2008) suggested a Na^+ -translocating F-type ATP synthase

307 operating in *M. prima*. As a consequence, both Mbx and Rnf complexes are predicted to
308 export Na⁺ generating sodium- motive force instead of proton-motive force. Genes
309 encoding Mbx and Rnf show low and moderate expression (RPKM 37-88 and 236-478,
310 respectively) during growth on thiosulfate, and the expression values suggests that Rnf is
311 the main complex involved.

312 ***Acetate and xylose utilization:*** Growth on acetate was reported for *Mesotoga*
313 PhosAc3 (Hania *et al.*, 2015), and we observed weak stimulation of growth of its close
314 relative *M. prima* by acetate (day 5-10 in Supporting Fig. S4 and Table S6). (Nobu *et al.*,
315 2015) suggested that Ca. “*Mesotoga acetoxidans*”, a MAG closely related to *M. infera*,
316 oxidizes acetate by using a novel pathway even though the genes comprising the pathway
317 are conserved in all Thermotogae genomes. Yet, this phenotype is uncommon among
318 Thermotogae and has been reported only for *Pseudothermotoga lettingae* (Balk *et al.*,
319 2002). Instead, many Thermotogae are inhibited by acetate, including one of *Mesotoga*’s
320 closest relatives, *K. olearia* (Dipippo *et al.*, 2009). Our search for *Mesotoga*-specific
321 genes that may be responsible for their observed growth on acetate revealed a candidate
322 gene encoding a bacterial homodimeric pyruvate:ferredoxin oxidoreductase (PFOR;
323 Theba_1954), with close homologs only found in *Kosmotoga pacifica* (Jiang *et al.*,
324 2017) and *Mesoaciditoga lauensis* (Reysenbach *et al.*, 2013) . Unfortunately, the
325 description of these two species did not investigate growth on acetate. The *pfor* gene is
326 distantly related to the archaeal multi-subunit-type used by other Thermotogae (Ragsdale,
327 2003) and almost all its close homologs fall within the *Clostridia* (Supporting Fig. S4).
328 Genes having 97-99% identity to *pfor* from *M. infera*, and 83-85% identity to the *M.*
329 *prima* homolog, were found in both the metagenome and metatranscriptome published by

330 (Nobu *et al.*, 2015) (locus tag JGI12104J13512_10052834 and
331 JGI11944J13513_10066464) but were not included in their model. We propose that
332 PFOR may work with the acetate kinase (Theba_0428 in *M. prima*) and
333 phosphotransacetylase (Theba_0782 in *M. prima*) found in all Thermotogae to enable
334 *Mesotoga* to grow on acetate. At high extracellular acetate concentrations we suggest that
335 PFOR shifts the balance favoring the production of pyruvate from acetyl-CoA (i.e. serves
336 as an acetate switch (Wolfe, 2005)).

337 *M. prima* grows optimally on xylose, a sugar fermented by many Thermotogae
338 (Bhandari and Gupta, 2014). The D-xylose utilization pathway is similar to that observed
339 in Firmicutes (Gu *et al.*, 2010) (Fig. 3). Several possible xylulose kinase genes were
340 found co-localized with genes encoding xylosidases, sugar transporters, and kinases,
341 suggesting their synergetic activities in xylan hydrolysis, xylose import, and utilization.

342

343 **Discussion**

344 ***Mesotoga* have conserved core genomes and diverse pangenomes**

345 The comparative analysis of the *Mesotoga* genomes revealed higher levels of diversity in
346 genome content than observed in the hyperthermophilic Thermotogae. Whereas
347 *Thermotoga* spp. share > 90% of their genes in pairwise comparisons (Nesbø *et al.*, 2015),
348 *Mesotoga* genomes from the same lineage share on average 86% - 92% of their genes.
349 (Nesbø *et al.*, 2015) suggested that high levels of recombination may be partly
350 responsible for homogenizing *Thermotoga* spp. genomes. However, since we observed
351 similar high levels of recombination within the *Mesotoga* W and A lineages, additional
352 forces must be responsible for the larger proportion of variable accessory genes. Perhaps

353 more cryptic niches are available in low- versus high-temperature subsurface
354 environments (McInerney *et al.*, 2017), or *Mesotoga* may have larger effective population
355 sizes than the hyperthermophiles (Andreani *et al.*, 2017).

356 Comparing the nucleotide divergence within the core genomes revealed ‘species’
357 level divergence between the three lineages detected (ANI < 87%), while ANI within the
358 A and W lineage was very high at 98.5% and 97.5%, respectively. In comparison, the
359 ANI among the *Thermotoga* genomes investigated by (Nesbø *et al.*, 2015) was 95.3%.
360 Thus *Mesotoga* spp., particularly those from the W-lineage, appear to have more
361 conserved core genomes and more diverse pangenomes than their hyperthermophilic
362 relatives.

363

364 **Three *Mesotoga* lineages with distinct phylogeographies: isolation by distance, range
365 expansion, and burial with isolation**

366 The networks calculated for both the core and the pangenome gave the same overall
367 topology as that observed in the 16S rRNA tree with three distinct groups. The low level
368 of recombination observed among these three groups suggests they have evolved
369 independently for a relatively long time. The observation of several recent recombination
370 events between the W and US lineages, which currently co-exist in at least one location
371 (i.e., Baltimore Harbor), demonstrates that recombination between lineages is possible.
372 We therefore suggest that the three *Mesotoga* lineages have evolved independently due to
373 geographical, not genetic, isolation. This is contrary to the patterns of gene flow observed
374 in *Thermotoga* spp. genomes, where environment type was more important than
375 geographic separation in determining level of gene flow (Nesbø *et al.*, 2015). Although it

376 may seem counterintuitive that mesophilic *Mesotoga* would be more affected by
377 geographical separation than hyperthermophilic *Thermotoga*, this may be a consequence
378 of their anaerobic metabolism. (Chakraborty *et al.*, 2018) showed that bacteria are
379 dispersed out of deep hot subsurface oil reservoirs and into the ocean through
380 hydrocarbon seeps, and this might serve as a major route of migration between these
381 environments. Moreover, temperature gradients associated with hydrothermal systems are
382 often very sharp (Dick *et al.*, 2013), and hyperthermophilic *Thermotoga* cells will
383 therefore quickly become inactive if they enter cold aerobic ocean water (Fig. S6).
384 Mesophilic *Mesotoga* cells will, however, more likely enter oxygenated environments
385 having a suitable temperature before they reach a new optimal anaerobic site and
386 therefore may more often succumb to oxygen exposure, limiting viable dispersal and
387 gene exchange (Fig. S6). In support of this, many *Mesotoga*-specific genes appear to be
388 involved in O₂ or H₂O₂ detoxification.

389 Within the three lineages we see patterns consistent with different
390 phylogeographic histories. Comparing the isolate genomes to *Mesotoga* sequences in
391 metagenomes, the US-lineage shows patterns consistent with isolation by distance.
392 Moreover, the US-lineage has an intermediate position between the A- and W-lineages
393 when considering ANI, gene content, and recombination, which may be due to this
394 lineage co-existing with both W and A genomes (e.g. Baltimore Harbor, Oil field E).

395 Members of the widespread W-lineage show high identity in their core genomes,
396 large pan-genomes, and no indication of geographical structuring, indicative of a recent
397 range expansion (Choudoir *et al.*, 2017). To date, W lineage *Mesotoga* have been
398 detected only at sites heavily influenced by human activities (e.g., drilling,

399 contamination), suggesting an anthropogenic role in their dispersal and possibly selective
400 pressure on these genomes. Interestingly, one of the W-lineage-specific genes
401 (Theba_0620, Supplemental material) is involved in synthesis of poly-gamma glutamate,
402 which has been implicated in survival under harsh conditions and may have contributed
403 to the wide distribution of this lineage.

404 The A lineage is more isolated from the other lineages (Fig. 1 and 2), which might
405 suggest that this clade evolved in isolation since the formation of oil reservoir sediments
406 in Alberta 55–120 Ma (Schaefer, 2005; Selby, 2005; Head *et al.*, 2014). The high
407 similarity of the MAGs from the Alaskan oil field to the Albertan genomes and MAGs
408 from the A and US lineages (Fig. S3) could be due to these oil reservoir sediments being
409 laid down around the same time (~100 Ma (Hu *et al.*, 2016). However, the position of
410 these MAGs in the genome networks could also be explained by these oil reservoirs
411 being colonized by the same subsurface population, as suggested for *Thermotoga* spp.
412 (Nesbø *et al.*, 2015). Additional oil reservoir genomes are needed to resolve this question
413 and also to determine if the A-lineage is indeed indigenous to oil reservoirs.

