

1 **Tyrosinase mediated humic substances synthesis by *Bacillus*
2 *aryabhattai*TFG5**

3

4

5 IniyakumarMuniraj¹#

6 Syed Shameer¹#

7 Priyadarshini Ramachandran ¹&

8 Sivakumar Uhandi¹*

9

10

11 ¹Biocatalysts lab, Department of Agricultural Microbiology, Tamil Nadu Agricultural
12 University, Coimbatore, Tamil Nadu, India

13

14

15 *Corresponding Author

16 E-mail: usiva@tnau.ac.in (SU)

17 [#] Authors contributed equally

18 [&]contributions to protein modelling and editing the manuscript

19

20

21

22

23

24

25

26

27

28

29

30

31

32 Abstract

33 The present investigation aims at understanding the mechanism of Humic Substances (HS)
34 formation and enhancement through tyrosinase produced by *Bacillus aryabhattachai* TFG5. A
35 bacterium isolated from termite mound produced tyrosinase (1.34 U.ml^{-1}) and laccase (2.1 U.ml^{-1}) at 48 and 60 h of fermentation respectively. The protein from *B. aryabhattachai* TFG5
36 was designated as TyrB and it had a predicted molecular weight of 35.23 kDa. Swiss
37 modelling of protein revealed a bi copper protein with its conserved residues required for
38 activity. Interestingly, TyrB efficiently transformed and polymerized standard phenols
39 besides transforming free phenols of Coir pith Wash Water (CWW). In addition,
40 spectroscopic evidences suggest that TyrB enhanced the HS production from coir pith
41 biomass. Furthermore, degradative products and changes in biomass structure by TyrB
42 analysed through FT-IR suggests that TyrB might follow the polyphenol theory of HS
43 synthesis.

44

45

46

47 **Keywords:** *Bacillus aryabhattachai* TFG5, Tyrosinase, Laccase, coirpith biomass, oxidative
48 polymerization, humification

49

50

51

52

53

54

55

56

57 **Introduction**

58 Tyrosinases(monophenol, *o*-diphenol:oxygen oxidoreductase,EC 1.14.18.1) are bifunctional
59 type 3 copper containing enzymes which catalyze-hydroxylation of monophenols yielding
60 diphenols(cresolase activity) and subsequent oxidation of *o*-diphenols to quinones
61 (catecholase activity)[1, 2].Tyrosinases are widespread among plants, animals, fungi, and
62 bacteria[3].They are essential in melanin biosynthesis and also used in pulp and paper
63 manufacturing [4], textile, pharmaceutical industry[5]. In addition, tyrosinase is also efficient
64 in oxidizing low molecular weight phenols and finds a suitable place in wastewater treatment
65 [6].

66 Under soil environments, tyrosinase is believed to participate in enhancing the formation rate
67 of humic substances (HS)[7]. Such HS are ubiquitously obtained by oxidative
68 biotransformation of dead organic matter in the soil. The resident time of HS in soil is 10^2 -
69 10^3 years and thus the humic substances formation (humification) is considered as one of the
70 key processes in atmospheric carbon dioxide sink. It is estimated that 1462 Pg of Carbon is
71 found in the total biosphere[8], of which about one third (470 Pg) of carbon is found the soil.
72 Therefore increasing the rate of humification is important for long time storage of carbon in
73 soil [9]. Besides, humification indirectly reduces global warming by sequestering the
74 atmospheric CO₂ in soil [10].

75 HS, being largest pool of recalcitrant organic carbon in the terrestrial environment, its
76 formation, oxidative biotransformation and mineralization in soil is predominantly due to the
77 oxidative enzymes mostly from the fungal origin. Lignin peroxidase (LiP), Mn-dependent
78 peroxidase (MnP), versatileperoxidase (VP), other peroxidases, laccase, and tyrosinase are
79 the major oxidative enzymes involved in the formation of HS[9, 11]. Among them, tyrosinase
80 catalyses the oxidation of a phenolic and non-phenolic portion of the substrate into quinones
81 and aryl radicals respectively. HS formation by fungal tyrosinase in wood and soil has been
82 studied previously[7]. Several tyrosinases from bacteria have been described. For instance,
83 tyrosinase from *Streptomyces* sp. has been described widely[12]. Other bacterial sources of
84 tyrosinase such as *Aeromonas media*[13], *Azospirillum* sp, *Bacillus megaterium* [14],
85 *Bacillusthuringiensis*[15],*Marinomonas mediterranea*[16],*Pseudomonas*[17], *Rhizobium*
86 *meleloti*[18],*Thermomicrobiium roseum*[19]and *Verrucomicrobium spinosum*[20]have also
87 been described.

88 However, the bacterial tyrosinase described above are used for specific applications such as
89 solvent tolerance, water decontaminants, phenol removal, detoxification of plant host
90 defences, thermal and salt tolerance etc. Studies related to bacterial tyrosinase and its
91 involvement inHS formation are very sparse in literature and it is important to elucidate the
92 mechanisms of HS formation by bacterial tyrosinase. Hence, this investigation aimed at
93 understanding the role of tyrosinase from bacterial isolate *Bacillus aryabhatai*TFG5 in HS
94 production. In addition, the enzyme was also evaluated for oxidation of phenols from CWW.

95 **Materials and Methods**

96 **Culture, materials, chemicals and media**

97 Tyrosinase of *Bacillus aryabhatai*TFG5,a newly isolated bacterium of Termite Fungal
98 Garden by the authors,was used for HS formation experiments[21]. Coir pith biomass and
99 Coir Pith Wash Water were obtained from local industry and used for oxidative
100 transformation studies. 3-methyl-2-benzothiazolinone hydrazine (MBTH), L-Tyrosine, L-
101 DOPA, ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and mushroom
102 tyrosinase were obtained from SigmaAldrich India (Bengaluru). p-hydroxy benzoic acid, 2, 6,
103 Dimehoxy phenol, p-cresol, p nitro phenol and catechol were obtained from HI-Media
104 Laboratories Pvt. Ltd (Mumbai). Laccase production was monitored in Crawford's media
105 containing (g.L⁻¹) Glucose 1.0, Yeast extract 1.5, Na₂HPO₄(4.5), KH₂PO₄(1.0), MgSO₄.
106 7H₂O(0.12), NaCl(0.2), CaCl₂(0.05). Tyrosinase production was evaluated in the medium
107 containing (g.L⁻¹) casein broth hydrolysate (10), K₂HPO₄ (0.5), MgSO₄ (0.25), L-tyrosine
108 (1).*B.aryabhatai* TFG5 was maintained in Luria Bertani (LB) broth containing (g.L⁻¹)
109 tryptone (10), yeast extract (5), and NaCl (10).

110 **Time course production of tyrosinase and laccase**

111 One-day-old culture of *B.aryabhatai*TFG5 grown in LB broth having OD value of 0.1 was
112 transferred into respective sterile media (50 ml) in 250 ml Erlenmeyer flasks for monitoring
113 the laccase and tyrosinase production.The flasks were incubated in an incubation shaker
114 (New Brunswick, USA) at 30 °C. Enzyme activity and growth were monitored at 4-h
115 intervals for 68 h by monitoring changes in absorbance at 505nm and optical density at 600
116 nm respectively in a multimode spectrophotometer Spectra Max 360 (Molecular Devices,
117 USA). Flasks were removed at periodic intervals and the contents were centrifuged in a
118 microfuge (Biorad, USA) and the supernatants were used for enzyme assay.

119 Bioinformatics analyses of TyrB

120 Tyrosinase from *B.aryabhattai* TFG5 was named as TyrB. Gene-specific primers of *B.*
121 *Megaterium* tyrosinase (Forward 5'-GAGGTTAACCATGGTAACAAGTATAGAG
122 TTAGAAAAACG-3' and Reverse 5' -
123 TGCTGTTCTAGATCTGGTTAATGGTGGTGATGGTGATGTGAGGAACGTTTGAT
124 TTTC-3') [22] were used to amplify tyrosinase gene of *B. aryabhattai* TFG5 and sequenced
125 at Scigeneome Pvt. Ltd., Cochin, Kerala, India. The gene sequences were translated into
126 protein and were aligned using multiple sequence alignment (MSA) tool in Bio edit version
127 7.2.5. The protein sequences of various tyrosinase were obtained from NCBI
128 (www.ncbi.nlm.nih.gov) or RCSB (www.rcsb.org) data repositories and the homology model
129 of TyrB was built using automated Swiss-modelling server which was verified using
130 Structure Analysis and Verification Server version 4
131 (<http://services.mbi.ucla.edu/SAVES/>)[23]. The homology model of TyrB was visualized
132 using open source PyMOL version 0.97 (2004). The theoretical molecular weight was
133 predicted online using compute Mw tool (<http://web.expasy.org>).

134 Enzyme assay

135 The laccase activity was determined at 30 °C for 5 min using 1mM ABTS by monitoring
136 change in absorbance at 420 nm (ϵ max = 3.6 x 10⁴ M⁻¹cm⁻¹) spectrophotometrically in a
137 Spectramax 360 (Molecular devices, USA). The reaction mixture contained appropriately
138 diluted enzyme which was mixed with 1mM ABTS in sodium phosphate buffer (50 mM, pH
139 4.5)[24]. Tyrosinase activity was determined at 30°C for 5 minutes using 1.5 mM L-DOPA
140 (ϵ 505 = 2.9×10⁴ M⁻¹.cm⁻¹)[25]. The reaction mixture contained phosphate buffer (50 mM, pH
141 7), 1.5 mM L-DOPA, 5 mM MBTH (3-methyl-2-benzothiazolinone hydrazone) 2% n-n'-
142 dimethylformamide, 0.1 mM sodium azide and 10 μ L of appropriately diluted enzyme. The
143 reaction was stopped by adding 100 μ L of 1 M perchloric acid and the absorbance was
144 measured at 505 nm. One unit of enzyme activity was defined as the amount of enzyme
145 required to oxidize 1 μ M min⁻¹ of the substrate under standard assay conditions.

146 Oxidative polymerization of phenolic compounds

147 Six different phenols including mono (*p*-hydroxy benzoic acid, 2, 6, Dimehoxy phenol, *p*-
148 cresol, *p*-nitro phenol) and di-phenols (Catechol, Levo DOPA) at 2mM were evaluated for
149 oxidative polymerization experiment. Phenols (2mM) were taken into a 250 ml conical flasks

150 containing 50 ml of the reaction mixture in 50 mM sodium phosphate buffer (pH7.0). TyrB
151 (10U.ml⁻¹) was added and the flasks were incubated in dark conditions for 48h. Oxidative
152 polymerization of phenols was estimated according to[26, 27]. Furthermore, the contents were
153 centrifuged for 10 min at 2500 rpm in a microfuge (Biorad USA) and the liquid phase was
154 analysed immediately by Fourier Transform Infrared (FT-IR) spectroscopy. The liquid
155 portion (10μl) was applied to the diamond attenuated totally reflexion (ATR) crystal and
156 analysed by JASCO 7000 FTIR. The infrared radiation was employed through the samples to
157 obtain the corresponding spectrum, which was averaged from several data acquisitions. FTIR
158 spectra were acquired in the wavenumber range of 700–4000 cm⁻¹ with a resolution of 4 cm⁻¹.
159 After each measurement, the crystalline surface was washed with acetone and dried with a
160 soft paper.[26].

161 **Transformation of Coir Pith Wash Water (CWW)**

162 The transformation was performed using 50 ml of CWW in 250 ml Erlenmeyer flasks under
163 both sterile and non-sterile conditions. Filter sterilization of CWW was performed by passing
164 the CWW through 0.24μ syringe filters (Pall, Bengaluru). Sterilization of CWW was
165 achieved by autoclave (121⁰C 15lbs for 15 min), while non- sterilized CWW was used as a
166 control. TyrB at 10U.ml⁻¹ in a total volume of 50 ml was added in all treatments and the flasks
167 were incubated under shaking conditions at 30⁰C for 48 h. Transformation products were
168 analysed in a Jasco 7000 ATR- FT-IR. Infra-Red spectra were collected in the range from
169 4000 to 700 cm⁻¹ with a resolution of 4 cm⁻¹[26, 27]. In addition, maximum absorbance of the
170 CWW was evaluated in multimode microplate reader Spectra max 360 (Molecular devices
171 USA)[6] and the maximum absorbance of 300 nm was used for change in absorbance studies.

172 **Humification of coir pith biomass**

173 Coirpith biomass was used as a substrate to produce HS using TyrB[28]. Sieved and dried
174 coirpith biomass at a consistency of 5% was incubated in the presence of TyrB 10U.ml⁻¹ in
175 50mM phosphate buffer at pH7.0 for HS formation[8, 29, 30]. At the end of the experiment,
176 the solid and liquid phases were separated by centrifugation for 10 min at 2500 rpm (Biorad
177 USA). The liquid phase was analyzed immediately and maintained frozen. In contrast, the
178 solid phase was dried at 105⁰C for 24 h and maintained at room temperature until use.
179 Depolymerization degree and chemical properties of the compounds in the liquid phase
180 were measured by the increment in the absorbance at 450 nm in a spectrophotometer spectra

181 max 360 (Molecular Devices USA) which is related with the production of HS. The E270/400,
182 E465/665, E250/365, E280/472, E280/664, and E472/664 coefficients were calculated to
183 identify unique characteristics of the compounds found in the liquid phase[28]. The treated
184 and untreated solid samples were analysed using a JASCO 7000 Fourier Transform Infra-Red
185 (FT-IR) spectroscopy with infrared spectra collected in the range from 4000 to 700 cm^{-1} with
186 a resolution of 4 cm^{-1} .

187 **Results and Discussion**

188 **Time course production of tyrosinase and laccase**

189 Biotransformation of HS are largely oxidative processes with wood- and soil-inhabiting
190 microbes being a major driving force due to the extracellular production of oxidative
191 enzymes of the class, phenol oxidases, which include tyrosinase and laccase. In the present
192 investigation, a potential tyrosinase and laccase producing *B. aryabhattai* TFG5 isolated from
193 termite mound was evaluated for TyrB mediated HS formation. Tyrosinase secretion by
194 TFG5 started from 20h, gradually increased and reached its maximum activity at 48h (1.34
195 U.ml^{-1}) and its growth in tyrosine broth started 4h onwards and reached maximum at 60h.
196 Similarly, laccase activity (0.2 U.ml^{-1}) was initiated after 20h of the fermentation following a
197 maximum production reaching at 68h (2.1 U.ml^{-1}) of the fermentation, while the highest
198 growth was observed at 68h of the fermentation in Crawford's broth (Fig1).

199

200 **Fig.1 to be inserted here**

201

202

203 There are few reports on the industrial production of tyrosinase which are generally obtained
204 from fungal sources. Only a few studies to the best of the authors' knowledge focused on
205 optimization of process parameters for bacterial tyrosinase production. Sambasiva
206 Rao[31] optimized the production conditions of *Streptomyces antibiotics* tyrosinase and
207 showed maximum tyrosinase activity of 4.62 U.ml^{-1} . In another study recombinant *E. coli*
208 produced tyrosinase to a high level of 13 U.ml^{-1} [32]. Comparatively, in the present
209 investigation *B. aryabhattai* TFG5 produced 1.34 U.ml^{-1} of tyrosinase and when induced for
210 laccase it had produced 1.8 U.ml^{-1} without any optimization studies. This suggests that this
211 bacterium would be an advantageous and suitable candidate for HS formation in soil due to
212 its unique property of producing both laccase and tyrosinases.

213

214 **Bioinformatics analyses of TyrB**

215 Gene-specific primers of *B. megaterium* were used for amplification of tyrosinase gene in *B.*
216 *aryabhattachai* TFG5 and the ORF encoding the gene was translated into protein. Homology
217 model was predicted inSWISS homologymodelling server using 3NM8 as a template and the
218 structure and thecorresponding metal binding domain are depicted in Fig.2.