414 Also this lineage has likely experienced recent dispersal events due to human
415 activities: MAGs from a polluted river bank in Liangjiang, China (Wang and He, 2013)
416 and waste water from Oakland (California) showed very high identity to *Mesotoga* sp.
417 SC_NapDC from a northern Albertan oil sands tailings pond. In fact, these genomes
418 show the second highest level of pairwise identity among the A lineage genomes (Fig.
419 S3d), suggesting recent dispersal, possibly due to human activities in the last decades.
420

421 **Distinct metabolism in mesophilic Thermotogae.**

422 The *Mesotoga* genomes and transcriptome also elucidated the genetic background for
423 their distinct energy metabolism compared to thermophilic Thermotogae bacteria, i.e. the
424 strict need for sulfur or thiosulfate and no or little H₂ production, but rather H₂S
425 production unless in co-culture with a sulfate reducer (Fadhlaoui *et al.*, 2017). (Fadhlaoui
426 *et al.*, 2017) suggested that *Mesotoga*'s inability to ferment sugars is mainly due to its
427 lack of a bifurcating hydrogenase. However, *K. olearia* also lacks this enzyme and
428 ferments pyruvate, producing large amounts of hydrogen using the homolog of *M.*
429 *prima*'s only Fe-hydrogenase (Pollo *et al.*, 2017). In the model in Fig. 3 panel A, we
430 therefore instead suggest this is accomplished by utilizing a bifurcated hydrogenase,
431 SudAB, Mbx and Rnf.

432 The model shown in Fig. 3 panel A accounts for the observed dependence of *M.*
433 *prima* on sulfur or thiosulfate for growth, the lack of H₂ production, and involves proteins
434 previously implicated in hydrogen and sulfur metabolism. Importantly, however,
435 currently there are no known enzymes that couple H₂ oxidation and thiosulfate/sulfur
436 reduction. It is therefore possible that *M. prima* SudAB uses NADH as the electron donor
437 and is much more effective than the hydrogenase which results in almost no H₂ as growth
438 product (Fig. 3 panel C).

439 Alternatively, thiosulfate reduction coupled to H₂ oxidation (i.e., the postulated
440 role of SudAB; Fig. 3 panel A) may be performed solely by one of the highly-transcribed
441 hypothetical *Mesotoga* proteins with no match to genes in *Kosmotoga* and other
442 Thermotogae, or in combination with SudAB (Fig. 3 panel B). Several candidate genes
443 listed in Supporting Table S4 encode proteins with unknown functions. Functional
444 studies of these genes, as well as the gene products shown in Fig. 3, are needed to assess

445 their role, if any, in thiosulfate reduction. Additional genes that may be involved in
446 thiosulfate uptake and electron transfer are also discussed in Supporting Information.
447 Interestingly, PhosAc3 and *M. infera* were found to reduce only elemental sulfur (Hania
448 *et al.*, 2011; 2013) whereas the strains isolated by us also reduce thiosulfate. These
449 differences may reflect selection during isolation; all the isolates obtained in the current
450 study were from enrichment cultures containing thiosulfate, whereas PhosAc3 and *M.*
451 *infera* were enriched with sulfur. This suggests that the sulfur-compound-preference may
452 be a variable and flexible phenotype in *Mesotoga* populations.

453 We also observed gene content differences that probably are directly linked to
454 *Mesotoga*'s lower growth temperature. The higher abundance of genes associated with
455 oxygen radical defense may be linked to the lower growth temperatures of *Mesotoga*
456 versus thermophilic Thermotogae. O₂ solubility in water is greater and free radicals are
457 stabilized at low temperatures, and organisms living at low temperatures are therefore
458 exposed to higher concentrations of reactive oxygen species (Piette *et al.*, 2010). It should
459 be noted that the transcriptome of *M. prima* grown anaerobically revealed that two of the
460 genes possibly involved in O₂ or H₂O₂ defense (Theba_0075, Catalase and Theba_2399,
461 Rubrerythrin) were highly expressed (top 5% of expressed genes; Supporting Table S3
462 and S4), suggesting that these genes may have additional or alternative functions under
463 anaerobic conditions. Further investigation is needed to clarify the transcriptional
464 responses of these genes and identify the targets of their enzymes.

465

466 **Conclusion**

467 Our genomic analysis suggests that the lower growth temperature of *Mesotoga* spp.
468 compared to the hyperthermophilic *Thermotoga* has likely influenced *Mesotoga*
469 phylogeography, with geographic separation historically having a greater influence than
470 genetic separation, possibly due to the damaging effects of oxygen exposure during
471 dispersal (Fig. S6). Whether this is a general feature of strictly anaerobic organisms
472 remains to be resolved. There is also some indication of possible ecotype differentiation
473 among the *Mesotoga* lineages, with the US lineage being common in communities
474 degrading aromatic pollutants (PCB, toluene) and the A lineage in hydrocarbon-impacted
475 sites. However, for both of these lineages, inspection of metagenomes revealed they are
476 not restricted to these environments. The analysis including data from metagenomes also
477 suggests that anthropogenic activities have expanded *Mesotoga*'s habitats and also
478 enhanced its dispersal capabilities (Fig. S6), with inferred recent long-distance dispersal
479 events involving anthropogenic environments and/or activities.

480 The ecological role of *Mesotoga* *in situ* may differ from their thermophilic
481 relatives. For instance, hydrogen-producing *Thermotoga* spp. have been shown to grow in
482 syntrophy with hydrogenotrophic methanogens (e.g., (Johnson *et al.*, 2005)) but this is
483 likely not the case for *Mesotoga* that produce only trace amounts or no detectable
484 extracellular H₂. Supporting this proposal, we were unable to establish co-cultures of *M.*
485 *prima* and a hydrogenotrophic methanogen (not shown). Instead (Fadhlaoui *et al.*, 2017)
486 showed that *Mesotoga* spp. prefer to grow in syntrophy with hydrogenotrophic sulfate-
487 reducing bacteria. This, together with the ability to both produce and consume acetate,
488 suggests that *Mesotoga* will assume different environmental roles than their thermophilic
489 relatives, for instance by supporting the growth of sulfate reducers rather than

490 methanogens. An interesting question is whether they also grow syntrophically with other
491 common hydrogenotrophic organisms in their niches, such as organohalide-respiring
492 *Dehalococcoides* (e.g. (Fagervold *et al.*, 2007)). Finally, the large amounts of H₂S
493 produced by *Mesotoga* could have detrimental effects on oil reservoirs, production
494 facilities, and pipelines where *Mesotoga* is commonly found. Monitoring the presence of
495 *Mesotoga* spp. in addition to the more commonly targeted sulfate reducers in these
496 industrial environments (Lee *et al.*, 1995) may be informative and valuable.

497

498 **Experimental procedures**

499 *Sources of genome sequences*

500 Nine *Mesotoga* strains (BR, HF and BH designations) were isolated from oil reservoirs
501 and anaerobic sediments in Canada and the USA (Table 1). All nine available isolates
502 were selected for genome sequencing. In addition, seven single cells were physically
503 selected from oil field fluids or oil sands enrichment cultures from Canada or a
504 contaminated aquifer in the USA (PW, NAPDC and TOLDC designations, respectively)
505 and amplified by PCR to produce SAGs. Detailed descriptions of isolation procedures,
506 DNA extraction, genome assembly and annotation are provided in Supporting
507 Information.

508 To augment the strain genomes, 15 publicly available metagenomes containing
509 large numbers of *Mesotoga* spp. sequences were identified using blastn searches of IMG
510 (JGI; accessed February 2017) and SRA (NCBI; accessed December 2016) using *rpoB*
511 from *M. prima* as a probe and expected (exp.) set to < e⁻⁵⁰. For additional details on

512 search parameters and information on assembly of draft genomes from metagenomic
513 sequences or contigs see Supporting Information.

514

515 *Genome content and genome alignments*

516 Shared genes and genome specific genes were identified in IMG Version 4 (Markowitz *et*
517 *al.*, 2014) using translated proteins and 70% identity cut-off and exp. $< e^{-10}$, whereas
518 30% sequence identity cut-off and exp. $< e^{-5}$ were used to identify lineage-specific genes
519 and for comparing *Mesotoga* genomes to other Thermotogae genomes.

520 Pan-genome calculations were performed in Panseq (Laing *et al.*, 2010) using a
521 fragment size of 500 bp and 70% identity cutoff, and exp. $< e^{-10}$. The data matrices of
522 shared core SNPs and 500-bp fragments were converted into uncorrected distances and
523 visualized in SplitsTree 4 (Huson and Bryant, 2006) using NeighborNet clustering.

524 Whole genome alignments were carried out in MAUVE version 2.3.1 (Darling *et*
525 *al.*, 2010) using automatically calculated seed weights and minimum Locally Collinear
526 Blocks (LCB) scores. LCB positions with gaps were removed and the edited LCB were
527 concatenated in Geneious v.10 (www.geneious.com). Average nucleotide identities
528 (ANI) were calculated at <http://enve-omics.ce.gatech.edu/ani/> (Goris *et al.*, 2007).

529

530 *Recombination detection*

531 The relative rate of recombination to mutation within lineages, as well as the average
532 recombination tract length, were assessed using the LDhat package (McVean *et al.*, 2002;
533 Jolley *et al.*, 2004) as described by (Nesbø *et al.*, 2015) on concatenated alignments
534 (including LCB $> 10,000$ bp) of genomes from the W and the A lineage separately.

535 Recombinant fragments between lineages were detected using LikeWind Version 1.0
536 (Archibald and Roger, 2002) on the concatenated MAUVE alignment (above), using a
537 sliding window of 1000 bp with 100-bp increments.

538

539 *RNAseq analysis*

540 RNA isolation from a culture of *M. prima* (grown at 45°C for 73 h in 0.5% yeast extract,
541 0.01 M thiosulfate and 0.5% xylose) and subsequent sequencing as one of five barcoded
542 libraries were performed as described by (Pollo *et al.*, 2017). RNAseq analysis was
543 carried out in CLC Genomics Workbench version 7.0.4 as described by (Pollo *et al.*,
544 2017). The transcriptome has been submitted to GenBank's SRA archive with accession
545 number PRJNA495810.

546

547 *H₂ and H₂S measurements*

548 Standard gas chromatographic analysis of culture headspace gas was performed using an
549 Agilent CP4900 Micro Gas Chromatograph to detect H₂ production by the cultures, as
550 described in Supporting Information. Dissolved sulfide concentrations were measured
551 using a VACUettes® Visual High Range Kit (Chemetronics), following the manufacturer's
552 recommendations.

553

554 **Acknowledgements**

555 This work was supported by a Research Council of Norway award (project no.
556 180444/V40) to C.L.N. and by a Genome Canada grant (Hydrocarbon Metagenomics
557 Project) to J.F. The work of IVK was supported by the Russian Science Foundation grant
558 # 18-44-04024. We thank Dr. Alexander Lebedinsky for constructive criticism and

559 helpful suggestions.

560

561 **Conflict of Interest Statement**

562 The authors declare no conflict of interest.

563

564 **References**

565 Andreani, N.A., Hesse, E., and Vos, M. (2017) Prokaryote genome fluidity is dependent
566 on effective population size. *ISME J.* **11**: 1719–1721.

567 Archibald, J.M. and Roger, A.J. (2002) Gene conversion and the evolution of
568 euryarchaeal chaperonins: a Maximum Likelihood-based method for detecting
569 conflicting phylogenetic signals. *J Mol Evol* **55**: 232–245.

570 Balk, M., Weijma, J., and Stams, A.J.M. (2002) *Thermotoga lettingae* sp. nov., a novel
571 thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic
572 reactor. *Int J Syst Evol Micr* **52**: 1361–1368.

573 Bhandari, V. and Gupta, R.S. (2014) The phylum Thermotogae. In, *The Prokaryotes*.
574 Springer, Berlin, Heidelberg, Berlin, Heidelberg, pp. 989–1015.

575 Boileau, C., Auria, R., Davidson, S., Casalot, L., Christen, P., Liebgott, P.-P., and
576 Combet-Blanc, Y. (2016) Hydrogen production by the hyperthermophilic bacterium
577 *Thermotoga maritima* part I: effects of sulfured nutriments, with thiosulfate as model,
578 on hydrogen production and growth. *Biotechnol Biofuels* **9**: 269.

579 Chakraborty, A., Ellefson, E., Li, C., Gittins, D., Brooks, J.M., Bernard, B.B., and Hubert,
580 C.R.J. (2018) Thermophilic endospores associated with migrated thermogenic
581 hydrocarbons in deep Gulf of Mexico marine sediments. *ISME J.* **8**: 1–12.

582 Choudoir, M.J., Panke-Buisse, K., Andam, C.P., and Buckley, D.H. (2017) Genome
583 surfing as driver of microbial genomic diversity. *Trends Microbiol* **8**: 624–636.

584 Darling, A.E., Mau, B., and Perna, N.T. (2010) ProgressiveMauve: Multiple genome
585 alignment with gene gain, loss and rearrangement. *PLoS ONE* **5**: e11147.

586 Dick, G.J., Anantharaman, K., Baker, B.J., Li, M., Reed, D.C., and Sheik, C.S. (2013)
587 The microbiology of deep-sea hydrothermal vent plumes: ecological and
588 biogeographic linkages to seafloor and water column habitats. *Front Microbiol* **4**:
589 124.

590 Dipippo, J.L., Nesbø, C.L., Dahle, H., Doolittle, W.F., Birkland, N.-K., and Noll, K.M.
591 (2009) *Kosmotoga olearia* gen. nov., sp. nov., a thermophilic, anaerobic heterotroph
592 isolated from an oil production fluid. *Int J Syst Evol Micr* **59**: 2991–3000.

593 Eckford, R.E. and Fedorak, P.M. (2002) Planktonic nitrate-reducing bacteria and sulfate-
594 reducing bacteria in some western Canadian oil field waters. *J Ind Microbiol
595 Biotechnol* **29**: 83–92.

596 Fadhlaoui, K., Hania, W.B., Armougom, F., Bartoli, M., Fardeau, M.-L., Erauso, G., et al.
597 (2017) Obligate sugar oxidation in *Mesotoga* spp., phylum Thermotogae, in the

598 presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron
599 acceptor. *Environ Microbiol* **20**: 281–292.

600 Fagervold, S.K., May, H.D., and Sowers, K.R. (2007) Microbial reductive dechlorination
601 of Aroclor 1260 in Baltimore harbor sediment microcosms is catalyzed by three
602 phylotypes within the Phylum Chloroflexi. *Appl Environ Microbiol* **73**: 3009–3018.

603 Fowler, S.J., Dong, X., Sensen, C.W., Suflita, J.M., and Gieg, L.M. (2012) Methanogenic
604 toluene metabolism: community structure and intermediates. *Environ Microbiol* **14**:
605 754–764.

606 Gieg, L.M., Kolhatkar, R.V., McInerney, M.J., Tanner, R.S., Harris, S.H., Sublette, K.L.,
607 and Suflita, J.M. (1999) Intrinsic bioremediation of petroleum hydrocarbons in a gas
608 condensate-contaminated aquifer. *Environ Sci Technol* **33**: 2550–2560.

609 Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje,
610 J.M. (2007) DNA-DNA hybridization values and their relationship to whole-genome
611 sequence similarities. *Int J Syst Evol Microbiol* **57**: 81–91.

612 Gu, Y., Ding, Y., Ren, C., Sun, Z., Rodionov, D.A., Zhang, W., et al. (2010)
613 Reconstruction of xylose utilization pathway and regulons in Firmicutes. *BMC
614 Genomics* **11**: 255.

615 Hagen, W.R., Silva, P.J., Amorim, M.A., Hagedoorn, P.L., Wassink, H., Haaker, H., and
616 Robb, F.T. (2000) Novel structure and redox chemistry of the prosthetic groups of
617 the iron-sulfur flavoprotein sulfide dehydrogenase from *Pyrococcus furiosus*;
618 evidence for a [2Fe-2S] cluster with Asp Cys). *JBIC* **5**: 527–534.