219 **Fig.2 to be inserted here**

220

221 TyrB had a predicted molecular mass of 35.23kDa and was found to be a bi-copper protein
222 where Cu1 was coordinated with three histidine residues (H69,H42, H60) and Cu2 was
223 coordinated with three histidine (H204,H208,H231) and one phenyl alanine (F227) residues.
224 Other than copper the TyrB also had Cl and Zn binding sites. Multiple alignments of amino
225 acid residues showed that the Cu1 and Cu2 binding residues were conserved with other
226 tyrosinase reported [33](Fig S1). Like most of the bacterial tyrosinases, the TyrB is also a bi
227 copper protein. However, to maintain the structural stability, the enzyme might have
228 coordinated additionally with Zn and Cl ions.

229 **Oxidative polymerization of phenolic compounds**

230 Monophenols polymerization was relatively higher than diphenols for TyrB as evidenced by
231 the increase in the release of CO₂ to the former than later. The maximum CO₂ release was
232 observed in *p*-cresol (477.25 μmol) followed by *p*- hydroxyl benzoic acid (412.5 μmol). The
233 lowest CO₂ release was observed in Levo DOPA followed by 2,6 DMP (Fig3).

234 **Fig.3 to be inserted here**

235

236 The results suggest that the enzyme might polymerize the monophenols more efficiently than
237 diphenols that would be released during decomposition of lignin during organic matter
238 decomposition in soil. Although the enzyme could oxidatively polymerize mono and
239 diphenols, *p*-nitro phenol was not oxidized by the enzyme and there was no release of CO₂.
240 The reason for this is unclear and needs further study. One of the key reactions in
241 humification is the oxidative polymerization of phenolic compounds which subsequently
242 yield humic substances in the environment [34-36]. Furthermore, the ability of TyrB to
243 generate CO₂ is directly proportional to cleavage of the ring structure of phenols. Such ring
244 opening of phenols further enables quick degradation which otherwise non-reactive. [35, 37].

245 The TyrB treatment ends up additional functional groups suggesting the formation of reaction
246 products and confirming the ring cleavage of phenols as observed in the FT-IR spectra. There
247 was no difference in functional groups of p-Nitrophenol and 2,6 Dimethoxy phenol treated
248 and untreated samples. Whereas, the presence of additional two functional groups at wave
249 numbers 1655.59 cm⁻¹ corresponding to alkenes C=C medium stretching and 2185.92 cm⁻¹
250 corresponding to alkynes C≡C stretch was noticed in the absorption spectrum of p-cresol.
251 Similarly, the presence of an additional functional group of alkynes C≡C stretch 2147.35 cm⁻¹
252 was noticed for L-DOPA and catechol. Strong aromatic amines at wave number 1327.5 cm⁻¹
253 were noticed for p-Hydroxy benzoic acid treated with TyrB (Table S1). The results of
254 reaction products from ATR-FT-IR show that backbone of humic substances was additionally
255 formed in the tested phenols. It is believed that the alkenes, alkynes and aromatic amines
256 would react with other amino acids present in the environment to form the humic
257 substances[8, 29].

258

259 **Transformation of CWW and humification of coir pith biomass**

260 The transformed products obtained from CWW incubation with TyrB (Table S2) revealed
261 that the number of functional groups after incubation was higher in sterilized CWW than the
262 filter sterilized and untreated CWW, indicating the ability of TyrB in oxidative
263 transformation followed by polymerization ability. While comparing the different
264 products formed during the incubation, it was noticed that the untreated control had only
265 aromatic ring structure which indicates the presence of phenolic group of compounds,
266 whereas similar functional groups with modification were also observed in the sterilized
267 phenols indicating that enzymes were involved in ring cleavage and polymerization[26, 27].
268 FT-IR spectra of compounds generated from CWW after incubation with TyrB(Fig 4)show
269 the presence of more functional groups in higher intensities in sterilized CWW compared to
270 the control and filter sterilized CWW. Additional functional groups in the wave numbers such
271 as 991.232 cm⁻¹, 1078.98 cm⁻¹, 1390.42 cm⁻¹, and 2085.64 cm⁻¹ in higher intensities also
272 indicate that TyrB efficiently transformed CWW(Table S2). On the contrary, filter sterilized
273 CWW didn't have such additional functional groups (Fig4).

274 **Fig.4. to be inserted here**

275

276 It is believed that in aqueous environment tyrosinase oxidizes low molecular weight phenols
277 and polymerizes them to precipitate it. This enables easy removal of phenolic compounds in

278 wastewater[38]. In the present study, it is evident from the FTIR results that the tyrosinases
279 polymerized phenols as indicated by the presence of additional functional groups.

280

281 **Production of humic polymer using coir pith as substrate**

282 Results of UV-Vis spectrum and FT-IR show that the tyrosinase can produce humic
283 substances from coir pith biomass within three days. The UV-Vis spectra of the treated
284 samples exhibited an increase in absorbance over control, and the maximum increment was
285 observed on the 3rd day. The most dramatic increment in absorbance was recorded from 380
286 to 530 nm (Fig5). The sudden shift in absorbance at 480 nm was associated with the
287 production of humic substances. Similarly, the increment in absorbance over the three days
288 period was attributed to compounds with carboxylic and phenolic groups as similar pattern of
289 absorbance and molecules were observed when cotton stalk biochar was depolymerized with
290 fungal oxidoreductase[28].

291 **Fig.5 to be inserted here**

292

293 **Table 1 should be presented here**

294 Maximum absorbance at 280 and 340 nm on all the three days tested is related to the
295 presence of aromatic compounds probably due to depolymerization. Similarly, higher
296 absorbance at 360 until 472 nm indicates the presence of large aromatic compounds like
297 humic substances. Lower values after that do not signify any compounds related to humic
298 products. Decreasing absorbance over the three days at 436 nm indicates the presence of
299 molecules with more aliphatic, carbohydrates and nitriles compounds (Table 2). The relation
300 between E_{280/472} describes the presence of aromatic groups in humic substances. The
301 increments in the coefficient on day 2 and the decreased value on day 3 show that
302 depolymerization was obtained by tyrosinase. Similarly, the coefficient E_{472/664} is
303 associated with the level of condensation of the chain of aromatic carbons. Higher values at
304 this coefficient indicate the presence of more aliphatic structures and less aromatic
305 structures[39-42]. To further study the functional groups associated with humic substances,
306 FT-IR analysis was performed, and the results are presented in Fig6.

307

308 **Table 2 should be presented here**

309 The FT-IR spectral data show that aldehyde group(R-CH-O) at wave number 860 cm⁻¹
310 was not observed on the first two days, whereas its intensity was higher on day 3 and

311 reduced on day 4. Similarly, increase in OH groups was recorded as the day progressed and
312 their structural changes as evidenced by changes in vibration were noticed at wave number
313 1053 cm⁻¹. The presence of alkenes at wave number 1641 cm⁻¹ indicates the formation of
314 backbone of humic substances (Fig 6).

315

316 **Fig.6 should be presented here**

317

318 There are two possible humification pathway exists in soil as reviewed by [7]. The
319 first theory namely, lignin-protein theory, states that initial material lignin is partially
320 oxidized by oxidases, yielding humic acid which is further oxidized and depolymerized into
321 fluvic acid. In this theory, changes in biomass structure encompasses, loss of OCH₃ groups
322 from lignin molecule, resulting in the formation of hydroxy phenols, and oxidation of
323 aliphatic chain compounds to form acid groups. Subsequent oxidation of hydroxyl phenols
324 into quinones and semi-quinones, the free radicals formed during the reaction binds to amino
325 and nitrogenous compounds to form HS. This lignin- protein theory are predominant in
326 poorly aerated soils.

327 The second theory is based on polyphenol theory, which stipulates that during initial
328 lignin breakdown low molecular weight aldehydes and acids are released into the
329 environment. The aldehydes are oxidized into semi-quinones and quinones which undergo
330 non-enzymatic polymerization in the presence of nitrogenous compounds. In this theory,
331 fluvic acids are formed prior to humic acid. Polyphenol theory is more common in well-
332 aerated forest soils.