619 Hania, W.B., Fadhloui, K., Brochier-Armanet, C., Persillon, C., Postec, A., Hamdi, M.,
620 et al. (2015) Draft genome sequence of *Mesotoga* strain PhosAC3, a mesophilic
621 member of the bacterial order Thermotogales, isolated from a digestor treating
622 phosphogypsum in Tunisia. *Stand Genomic Sci* **10**:12.

623 Hania, W.B., Ghodbane, R., Postec, A., Brochier-Armanet, C., Hamdi, M., Fardeau, M.-
624 L., and Ollivier, B. (2011) Cultivation of the first mesophilic representative
625 (“mesotoga”) within the order Thermotogales. *Syst Appl Microbiol* **34**: 581–585.

626 Hania, W.B., Postec, A., Aüello, T., Ranchou-Peyruse, A., Erauso, G., Brochier-Armanet,
627 C., et al. (2013) *Mesotoga infera* sp. nov., a mesophilic member of the order
628 Thermotogales, isolated from an underground gas storage aquifer. *Int J Syst Evol
629 Microbiol* **63**: 3003–3008.

630 Head, I.M., Gray, N.D., and Larter, S.R. (2014) Life in the slow lane; biogeochemistry of
631 biodegraded petroleum containing reservoirs and implications for energy recovery
632 and carbon management. *Front Microbiol* **5**: 297.

633 Holoman, T.R., Elberson, M.A., Cutter, L.A., May, H.D., and Sowers, K.R. (1998)
634 Characterization of a defined 2,3,5, 6-tetrachlorobiphenyl-ortho-dechlorinating
635 microbial community by comparative sequence analysis of genes coding for 16S
636 rRNA. *Appl Environ Microbiol* **64**: 3359–3367.

637 Hu, P., Tom, L., Singh, A., Thomas, B.C., Baker, B.J., Piceno, Y.M., et al. (2016)
638 Genome-resolved metagenomic analysis reveals roles for candidate phyla and other
639 microbial community members in biogeochemical transformations in oil reservoirs.
640 *mBio* **7**: e01669–15–12.

641 Hulecki, J.C., Foght, J.M., Gray, M.R., and Fedorak, P.M. (2009) Sulfide persistence in
642 oil field waters amended with nitrate and acetate. *J Ind Microbiol Biotechnol* **36**:
643 1499–1511.

644 Huson, D.H. and Bryant, D. (2006) Application of phylogenetic networks in evolutionary
645 studies. *Mol Biol Evol* **23**: 254–267.

646 Jiang, L., L'Haridon, S., Jebbar, M., Xu, H., Alain, K., and Shao, Z. (2017) Complete
647 genome sequence and whole-genome phylogeny of *Kosmotoga pacifica* type strain
648 SLHLJ1T from an East Pacific hydrothermal sediment. *Stand Genomic Sci* **12**: 1–9.

649 Johnson, M.R., Conners, S.B., Montero, C.I., Chou, C.J., Shockley, K.R., and Kelly, R.M.
650 (2005) The *Thermotoga maritima* phenotype is impacted by syntrophic interaction
651 with *Methanococcus jannaschii* in hyperthermophilic coculture. *Appl Environ
652 Microbiol* **72**: 811–818.

653 Jolley, K.A., Wilson, D.J., Kriz, P., McVean, G., McVean, and Maiden, M.C.J. (2004)
654 The Influence of Mutation, Recombination, Population History, and Selection on
655 Patterns of Genetic Diversity in *Neisseria meningitidis*. *Mol Biol Evol* **22**: 562–569.

656 Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al.
657 (2009) Circos: An information aesthetic for comparative genomics. *Genome
658 Research* **19**: 1639–1645.

659 Laing, C., Buchanan, C., Taboada, E.N., Zhang, Y., Kropinski, A., Villegas, A., et al.
660 (2010) Pan-genome sequence analysis using Panseq: an online tool for the rapid
661 analysis of core and accessory genomic regions. *BMC Bioinformatics* **11**: 461.

662 Lee, W., Lewandowski, Z., Nielsen, P.H., and Hamilton, W.A. (1995) Role of
663 sulfate-reducing bacteria in corrosion of mild steel: A review. *Biofouling* **8**: 165–
664 194.

665 Markowitz, V.M., Chen, I.-M.A., Palaniappan, K., Chu, K., Szeto, E., Pillay, M., et al.
666 (2014) IMG 4 version of the integrated microbial genomes comparative analysis
667 system. *Nucleic Acids Res* **42**: D560–7.

668 Mau, B., Glasner, J.D., Darling, A.E., and Perna, N.T. (2006) Genome-wide detection
669 and analysis of homologous recombination among sequenced strains of *Escherichia
670 coli*. *Genome Biol* **7**: R44.

671 McInerney, J.O., McNally, A., and O'Connell, M.J. (2017) Why prokaryotes have
672 pangenomes. *Nat Microbiol* **2**: 1–5.

673 McVean, G., Awadalla, P., and Fearnhead, P. (2002) A coalescent-based method for
674 detecting and estimating recombination from gene sequences. *Genetics* **160**: 1231–
675 1241.

676 Mulkidjanian, A.Y., Galperin, M.Y., Makarova, K.S., Wolf, Y.I., and Koonin, E.V.
677 (2008) Evolutionary primacy of sodium bioenergetics. *Biology Direct* **3**: 13.

678 Müller, V., Imkamp, F., Biegel, E., Schmidt, S., and Dilling, S. (2008) Discovery of a
679 ferredoxin:NAD+ oxidoreductase (Rnf) in *Acetobacterium woodii*. *Ann NY Acad
680 Sci* **1125**: 137–146.

681 Nesbø, C.L., Bradnan, D.M., Adebusuyi, A., Dlutek, M., Petrus, A.K., Foght, J., et al.
682 (2012) *Mesotoga prima* gen. nov., sp. nov., the first described mesophilic species of
683 the Thermotogales. *Extremophiles* **16**: 387–393.

684 Nesbø, C.L., Dlutek, M., Zhaxybayeva, O., and Doolittle, W.F. (2006) Evidence for
685 existence of “mesotogas,” members of the order Thermotogales adapted to low-
686 temperature environments. *Appl Environ Microbiol* **72**: 5061–5068.

687 Nesbø, C.L., Kumaraswamy, R., Dlutek, M., Doolittle, W.F., and Foght, J.M. (2010)
688 Searching for mesophilic Thermotogales bacteria: “mesotogas” in the wild. *Appl
689 Environ Microbiol* **76**: 4896–4900.

690 Nesbø, C.L., S Swithers, K., Dahle, H., Haverkamp, T.H.A., Birkeland, N.-K., Sokolova,
691 T., et al. (2015) Evidence for extensive gene flow and *Thermotoga* subpopulations in
692 subsurface and marine environments. *ISME J.* **9**: 1532–1542.

693 Nobu, M.K., Narihiro, T., Rinke, C., Kamagata, Y., Tringe, S.G., Woyke, T., and Liu,
694 W.-T. (2015) Microbial dark matter ecogenomics reveals complex synergistic
695 networks in a methanogenic bioreactor. *ISME J.* **9**: 1710–1722.

696 Nouailler, M., Morelli, X., Bornet, O., Chetrit, B., Dermoun, Z., and Guerlesquin, F.
697 (2006) Solution structure of HndAc: a thioredoxin-like domain involved in the
698 NADP-reducing hydrogenase complex. *Protein Sci.* **15**: 1369–1378.

699 Petrus, A.K., Swithers, K.S., Ranjit, C., Wu, S., Brewer, H.M., Gogarten, J.P., et al.
700 (2012) Genes for the major structural components of Thermotogales species' togas
701 revealed by proteomic and evolutionary analyses of OmpA and OmpB homologs.
702 *PLoS ONE* **7**: e40236.

703 Piette, F., D'Amico, S., Struvay, C., Mazzucchelli, G., Renaut, J., Tutino, M.L., et al.
704 (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone
705 in the Antarctic bacterium *Pseudoalteromonas haloplanktis*TAC125. *Mol Microbiol*
706 **76**: 120–132.

707 Pollo, S.M.J., Adebusuyi, A.A., Straub, T.J., Foght, J.M., Zhaxybayeva, O., and Nesbø,
708 C.L. (2017) Genomic insights into temperature-dependent transcriptional responses
709 of Kosmotoga olearia, a deep-biosphere bacterium that can grow from 20 to 79 °C.
710 *Extremophiles* **21**: 963–979.

711 Pollo, S.M.J., Zhaxybayeva, O., and Nesbø, C.L. (2015) Insights into thermodadaptation
712 and the evolution of mesophily from the bacterial phylum *Thermotogae*. *Can J*
713 *Microbiol* **61**: 655–670.

714 Ragsdale, S.W. (2003) Pyruvate ferredoxin oxidoreductase and its radical intermediate.
715 *Chem Rev* **103**: 2333–2346.

716 Ravot, G., Ollivier, B., Magot, M., Patel, B.K.C., Fardeau, M.L., and Garcia, J.-L. (1995)
717 Thiosulfate reduction, an important physiological feature shared by members of the
718 order Thermotogales. *Appl Environ Microbiol* **61**: 2053–2055.

719 Reysenbach, A.-L., Liu, Y., Lindgren, A.R., Wagner, I.D., Sislak, C.D., Mets, A., and
720 Schouten, S. (2013) *Mesoaciditoga lauensis* gen. nov., sp. nov., a moderately
721 thermoacidophilic member of the order Thermotogales from a deep-sea hydrothermal
722 vent. *Int J Syst Evol Microbiol* **63**: 4724–4729.

723 Schaefer, B.F. (2005) GEOCHEMISTRY: When Do Rocks Become Oil? *Science* **308**:
724 1267–1268.

725 Schut, G.J., Boyd, E.S., Peters, J.W., and Adams, M.W.W. (2013) The modular
726 respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic
727 hyperthermophilic archaea and their evolutionary implications. *FEMS Microbiol Rev*
728 **37**: 182–203.

729 Selby, D. (2005) Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-
730 Osmium Isotopes. *Science* **308**: 1293–1295.

731 Stoffels, L., Krehenbrink, M., Berks, B.C., and Unden, G. (2012) Thiosulfate reduction in
732 *Salmonella enterica* is driven by the proton motive force. *J Bact* **194**: 475–485.

733 Tan, B., Jane Fowler, S., Laban, N.A., Dong, X., Sensen, C.W., Foght, J., and Gieg, L.M.
734 (2015) Comparative analysis of metagenomes from three methanogenic hydrocarbon-

735 degrading enrichment cultures with 41 environmental samples. *ISME J.* **9**: 2028–
736 2045.

737 Vignais, P.M. and Billoud, B. (2007) Occurrence, classification, and biological function
738 of hydrogenases: an overview. *Chem Rev* **107**: 4206–4272.

739 Voordouw, G., Grigoryan, A.A., Lambo, A., Lin, S., Park, H.S., Jack, T.R., et al. (2009)
740 Sulfide remediation by pulsed injection of nitrate into a low temperature canadian
741 heavy oil reservoir. *Environ Sci Technol* **43**: 9512–9518.

742 Wang, S. and He, J. (2013) Phylogenetically Distinct Bacteria Involve Extensive
743 Dechlorination of Aroclor 1260 in Sediment-Free Cultures. *PLoS ONE* **8**: e59178.

744 Wilhelms, A., Larter, S.R., Head, I., Farrimond, P., di-Primio, R., and Zwach, C. (2001)
745 Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. *Nature*
746 **411**: 1034–1037.

747 Wolfe, A.J. (2005) The acetate switch. *Microbiol Mol Biol Rev* **69**: 12–50.

748 Zhaxybayeva, O., Swithers, K.S., Foght, J., Green, A.G., Bruce, D., Detter, C., et al.
749 (2012) Genome sequence of the mesophilic thermotogales bacterium *Mesotoga*
750 *prima* MesG1. Ag. 4.2 reveals the largest thermotogales genome to date. *Genome*
751 *Biol Evol* **4**: 700–708.

752

753 **Figure legends**

754 **Fig. 1. Phylogenetic relationships among *Mesotoga* genomes based on (a) 16SrRNA**
755 **genes, (b) core SNPs and (c) presence/absence of shared 500-bp genomic fragments.**

756 The 16S rRNA maximum likelihood phylogeny was estimated using RAxML in
757 Geneious v 10. For networks shown in (b) and (c), data were obtained using PanSeq
758 (Laing *et al.*, 2010). Core SNPs in (b) were required to be present in 14 of 18 genomes
759 (including SAGs), and genomic fragments were considered shared if they were at least
760 70% identical. The network in (c) was constructed using only genomes from isolates;
761 shared fragments were required to be present in all 9 genomes and be at least 70%
762 identical in nucleotide sequence. Networks were calculated in SplitsTree using
763 NeighborNet algorithm (Huson and Bryant, 2006) from uncorrected distances. The
764 isolates cluster into the same three lineages in (a), (b) and (c) and are named based on
765 their geographical distribution. The World (W) lineage occurs in all regions represented.
766 The US lineage is found in locations in the USA and the Alberta (A) lineage was
767 observed in the Albertan samples only.

768

769 **Fig. 2. Visualization of recombination events detected among *Mesotoga* genomes**
770 **from different lineages.** The genomes are color-coded according to lineage (see text and
771 Fig. 1) and arranged on the circumference of the circle: W lineage, blue; US lineage,
772 orange; A lineage, green. Only isolate genomes were included in this analysis. A single
773 representative genome (BR5.2) selected from the three highly similar genomes
774 comprising the BR population (as described in Supporting Material) was included in the
775 analysis. The recombination events with predicted donor and recipient are shown as lines
776 connecting the two genomes; the locations of recombined regions, where line color
777 reflects the donor lineage and the width of the line is proportional to the length of the
778 recombinant region. The diagram was generated using Circos Version circos-0.69
779 (Krzywinski *et al.*, 2009).

780

781 **Fig. 3. Model of energy generation pathway in *Mesotoga prima* during growth on**
782 **xylose and thiosulfate.** Glucose and xylose poly- and oligosaccharides are hydrolyzed by
783 various intracellular and interstitial glycosidases (GHs). Glucose oxidation occurs via the
784 glycolytic Embden-Meyerhof-Parnas pathway, whereas xylose is utilized via xylose
785 isomerase (*XylA*, Theba_1394), xylulose kinase (*XylB*, Theba_1395, Theba_2230, Theba
786 2429, Theba 2518, Theba 2544, Theba 2588), ribulose phosphate 3-epimerase
787 (Theba_0639) and enzymes of the pentose-phosphate pathway. Specifically, xylose
788 isomerase converts D-xylose to D-xylulose, which is phosphorylated by the set of
789 xylulose kinases to D-xylulose 5-phosphate, and further to ribulose 5-phosphate by the
790 ribulose-phosphate 3-epimerase. Both xylulose 5-phosphate and ribulose 5-phosphate
791 produced by this pathway are common metabolic intermediates in the pentose phosphate
792 pathway. Xylose isomerase (Theba_1394) was among the most highly transcribed genes
793 during cultivation of *M. prima* on xylose and thiosulfate (Supporting Table S3). Acetyl-
794 CoA formation occurs by means of pyruvate-ferredoxin oxidoreductase (PFOR,
795 Theba_1954). In the possible case of growth on acetate, its activation occurs by means of
796 acetate kinase (ACKA, Theba_0428) and phosphotransacetylase (PTA, Theba_0782),
797 acting in reverse. The model includes gene products hypothesized to be involved in
798 thiosulfate reduction. Na⁺ refers to Na⁺ ions involved in generating sodium motive force.
799 A: The FeFe hydrogenase (Theba_0443 and Theba_0461 – 0465) reduces NADH to form
800 H₂, which is used as an electron donor for thiosulfate reduction catalyzed by SudAB
801 (Theba_0076, Theba_0077). Mbx (Theba_1796-1808) and/or Rnf (Theba_1343-1348)
802 complexes provide additional NADH along with the oxidation of excessive reducing

803 equivalents (Fd_{red}) and generation of a sodium motive force. B and C: other possible
804 scenarios of H_2 oxidation and thiosulfate reduction.
805

Table 1. List of genomes analyzed. All genomes, except those of *Mesotoga prima* and *M. prima* PhosAc3, were sequenced as part of the current study.