333 In comparison of two theories with the present study, FT- IR analysis of coir pith
334 biomass after TyrB treatment shows that aldehydes and acids were present initially in higher
335 concentrations on the third day (Fig 6). This signifies that breakdown products of lignin by
336 TyrB are present. Further their absence on fourth day onwards suggests that the aldehydes
337 and acidic groups might have undergone polymerization as evidenced by an increase in
338 absorbance on the 3rd day [Fig 5 and Table 1]. Therefore, based on the spectroscopic studies
339 (UV-VIS, FT-IR), the structural changes and release of compounds during humification of
340 coir pith biomass suggest that TyrB might follow polyphenol theory of HS formation as
341 reported by [7].

342

343

344 Conclusion

345 The enhanced catalytic bio-transformation and formation of HS from coir pith biomass by
346 TyrB produced by *B.aryabhattachai* TFG5 clearly suggest that the TyrB follows polyphenol
347 theory of humification and has a potential for application in phenolic industry. In addition, the
348 oxidative transformation of CWW into products would enable this enzyme to be used in
349 detoxification and precipitation of toxic phenols in coir industry. The HS produced through
350 this process could be a slow-release organic fertilizer in organic agriculture which can
351 enhance the carbon sequestration potential of soil.

352

353 Acknowledgements

354 Financial support granted to SU from Department of Biotechnology, Government of India
355 (No.BT/PR4891/BCE/8/905/2012 & 17.07.2013) is gratefully acknowledged.

356 Supporting Information

357 **S1 Fig. Multiple sequence alignment of TyrB.** MSA was performed using ClustalW
358 program using Bioedit v. 7.2.5. The tyrosinase sequences from the various organisms and
359 their accession numbers are given inside ear bracket are *Bacillus aryabhattachai*
360 (WP_043981293.1), *B. megaterium* (3NM8), *Bacillus* sp. Root147 (WP_057234811), *B.*
361 *flexus* (WP_025750930), *Fictibacillusmacauensis* (WP_050979754), *B. macauensis* ZFHKF-
362 1 (EIT84795), *Pseudomonas veronii*(WP_017849537), *Nitrosomonas europaea* ATCC 19718
363 (CAD85152), *P. fluorescens* (WP_047297073), *Streptomyces tsukubensis* (WP_040914590),
364 *Streptomyces* sp. NRRL S-87 (WP_030192477), *Brevibacillus* sp. is
365 *Brevibacilluslateralosporus* GI-9 (CCF17084), *S. roseus* (WP_048477298), *S.*
366 *roseoverticillatus* (WP_030366439). The copper binding His sites and Phe site are boxed.
367 The color shades represent identical and conserved amino acids in all the organisms.

368

369 S1 Table. FTIR reaction products from the phenols and the formation of additional functional
370 groups.

371 S2 Table. FT-IR functional groups and their corresponding wavenumber of CWW.

372 References

- 373 1. Lerch K. Neurospora tyrosinase: structural, spectroscopic and catalytic properties. Molecular and cellular biochemistry. 1983;52(2):125-38. PubMed PMID: 6308414.
- 374 2. Robb DA. Subunit differences among the multiple forms of mushroom tyrosinase [proceedings]. Biochemical Society transactions. 1979;7(1):131-2. PubMed PMID: 108144.
- 375 3. Fairhead M, Thöny-Meyer L. Bacterial tyrosinases: old enzymes with new relevance to biotechnology. New Biotechnol. 2012;29. doi: 10.1016/j.nbt.2011.05.007.

380 4. Lin L, Dong Y, Zhao H, Wen L, Yang B, Zhao M. Comparative evaluation of
381 rosmarinic acid, methyl rosmarinate and pedalitin isolated from *Rabdosia serra*
382 (MAXIM.) HARA as inhibitors of tyrosinase and alpha-glucosidase. *Food chemistry*.
383 2011;129(3):884-9. doi: 10.1016/j.foodchem.2011.05.039. PubMed PMID: 25212314.

384 5. Agarwal P, Dubey S, Singh M, Singh RP. *Aspergillus niger* PA2 Tyrosinase
385 Covalently Immobilized on a Novel Eco-Friendly Bio-Composite of Chitosan-Gelatin
386 and Its Evaluation for L-DOPA Production. *Frontiers in microbiology*. 2016;7:2088.
387 doi: 10.3389/fmicb.2016.02088. PubMed PMID: 28066399; PubMed Central
388 PMCID: PMC5177867.

389 6. Bayramoglu G, Akbulut A, Arica MY. Immobilization of tyrosinase on modified
390 diatom biosilica: enzymatic removal of phenolic compounds from aqueous solution.
391 *Journal of hazardous materials*. 2013;244-245:528-36. doi:
392 10.1016/j.jhazmat.2012.10.041. PubMed PMID: 23245881.

393 7. Zavarzina AG, Lisov AA, Zavarzin AA, Leontievsky AA. Fungal Oxidoreductases
394 and Humification in Forest Soils. In: Shukla G, Varma A, editors. *Soil Enzymology*.
395 Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 207-28.

396 8. Chai X, Shimaoka T, Cao X, Guo Q, Zhao Y. Spectroscopic studies of the progress of
397 humification processes in humic substances extracted from refuse in a landfill.
398 *Chemosphere*. 2007;69(9):1446-53. doi: 10.1016/j.chemosphere.2007.04.076.
399 PubMed PMID: 17585995.

400 9. Claus H, Decker H. Bacterial tyrosinases. *Syst Appl Microbiol*. 2006;29. doi:
401 10.1016/j.syapm.2005.07.012.

402 10. Zavarzina AG, Zavarzin AA. [Laccase and tyrosinase activities in lichens].
403 *Mikrobiologiiia*. 2006;75(5):630-41. PubMed PMID: 17091585.

404 11. Claus H, Filip Z. Behaviour of phenoloxidases in the presence of clays and other soil-
405 related adsorbents. *Applied microbiology and biotechnology*. 1988;28(4):506-11. doi:
406 10.1007/bf00268223.

407 12. Chang TS, Tseng M, Ding HY, Shou-Ku Tai S. Isolation and characterization of
408 *Streptomyces hiroshimensis* strain TI-C3 with anti-tyrosinase activity. *Journal of*
409 *cosmetic science*. 2008;59(1):33-40. PubMed PMID: 18350233.

410 13. Wan X, Chai B, Liao Y, Su Y, Ye T, Shen P, et al. Molecular and biochemical
411 characterization of a distinct tyrosinase involved in melanin production from
412 *Aeromonas* media. *Applied microbiology and biotechnology*. 2009;82(2):261-9. doi:
413 10.1007/s00253-008-1742-5. PubMed PMID: 18931836.

414 14. Kaneev M, Goldfeder M, Chojnacki M, Adir N, Fishman A. The mechanism of
415 copper uptake by tyrosinase from *Bacillus megaterium*. *Journal of biological*
416 *inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic*
417 *Chemistry*. 2013;18(8):895-903. doi: 10.1007/s00775-013-1034-0. PubMed PMID:
418 24061559.

419 15. Liu N, Zhang T, Wang YJ, Huang YP, Ou JH, Shen P. A heat inducible tyrosinase
420 with distinct properties from *Bacillus thuringiensis*. *Letters in applied microbiology*.
421 2004;39(5):407-12. doi: 10.1111/j.1472-765X.2004.01599.x. PubMed PMID:
422 15482430.

423 16. Lopez-Serrano D, Solano F, Sanchez-Amat A. Involvement of a novel copper
424 chaperone in tyrosinase activity and melanin synthesis in *Marinomonas mediterranea*.
425 *Microbiology*. 2007;153(Pt 7):2241-9. doi: 10.1099/mic.0.2007/006833-0. PubMed
426 PMID: 17600068.

427 17. Wang G, Aazaz A, Peng Z, Shen P. Cloning and overexpression of a tyrosinase gene
428 *mel* from *Pseudomonas maltophilia*. *FEMS microbiology letters*. 2000;185(1):23-7.
429 PubMed PMID: 10731602.

430 18. Mercado-Blanco J, Garcia F, Fernandez-Lopez M, Olivares J. Melanin production by
431 Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b: cloning,
432 sequencing, and expression of the tyrosinase gene mepA. *Journal of bacteriology*.
433 1993;175(17):5403-10. PubMed PMID: 8366027; PubMed Central PMCID:
434 PMC206595.

435 19. Kong KH, Hong MP, Choi SS, Kim YT, Cho SH. Purification and characterization of
436 a highly stable tyrosinase from *Thermomicrobium roseum*. *Biotechnology and applied*
437 *biochemistry*. 2000;31 (Pt 2):113-8. PubMed PMID: 10744956.

438 20. Fairhead M, Thony-Meyer L. Cross-linking and immobilisation of different proteins
439 with recombinant *Verrucomicrobium spinosum* tyrosinase. *Journal of biotechnology*.
440 2010;150(4):546-51. doi: 10.1016/j.biote.2010.10.068. PubMed PMID: 20969899.

441 21. Iniya kumar Muniraj, Syed Shammeer, Sivakumar Uthandi. Screening and ARDRA
442 Characterization of Tyrosinase and Laccase Producing Bacteria From Jakanari Forest
443 2017; (in press).

444 22. Shuster V, Fishman A. Isolation, cloning and characterization of a tyrosinase with
445 improved activity in organic solvents from *Bacillus megaterium*. *Journal of molecular*
446 *microbiology and biotechnology*. 2009;17(4):188-200. doi: 10.1159/000233506.
447 PubMed PMID: 19672047.

448 23. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-
449 MODEL: modelling protein tertiary and quaternary structure using evolutionary
450 information. *Nucleic acids research*. 2014;42(W1):W252-W8.

451 24. Flurkey A, Cooksey J, Reddy A, Spoonmore K, Rescigno A, Inlow J, et al. Enzyme,
452 protein, carbohydrate, and phenolic contaminants in commercial tyrosinase
453 preparations: potential problems affecting tyrosinase activity and inhibition studies.
454 *Journal of agricultural and food chemistry*. 2008;56(12):4760-8. doi:
455 10.1021/jf800109a. PubMed PMID: 18500813.

456 25. Park YD, Lee JR, Park KH, Hahn HS, Hahn MJ, Yang JM. A new continuous
457 spectrophotometric assay method for DOPA oxidase activity of tyrosinase. *Journal of*
458 *protein chemistry*. 2003;22(5):473-80. PubMed PMID: 14690250.

459 26. Kobayashi S, Higashimura H. Oxidative polymerization of phenols revisited. *Progress*
460 *in Polymer Science*. 2003;28(6):1015-48.

461 27. Naidja A, Huang PM, Bollag JM. Comparison of Reaction Products from the
462 Transformation of Catechol Catalyzed by Birnessite or Tyrosinase. *Soil Science*
463 *Society of America Journal*. 1998;62:188-95. doi:
464 10.2136/sssaj1998.03615995006200010025x.

465 28. Placido J, Capareda S, Karthikeyan R. Production of humic substances from cotton
466 stalks biochar by fungal treatment with *Ceriporiopsis subvermispora*. *Sustainable*
467 *Energy Technologies and Assessments*. 2016;13:31-7. doi:
468 <http://dx.doi.org/10.1016/j.seta.2015.11.004>.

469 29. Binner E, Smidt E, Tintner J, Bohm K, Lechner P. How to enhance humification
470 during composting of separately collected biowaste: impact of feedstock and
471 processing. *Waste management & research : the journal of the International Solid*
472 *Wastes and Public Cleansing Association, ISWA*. 2011;29(11):1153-63. doi:
473 10.1177/0734242X11413954. PubMed PMID: 21930517.

474 30. Doni S, Macci C, Peruzzi E, Ceccanti B, Masciandaro G. Factors controlling carbon
475 metabolism and humification in different soil agroecosystems. *The Scientific World*
476 *Journal*. 2014;2014.

477 31. Sambasiva Rao K, Tripathy N, Mahalaxmi Y, Prakasham R. Laccase-and peroxidase-
478 free tyrosinase production by isolated microbial strain. *Journal of microbiology and*
479 *biotechnology*. 2012;22(2):207-14.

480 32. Ren Q, Henes B, Fairhead M, Thony-Meyer L. High level production of tyrosinase in
481 recombinant *Escherichia coli*. *BMC biotechnology*. 2013;13:18. doi: 10.1186/1472-
482 6750-13-18. PubMed PMID: 23442796; PubMed Central PMCID: PMC3598836.

483 33. Nokinsee D, Shank L, Lee VS, Nimmanpipug P. Estimation of Inhibitory Effect
484 against Tyrosinase Activity through Homology Modeling and Molecular Docking.
485 *Enzyme research*. 2015;2015:262364. doi: 10.1155/2015/262364. PubMed PMID:
486 26788364; PubMed Central PMCID: PMC4693013.

487 34. d'Ischia M, Napolitano A, Prota G. Peroxidase as an alternative to tyrosinase in the
488 oxidative polymerization of 5,6-dihydroxyindoles to melanin(s). *Biochimica et
489 biophysica acta*. 1991;1073(2):423-30. PubMed PMID: 1849012.

490 35. Kim S, Silva C, Evtuguin DV, Gamelas JA, Cavaco-Paulo A. Polyoxometalate/laccase-mediated oxidative polymerization of catechol for textile
491 dyeing. *Applied microbiology and biotechnology*. 2011;89(4):981-7. doi:
492 10.1007/s00253-010-2932-5. PubMed PMID: 20953600.

493 36. Selinheimo E, Autio K, Kruus K, Buchert J. Elucidating the mechanism of laccase
494 and tyrosinase in wheat bread making. *Journal of agricultural and food chemistry*.
495 2007;55(15):6357-65. doi: 10.1021/jf0703349. PubMed PMID: 17602567.

496 37. Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, et al. Laccase is necessary and
497 nonredundant with peroxidase for lignin polymerization during vascular development
498 in *Arabidopsis*. *The Plant cell*. 2013;25(10):3976-87. doi: 10.1105/tpc.113.117770.
499 PubMed PMID: 24143805; PubMed Central PMCID: PMC3877815.