Name and Source	Short Name	Genome Size	% GC	Ref. for description of sample site / accession no. in GenBank	Estimated % completeness of SAG ^a
Isolates					
Produced water from oil field B near Brooks, Alberta, Canada ^b				(Hulecki <i>et al.</i> , 2009)	
<i>Mesotoga</i> sp. Brooks.08.YT.4.2.5.1 ^c	BR5.1	2,957,195	45.9	AYTX01000000	
<i>Mesotoga</i> sp. Brooks.08.YT.4.2.5.2	BR5.2	2,953,308	45.9	JPGZ00000000	
<i>Mesotoga</i> sp. Brooks.08.YT.4.2.5.4 ^c	BR5.4	3,002,147	45.9	ATCT01000000	
<i>Mesotoga</i> sp. Brooks.08.YT.105.5.1	BR105.1	2,992,699	45.9	AYTW01000000	
<i>Mesotoga</i> sp. Brooks.08.YT.105.6.4	BR105.4	3,205,299	45.9	JWIM00000000	
Free water knockout fluids from oil field H near Stettler, Alberta ^d				(Eckford and Fedorak, 2002)	
<i>Mesotoga</i> sp. HF07.pep.5.2 ^c	HF5.2	2,838,813	45.3	JFHJ01000000	
<i>Mesotoga</i> sp. HF07.pep.5.3	HF5.3	2,934,282	45.3	AYTV01000000	
<i>Mesotoga</i> sp. HF07.pep.5.4	HF5.4	2,968,642	45.3	JFHM01000000	
Sediments from Baltimore Harbour, Maryland, USA				(Holoman <i>et al.</i> , 1998)	
<i>Mesotoga prima</i> MesG1.Ag.4.2 ^e	<i>M. prima</i>	2,974,229	45.5	NC_017934	
<i>Mesotoga</i> sp. BH458.6.3.2.1 ^f	BH458	3,234,409	45.7	JFHL01000000	
Wastewater treatment plant, Tunisia				(Hania <i>et al.</i> , 2015)	
<i>Mesotoga prima</i> PhosAc3	PhosAc3	3,108,267	45.2	NZ_CARH01000000	

(continued)

Genomes assembled from single cell amplified genomes (SAGs)

Produced water from oil field E near Medicine Hat, Alberta ^g					(Voordouw <i>et al.</i> , 2009)
<i>Mesotoga</i> sp. 3PWK154PWL11	SC_PW.1	876,625	46.8	JMRN01000000	21%
<i>Mesotoga</i> sp. 3PWM13N19	SC_PW.2	1,886,634	45.8	JMRM01000000	78%
<i>Mesotoga</i> sp. 4PWA21	SC_PW.3	1,541,163	45.9	JMQL01000000	34%
Oil sands tailings pond sediments near Fort McMurray, Alberta				(Tan <i>et al.</i> , 2015)	
<i>Mesotoga</i> sp. NapDC	SC_NapDC	1,885,291	45.8	JNFM01000000	88%
<i>Mesotoga</i> sp. NapDC2	SC_NapDC2	1,337,305	45.6	JQSC01000000	53%
<i>Mesotoga</i> sp. NapDC3	SC_NapDC3	1,828,922	45.6	JWIP000000000	66%
Contaminated aquifer fluids from Colorado, USA				(Gieg <i>et al.</i> , 1999; Fowler <i>et al.</i> , 2012)	
<i>Mesotoga</i> sp. TolDC ^h	SC_TOLDC	2,257,992	46.1	AYS101000000	74%

^a Completeness of single cell genomes was calculated based on HMM hits to 119 single copy marker genes (see Supporting Material).

^b Belongs geologically to the Glauconitic formation.

^c These genomes were sequenced using IonTorrent PGM; all other genomes and single cells were sequenced using Illumina MiSeq

^d Belongs geologically to the Upper Mannville Group – Cretaceous age.

^e The *M. prima* genome was sequenced by Zhaxybayeva *et al.* 2012.

^f The source was a sister-culture of the enrichment culture that yielded *M. prima* MesG1.Ag.4.2 (Nesbø *et al.*, 2006; 2012).

^g Belongs geologically to the Western Canadian Sedimentary Basin.

^h In addition to the SAG sequences, 39 *Mesotoga* fosmid clones prepared from the same culture were included in the assembly (<http://hmp.ucalgary.ca/HMP/metagenomes/isolates.html>; accessed October 2018).

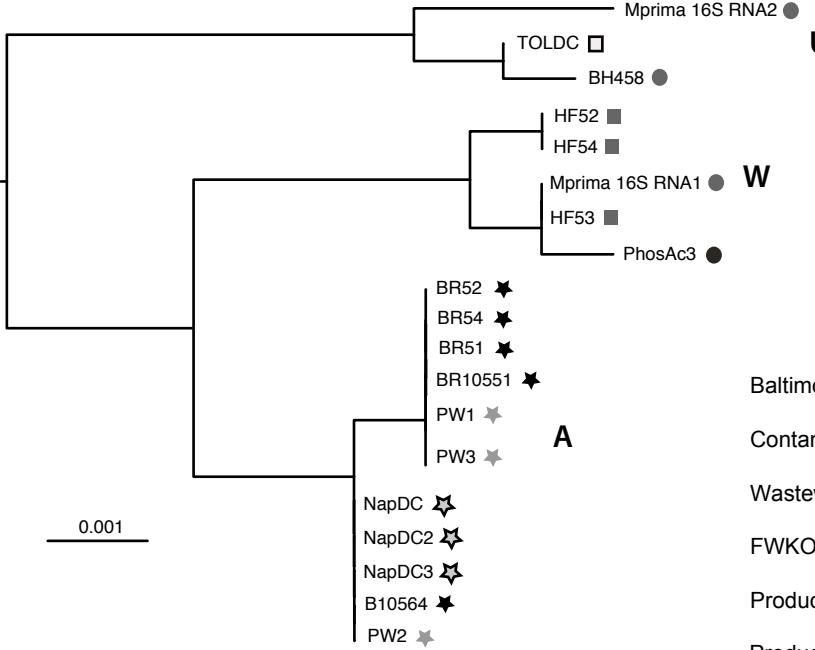
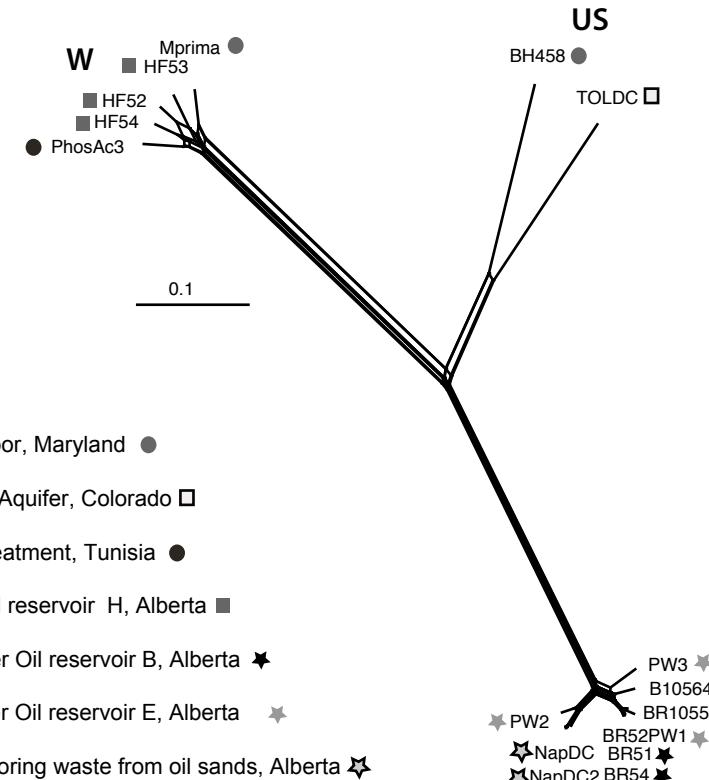
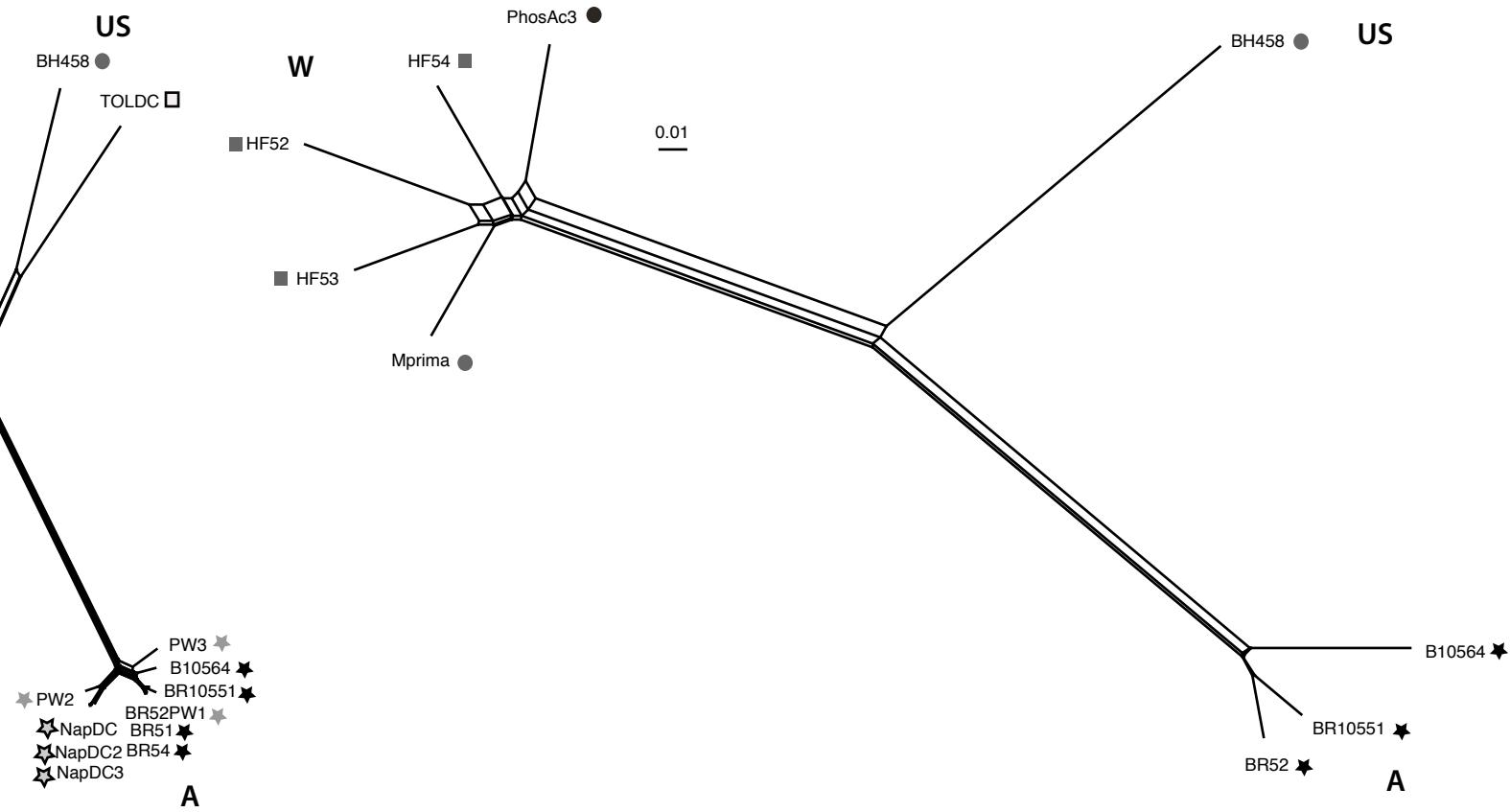
Table 2. *Mesotoga* sequences recovered from publicly available metagenomes. For the sequences obtained from the IMG (JGI) database, only sequences classified as Thermotogae were downloaded. The predominant *Mesotoga* lineage extracted from each metagenome is shown in boldface. Metagenomes dominated by sequences similar to *Mesotoga infera* were not included.