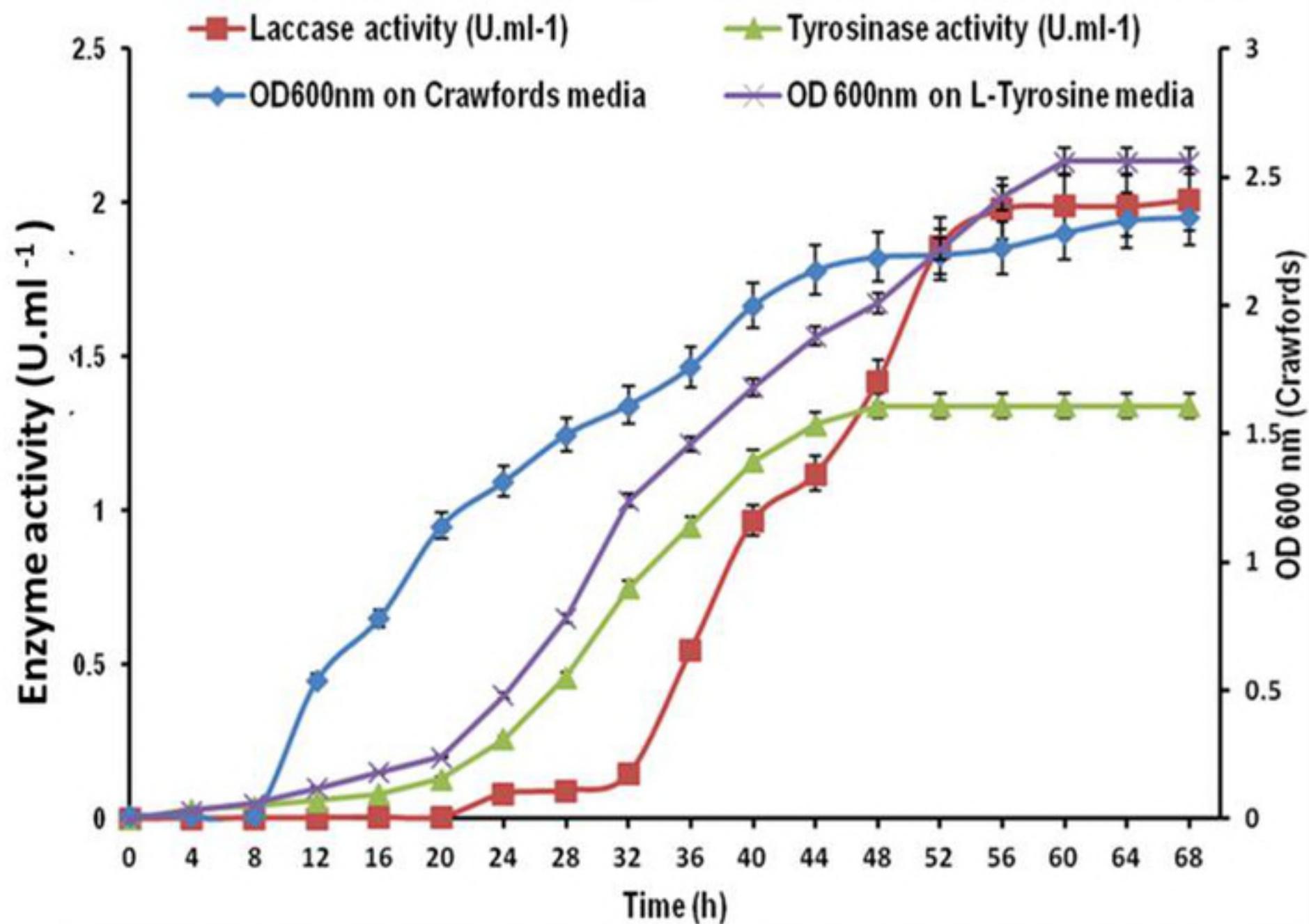
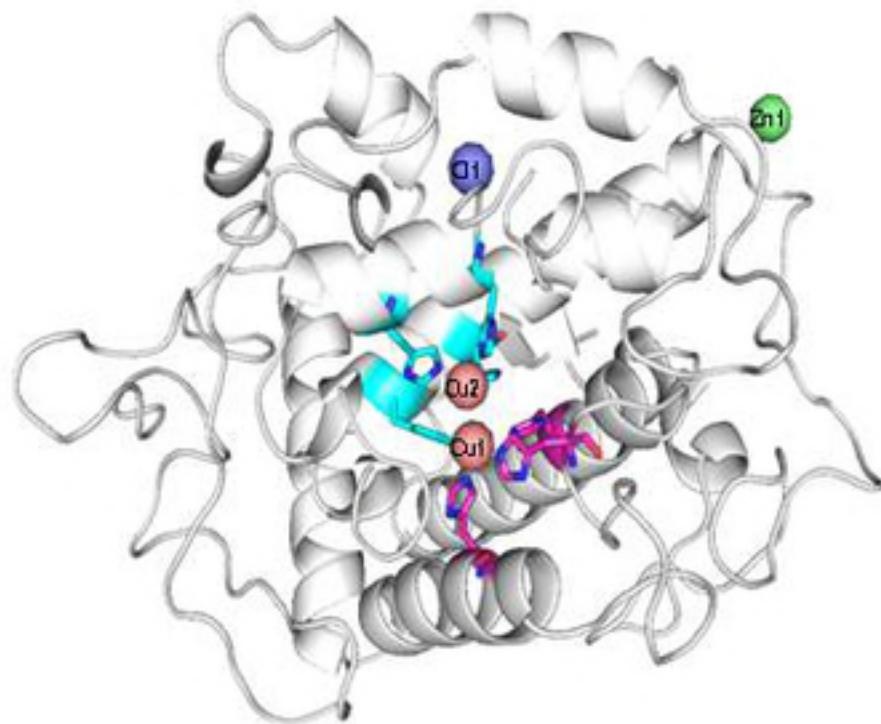
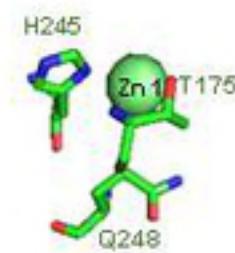
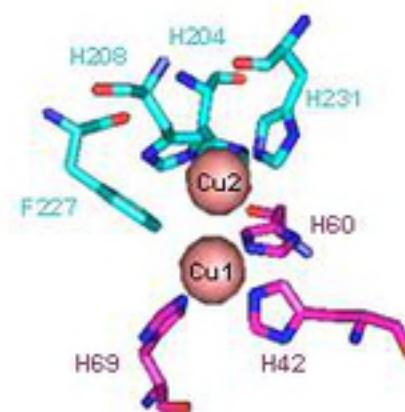
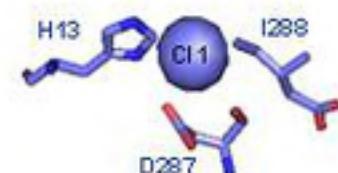
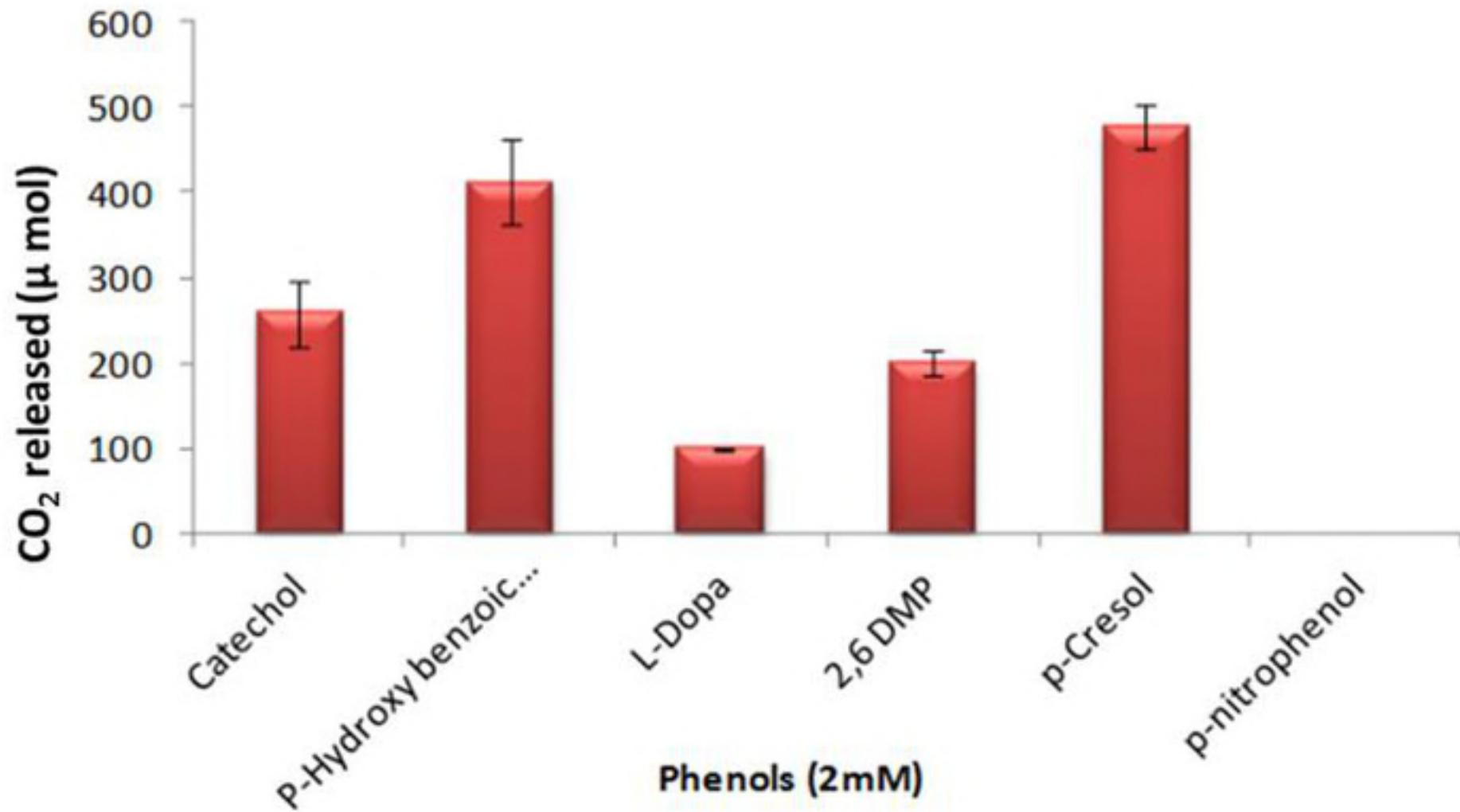
500 38. Ba S, Vinoth Kumar V. Recent developments in the use of tyrosinase and laccase in
501 environmental applications. *Critical reviews in biotechnology*. 2017:1-14. doi:
502 10.1080/07388551.2016.1261081. PubMed PMID: 28330374.

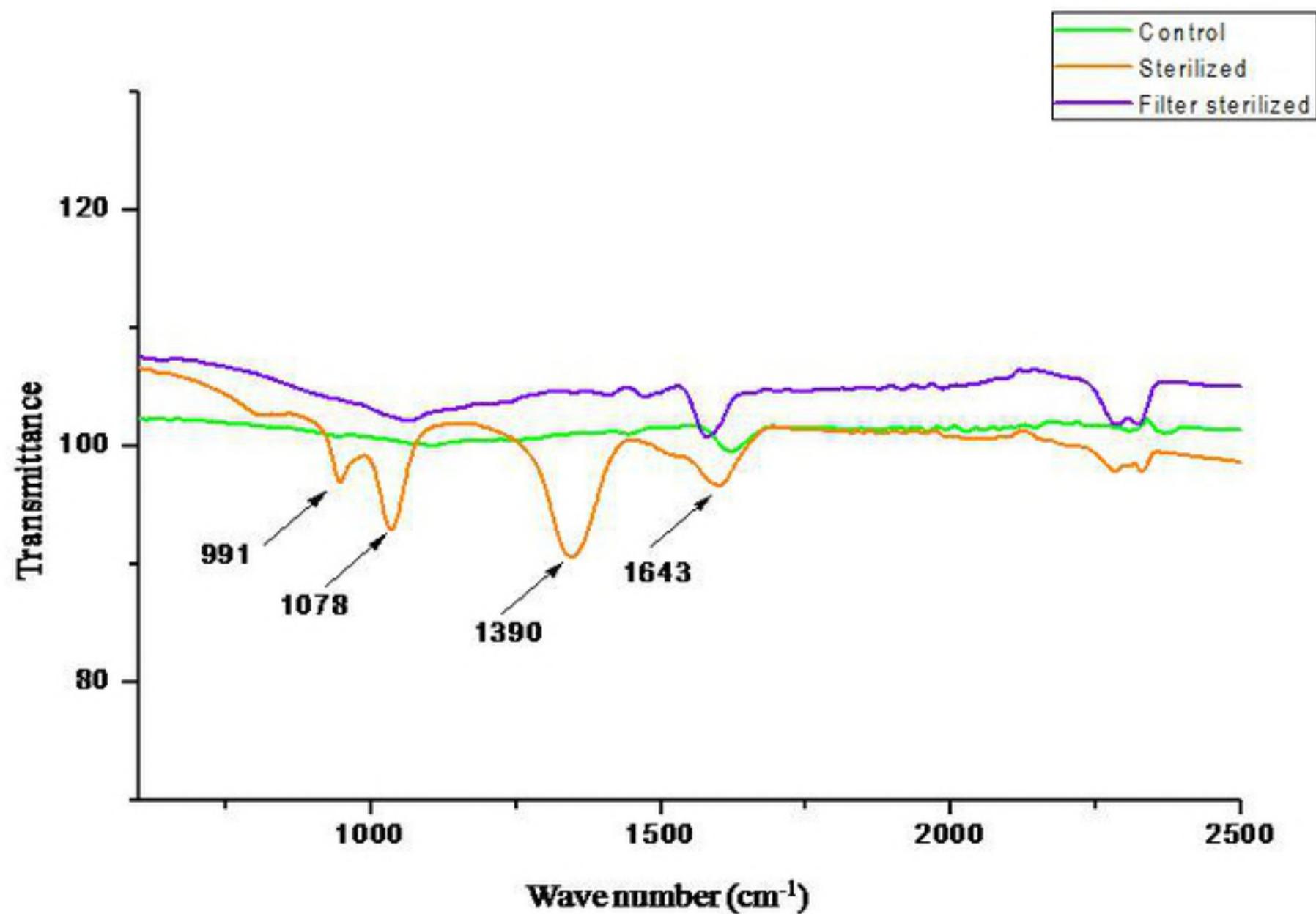
503 39. Hughes SR, Lopez-Nunez JC, Jones MA, Moser BR, Cox EJ, Lindquist M, et al. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. *Applied microbiology and biotechnology*. 2014;98(20):8413-31. doi:
504 10.1007/s00253-014-5991-1. PubMed PMID: 25204861; PubMed Central PMCID:
505 PMC4192581.

506 40. Wang C, Tu Q, Dong D, Strong PJ, Wang H, Sun B, et al. Spectroscopic evidence for
507 biochar amendment promoting humic acid synthesis and intensifying humification
508 during composting. *Journal of hazardous materials*. 2014;280:409-16. doi:
509 10.1016/j.jhazmat.2014.08.030. PubMed PMID: 25194558.

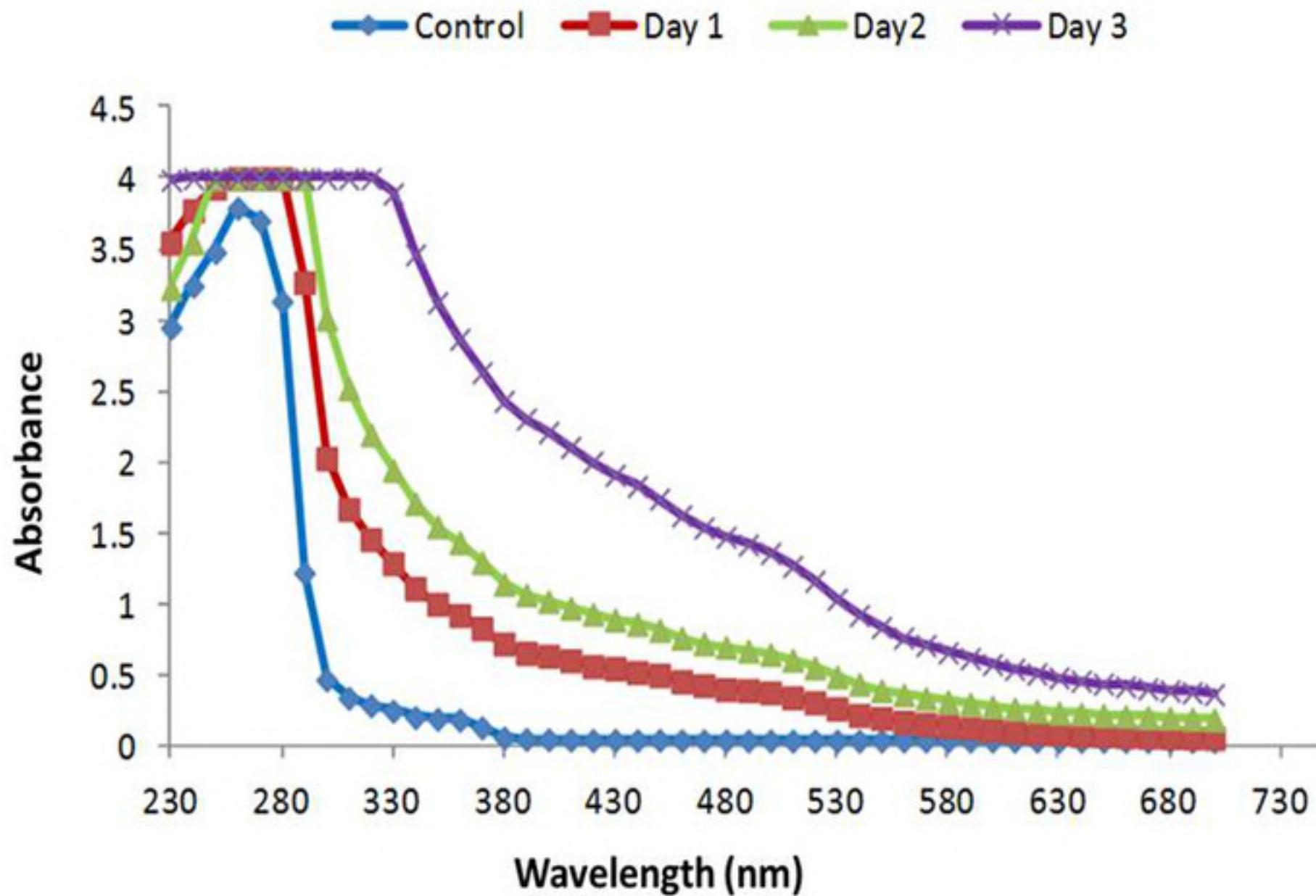
510 41. Zhang J, Lu F, Luo C, Shao L, He P. Humification characterization of biochar and its
511 potential as a composting amendment. *Journal of environmental sciences*.
512 2014;26(2):390-7. PubMed PMID: 25076530.