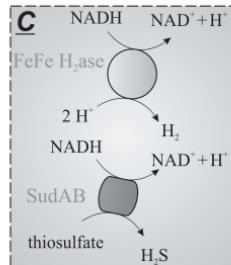
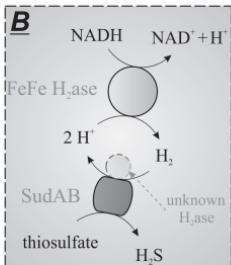
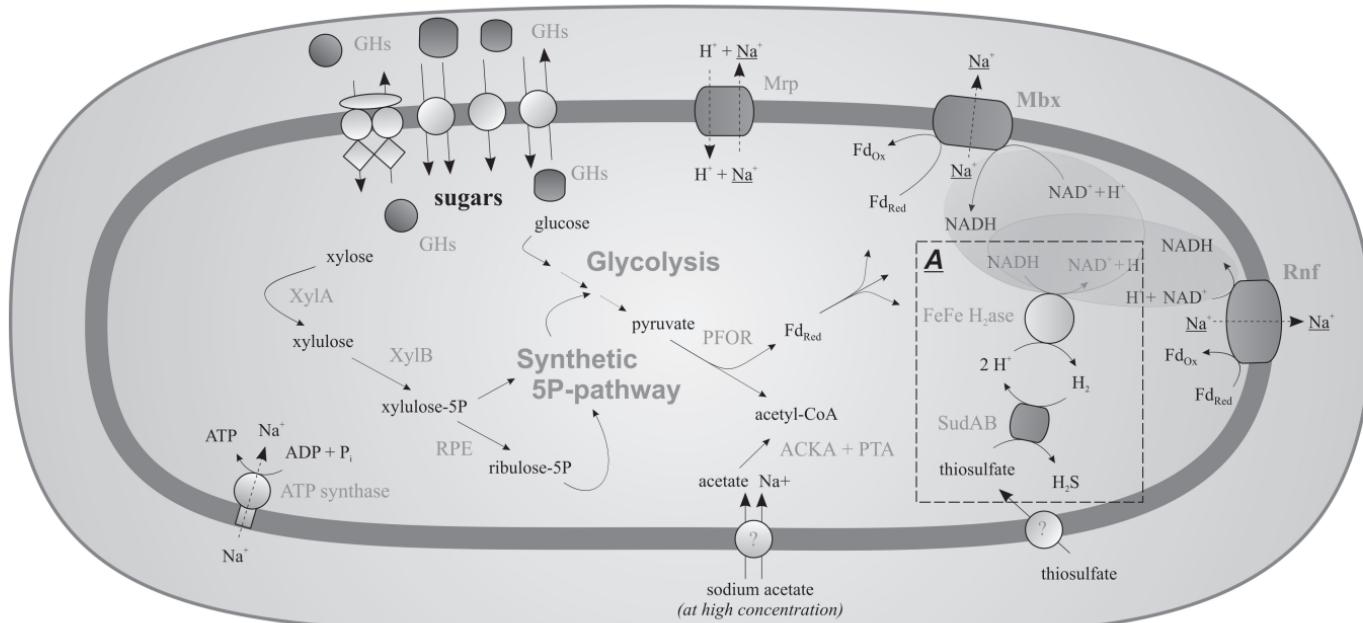
Metagenome origin ^a	IMG, GenBank or SRA accession nos.	<i>Mesotoga</i> sequences (no. contigs)	<i>Mesotoga</i> sequences with best match to lineage A, W or US (no. contigs)	% average pairwise identity (range)
Alberta				
MLSB tailings pond	IMG: 26785	491,657 bp (1,707)	A: 485,638 bp (1,694) W: 2,455 bp (8) US: 634 bp (2)	99.8% (98.5-100%) 93.9% (88.7-99.6) 86.4% (89.7-95%)
Oil reservoir E	IMG: 15764	5,190,293 bp (4,833)	A: 3,137,228 bp (3,259) W: 195,159 bp (317) US: 1,693,057 bp (1,308)	98.6% (71.3-100%) 94.5% (79.7-100%) 95.3% (82.2-100%)
USA				
California				
Alameda Naval Air Station: Soil contaminated with chloroethene	IMG: 5776	407,588 bp (453)	A: 17,955 bp (23) W: 47,017 bp (61) US: 297,011 bp (360)	92% (85.3-99.5%) 93.4% (83-99.1%) 94.2% (83.6-100%)
Blank Spring hot spring sediment	IMG: 94476	4,060,664 bp (2,037)	A: 920,911 bp (924) W: 226,161 bp (176) US: 2,025,524 bp (825)	91.6% (64.3-100%) 85.4% (64.3-99.1%) 89.3% (66.1-99.6 %)
Long Beach Municipal wastewater AD_UKC097	IMG: 89744	2,339,863 bp (1,810)	A: 390,020 bp (588) W: 710,377 bp (914) US: 202,508 bp (207)	96.1% (65-100%) 94.1% (64.3-100%) 88.4% (63.6-100%)