513 42. Zhang J, Lu F, Shao L, He P. The use of biochar-amended composting to improve the
514 humification and degradation of sewage sludge. *Bioresource technology*.
515 2014;168:252-8. doi: 10.1016/j.biortech.2014.02.080. PubMed PMID: 24656550.


Fig 1. Time course production of laccase and tyrosinase by *B. aryabhattachai* TFG5. Enzyme activities were estimated at 4 h intervals on respective media and the optical density at 600 nm measured for the growth of *B. aryabhattachai* TFG5. Values are means of three replications and error bar indicates the standard deviation value.

A**B**


Fig 2. Homology model of TyrB was predicted using crystal structure of *B.megaterium* (3NM8)(A). There were 3 Cu ligands in the model (indicated by sphere) each of which had contact with the His residues and one Phe residue (B).

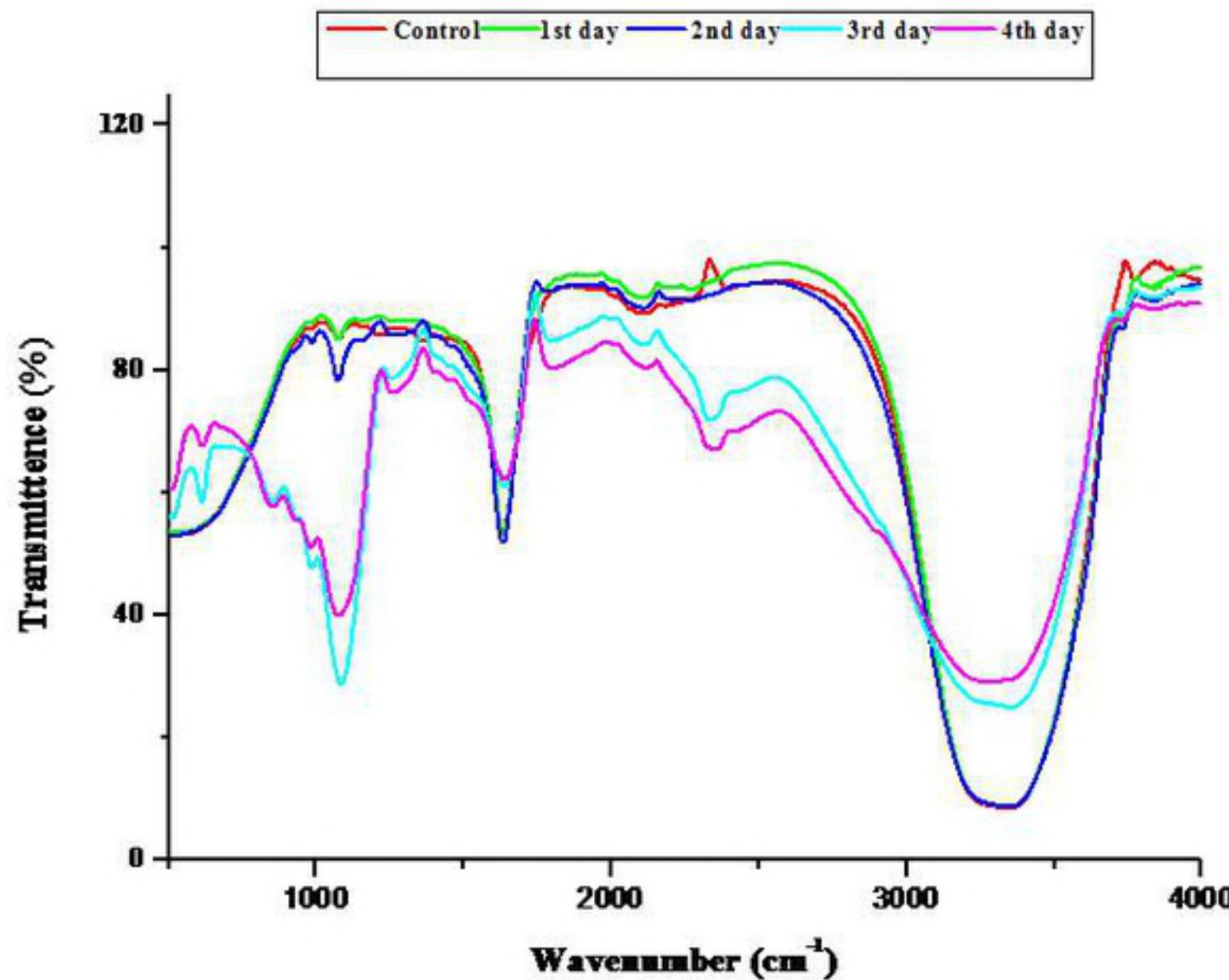

Fig 3. Oxidative polymerization of phenols by TyrB: Mono and di phenols at 2mM concentration with tyrosinase 10 U.ml⁻¹ were incubated and the CO₂ release due to oxidative polymerization was monitored. Each phenol was replicated thrice and the values are means of three replications. The error bar indicates the standard deviation value.

Fig 4. FT-IR spectra of CWW treated with TyrB: FTIR peaks of CWW transformed products of control, sterilized and filter sterilized CWW were presented. Presence of additional peaks at sterilized phenols was indicated by the arrows.

Fig 5. Absorbance spectra of the liquid portion of coir pith biomass after treatment with TyrB: Day wise spectral scan of the treated sterilized CWW showed a hump above 480-530 nm which is related to humic polymer. In addition, several absorbance ratios were calculated for the presence of humic substances and other related products in the liquid portion of the coir pith biomass (Table1).

Fig 6. FT-IR spectra of the functional groups of coir pith biomass: Spectral data were recorded at 64 scans per sec from 400–4000 cm⁻¹. Intensities of transmittance showed increased concentrations of the products released.

Table.1 UV-Vis absorbance of the liquid phase of coir pith biomass treated with TyrB

Absorbance analysed (nm)	Day1	Day2	Day3	Day4
280	4.00	4.00	3.90	3.50
340	4.00	4.00	4.00	4.00
360	4.00	4.00	4.00	4.00
400	4.00	4.00	4.00	4.00
436	3.81	3.57	3.68	2.91
465	3.52	3.23	3.35	2.55
472	3.37	3.07	3.19	2.39
600	1.30	1.13	1.17	0.65
664	0.88	0.74	0.77	0.36

Table.2 Relationship between absorbance ratios, formation of humic substances and other products in the liquid phase of coir pith biomass

Absorbance Ratios	Day1	Day2	Day3
E270/400	1.00	1.00	0.98
E465/665	3.99	4.34	4.31
E250/365	1.00	1.00	0.98
E280/472	1.18	1.30	1.23
E280/664	4.51	5.36	5.02
E472/664	3.81	4.12	4.09