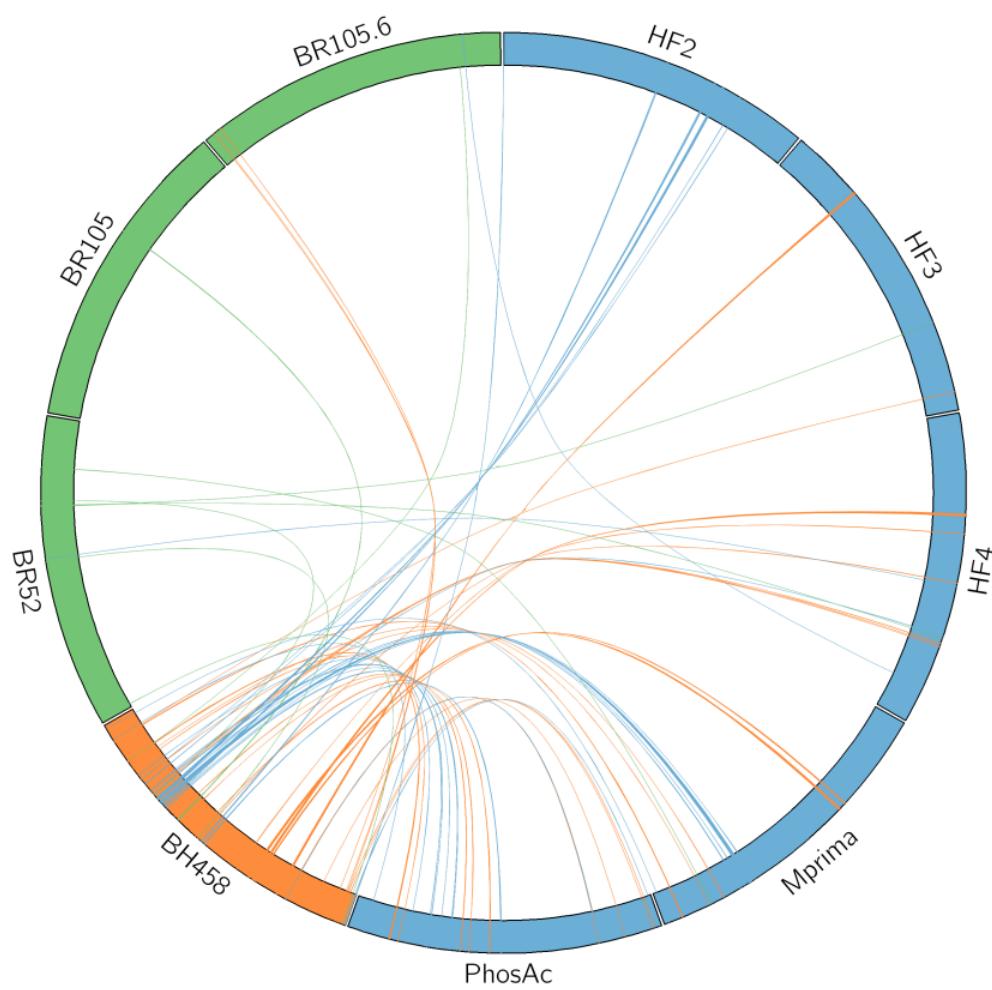
(continued)

Illinois				
Decatur municipal wastewater AD_UKC034 ^b	IMG: 89745	4,031,397 bp (2,218)	A: 2,085,927 bp (1,162) W: 820,163 bp (588) US: 271,756 bp (260)	96.5% (65.1-100%) 92.7% (64.6-100%) 89.0% (65.0-100%)
New York Sulfidogenic MTBE-NYH ^c	IMG: 62988	5,195,092 bp ⁱ (1,727)	A: 421,552 bp (261) W: 209,518 bp (218) US:1,825,787 bp (450)	85.8% (63.8-99.2%) 84.6% (64.5-99.8%) 89.2% (65.9-100%)
New Jersey Methanogenic MTBE-AKM ^d	IMG: 62224	2,464,953 bp (4,206)	A: 31,663 bp (104) W: 122,392 bp (320) US: 1,154,398 bp (2,706)	87.2% (66.8-100%) 93.8% (65.0-100%) 98.0% (66.5-100%)
Sulfidogenic MTBE-AKS2 ^e	IMG: 62223	4,971,880 (3,215)	A: 152,359 bp (276) W: 240,489 bp (307) US: 2,665,479 bp (1,575)	86.3% (65.9-99.3%) 86.6% (65.6-100%) 94.3% (65.8-100%)
Boston Wastewater AD_UKC077 ^f	IMG: 89805	5,651,655 ⁱ (1,386)	A: 149,486 bp (212) W: 1,379,334 bp (326) US: 141,168 bp (150)	80.2% (63.4-100%) 88.2% (63.7-100%) 77.6% (64.4-99.7%)
Hong Kong Wastewater AD_UKC109 ^f 2015-03-06	IMG: 89888	4,071,190 bp (4,096)	A: 415,727 bp (615) W: 1,189,447 bp (2,476) US: 632,042 bp(902)	92.8% (64.7-100%) 93.6% (64.3-100%) 91.9% (63-100%)
Wastewater AD_UKC119 ^f 2015-01-26	IMG: 89894	5,462,335 bp (2,499)	A: 2,347,962 bp (853) W: 586,387 bp (497) US: 1,521,681(1,071)	95.7% (65.4-100%) 89.4% (64.3-100%) 93.0% (63.9-100%)

(continued)




Metagenome-assembled genomes (MAGs)




Alaska Oil reservoir LGGP01 ^g	GenBank: GCA_001508515	1,712,609 bp (440)	A: 1,470,927 bp (384) W: 80,31 bp (30) US: 47,775 bp (21)	98.5% (71.3-100%) 92.3% (70.0-99.6%) 88.9% (71.9-100%)
LGGH01 ^g	GCA_001508435	1,225,111 bp (267)	A: 48,008 bp (13) W: 63,609 bp (21) US: 1,009,462 bp (233)	89.9% (78.8-99.6%) 92.5% (80.4-100%) 94.5% (80.9-99.6)
LGGW01 ^g	GCA_001509115	1,622,264 bp (264)	A: 85,486 bp (20) W: 104,756 bp (25) US: 1,139,439 (211)	87.3% (67.8-99.6%) 92.3% (82.6-99.9%) 94.5% (83.6-99.8%)
California Anaerobic digester in Oakland ^h	IMG: 81407 (Unclassified Thermotogales bacterium Bin 13)	3,480,910 bp (395)	A: 2,287,852 bp (247) W: 109,011 bp (48) US: 118,885 bp (33)	93.6% (64.5-100%) 83.1% (64.4-100%) 79.1% (65.8-96.5)
China PCB-fed mixed <i>Dehalococcoides</i> culture CG1 from sand and silt near Liangjiang River ⁱ	SRA: SRX392467	2,727,841 bp (379)	A: 2,226,7034 bp (345) W: 22,520 bp (14) US: 40,010 bp (20)	98.0% (84.6-100%) 90.2% (68.2-97.4%) 90.7% (78.2-99.8%)


- a) *Mesotoga* sequences were identified by performing blastn searches using a database containing all the *Mesotoga* spp. genomes listed in Table 1. We used word size =11 and expected = e⁻¹⁰. Sequences with matches were then sorted according to the *Mesotoga* lineage with the best match (A, W or US; see main text).
- b) Nine metagenomes and three transcriptomes are available from the same system; only one was selected as representative.
- c) Sulfidogenic MTBE-degrading enrichment culture microbial communities from New York harbour sediments

- d) Methanogenic MTBE-degrading enrichment culture microbial communities from Arthur Kill sediments
- e) Sulfidogenic MTBE-degrading enrichment culture microbial communities from Arthur Kill sediments. Two very similar metagenomes are available (Fig. S3b); only one is included here.
- f) Wastewater treatment anaerobic digesters. Additional metagenomes with similar *Mesotoga* lineage composition are available from these sites and the ones included here were chosen as representatives.
- g) Metagenome assembled genomes from (Hu *et al.*, 2016). LGGP01 and LGGH01 were from oil reservoir sample SB1 and LGGW01 was from oil reservoir sample SB2.
- h) Sludge microbial communities from wastewater, phosphite and CO₂-enriched.
- i) Genome extracted and assembled by us.

a 16S rRNA**b Core SNPs****c Pangenome**

